1
|
Gong Y, Xu R, Gao G, Li S, Liu Y. The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases. Inflamm Res 2025; 74:75. [PMID: 40299047 DOI: 10.1007/s00011-025-02042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Fatty acid metabolism plays a critical role in regulating immune cell function, including B cells, which are central to humoral immunity and the pathogenesis of autoimmune diseases. Emerging evidence suggests that fatty acid metabolism influences B cell development, activation, differentiation, and antibody production, thereby impacting B cell-related autoimmune diseases such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). In this review, we discuss the mechanisms by which fatty acid metabolism modulates B cell biology, including energy provision, membrane composition, and signaling pathways. We highlight how alterations in fatty acid synthesis, oxidation, and uptake affect B cell function and contribute to autoimmune pathogenesis. Additionally, we explore the therapeutic potential of targeting fatty acid metabolism in B cells to treat autoimmune diseases. Understanding the interplay between fatty acid metabolism and B cell immunity may provide novel insights into the development of precision therapies for B cell-mediated autoimmune disorders.
Collapse
Affiliation(s)
- Yanmei Gong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ruiqi Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Guohui Gao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Simiao Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China
| | - Ying Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Jinan, Shandong, China.
- Shandong Institute of Neuroimmunology, Jinan, 250014, People's Republic of China, China.
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan, Shandong, China.
| |
Collapse
|
2
|
Wang S, Fang Z, Xiao W, Xie Y, Zhang Y, Liu Z. Causal role of immune cells in thyroid cancer: a two-sample Mendelian randomization study. Discov Oncol 2025; 16:481. [PMID: 40192951 PMCID: PMC11977059 DOI: 10.1007/s12672-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Immune cells play a crucial role in the progression of thyroid cancer. However, previous research on the link between immune cells and thyroid cancer has produced conflicting results. METHODS Based on the public available genome-wide association studies summary statistics, we performed a two-sample Mendelian randomization (MR) to evaluate the causal association between 731 immune phenotypes (including median fluorescence intensities, absolute cell counts, relative cell counts, and morphological parameters) and thyroid cancer. The inverse variance weighting method was employed to investigate the causal relationship between exposure and outcome. Moreover, multiple sensitivity analyses, such as MR-Egger, weighted median, and MR-PRESSO, were simultaneously applied to reinforce the final results. RESULTS After false discovery rate correction, four immunophenotypes were found to be significantly associated with a decreased risk of thyroid cancer. And six immunophenotypes were significantly associated with an increased risk of thyroid cancer. CONCLUSIONS Our study has demonstrated the close connection between immune cells and thyroid cancer by genetic means, thus providing guidance for future clinical research.
Collapse
Affiliation(s)
- Shurong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Zhouyu Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Yueyue Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhihua Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Cheng Y, Dang S, Zhang Y, Chen Y, Yu R, Liu M, Jin S, Han A, Katz S, Wang S. Sequencing-free whole genome spatial transcriptomics at molecular resolution in intact tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641951. [PMID: 40161724 PMCID: PMC11952344 DOI: 10.1101/2025.03.06.641951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Recent breakthroughs in spatial transcriptomics technologies have enhanced our understanding of diverse cellular identities, compositions, interactions, spatial organizations, and functions. Yet existing spatial transcriptomics tools are still limited in either transcriptomic coverage or spatial resolution. Leading spatial-capture or spatial-tagging transcriptomics techniques that rely on in-vitro sequencing offer whole-transcriptome coverage, in principle, but at the cost of lower spatial resolution compared to image-based techniques. In contrast, high-performance image-based spatial transcriptomics techniques, which rely on in situ hybridization or in situ sequencing, achieve single-molecule spatial resolution and retain sub-cellular morphologies, but are limited by probe libraries that target only a subset of the transcriptome, typically covering several hundred to a few thousand transcript species. Together, these limitations hinder unbiased, hypothesis-free transcriptomic analyses at high spatial resolution. Here we develop a new image-based spatial transcriptomics technology termed Reverse-padlock Amplicon Encoding FISH (RAEFISH) with whole-genome level coverage while retaining single-molecule spatial resolution in intact tissues. We demonstrate image-based spatial transcriptomics targeting 23,000 human transcript species or 22,000 mouse transcript species, including nearly the entire protein-coding transcriptome and several thousand long-noncoding RNAs, in single cells in cultures and in tissue sections. Our analyses reveal differential subcellular localizations of diverse transcripts, cell-type-specific and cell-type-invariant tissue zonation dependent transcriptome, and gene expression programs underlying preferential cell-cell interactions. Finally, we further develop our technology for direct spatial readout of gRNAs in an image-based high-content CRISPR screen. Overall, these developments provide the research community with a broadly applicable technology that enables high-coverage, high-resolution spatial profiling of both long and short, native and engineered RNA species in many biomedical contexts.
Collapse
Affiliation(s)
- Yubao Cheng
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shengyuan Dang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- These authors contributed equally to this work
| | - Yuan Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- These authors contributed equally to this work
| | - Yanbo Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ruihuan Yu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Present Address: Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Miao Liu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Ailin Han
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuel Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Siyuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University, New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics and Development Program, Yale University, New Haven, CT 06510, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University, New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine, New Haven, CT 06510, USA
- Lead contact
| |
Collapse
|
4
|
van Heerden G, Kassiem R, Hlongwa L, Mayne E. Defining a normal reference range for B cells: A key to diagnosing humoral inborn errors of immunity. Hum Immunol 2025; 86:111291. [PMID: 40154099 DOI: 10.1016/j.humimm.2025.111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
B cells are integral components of the adaptive immune response that develop in distinct stages, producing various subsets with specialized roles. Abnormal B cell subsets development is associated with humoral inborn errors of immunity (IEI) and so assessment of B cell subsets is a component of humoral IEI diagnosis and should be compared to a reference range which is age- and population-specific although relatively few studies on B-cell subsets have been published in Africa populations when compared with other populations and not all studies evaluate the same subsets or in the same age-groups. This highlights the need for local studies to establish locally relevant reference ranges.
Collapse
Affiliation(s)
- Grace van Heerden
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Raqeeba Kassiem
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Luyanda Hlongwa
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Elizabeth Mayne
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, South Africa; National Health Laboratory Service, South Africa.
| |
Collapse
|
5
|
Sarsarshahi S, Bhattacharya S, Zacharias ZR, Kamel ES, Houtman JCD, Nejadnik R. Highly variable aggregation and glycosylation profiles and their roles in immunogenicity to protein-based therapeutics. J Pharm Sci 2025; 114:103771. [PMID: 40139530 DOI: 10.1016/j.xphs.2025.103771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Production of antibodies against protein-based therapeutics (e.g., monoclonal antibodies (mAbs)) by a recipient's immune system can vary from benign symptoms to chronic neutralization of the compound, and in rare cases, a lethal cytokine storm. One critical factor that can induce or contribute to an anti-drug antibody (ADA) response is believed to be the presence of aggregated proteins in protein-based therapeutics. There is a high level of variability in the aggregation of different proteins, which adds to the complexity in understanding the immune response to these drugs. Furthermore, the level of glycosylation of proteins, which increases drug stability, functionality, and serum half-life, is highly variable and may influence their immunogenicity. Considering the abundance of literature on the effect of aggregation and glycosylation on the immunogenicity of protein-based therapeutics, this review aims to summarize the current knowledge and clarify the immunogenic effects of different protein-based therapeutics such as mAbs. This review focuses on the properties of aggregated proteins and elucidates their relationship with immunogenicity. The contribution of different immune cell subsets and the mechanisms in aggregation-induced immunogenicity are also reviewed. Finally, the potential effects of each glycan, such as sialic acid, mannose, and fucose, on protein-based therapeutics' immunogenicity and stability is discussed.
Collapse
Affiliation(s)
- Sina Sarsarshahi
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Sanghati Bhattacharya
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Zeb R Zacharias
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States
| | - Eman S Kamel
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States
| | - Jon C D Houtman
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States; Human Immunology Core, University of Iowa, Iowa City, IA, United States; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Reza Nejadnik
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
6
|
Wu L, Chai Y, Gao A, Lin Y, Han J, Li L, Li C, Ye J. IL-21 signaling promotes IgM + B cell proliferation and antibody production via JAK/STAT3 and AKT pathways in early vertebrates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 164:105325. [PMID: 39870186 DOI: 10.1016/j.dci.2025.105325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
IL-21 is a type I cytokine that is produced by activated CD4+ T cells and has a significant impact on the growth, survival, and functional activation of B lymphocytes. While IL-21 has been identified in several teleost fish species, its function and associated mechanisms focus on teleost fish B cells remain largely unknown. In this study, we aimed to investigate the effects of IL-21 (OnIL-21) on IgM+ B cells from Nile tilapia (Oreochromis niloticus), as well as the intracellular signaling transduction pathway involved. Through intraperitoneal injection of recombinant OnIL-21 (rOnIL-21), we observed that IL-21 exerted significant effects on Nile tilapia IgM+ B cells, including the promotion of IgM+ B cell proliferation, induction of IgM secretion, and up-regulation of inflammatory cytokines. These findings suggest that OnIL-21 enhances the ability of IgM+ B cells in humoral immunity. Furthermore, when IgM + B cells were stimulated with rOnIL-21 in vitro, we observed a significant up-regulation in antibody secretion ability (sIgM), as well as increased expression of IFN-γ and IL-10. To further understand the regulatory mechanism of OnIL-21, we demonstrated that OnIL-21 binds to its heterodimer receptor complex (OnIL-21R/Onγc) to exert its function. This binding triggers the conserved JAK/STAT3 and AKT pathways, which in turn regulate the expression of genes involved in B cell proliferation, antibody secretion, and cytokine expression. Collectively, our findings establish that IL-21 plays a crucial role in the regulation of humoral immunity in lower vertebrates, and this regulation is mediated through conserved signaling pathways across vertebrates.
Collapse
Affiliation(s)
- Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China
| | - Yiwen Chai
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Along Gao
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuhua Lin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jugan Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lan Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chao Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Engineering Technology Research Center for Environmentally-Friendly Aquaculture, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Martinis E, Tonon S, Colamatteo A, La Cava A, Matarese G, Pucillo CEM. B cell immunometabolism in health and disease. Nat Immunol 2025; 26:366-377. [PMID: 39984733 DOI: 10.1038/s41590-025-02102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/15/2025] [Indexed: 02/23/2025]
Abstract
B cells have crucial roles in the initiation and progression of many pathological conditions, and several therapeutic strategies have targeted the function of these cells. The advent of immunometabolism has provided compelling evidence that the metabolic reprogramming of immune cells can dramatically alter physiopathological immune activities. A better knowledge of the metabolic profiles of B cells can provide valuable means for developing therapies tuning defined cell pathways. Here we review the cellular and molecular mechanisms by which immunometabolism controls the physiology and pathophysiology of B cells and discuss the experimental evidence linking B cell metabolism to health, autoimmunity, and cancer. Considering that several metabolic pathways in B cells are involved differently, or even in opposite ways, in health and disease, we discuss how targeted modulation of B cell immunometabolism could be exploited mechanistically to rebalance abnormal B cell functions that have become altered in disease states.
Collapse
Affiliation(s)
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Alessandra Colamatteo
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
| | - Antonio La Cava
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy
- Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli 'Federico II', Napoli, Italy.
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale 'G. Salvatore' - Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy.
| | | |
Collapse
|
8
|
Palacios PA, Santibañez Á, Aguirre-Muñoz F, Gutiérrez-Vera C, Niño de Zepeda-Carrizo V, Góngora-Pimentel M, Müller M, Cáceres M, Kalergis AM, Carreño LJ. Can invariant Natural Killer T cells drive B cell fate? a look at the humoral response. Front Immunol 2025; 16:1505883. [PMID: 40040714 PMCID: PMC11876049 DOI: 10.3389/fimmu.2025.1505883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Invariant Natural Killer T (NKT) cells represent a unique subset of innate-like T cells that express both NK cell and T cell receptors. These cells are rapidly activated by glycolipid antigens presented via CD1d molecules on antigen-presenting cells (APCs), including B cells, dendritic cells (DCs), and macrophages, or through cytokine-dependent mechanisms. Their ability to produce a wide range of cytokines and express costimulatory molecules underscores their critical role in bridging innate and adaptive immunity. B cells, traditionally recognized for their role in antibody production, also act as potent APCs due to their high expression of CD1d, enabling direct interactions with iNKT cells. This interaction has significant implications for humoral immunity, influencing B cell activation, class-switch recombination (CSR), germinal center formation, and memory B cell differentiation, thus expanding the conventional paradigm of T cell-B cell interactions. While the influence of iNKT cells on B cell biology and humoral responses is well-supported, many aspects of their interaction remain unresolved. Key questions include the roles of different iNKT cell subsets, the diversity of APCs, the spatiotemporal dynamics of these interactions, especially during early activation, and the potential for distinct glycolipid ligands to modulate immune outcomes. Understanding these factors could provide valuable insights into how iNKT cells regulate B cell-mediated immunity and offer opportunities to harness these interactions in immunotherapeutic applications, such as vaccine development. In this review, we examine these unresolved aspects and propose a novel perspective on the regulatory potential of iNKT cells in humoral immunity, emphasizing their promise as a target for innovative vaccine strategies.
Collapse
Affiliation(s)
- Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Álvaro Santibañez
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Fernanda Aguirre-Muñoz
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Niño de Zepeda-Carrizo
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Martín Góngora-Pimentel
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mónica Cáceres
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Gutzeit C, Grasset EK, Matthews DB, Maglione PJ, Britton GJ, Miller H, Magri G, Tomalin L, Stapylton M, Canales-Herrerias P, Sominskaia M, Guzman M, Pybus M, Tejedor Vaquero S, Radigan L, Tachó-Piñot R, Martín Nalda A, García Prat M, Martinez Gallo M, Dieli-Crimi R, Clemente JC, Mehandru S, Suarez-Farinas M, Faith JJ, Cunningham-Rundles C, Cerutti A. Gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses. SCIENCE ADVANCES 2025; 11:eado9455. [PMID: 39937896 PMCID: PMC11817949 DOI: 10.1126/sciadv.ado9455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 01/13/2025] [Indexed: 02/14/2025]
Abstract
The gut microbiota enhances systemic immunoglobulin G (IgG) responses to vaccines, but it is unknown whether this effect involves IgA, which coats intestinal microbes. That IgA may amplify postimmune IgG production is suggested by the impaired IgG response to pneumococcal vaccines in some IgA-deficient patients. Here, we found that antipneumococcal but not total IgG production was impaired in mice with IgA deficiency. The positive effect of gut IgA on antipneumococcal IgG responses started very early in life and could implicate gut bacteria, as these responses were attenuated in germ-free mice recolonized with gut microbes from IgA-deficient donors. IgA could exert this effect by constraining the systemic translocation of gut antigens, which was associated with chronic immune activation, including T cell overexpression of programmed cell death protein 1 (PD-1). This inhibitory receptor may attenuate antipneumococcal IgG production by causing B cell hyporesponsiveness, which improved upon anti-PD-1 treatment. Thus, gut IgA functionally interacts with systemic IgG to enhance antipneumococcal vaccine responses.
Collapse
Affiliation(s)
- Cindy Gutzeit
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Emilie K. Grasset
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
- Gale and Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dean B. Matthews
- Immunology Program of the Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Paul J. Maglione
- Pulmonary Center and Department of Medicine, Boston University, Boston, MA 02118, USA
| | - Graham J. Britton
- Precision Immunology Institute, Icahn Institute for Data Science and Genome Technology, School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haley Miller
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Giuliana Magri
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lewis Tomalin
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew Stapylton
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pablo Canales-Herrerias
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Musia Sominskaia
- Department of Pediatrics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mauricio Guzman
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Marc Pybus
- Molecular Biology Laboratory, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), 02041 Barcelona, Spain
| | - Sonia Tejedor Vaquero
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Lin Radigan
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Roser Tachó-Piñot
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
| | - Andrea Martín Nalda
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Marina García Prat
- Infection in Immunocompromised Pediatric Patients Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron University Hospital (HUVH), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, 08035 Barcelona, Spain
| | - Monica Martinez Gallo
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - Romina Dieli-Crimi
- Division of Immunology, Vall d’Hebron University Hospital (HUVH), Barcelona Autònoma University (UAB), 48201 Barcelona, Spain
| | - José C. Clemente
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saurabh Mehandru
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Gastroenterology, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J. Faith
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Charlotte Cunningham-Rundles
- Departments of Medicine and Pediatrics, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Andrea Cerutti
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Program for Inflammatory and Cardiovascular Disorders, Institute Hospital del Mar for Medical Investigations (IMIM), 08003 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), 08003 Barcelona, Spain
| |
Collapse
|
10
|
Xie M, Tsai CY, Woo J, Nuritdinov F, Cristaldo M, Odjourian NM, Antilus-Sainte R, Dougher M, Gengenbacher M. BAFF and APRIL immunotherapy following Bacille Calmette-Guérin vaccination enhances protection against pulmonary tuberculosis in mice. Front Immunol 2025; 16:1551183. [PMID: 39981256 PMCID: PMC11839638 DOI: 10.3389/fimmu.2025.1551183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Bacille Calmette-Guérin (BCG), the only tuberculosis vaccine currently in clinical use, provides inadequate long-term protection. Administered at birth, BCG induces broad immune responses against a large number of antigens shared with Mycobacterium tuberculosis (Mtb), but protection wanes over time. We have previously shown that unconventional B cell subsets play a role in tuberculosis control. Methods High-dimensional flow cytometry and multiplex cytokine analysis were employed to investigate the effects of immunotherapy on BCG-vaccinated mice in an Mtb challenge model. Results In this study, we investigate the potential of recombinant cytokines targeting B cells - B-cell activating factor (BAFF) and A proliferation-inducing ligand (APRIL) - to modulate BCG immunity and improve protection in mice. Both cytokines play overlapping roles in B cell development and peripheral survival. Following subcutaneous BCG vaccination, immunotherapy with BAFF or APRIL resulted in an increased frequency of unconventional B cells potentially transitioning into antibody-producing plasma cells. Concurrently, we observed an increased frequency of central memory T cells, a subset critical for protective immunity. Changes in cellular immune responses were accompanied by reduced pro-inflammatory cytokine profiles and a contraction of the leukocyte population in lungs. Importantly, mice receiving BCG vaccination followed by BAFF or APRIL immunotherapy exhibited superior long-term protection against pulmonary tuberculosis relative to controls that received only BCG. Conclusion In summary, our findings demonstrate that combining BCG vaccination with B cell targeted immunomodulatory therapies can improve long-term protection against pulmonary tuberculosis, highlighting the continued relevance and underutilized potential of BCG as a vaccine platform.
Collapse
Affiliation(s)
- Min Xie
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Chen-Yu Tsai
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Joshua Woo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Frank Nuritdinov
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Melissa Cristaldo
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Narineh M. Odjourian
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | | | - Maureen Dougher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
| | - Martin Gengenbacher
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| |
Collapse
|
11
|
Shimizu T, Abe S, Kawaguchi Y, Takata H, Ando H, Ishida T. A spleen-targeted vaccine for SARS-CoV-2 - Inducting neutralizing antibodies in mice. J Pharm Sci 2025:S0022-3549(25)00045-0. [PMID: 39892872 DOI: 10.1016/j.xphs.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
The development of vaccines against infectious diseases is of the utmost importance to prevent global pandemics such as COVID-19. The application of antigens and adjuvants to efficiently target antigen presenting cells (APCs) is paramount for the development of efficient vaccines. In our previous study, we showed that splenic marginal zone-B (MZ-B) cells are promising APCs in addition to dendritic cells (DCs). In this study we achieved the targeted delivery of sufficient antigen to MZ-B cells by utilizing an intravenous (IV) immunization system we originally developed. This system involves the sequential injection of empty PEGylated liposomes (PEG-Lip) and antigen-containing PEG-Lip within a prescribed interval. Herein, we describe the application of this IV immunization system as a COVID-19 vaccine to induce specific antibodies against SARS-CoV-2. To establish efficacy, SARS-CoV-2 spike proteins were used as an antigen, and α-galactosylceramide (GC) was used as an adjuvant in this study. Three days after priming with empty PEG-Lip, we injected PEG-Lip containing spike protein and α-GC. Our IV immunization system successfully induced higher levels of anti-spike antibodies when spike protein derived from HEK-293, but not E. coli., was injected into mice. The levels were less produced using conventional immunization via subcutaneous (s.c.) injections of complete Freund's adjuvant without priming. Interestingly, a lower dose (0.2 µg) of spike protein antigen encapsulated into PEG-Lip induced a higher level of anti-spike antibodies than that produced using a significantly higher dose (5 µg). The induced anti-spike antibodies inhibited the interaction between the receptor binding domain of the spike protein and the angiotensin-converting enzyme 2. This indicates that the induced antibodies tend to neutralize SARS-CoV-2. Collectively, the specific delivery of spike proteins to spleen, probably MZ-B cells, via nano-carriers could be a promising approach for the development of global pandemic vaccines that require only minimum dosages of antigen.
Collapse
Affiliation(s)
- Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan.
| | - Shunji Abe
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan
| | - Yoshino Kawaguchi
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan
| | - Haruka Takata
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505, Tokushima, Japan
| | - Hidenori Ando
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505, Tokushima, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima, 770-8505, Japan; Innovative Research Center for Drug Delivery System, Institute of Biomedical Sciences, Tokushima University, 770-8505, Tokushima, Japan.
| |
Collapse
|
12
|
Tapryal S. Monoclonal antibodies - A repertoire of therapeutics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:151-212. [PMID: 39978966 DOI: 10.1016/bs.apcsb.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Antibodies are a class of biomolecules armed with extraordinary diversity, unmatched in the biological world by any other class of molecules. This characteristic feature equips antibodies to recognize, bind, and eliminate an infinite number of pathogens/antigens facilitated by their effector functions. The repertoire of natural binding specificities of antibodies (Abs) is greater than the calculated estimate of ∼1012 in humans, as a naive, single antigen-binding site may bind more than one antigen employing the plasticity in antigen-antibody interactions, potentiating Abs to fight infinite pathogenic insults and restrict the development of cancers. Additionally, advanced technological interventions, by allowing manipulation of the germline and acquired specificities of human/animal immunoglobulins (Ig) have contributed immensely to broaden their existing repertoire and scope of clinical applications. The available natural repertoire of Ig and Ig-like molecules in other animals, e.g., mice, horses, cows, pigs, rabbits, camels, llamas, etc., further diversified the source of unique antigen-binding specificities. The recombinant DNA technology, in association with hybridoma , transgenic, and phage display technologies, has helped create a parallel repertoire of unique antibody molecules [animal Abs, camelid heavy chain Abs (hcAbs), chimeric Abs, chimeric hcAbs, humanized Abs, humanized nanobody (Nb)-hcAbs, human Abs, etc.], monoclonal Ab (mAb) derived fragments [antigen-binding-fragment (Fab), single-chain-variable-fragment (scFv), variable-fragement (Fv), single-variable-domain of hcAbs (VHH), bispecific scFv, diabodies, triabodies, intrabodies, bispecific Fabs, tri-specific Fabs, etc.), and immunoconjugates generated by fusing/conjugating mAb fragments with enzyme, toxin, prodrug etc., molecules. The current chapter provides a detailed description of the natural and engineered antibody repertoires and discusses various strategies using which these molecules are being inducted as novel immunotherapeutics for treating a significant number of human diseases.
Collapse
Affiliation(s)
- Suman Tapryal
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, South Moti Bagh, New Delhi, India.
| |
Collapse
|
13
|
Tanaka-Yano M, Sugden WW, Wang D, Badalamenti B, Côté P, Chin D, Goldstein J, George S, Rodrigues-Luiz GF, da Rocha EL, Li H, North TE, Gryder BE, Rowe RG. Dynamic activity of Erg promotes aging of the hematopoietic system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634563. [PMID: 39896635 PMCID: PMC11785177 DOI: 10.1101/2025.01.23.634563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hematopoiesis changes to adapt to the physiology of development and aging. Temporal changes in hematopoiesis parallel age-dependent incidences of blood diseases. Several heterochronic regulators of hematopoiesis have been identified, but how the master transcription factor (TF) circuitry of definitive hematopoietic stem cells (HSCs) adapts over the lifespan is unknown. Here, we show that expression of the ETS family TF Erg is adult-biased, and that programmed upregulation of Erg expression during juvenile to adult aging is evolutionarily conserved and required for complete implementation of adult patterns of HSC self-renewal and myeloid, erythroid, and lymphoid differentiation. Erg deficiency maintains fetal transcriptional and epigenetic programs, and persistent juvenile phenotypes in Erg haploinsufficient mice are dependent on deregulation of the fetal-biased TF Hmga2 . Finally, Erg haploinsufficiency in the adult results in fetal-like resistance to leukemogenesis. Overall, we identify a mechanism whereby HSC TF networks are rewired to specify stage-specific hematopoiesis, a finding directly relevant to age-biased blood diseases. SUMMARY The hematopoietic system undergoes a process of coordinated aging from the juvenile to adult states. Here, we find that expression of ETS family transcription factor Erg is temporally regulated. Impaired upregulation of Erg during the hematopoietic maturation results in persistence of juvenile phenotypes.
Collapse
|
14
|
Kampe L, Melcher C, Westphal K, Brand K, Föger N, Lee KH. Acquisition of innate B cell properties and generation of autoreactive IgA antibodies by follicular B cells during homeostatic proliferation. Front Immunol 2025; 16:1506628. [PMID: 39911392 PMCID: PMC11794109 DOI: 10.3389/fimmu.2025.1506628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
The physiologic process of homeostatic proliferation serves to restore the pool of peripheral lymphocytes in response to lymphopenia. However, functional changes in B cell responses during homeostatic proliferation are still only insufficiently characterized. Mature peripheral B cells consist of functionally distinct B cell subsets, such as adaptive follicular B cells (FoBs) and the innate B cell subsets, marginal zone B cells (MZBs) and B1a B cells. During homeostatic proliferation, B cells undergo antigen-independent clonal expansion and differentiation into antibody-producing plasma cells (PCs). However, it is still largely unknown which B cell lineages are involved in the formation of antibodies in response to lymphopenia and what functional properties these antibodies have. Employing adoptive transfer of different mature B cell subsets into lymphopenic Rag2-/- hosts, we here show that not only innate B cells - MZBs and B1a cells - but also adaptive FoBs were capable to differentiate into PCs and to produce IgM and class-switched IgA serum antibodies in a T cell-independent fashion during homeostatic proliferation. In light of the poor reactivity of FoBs to innate stimulation in vitro, the observed high expansion capacity of FoBs, their sustained repopulation of lymphoid and intestinal organs and their particularly prominent ability to induce class-switched auto-/polyreactive IgA antibodies in this antigen- and T cell-independent system was rather unexpected. These properties, which are more typical for innate B cells, were associated with a striking plasticity of FoBs that transdifferentiate into MZB-like cells under lymphopenic conditions. Together, our study indicates that the reconstitution of antibodies in response to lymphopenia-induced homeostatic B cell proliferation is mainly elicited by innate MZB-like B cell responses via antigen- and T cell-independent pathways resulting in the selection of autoreactive IgA antibodies. In addition, our data point to the pathogenic potential of the conversion of conventional adaptive B cells, which are the most common population of mature B cells, into innate-like B cells and the production of autoreactive IgA antibodies during homeostatic proliferation. This process could also manifest as clinical complication of therapy-induced lymphopenia in the context of transplantation and cancer in human patients.
Collapse
Affiliation(s)
- Laura Kampe
- Inflammation Research Group, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Christian Melcher
- Inflammation Research Group, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Katrin Westphal
- Inflammation Research Group, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Niko Föger
- Inflammation Research Group, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Kyeong-Hee Lee
- Inflammation Research Group, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
15
|
Gorbacheva V, Fan R, Gaudette B, Baldwin WM, Fairchild RL, Valujskikh A. Marginal zone B cells are required for optimal humoral responses to allograft. Am J Transplant 2025; 25:48-59. [PMID: 39278625 PMCID: PMC11734443 DOI: 10.1016/j.ajt.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/18/2024]
Abstract
Antibody-mediated rejection (AMR) is among the leading causes of graft failure in solid organ transplantation. However, AMR treatment options are limited by an incomplete understanding of the mechanisms underlying de novo donor-specific antibody (DSA) generation. The development of pathogenic isotype-switched DSA in response to transplanted allografts is typically attributed to follicular B cells undergoing germinal center reaction whereas the contribution of other B cell subsets has not been previously addressed. The current study investigated the role of recipient marginal zone B cells (MZ B cells) in DSA responses using mouse models of heart and renal allotransplantation. MZ B cells rapidly differentiate into antibody-secreting cells in response to allotransplantation. Despite the selective depletion of follicular B cells in heart allograft recipients, MZ B cells are sufficient for T-dependent IgM and early IgG DSA production. Furthermore, the presence of intact MZ B cell subset is required to support the generation of pathogenic isotype-switched DSA in renal allograft recipients containing donor-reactive memory helper T cells. These findings are the first demonstration of the role of MZ B cells in humoral alloimmune responses following solid organ transplantation and identify MZ B cells as a potential therapeutic target for minimizing de novo DSA production and AMR in transplant recipients.
Collapse
Affiliation(s)
- Victoria Gorbacheva
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ran Fan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Brian Gaudette
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
16
|
He Q, Chen Y, Wang Z, Shen S, Zhao Y, Xing H, Zhang J, Wu Y, Zhang X, Wang B. Efficient Selection of the 2,4-Dichlorophenoxyacetic Acid Nanobody Gene from the Phage Library Constructed with Sorted Specific Cells and Expression in Plants to Confer Herbicide Resistance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27850-27860. [PMID: 39629937 DOI: 10.1021/acs.jafc.4c11018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Immunomodulation in biotechnological processes requires an adequate level of specific, high-affinity recombinant antibodies expressed in the affected cells. Here, we report a new strategy to obtain a sensitive nanobody against the 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide. Unlike the previous methods that used total peripheral blood lymphocytes, specific peripheral lymphocytes stained with a fluorescein isothiocyanate-labeled 2,4-D coating antigen were isolated via fluorescence-activated cell sorting and used for phage display library construction. This strategy significantly reduced interference of anticarrier protein nanobody phages to small-molecule nanobody development and required only two cycles of panning to obtain the desired positive clones. Nb4-11, one of the most sensitive phage clones, showed good sensitivity and specificity against 2,4-D. Compared with previously reported 2,4-D nanobodies, the sequence of Nb4-11 exhibited completely different complementarity-determining regions (CDRs). The half-maximum inhibition concentration of the Nb4-11-based ic-ELISA was 29.3 ± 1.9 ng/mL. The Nb4-11 gene was subsequently transferred into Arabidopsis thaliana to confer herbicide resistance, and homozygous transgenic T3 lines were obtained. Stable expression of the 2,4-D nanobody in the model plant was confirmed via PCR, ic-ELISA, and Western blot analysis. In the dose-response bioassay, the transgenic T3 lines were resistant to 2 g of 2,4-D ai/ha. This work offers a new way to sort specific peripheral lymphocytes, efficiently develop nanobodies against small molecules, and create a novel mechanism for herbicide resistance based on the expression of nanobodies in plants.
Collapse
Affiliation(s)
- Qingqing He
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yujie Chen
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhaoxiang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Life Sciences, Capital Normal University, Beijing 100089, China
| | - Simin Shen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yajie Zhao
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haiyan Xing
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Zhang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yixuan Wu
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Baomin Wang
- College of Agriculture and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Park JS, Kang M, Kim HB, Hong H, Lee J, Song Y, Hur Y, Kim S, Kim TK, Lee Y. The capicua-ataxin-1-like complex regulates Notch-driven marginal zone B cell development and sepsis progression. Nat Commun 2024; 15:10579. [PMID: 39632849 PMCID: PMC11618371 DOI: 10.1038/s41467-024-54803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Follicular B (FOB) and marginal zone B (MZB) cells are pivotal in humoral immune responses against pathogenic infections. MZB cells can exacerbate endotoxic shock via interleukin-6 secretion. Here we show that the transcriptional repressor capicua (CIC) and its binding partner, ataxin-1-like (ATXN1L), play important roles in FOB and MZB cell development. CIC deficiency reduces the size of both FOB and MZB cell populations, whereas ATXN1L deficiency specifically affects MZB cells. B cell receptor signaling is impaired only in Cic-deficient FOB cells, whereas Notch signaling is disrupted in both Cic-deficient and Atxn1l-deficient MZB cells. Mechanistically, ETV4 de-repression leads to inhibition of Notch1 and Notch2 transcription, thereby inhibiting MZB cell development in B cell-specific Cic-deficient (Cicf/f;Cd19-Cre) and Atxn1l-deficient (Atxn1lf/f;Cd19-Cre) mice. In Cicf/f;Cd19-Cre and Atxn1lf/f; Cd19-Cre mice, humoral immune responses and lipopolysaccharide-induced sepsis progression are attenuated but are restored upon Etv4-deletion. These findings highlight the importance of the CIC-ATXN1L complex in MZB cell development and may provide proof of principle for therapeutic targeting in sepsis.
Collapse
Affiliation(s)
- Jong Seok Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Minjung Kang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Han Bit Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hyebeen Hong
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jongeun Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Youngkwon Song
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yunjung Hur
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Soeun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Tae-Kyung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Yoontae Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Zhu S, Zhang J, Gao L, Ye Q, Mao J. The Pathogenesis of Nephrotic Syndrome: A Perspective from B Cells. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:531-544. [PMID: 39664337 PMCID: PMC11631018 DOI: 10.1159/000540511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/20/2024] [Indexed: 12/13/2024]
Abstract
Background Nephrotic syndrome is a special type of chronic kidney disease, the specific pathogenesis of which remains unclear. An increasing number of studies have suggested that B cells play an important role in the pathogenesis of nephrotic syndrome. Summary Idiopathic nephrotic syndrome is a common kidney disease in children. While previously believed to be primarily caused by T-cell disorders, recent research has shifted its focus to B cells. Studies have shown that B cells play a significant role in the pathogenesis of NS, potentially even more so than T cells. This article provides a comprehensive review of the involvement of B cells in the development of idiopathic nephrotic syndrome. Key Messages B cells are involved in the pathogenesis of nephrotic syndrome by producing autoantibodies and various cytokines.
Collapse
Affiliation(s)
- Shifan Zhu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Jiayu Zhang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Langping Gao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Qing Ye
- Department of Clinical Laboratory, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, China
| |
Collapse
|
19
|
Juhasz V, Charlier FT, Zhao TX, Tsiantoulas D. Targeting the adaptive immune continuum in atherosclerosis and post-MI injury. Atherosclerosis 2024; 399:118616. [PMID: 39546915 DOI: 10.1016/j.atherosclerosis.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Atherosclerotic disease is a cholesterol-rich lipoprotein particle-driven disease resulting in the formation of atherosclerotic plaques in large and medium size arteries. Rupture or erosion of atherosclerotic plaques can trigger the formation of a thrombus causing the obstruction of the blood flow in the coronary artery and thereby leading to myocardial infarction (MI). Inflammation is a crucial pillar of the mechanisms leading to atherosclerosis and governing the cardiac repair post-MI. Dissecting the complex and sophisticated networks of the immune responses underlying the formation of atherosclerotic plaques and affecting the healing of the heart after MI will allow the designing of highly precise immunomodulatory therapies for these settings. Notably, MI also accelerates atherosclerosis via modulating the response of the immune system. Therefore, for the identification of effective and safe therapeutic targets, it is critical to consider the inflammatory continuum that interconnects the two pathologies and identify immunomodulatory strategies that confer a protective effect in both settings or at least, affect each pathology independently. Adaptive immunity, which consists of B and T lymphocytes, is a major regulator of atherosclerosis and post-MI cardiac repair. Here, we review and discuss the effect of potential adaptive immunity-targeting therapies, such as cell-depleting therapies, in atherosclerosis and post-MI cardiac injury.
Collapse
Affiliation(s)
- Viktoria Juhasz
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fiona T Charlier
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Cardiology, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | | |
Collapse
|
20
|
Tam H, Xu Y, An J, Schöneberg T, Schulz A, Muppidi JR, Cyster JG. Phosphatidylserine phospholipase A1 enables GPR34-dependent immune cell accumulation in the peritoneal cavity. J Exp Med 2024; 221:e20240992. [PMID: 39412501 PMCID: PMC11488134 DOI: 10.1084/jem.20240992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The peritoneal cavity (PerC) is an important site for immune responses to infection and cancer metastasis. Yet few ligand-receptor axes are known to preferentially govern immune cell accumulation in this compartment. GPR34 is a lysophosphatidylserine (lysoPS)-responsive receptor that frequently harbors gain-of-function mutations in mucosa-associated B cell lymphoma. Here, we set out to test the impact of a GPR34 knock-in (KI) allele in the B-lineage. We report that GPR34 KI promotes the PerC accumulation of plasma cells (PC) and memory B cells (MemB). These KI cells migrate robustly to lysoPS ex vivo, and the KI allele synergizes with a Bcl2 transgene to promote MemB but not PC accumulation. Gene expression and labeling studies reveal that GPR34 KI enhances PerC MemB proliferation. Both KI PC and MemB are specifically enriched at the omentum, a visceral adipose tissue containing fibroblasts that express the lysoPS-generating PLA1A enzyme. Adoptive transfer and chimera experiments revealed that KI PC and MemB maintenance in the PerC is dependent on stromal PLA1A. These findings provide in vivo evidence that PLA1A produces lysoPS that can regulate GPR34-mediated immune cell accumulation at the omentum.
Collapse
Affiliation(s)
- Hanson Tam
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Xu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jinping An
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jagan R. Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
Zhang X, Ma C, Lu Y, Wang J, Yun H, Jiang H, Wu M, Feng X, Gai W, Xu G, Deng H, Feng J, Liu W, Shi T, Cheng Q, Zhang J. Rack1 regulates B-cell development and function by binding to and stabilizing the transcription factor Pax5. Cell Mol Immunol 2024; 21:1282-1295. [PMID: 39256480 PMCID: PMC11528059 DOI: 10.1038/s41423-024-01213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
The transcription factor Pax5 activates genes essential for B-cell development and function. However, the regulation of Pax5 expression remains elusive. The adaptor Rack1 can interact with multiple transcription factors and modulate their activation and/or stability. However, its role in the transcriptional control of B-cell fates is largely unknown. Here, we show that CD19-driven Rack1 deficiency leads to pro-B accumulation and a simultaneous reduction in B cells at later developmental stages. The generation of bone marrow chimeras indicates a cell-intrinsic role of Rack1 in B-cell homeostasis. Moreover, Rack1 augments BCR and TLR signaling in mature B cells. On the basis of the aberrant expression of Pax5-regulated genes, including CD19, upon Rack1 deficiency, further exploration revealed that Rack1 maintains the protein level of Pax5 through direct interaction and consequently prevents Pax5 ubiquitination. Accordingly, Mb1-driven Rack1 deficiency almost completely blocks B-cell development at the pro-B-cell stage. Ectopic expression of Pax5 in Rack1-deficient pro-B cells partially rescues B-cell development. Thus, Rack1 regulates B-cell development and function through, at least partially, binding to and stabilizing Pax5.
Collapse
Affiliation(s)
- Xueting Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chenke Ma
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yuchen Lu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jing Wang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongfang Yun
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hui Jiang
- Beijing Institute of Basic Medical Sciences, Beijing, China
- University of South China, Hengyang Medical School, Hengyang, China
| | - Mengyao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Anhui Medical University, Hefei, China
| | - Xiaoyao Feng
- Beijing Institute of Basic Medical Sciences, Beijing, China
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
| | - Wenbin Gai
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Guanglei Xu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiannan Feng
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China
- National Engineering Research Center for Emergence Drugs, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wanli Liu
- Institute of Life Sciences, Tsinghua University, Beijing, China
| | - Taoxing Shi
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China.
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China.
- University of South China, Hengyang Medical School, Hengyang, China.
- Anhui Medical University, Hefei, China.
- Henan University Joint National Laboratory for Antibody Drug Engineering, Kaifeng, China.
- Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
22
|
Chen S, Wang F, Lin Y, Xie Y, Zhang R, Chen J, Qiao N, Yin T, Tan Y, Fang H, Lu H, Chen Z, Yu S, Zhu J, Jia Z, Chen S. Systemic and dynamic immune landscape of Omicron-infected subjects treated with Lianhua Qingwen capsules. Acta Pharm Sin B 2024; 14:5074-5078. [PMID: 39664419 PMCID: PMC11628826 DOI: 10.1016/j.apsb.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 12/13/2024] Open
Affiliation(s)
- Shijun Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fuxiang Wang
- Department of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuanlong Lin
- Department of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Yinyin Xie
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruihong Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanhe Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhenhua Jia
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, Shijiazhuang 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang 050035, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
23
|
Fouza A, Fylaktou A, Tagkouta A, Daoudaki M, Vagiotas L, Kasimatis E, Xochelli A, Nikolaidou V, Katsanos G, Tsoulfas G, Skoura L, Papagianni A, Antoniadis N. Frequencies or Absolute Numbers? Cluster Analysis of Frequencies and Absolute Numbers of B-Cell Subsets in Dialysis Patients Who Are Candidates for Kidney Transplantation Reveals Different Profiles. J Clin Med 2024; 13:6454. [PMID: 39518592 PMCID: PMC11547170 DOI: 10.3390/jcm13216454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Detailed characterization of B cells in dialysis patients who are candidates for kidney transplant is still lacking, with little information on how dialysis duration and modality impact B cell subsets. Methods: Cluster analysis of flow cytometry determined the frequencies and absolute numbers of B-cell subsets and divided the cohort of 78 candidates into two distinct clusters, one with shorter and one with longer dialysis duration. Results: The immune profiles of the clusters differed depending on whether frequencies or absolute counts were considered. In long-term dialysis patients, the frequency of total memory, double negative and marginal zone B cells increased, while the frequency of naive and regulatory B cells decreased. This pattern was reversed in short-term dialysis patients, with a decrease in memory and an increase in naive and regulatory populations. The B subset number decreased significantly in long-term dialysis patients, while it increased significantly in short-term dialysis patients. The dialysis modality affected the frequency-based subset immune profiles. Conclusions: It is important to determine whether the evaluation is based on frequencies or absolute numbers. The different distribution of B cell subsets in the clusters, in terms of frequencies and absolute numbers, was influenced by dialysis duration. Modality and age only influenced the frequencies.
Collapse
Affiliation(s)
- Ariadni Fouza
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Asimina Fylaktou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece (A.X.); (V.N.)
| | - Anneta Tagkouta
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Maria Daoudaki
- Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece;
| | - Lampros Vagiotas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Efstratios Kasimatis
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (A.P.)
| | - Aliki Xochelli
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece (A.X.); (V.N.)
| | - Vasilki Nikolaidou
- Department of Immunology, National Peripheral Histocompatibility Center, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece (A.X.); (V.N.)
| | - Georgios Katsanos
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Georgios Tsoulfas
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aikaterini Papagianni
- 1st Department of Nephrology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.K.); (A.P.)
| | - Nikolaos Antoniadis
- Department of Transplant Surgery, Center for Research and Innovation in Solid Organ Transplantation School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.F.); (L.V.); (G.K.); (G.T.); (N.A.)
| |
Collapse
|
24
|
Lin L, Zou J, Pei S, Huang W, Zhang Y, Zhao Z, Ding Y, Xiao C. Germinal center B-cell subgroups in the tumor microenvironment cannot be overlooked: Their involvement in prognosis, immunotherapy response, and treatment resistance in head and neck squamous carcinoma. Heliyon 2024; 10:e37726. [PMID: 39391510 PMCID: PMC11466559 DOI: 10.1016/j.heliyon.2024.e37726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background More than 60 % of patients with head and neck squamous carcinoma (HNSCC) are diagnosed at advanced stages and miss radical treatment. This has prompted the need to find new biomarkers to achieve early diagnosis and predict early recurrence and metastasis of tumors. Methods Single-cell RNA sequencing (scRNA-seq) data from HNSCC tissues and peripheral blood samples were obtained through the Gene Expression Omnibus (GEO) database (GSE164690) to characterize the B-cell subgroups, differentiation trajectories, and intercellular communication networks in HNSCC and to construct a prognostic model of the associated risks. In addition, this study analyzed the differences in clinical features, immune cell infiltration, functional enrichment, tumor mutational burden (TMB), and drug sensitivity between the high- and low-risk groups. Results Using scRNA-seq of HNSCC, we classified B and plasma cells into a total of four subgroups: naive B cells (NBs), germinal center B cells (GCBs), memory B cells (MBs), and plasma cells (PCs). Pseudotemporal trajectory analysis revealed that NBs and GCBs were at the early stage of B cell differentiation, while MBs and PCs were at the end. Cellular communication revealed that GCBs acted on tumor cells through the CD99 and SEMA4 signaling pathways. The independent prognostic value, immune cell infiltration, TMB and drug sensitivity assays were validated for the MEF2B+ GCB score groups. Conclusions We identified GCBs as B cell-specific prognostic biomarkers for the first time. The MEF2B+ GCB score fills the research gap in the genetic prognostic prediction model of HNSCC and is expected to provide a theoretical basis for finding new therapeutic targets for HNSCC.
Collapse
Affiliation(s)
- Li Lin
- Department of Stomatology, the First Affiliated Hospital of Soochow University, 188 Shi Zi Rd, Suzhou, 215006, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Jiani Zou
- China Eastern Airlines, Comprehensive Management Department, Aviation Health Department, China
| | - Shengbin Pei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenyi Huang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Yichi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Zhijie Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, 639 Zhi Zao Ju Rd, Shanghai, 200011, China
| | - Yantao Ding
- Institute of Dermatology and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China
- China bKey Laboratory of Dermatology, Anhui Medical University, Ministry of Education, Hefei, Anhui, 230032, China
| | - Can Xiao
- Department of Stomatology, the First Affiliated Hospital of Soochow University, 188 Shi Zi Rd, Suzhou, 215006, China
| |
Collapse
|
25
|
Zheng Q, Lin K, Zhang N, Shi Q, Wu Y, Chen Y. Anti-mCD20 in combination with α-mCXCL13 monoclonal antibody inhibits anti-FVIII antibody development in hemophilia A mice. Int Immunopharmacol 2024; 139:112735. [PMID: 39067397 DOI: 10.1016/j.intimp.2024.112735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Anti-factor VIII (FVIII) antibody development poses a significant challenge in hemophilia A (HA) patients receiving FVIII protein replacement therapy. There is an urgent need for novel therapeutic strategies to inhibit the production of anti-FVIII inhibitory antibodies (inhibitors) in HA. This study aimed to investigate a combination monoclonal antibody (mAb) therapy targeting CXCL13 and CD20 on the development of anti-FVIII antibodies in a HA murine model, along with the underlying mechanisms involved. Specifically, mAbs targeting mouse CD20 (18B12) with an IgG2a backbone and mouse CXCL13 (2C4) with an IgG1 backbone were synthesized. HA mice with FVIII inhibitors were established, and the results revealed that the combination therapy of anti-mCD20 with α-mCXCL13 significantly suppressed anti-FVIII antibody development and induced FVIII tolerance. Furthermore, this combination therapy led to a marked reduction of peripheral and splenic follicular helper T cells and an enhancement of regulatory T cell induction, along with sustained depletion of bone marrow and splenic plasma cells in HA mice with preexisting FVIII immunity. Thus, the concurrence of blockage of CD20 and neutralization of CXCL13 hold promise as a therapeutic strategy for HA patients with inhibitors.
Collapse
Affiliation(s)
- Qiaoyun Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Kehan Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Na Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Qizhen Shi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA; Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Yong Wu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China.
| | - Yingyu Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China; Medical Technology and Engineering College of Fujian Medical University, Fuzhou, Fujian, China; Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University, Fuzhou, China.
| |
Collapse
|
26
|
Spencer J, Dionisi C. Immature B cell homing shapes human lymphoid tissue structure and function. J Exp Med 2024; 221:e20240085. [PMID: 39093311 PMCID: PMC11296955 DOI: 10.1084/jem.20240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Shortly after the emergence of newly formed human B cells from bone marrow as transitional cells, they diverge along two developmental pathways that can be distinguished by the level of IgM they express and migratory biases. Here, we propose that differential tissue homing of immature B cell subsets contributes to human lymphoid tissue structure and function.
Collapse
Affiliation(s)
- Jo Spencer
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
27
|
Le Coz C, Trofa M, Butler DL, Yoon S, Tian T, Reid W, Cruz Cabrera E, Knox AVC, Khanna C, Sullivan KE, Heimall J, Takach P, Fadugba OO, Lawrence M, Jyonouchi S, Hakonarson H, Wells AD, Handler S, Zur KB, Pillai V, Gildersleeve JC, Romberg N. The common variable immunodeficiency IgM repertoire narrowly recognizes erythrocyte and platelet glycans. J Allergy Clin Immunol 2024; 154:778-791.e9. [PMID: 38692308 PMCID: PMC11380600 DOI: 10.1016/j.jaci.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Autoimmune cytopenias (AICs) regularly occur in profoundly IgG-deficient patients with common variable immunodeficiency (CVID). The isotypes, antigenic targets, and origin(s) of their disease-causing autoantibodies are unclear. OBJECTIVE We sought to determine reactivity, clonality, and provenance of AIC-associated IgM autoantibodies in patients with CVID. METHODS We used glycan arrays, patient erythrocytes, and platelets to determine targets of CVID IgM autoantibodies. Glycan-binding profiles were used to identify autoreactive clones across B-cell subsets, specifically circulating marginal zone (MZ) B cells, for sorting and IGH sequencing. The locations, transcriptomes, and responses of tonsillar MZ B cells to different TH- cell subsets were determined by confocal microscopy, RNA-sequencing, and cocultures, respectively. RESULTS Autoreactive IgM coated erythrocytes and platelets from many CVID patients with AICs (CVID+AIC). On glycan arrays, CVID+AIC plasma IgM narrowly recognized erythrocytic i antigens and platelet i-related antigens and failed to bind hundreds of pathogen- and tumor-associated carbohydrates. Polyclonal i antigen-recognizing B-cell receptors were highly enriched among CVID+AIC circulating MZ B cells. Within tonsillar tissues, MZ B cells secreted copious IgM when activated by the combination of IL-10 and IL-21 or when cultured with IL-10/IL-21-secreting FOXP3-CD25hi T follicular helper (Tfh) cells. In lymph nodes from immunocompetent controls, MZ B cells, plentiful FOXP3+ regulatory T cells, and rare FOXP3-CD25+ cells that represented likely CD25hi Tfh cells all localized outside of germinal centers. In CVID+AIC lymph nodes, cellular positions were similar but CD25hi Tfh cells greatly outnumbered regulatory cells. CONCLUSIONS Our findings indicate that glycan-reactive IgM autoantibodies produced outside of germinal centers may contribute to the autoimmune pathogenesis of CVID.
Collapse
Affiliation(s)
- Carole Le Coz
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| | - Melissa Trofa
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Dorothy L Butler
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Md
| | - Samuel Yoon
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Tian Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Whitney Reid
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Ainsley V C Knox
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Caroline Khanna
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jennifer Heimall
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa
| | - Patricia Takach
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, Philadelphia, Pa
| | - Olajumoke O Fadugba
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, Philadelphia, Pa
| | - Monica Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Soma Jyonouchi
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Andrew D Wells
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Steven Handler
- Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Karen B Zur
- Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pa; Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Md
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
28
|
Ransegnola BP, Pattarabanjird T, McNamara CA. Tipping the Scale: Atheroprotective IgM-Producing B Cells in Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1906-1915. [PMID: 39022832 PMCID: PMC11338718 DOI: 10.1161/atvbaha.124.319847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease whose progression is fueled by proinflammatory moieties and limited by anti-inflammatory mediators. Whereas oxidative damage and the generation of oxidation-specific epitopes that act as damage-associated molecular patterns are highly inflammatory, IgM antibodies produced by B-1 and marginal zone B cells counteract unrestricted inflammation by neutralizing and encouraging clearance of these proinflammatory signals. In this review, we focus on describing the identities of IgM-producing B cells in both mice and humans, elaborating the mechanisms underlying IgM production, and discussing the potential strategies to augment the production of atheroprotective IgM. In addition, we will discuss promising therapeutic interventions in humans to help tip the scale toward augmentation of IgM production and to provide atheroprotection.
Collapse
Affiliation(s)
- Brett Patrick Ransegnola
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tanyaporn Pattarabanjird
- Medical Scientist Training Program, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Coleen A. McNamara
- Beirne B. Carter Immunology Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
29
|
Brousse V, El Hoss S, Isnard P, Laurance S, Lambert C, Ali L, Bonnard A, Capito C, Sarnacki S, Berrebi D, Koehl B, Benkerrou M, Missud F, Holvoet L, Ithier G, de Montalembert M, Allali S, Tshilolo L, Diebold J, Molina TJ. Comparative histological analysis of spleens in pediatric patients with hemolytic anemias: Insights into the pathophysiological mechanisms of spleen destruction in sickle cell anemia. Am J Hematol 2024; 99:1670-1679. [PMID: 38775210 DOI: 10.1002/ajh.27374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/02/2024] [Accepted: 05/12/2024] [Indexed: 08/06/2024]
Abstract
While sickle cell anemia (SCA) and hereditary spherocytosis (HS) share common features of increased spleen erythrophagocytosis due to increased red blood cell (RBC) turnover, SCA is specifically characterized by susceptibility to infections. In this study, histological lesions in the spleens of pediatric patients with SCA were analyzed, in close correlation with past clinical history and comparatively to HS, healthy and transfused β-thalassemia patients (TDT). An evaluation of red pulp elementary lesions (red pulp fibrosis, iron deposition, number of Gandy-Gamna, and RBC trapping) combined into a severity score was established, as well as B-cell follicles analysis. Quantification on digitalized slides of iron deposition, RBC trapping, and red pulp fibrosis was additionally performed. Spleens from 22 children with SCA, eight with HS, eight with TDT, and three healthy controls (HC) were analyzed. Median age at splenectomy was not different between SCA and HS patients, 6.05 years (range: 4.5-16.0) versus 4.75 (range: 2.2-9.5). Marked heterogeneity was found in SCA spleens in contrast to other conditions. Contrary to previous reports, B-cell follicles were generally preserved in SCA. While RBC trapping was significantly increased in both SCA and HS (compared to TDT and HC), quantitative fibrosis and overall red pulp severity score were significantly increased in SCA spleens compared to other conditions. Moreover, there was an inverse correlation between quantitative fibrosis and number of B-cell follicles, linking these two compartments as well as spleen fibrosis to infectious susceptibility in SCA, potentially through impaired red pulp macrophage scavenging and B-cell subpopulations defects.
Collapse
Affiliation(s)
- Valentine Brousse
- Centre de Référence MCGRE, Service d'Hémato-Immunologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
- Biologie Intégrée du Globule Rouge, Unité Mixte de Recherche S1134, INSERM, Université Paris Cité, Paris, France
| | - Sara El Hoss
- Red Cell Hematology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, Rayne Institute, London, UK
| | - Pierre Isnard
- Département d'Anatomopathologie, Hôpitaux Universitaires Necker Enfants-Malades et Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Sandrine Laurance
- Biologie Intégrée du Globule Rouge, Unité Mixte de Recherche S1134, INSERM, Université Paris Cité, Paris, France
| | - Camille Lambert
- Département d'Anatomopathologie, Hôpitaux Universitaires Necker Enfants-Malades et Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Liza Ali
- Chirurgie Viscérale, Hôpital Universitaire Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Arnaud Bonnard
- Chirurgie Viscérale, Hôpital Universitaire Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Carmen Capito
- Chirurgie Viscérale, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris (AP-HP), Universite Paris Cité, Paris, France
| | - Sabine Sarnacki
- Chirurgie Viscérale, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris (AP-HP), Universite Paris Cité, Paris, France
| | - D Berrebi
- Département d'Anatomopathologie, Hôpitaux Universitaires Necker Enfants-Malades et Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Berengère Koehl
- Centre de Référence MCGRE, Service d'Hémato-Immunologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
- Biologie Intégrée du Globule Rouge, Unité Mixte de Recherche S1134, INSERM, Université Paris Cité, Paris, France
| | - Malika Benkerrou
- Centre de Référence MCGRE, Service d'Hémato-Immunologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Florence Missud
- Centre de Référence MCGRE, Service d'Hémato-Immunologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Laurent Holvoet
- Centre de Référence MCGRE, Service d'Hémato-Immunologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Ghislaine Ithier
- Centre de Référence MCGRE, Service d'Hémato-Immunologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Mariane de Montalembert
- Biologie Intégrée du Globule Rouge, Unité Mixte de Recherche S1134, INSERM, Université Paris Cité, Paris, France
- Department of General Pediatrics and Pediatric Infectious Diseases, Sickle Cell Center, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris (AP-HP), Universite Paris Cite, Paris, France
| | - Slimane Allali
- Department of General Pediatrics and Pediatric Infectious Diseases, Sickle Cell Center, Necker-Enfants Malades Hospital, Assistance Publique-Hopitaux de Paris (AP-HP), Universite Paris Cite, Paris, France
- Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutical Implications, Universite Paris Cite, Imagine Institute, Inserm U1163, Paris, France
| | - Leon Tshilolo
- Centre Hospitalier Monkolé, Monkolé, Kinshasa, Democratic Republic of the Congo
| | - Jacques Diebold
- Département d'Anatomopathologie, Hôpitaux Universitaires Necker Enfants-Malades et Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Thierry Jo Molina
- Département d'Anatomopathologie, Hôpitaux Universitaires Necker Enfants-Malades et Robert Debré, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
30
|
Borkens Y. The Pathology of the Brain Eating Amoeba Naegleria fowleri. Indian J Microbiol 2024; 64:1384-1394. [PMID: 39282207 PMCID: PMC11399382 DOI: 10.1007/s12088-024-01218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 02/02/2024] [Indexed: 09/18/2024] Open
Abstract
The genus Naegleria is a taxonomic subfamily consisting of 47 free-living amoebae. The genus can be found in warm aqueous or soil habitats worldwide. The species Naegleria fowleri is probably the best-known species of this genus. As a facultative parasite, the protist is not dependent on hosts to complete its life cycle. However, it can infect humans by entering the nose during water contact, such as swimming, and travel along the olfactory nerve to the brain. There it causes a purulent meningitis (primary amoebic meningoencephalitis or PAME). Symptoms are severe and death usually occurs within the first week. PAME is a frightening infectious disease for which there is neither a proven cure nor a vaccine. In order to contain the disease and give patients any chance to survival, action must be taken quickly. A rapid diagnosis is therefore crucial. PAME is diagnosed by the detection of amoebae in the liquor and later in the cerebrospinal fluid. For this purpose, CSF samples are cultured and stained and finally examined microscopically. Molecular techniques such as PCR or ELISA support the microscopic analysis and secure the diagnosis.
Collapse
Affiliation(s)
- Yannick Borkens
- Institut für Pathologie, Charité Campus Mitte, Virchowweg 15, Charité, 10117 Berlin, Germany
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
| |
Collapse
|
31
|
Menay F, Cocozza F, Gravisaco MJ, Elisei A, Re JI, Ferella A, Waldner C, Mongini C. Extracellular vesicles derived from antigen-presenting cells pulsed with foot and mouth virus vaccine-antigens act as carriers of viral proteins and stimulate B cell response. Front Immunol 2024; 15:1440667. [PMID: 39176090 PMCID: PMC11338771 DOI: 10.3389/fimmu.2024.1440667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024] Open
Abstract
Foot and mouth disease (FMD) is a highly contagious infection caused by FMD-virus (FMDV) that affects livestock worldwide with significant economic impact. The main strategy for the control is vaccination with FMDV chemically inactivated with binary ethylenimine (FMDVi). In FMDV infection and vaccination, B cell response plays a major role by providing neutralizing/protective antibodies in animal models and natural hosts. Extracellular vesicles (EVs) and small EVs (sEVs) such as exosomes are important in cellular communication. EVs secreted by antigen-presenting cells (APC) like dendritic cells (DCs) participate in the activation of B and T cells through the presentation of native antigen membrane-associated to B cells or by transferring MHC-peptide complexes to T cells and even complete antigens from DCs. In this study, we demonstrate for the first time that APC activated with the FMDVi O1 Campos vaccine-antigens secrete EVs expressing viral proteins/peptides that could stimulate FMDV-specific immune response. The secretion of EVs-FMDVi is a time-dependent process and can only be isolated within the first 24 h post-activation. These vesicles express classical EVs markers (CD9, CD81, and CD63), along with immunoregulatory molecules (MHC-II and CD86). With an average size of 155 nm, they belong to the category of EVs. Studies conducted in vitro have demonstrated that EVs-FMDVi express antigens that can stimulate a specific B cell response against FMDV, including both marginal zone B cells (MZB) and follicular B cells (FoB). These vesicles can also indirectly or directly affect T cells, indicating that they express both B and T epitopes. Additionally, lymphocyte expansion induced by EVs-FMDVi is greater in splenocytes that have previously encountered viral antigens in vivo. The present study sheds light on the role of EVs derived from APC in regulating the adaptive immunity against FMDV. This novel insight contributes to our current understanding of the immune mechanisms triggered by APC during the antiviral immune response. Furthermore, these findings may have practical implications for the development of new vaccine platforms, providing a rational basis for the design of more effective vaccines against FMDV and other viral diseases.
Collapse
Affiliation(s)
- Florencia Menay
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Federico Cocozza
- Institut National de la Santé et de la Recherche Médicale (INSERM-U932), Institut Curie, París, France
| | - Maria J. Gravisaco
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Analia Elisei
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Departamento de Patología, Servicio Nacional de Salud y Calidad Agroalimentaria (SENASA), Martinez, Buenos Aires, Argentina
| | - Javier Ignacio Re
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Alejandra Ferella
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| | - Claudia Waldner
- Laboratorio de Inmunología Celular y Molecular, Centro de Estudios Farmacologicos y Botanicos (CEFYBO) CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Mongini
- Laboratorio de Microvesículas, Exosomas y miRNA, Instituto de Virología y Innovaciones Tecnológicas (IVIT)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVYA), Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
32
|
Wang Y, Wu L, Van Kaer L. Role of canonical and noncanonical autophagy pathways in shaping the life journey of B cells. Front Immunol 2024; 15:1426204. [PMID: 39139569 PMCID: PMC11319164 DOI: 10.3389/fimmu.2024.1426204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Autophagy is a regulated intracellular catabolic process by which invading pathogens, damaged organelles, aggregated proteins, and other macromolecules are degraded in lysosomes. It has been widely appreciated that autophagic activity plays an important role in regulating the development, fate determination, and function of cells in the immune system, including B lymphocytes. Autophagy encompasses several distinct pathways that have been linked to B cell homeostasis and function. While B cell presentation of major histocompatibility complex (MHC) class II-restricted cytosolic antigens to T cells involves both macroautophagy and chaperone-mediated autophagy (CMA), plasma cells and memory B cells mainly rely on macroautophagy for their survival. Emerging evidence indicates that core autophagy factors also participate in processes related to yet clearly distinct from classical autophagy. These autophagy-related pathways, referred to as noncanonical autophagy or conjugation of ATG8 to single membranes (CASM), contribute to B cell homeostasis and functions, including MHC class II-restricted antigen presentation to T cells, germinal center formation, plasma cell differentiation, and recall responses. Dysregulation of B cell autophagy has been identified in several autoimmune and autoinflammatory diseases such as systemic lupus erythematosus, rheumatoid arthritis, and inflammatory bowel disease. In this review, we discuss recent advances in understanding the role of canonical and noncanonical autophagy in B cells, including B cell development and maturation, antigen processing and presentation, pathogen-specific antibody responses, cytokine secretion, and autoimmunity. Unraveling the molecular mechanisms of canonical and noncanonical autophagy in B cells will improve our understanding of B cell biology, with implications for the development of autophagy-based immunotherapies.
Collapse
Affiliation(s)
| | | | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
33
|
Vaidehi Narayanan H, Xiang MY, Chen Y, Huang H, Roy S, Makkar H, Hoffmann A, Roy K. Direct observation correlates NFκB cRel in B cells with activating and terminating their proliferative program. Proc Natl Acad Sci U S A 2024; 121:e2309686121. [PMID: 39024115 PMCID: PMC11287273 DOI: 10.1073/pnas.2309686121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 05/28/2024] [Indexed: 07/20/2024] Open
Abstract
Antibody responses require the proliferative expansion of B cells controlled by affinity-dependent signals. Yet, proliferative bursts are heterogeneous, varying between 0 and 8 divisions in response to the same stimulus. NFκB cRel is activated in response to immune stimulation in B cells and is genetically required for proliferation. Here, we asked whether proliferative heterogeneity is controlled by natural variations in cRel abundance. We developed a fluorescent reporter mTFP1-cRel for the direct observation of cRel in live proliferating B cells. We found that cRel is heterogeneously distributed among naïve B cells, which are enriched for high expressors in a heavy-tailed distribution. We found that high cRel expressors show faster activation of the proliferative program, but do not sustain it well, with population expansion decaying earlier. With a mathematical model of the molecular network, we showed that cRel heterogeneity arises from balancing positive feedback by autoregulation and negative feedback by its inhibitor IκBε, confirmed by mouse knockouts. Using live-cell fluorescence microscopy, we showed that increased cRel primes B cells for early proliferation via higher basal expression of the cell cycle driver cMyc. However, peak cMyc induction amplitude is constrained by incoherent feedforward regulation, decoding the fold change of cRel activity to terminate the proliferative burst. This results in a complex nonlinear, nonmonotonic relationship between cRel expression and the extent of proliferation. These findings emphasize the importance of direct observational studies to complement gene knockout results and to learn about quantitative relationships between biological processes and their key regulators in the context of natural variations.
Collapse
Affiliation(s)
- Haripriya Vaidehi Narayanan
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Mark Y. Xiang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Yijia Chen
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Helen Huang
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Sukanya Roy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| | - Himani Makkar
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA90095
- Institute for Quantitative and Computational Biosciences, University of California Los Angeles, Los Angeles, CA90095
| | - Koushik Roy
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT84112
| |
Collapse
|
34
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
35
|
Peeters R, Jellusova J. Lipid metabolism in B cell biology. Mol Oncol 2024; 18:1795-1813. [PMID: 38013654 PMCID: PMC11223608 DOI: 10.1002/1878-0261.13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
In recent years, the field of immunometabolism has solidified its position as a prominent area of investigation within the realm of immunological research. An expanding body of scientific literature has unveiled the intricate interplay between energy homeostasis, signalling molecules, and metabolites in relation to fundamental aspects of our immune cells. It is now widely accepted that disruptions in metabolic equilibrium can give rise to a myriad of pathological conditions, ranging from autoimmune disorders to cancer. Emerging evidence, although sometimes fragmented and anecdotal, has highlighted the indispensable role of lipids in modulating the behaviour of immune cells, including B cells. In light of these findings, this review aims to provide a comprehensive overview of the current state of knowledge regarding lipid metabolism in the context of B cell biology.
Collapse
Affiliation(s)
- Rens Peeters
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| | - Julia Jellusova
- School of Medicine and Health, Institute of Clinical Chemistry and PathobiochemistryTechnical University of MunichGermany
- TranslaTUM, Center for Translational Cancer ResearchTechnical University of MunichGermany
| |
Collapse
|
36
|
Korkmaz FT, Quinton LJ. Extra-pulmonary control of respiratory defense. Cell Immunol 2024; 401-402:104841. [PMID: 38878619 PMCID: PMC12002097 DOI: 10.1016/j.cellimm.2024.104841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Pneumonia persists as a public health crisis, representing the leading cause of death due to infection. Whether respiratory tract infections progress to pneumonia and its sequelae such as acute respiratory distress syndrome and sepsis depends on numerous underlying conditions related to both the causative agent and host. Regarding the former, pneumonia burden remains staggeringly high, despite the effectiveness of pathogen-targeting strategies such as vaccines and antibiotics. This demands a greater understanding of host features that collaborate to promote immune resistance and tissue resilience in the infected lung. Such features inside the pulmonary compartment have drawn much attention, where major advances have been made related to resident and recruited immune activity. By comparison, extra-pulmonary processes guiding pneumonia susceptibility are relatively elusive, constituting the focus of this review. Here we will highlight examples of when, how, and why tissues outside of the lungs dispatch signals that modulate local immunity in the airspaces. Topics include the liver, gut, bone marrow, brain and more, all of which contribute in direct and indirect ways to pneumonia outcome. When tuned appropriately, it has become clear that these responses can serve protective roles, and this will be considered distinctly from what would otherwise be aberrant responses characteristic of pneumonia-induced organ injury and sepsis. Further advances in this area may reveal novel targetable areas for clinical intervention that are not confined to the intra-pulmonary space.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States.
| | - Lee J Quinton
- Department of Medicine, Division of Immunology and Infectious Disease, UMass Chan Medical School, Worcester, MA 01602, United States
| |
Collapse
|
37
|
Cao S, Jiang J, Yin H, Wang L, Lu Q. Abnormal energy metabolism in the pathogenesis of systemic lupus erythematosus. Int Immunopharmacol 2024; 134:112149. [PMID: 38692019 DOI: 10.1016/j.intimp.2024.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/03/2024]
Abstract
Systemic lupus erythematosus (SLE) is a severe autoimmune disease with significant socioeconomic impact worldwide. Orderly energy metabolism is essential for normal immune function, and disordered energy metabolism is increasingly recognized as an important contributor to the pathogenesis of SLE. Disorders of energy metabolism are characterized by increased reactive oxygen species, ATP deficiency, and abnormal metabolic pathways. Oxygen and mitochondria are critical for the production of ATP, and both mitochondrial dysfunction and hypoxia affect the energy production processes. In addition, several signaling pathways, including mammalian target of rapamycin (mTOR)/adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling and the hypoxia-inducible factor (HIF) pathway also play important regulatory roles in energy metabolism. Furthermore, drugs with clear clinical effects on SLE, such as sirolimus, metformin, and tacrolimus, have been proven to improve the disordered energy metabolism of immune cells, suggesting the potential of targeting energy metabolism for the treatment of SLE. Moreover, several metabolic modulators under investigation are expected to have potential therapeutic effects in SLE. This review aimed to gain insights into the role and mechanism of abnormal energy metabolism in the pathogenesis of SLE, and summarizes the progression of metabolic modulator in the treatment of SLE.
Collapse
Affiliation(s)
- Shumei Cao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Jiao Jiang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China
| | - Haoyuan Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China
| | - Lai Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China.
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, 210042, China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, China; Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
38
|
Obare LM, Bonami RH, Doran A, Wanjalla CN. B cells and atherosclerosis: A HIV perspective. J Cell Physiol 2024; 239:e31270. [PMID: 38651687 PMCID: PMC11209796 DOI: 10.1002/jcp.31270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/09/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel H. Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Amanda Doran
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Cardiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
39
|
Steines L. Not so Marginal...the Unexpected Role of Marginal Zone B Cells in Alloantibody Formation. Transplantation 2024; 108:1277-1278. [PMID: 38514470 DOI: 10.1097/tp.0000000000004988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Affiliation(s)
- Louisa Steines
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
40
|
Figueiredo Galvao HB, Lieu M, Moodley S, Diep H, Jelinic M, Bobik A, Sobey CG, Drummond GR, Vinh A. Depletion of follicular B cell-derived antibody secreting cells does not attenuate angiotensin II-induced hypertension or vascular compliance. Front Cardiovasc Med 2024; 11:1419958. [PMID: 38883991 PMCID: PMC11176447 DOI: 10.3389/fcvm.2024.1419958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Marginal zone and follicular B cells are known to contribute to the development of angiotensin II-induced hypertension in mice, but the effector function(s) mediating this effect (e.g., antigen presentation, antibody secretion and/or cytokine production) are unknown. B cell differentiation into antibody secreting cells (ASCs) requires the transcription factor Blimp-1. Here, we studied mice with a Blimp-1 deficiency in follicular B cells to evaluate whether antibody secretion underlies the pro-hypertensive action of B cells. Methods 10- to 14-week-old male follicular B cell Blimp-1 knockout (FoB-Blimp-1-KO) and floxed control mice were subcutaneously infused with angiotensin II (0.7 mg/kg/d) or vehicle (0.1% acetic acid in saline) for 28 days. BP was measured by tail-cuff plethysmography or radiotelemetry. Pulse wave velocity was measured by ultrasound. Aortic collagen was quantified by Masson's trichrome staining. Cell types and serum antibodies were quantified by flow cytometry and a bead-based multiplex assay, respectively. Results In control mice, angiotensin II modestly increased serum IgG3 levels and markedly increased BP, cardiac hypertrophy, aortic stiffening and fibrosis. FoB-Blimp-1-KO mice exhibited impaired IgG1, IgG2a and IgG3 production despite having comparable numbers of B cells and ASCs to control mice. Nevertheless, FoB-Blimp-1-KO mice still developed hypertension, cardiac hypertrophy, aortic stiffening and fibrosis following angiotensin II infusion. Conclusions Inhibition of follicular B cell differentiation into ASCs did not protect against angiotensin II-induced hypertension or vascular compliance. Follicular B cell functions independent of their differentiation into ASCs and ability to produce high-affinity antibodies, or other B cell subtypes, are likely to be involved in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Hericka Bruna Figueiredo Galvao
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Maggie Lieu
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Seyuri Moodley
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Henry Diep
- Victorian Heart Institute, Monash University, Clayton, VIC, Australia
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| | - Alexander Bobik
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
- Department of Immunology, Monash University, Clayton, VIC, Australia
- Center for Inflammatory Diseases, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
- Baker Heart and Diabetes Institute, Prahran, VIC, Australia
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research (CCBDR), La Trobe Institute of Medical Science (LIMS), La Trobe University, Melbourne, VIC, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
41
|
Obare LM, Temu T, Mallal SA, Wanjalla CN. Inflammation in HIV and Its Impact on Atherosclerotic Cardiovascular Disease. Circ Res 2024; 134:1515-1545. [PMID: 38781301 PMCID: PMC11122788 DOI: 10.1161/circresaha.124.323891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1β, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.
Collapse
Affiliation(s)
- Laventa M. Obare
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| | - Tecla Temu
- Department of Pathology, Harvard Medical School, Boston, MA (T.T.)
| | - Simon A. Mallal
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (S.A.M.)
- Institute for Immunology and Infectious Diseases, Murdoch University, WA, Western Australia (S.A.M.)
| | - Celestine N. Wanjalla
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN (L.M.O., S.A.M., C.N.W.)
| |
Collapse
|
42
|
Carvalho-Santos A, Ballard Kuhnert LR, Hahne M, Vasconcellos R, Carvalho-Pinto CE, Villa-Verde DMS. Anti-inflammatory role of APRIL by modulating regulatory B cells in antigen-induced arthritis. PLoS One 2024; 19:e0292028. [PMID: 38691538 PMCID: PMC11062543 DOI: 10.1371/journal.pone.0292028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
APRIL (A Proliferation-Inducing Ligand), a member of the TNF superfamily, was initially described for its ability to promote proliferation of tumor cells in vitro. Moreover, this cytokine has been related to the pathogenesis of different chronic inflammatory diseases, such as rheumatoid arthritis. This study aimed to evaluate the ability of APRIL in regulating B cell-mediated immune response in the antigen-induced arthritis (AIA) model in mice. AIA was induced in previously immunized APRIL-transgenic (Tg) mice and their littermates by administration of antigen (mBSA) into the knee joints. Different inflammatory cell populations in spleen and draining lymph nodes were analyzed using flow cytometry and the assay was performed in the acute and chronic phases of the disease, while cytokine levels were assessed by ELISA. In the acute AIA, APRIL-Tg mice developed a less severe condition and a smaller inflammatory infiltrate in articular tissues when compared with their littermates. We also observed that the total cellularity of draining lymph nodes was decreased in APRIL-Tg mice. Flow cytometry analysis revealed an increase of CD19+IgM+CD5+ cell population in draining lymph nodes and an increase of CD19+CD21hiCD23hi (B regulatory) cells in APRIL-Tg mice with arthritis as well as an increase of IL-10 and CXCL13 production in vitro.
Collapse
Affiliation(s)
- Adriana Carvalho-Santos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Lia Rafaella Ballard Kuhnert
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Michael Hahne
- Institut de Génétique Moléculaire de Montpellier, Université de Montpellier, CNRS, Label "Equipe FRM", Montpellier, France
| | - Rita Vasconcellos
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Carla Eponina Carvalho-Pinto
- Experimental Pathology Laboratory, Department of Immunobiology, Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Déa Maria Serra Villa-Verde
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
43
|
Manickam C, Upadhyay AA, Woolley G, Kroll KW, Terry K, Broedlow CA, Klatt NR, Bosinger SE, Reeves RK. Natural killer-like B cells are a distinct but infrequent innate immune cell subset modulated by SIV infection of rhesus macaques. PLoS Pathog 2024; 20:e1012223. [PMID: 38739675 PMCID: PMC11115201 DOI: 10.1371/journal.ppat.1012223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Natural killer-like B (NKB) cells are unique innate immune cells expressing both natural killer (NK) and B cell receptors. As first responders to infection, they secrete IL-18 to induce a critical cascade of innate and adaptive immune cell infiltration and activation. However, limited research exists on the role of NKB cells in homeostasis and infection, largely due to incomplete and erroneous evaluations. To fill this knowledge gap, we investigated the expression of signaling and trafficking proteins, and the in situ localization and transcriptome of naïve NKB cells compared to conventionally-defined NK and B cells, as well as modulations of these cells in SIV infection. Intracellular signaling proteins and trafficking markers were expressed differentially on naïve NKB cells, with high expression of CD62L and Syk, and low expression of CD69, α4β7, FcRg, Zap70, and CD3z, findings which were more similar to B cells than NK cells. CD20+NKG2a/c+ NKB cells were identified in spleen, mesenteric lymph nodes (MLN), colon, jejunum, and liver of naïve rhesus macaques (RM) via tissue imaging, with NKB cell counts concentrated in spleen and MLN. For the first time, single cell RNA sequencing (scRNAseq), including B cell receptor (BCR) sequencing, of sorted NKB cells confirmed that NKB cells are unique. Transcriptomic analysis of naïve splenic NKB cells by scRNAseq showed that NKB cells undergo somatic hypermutation and express Ig receptors, similar to B cells. While only 15% of sorted NKB cells showed transcript expression of both KLRC1 (NKG2A) and MS4A1 (CD20) genes, only 5% of cells expressed KLRC1, MS4A1, and IgH/IgL transcripts. We observed expanded NKB frequencies in RM gut and buccal mucosa as early as 14 and 35 days post-SIV infection, respectively. Further, mucosal and peripheral NKB cells were associated with colorectal cytokine milieu and oral microbiome changes, respectively. Our studies indicate that NKB cells gated on CD3-CD14-CD20+NKG2A/C+ cells were inclusive of transcriptomically conventional B and NK cells in addition to true NKB cells, confounding accurate phenotyping and frequency recordings that could only be resolved using genomic techniques. Although NKB cells were clearly elevated during SIV infection and associated with inflammatory changes during infection, further interrogation is necessary to acurately identify the true phenotype and significance of NKB cells in infection and inflammation.
Collapse
Affiliation(s)
- Cordelia Manickam
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Amit A. Upadhyay
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Kyle W. Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Karen Terry
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| | - Courtney A. Broedlow
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Nichole R. Klatt
- Division of Surgical Outcomes and Precision Medicine Research, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Steven E. Bosinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Division of Microbiology and Immunology, Emory National Primate Research Center, Atlanta, Georgia, United States of America
| | - R. Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, North Carolina, United States of America
- Department of Surgery, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
44
|
Medzhitov R, Iwasaki A. Exploring new perspectives in immunology. Cell 2024; 187:2079-2094. [PMID: 38670066 DOI: 10.1016/j.cell.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Several conceptual pillars form the foundation of modern immunology, including the clonal selection theory, antigen receptor diversity, immune memory, and innate control of adaptive immunity. However, some immunological phenomena cannot be explained by the current framework. Thus, we still do not know how to design vaccines that would provide long-lasting protective immunity against certain pathogens, why autoimmune responses target some antigens and not others, or why the immune response to infection sometimes does more harm than good. Understanding some of these mysteries may require that we question existing assumptions to develop and test alternative explanations. Immunology is increasingly at a point when, once again, exploring new perspectives becomes a necessity.
Collapse
Affiliation(s)
- Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA; Tananbaum Center for Theoretical and Analytical Human Biology, Yale School of Medicine, New Haven, CT, USA.
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA; Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
45
|
Etesami NS, Barker KA, Shenoy AT, De Ana CL, Arafa EI, Grifno GN, Matschulat AM, Vannini ME, Pihl RMF, Breen MP, Soucy AM, Goltry WN, Ha CT, Betsuyaku H, Browning JL, Varelas X, Traber KE, Jones MR, Quinton LJ, Maglione PJ, Nia HT, Belkina AC, Mizgerd JP. B cells in the pneumococcus-infected lung are heterogeneous and require CD4 + T cell help including CD40L to become resident memory B cells. Front Immunol 2024; 15:1382638. [PMID: 38715601 PMCID: PMC11074383 DOI: 10.3389/fimmu.2024.1382638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/01/2024] [Indexed: 05/12/2024] Open
Abstract
Recovery from respiratory pneumococcal infections generates lung-localized protection against heterotypic bacteria, mediated by resident memory lymphocytes. Optimal protection in mice requires re-exposure to pneumococcus within days of initial infection. Serial surface marker phenotyping of B cell populations in a model of pneumococcal heterotypic immunity revealed that bacterial re-exposure stimulates the immediate accumulation of dynamic and heterogeneous populations of B cells in the lung, and is essential for the establishment of lung resident memory B (BRM) cells. The B cells in the early wave were activated, proliferating locally, and associated with both CD4+ T cells and CXCL13. Antagonist- and antibody-mediated interventions were implemented during this early timeframe to demonstrate that lymphocyte recirculation, CD4+ cells, and CD40 ligand (CD40L) signaling were all needed for lung BRM cell establishment, whereas CXCL13 signaling was not. While most prominent as aggregates in the loose connective tissue of bronchovascular bundles, morphometry and live lung imaging analyses showed that lung BRM cells were equally numerous as single cells dispersed throughout the alveolar septae. We propose that CD40L signaling from antigen-stimulated CD4+ T cells in the infected lung is critical to establishment of local BRM cells, which subsequently protect the airways and parenchyma against future potential infections.
Collapse
Affiliation(s)
- Neelou S. Etesami
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Kimberly A. Barker
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Anukul T. Shenoy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Carolina Lyon De Ana
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Emad I. Arafa
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Gabrielle N. Grifno
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Adeline M. Matschulat
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael E. Vannini
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Riley M. F. Pihl
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Michael P. Breen
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Alicia M. Soucy
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Wesley N. Goltry
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Catherine T. Ha
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hanae Betsuyaku
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jeffrey L. Browning
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Xaralabos Varelas
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Katrina E. Traber
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Matthew R. Jones
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Lee J. Quinton
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Paul J. Maglione
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Hadi T. Nia
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biomedical Engineering, Boston University College of Engineering, Boston, MA, United States
| | - Anna C. Belkina
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Pathology and Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Flow Cytometry Core Facility, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Virology, Immunology, and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
46
|
Hayakawa K, Zhou Y, Shinton SA. B-1 derived anti-Thy-1 B cells in old aged mice develop lymphoma/leukemia with high expression of CD11b and Hamp2 that different from TCL1 transgenic mice. Immun Ageing 2024; 21:22. [PMID: 38570827 PMCID: PMC10988983 DOI: 10.1186/s12979-024-00415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Human old aged unmutated chronic lymphocytic leukemia U-CLL are the TCL1+ZAP70+CD5+ B cells. Since CD5 makes the BCR signaling tolerance, ZAP70 increased in U-CLL not only TCL1+ alone. In mice, TCL1 (TCL1A) is the negative from neonate to old aged, as TC-. VH8-12/Vk21-5 is the anti-thymocyte/Thy-1 autoreactive ATA B cell. When ATA μκTg generation in mice, ATA B cells are the neonate generated CD5+ B cells in B-1, and in the middle age, CD5+ can be down or continuously CD5+, then, old aged CLL/lymphoma generation with increased CD11b in TC-ZAP70-CD5- or TC-ZAP70+CD5+. In this old aged TC-ATA B microarray analysis showed most similar to human CLL and U-CLL, and TC-ZAP70+CD5+ showed certain higher present as U-CLL. Original neonate ATA B cells showed with several genes down or further increase in old aged tumor, and old aged T-bet+CD11c+, CTNNB1hi, HMGBhi, CXCR4hi, DPP4hi and decreased miR181b. These old aged increased genes and down miR181b are similar to human CLL. Also, in old age ATA B cell tumor, high CD38++CD44++, increased Ki67+ AID+, and decreased CD180- miR15Olow are similar to U-CLL. In this old aged ATA B, increased TLR7,9 and Wnt10b. TC+Tg generated with ATAμκTg mice occurred middle age tumor as TC+ZAP70-CD5+ or TC+ZAP70+CD5+, with high NF-kB1, TLR4,6 and Wnt5b,6 without increased CD11b. Since neonatal state to age with TC+Tg continuously, middle age CLL/lymphoma generation is not similar to old aged generated, however, some increased in TC+ZAP70+ are similar to the old age TC- ATA B tumor. Then, TC- ATA B old age tumor showed some difference to human CLL. ATA B cells showed CD11b+CD22++, CD24 down, and hepcidin Hamp2++ with iron down. This mouse V8-12 similar to human V2-5, and V2-5 showed several cancers with macrophages/neutrophils generated hepcidin+ ironlow or some showed hepcidin- iron+ with tumor, and mouse V8-12 with different Vk19-17 generate MZ B cells strongly increased macrophage++ in old aged and generated intestine/colon tumor. Conclusion, neonate generated TC-ATA B1 cells in old aged tumor generation are CD11b+ in the leukemia CLL together with lymphoma cancer with hepcidin-related Hamp2++ in B-1 cell generation to control iron.
Collapse
Affiliation(s)
- Kyoko Hayakawa
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA.
| | - Yan Zhou
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - Susan A Shinton
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| |
Collapse
|
47
|
Wang G, Che M, Zeng L, Liu H, Li L, Liu Z, Fu R. The immunologic abnormalities in patients with paroxysmal nocturnal hemoglobinuria are associated with disease progression. Saudi Med J 2024; 45:424-432. [PMID: 38657993 PMCID: PMC11147583 DOI: 10.15537/smj.2024.45.4.20231010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVES To suggest the presence of a hyperimmune state in patients, and indicate that immune system attack on glycosylphosphatidylinositol (+) (GPI+) cells while escaping GPI- cell immunity. METHODS We retrospective the immune cell subtypes in peripheral blood from 25 patients visiting Tianjin Medical University General Hospital, Tianjin, China, with classical paroxysmal nocturnal hemoglobinuria (PNH) and 50 healthy controls. RESULTS The total CD3+ and CD3+CD8+ cell levels were higher in patients with PNH. The CD3+ cells are positively, correlated with lactate dehydrogenase (LDH; r=0.5453, p=0.0040), indirect bilirubin (r=0.4260, p=0.0379) and Flear- cells in monocytes (r=0.4099, p=0.0303). However, a negative correlation was observed between CD3+ cells and hemoglobin (r= -0.4530, p=0.0105). The total CD19+ cells decreased in patients, and CD19+ cells were negatively correlated with LDH (r= -0.5640, p=0.0077) and Flear- cells in monocytes (r= -0.4432, p=0.0341). Patients showed an increased proportion of total dendritic cells (DCs), with a higher proportion of myeloid DCs (mDCs) within the DC population. Moreover, the proportion of mDC/DC was positively correlated with CD59- cells (II + III types) in red cells (r=0.7941, p=0.0004), Flear- cells in granulocytes (r=0.5357, p=0.0396), and monocytes (r=0.6445, p=0.0095). CONCLUSION Our results demonstrated that immune abnormalities are associated with PNH development.
Collapse
Affiliation(s)
- Guanrou Wang
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Mengting Che
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Lijie Zeng
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Hui Liu
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Liyan Li
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Zhaoyun Liu
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| | - Rong Fu
- From the Department of Hematology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China.
| |
Collapse
|
48
|
Wang H, Wu X, Sun Y, Liu A, He Y, Xu Z, Lu Y, Zhan C. A natural IgM hitchhiking strategy for delivery of cancer nanovaccines to splenic marginal zone B cells. J Control Release 2024; 368:208-218. [PMID: 38395156 DOI: 10.1016/j.jconrel.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
B cell-targeted cancer vaccines are receiving increasing attention in immunotherapy due to the combined antibody-secreting and antigen-presenting functions. In this study, we propose a natural IgM-hitchhiking delivery strategy to co-deliver tumor antigens and adjuvants to splenic marginal zone B (MZB) cells. We constructed nanovaccines (FA-sLip/OVA/MPLA) consisting of classical folic acid (FA)-conjugated liposomes co-loaded with ovalbumin (OVA) and toll-like receptor 4 agonists, MPLA. We found that natural IgM absorption could be manipulated at the bio-nano interface on FA-sLip/OVA/MPLA, enabling targeted delivery to splenic MZB cells. Systemic administration of FA-sLip/OVA/MPLA effectively activated splenic MZB cells via IgM-mediated multiplex pathways, eliciting antigen-specific humoral and cytotoxic T lymphocyte responses, and ultimately retarding E.G7-OVA tumor growth. In addition, combining FA-sLip/OVA/MPLA immunization with anti-PD-1 treatments showed improved antitumor efficiency. Overall, this natural IgM-hitchhiking delivery strategy holds great promise for efficient, splenic MZB cell-targeted delivery of cancer vaccines in future applications.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200433, PR China
| | - Yuhan Sun
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Anze Liu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Yingying He
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Ziyi Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China
| | - Ying Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, Naval Medical University, Shanghai 200433, PR China.
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital & Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 201399, PR China.
| |
Collapse
|
49
|
Lee S, Ko Y, Lee HW, Oh WJ, Hong HG, Ariyaratne D, Im SJ, Kim TJ. Two distinct subpopulations of marginal zone B cells exhibit differential antibody-producing capacities and radioresistance. Cell Mol Immunol 2024; 21:393-408. [PMID: 38424169 PMCID: PMC10978899 DOI: 10.1038/s41423-024-01126-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/27/2023] [Indexed: 03/02/2024] Open
Abstract
Marginal zone (MZ) B cells, which are splenic innate-like B cells that rapidly secrete antibodies (Abs) against blood-borne pathogens, are composed of heterogeneous subpopulations. Here, we showed that MZ B cells can be divided into two distinct subpopulations according to their CD80 expression levels. CD80high MZ B cells exhibited greater Ab-producing, proliferative, and IL-10-secreting capacities than did CD80low MZ B cells. Notably, CD80high MZ B cells survived 2-Gy whole-body irradiation, whereas CD80low MZ B cells were depleted by irradiation and then repleted with one month after irradiation. Depletion of CD80low MZ B cells led to accelerated development of type II collagen (CII)-induced arthritis upon immunization with bovine CII. CD80high MZ B cells exhibited higher expression of genes involved in proliferation, plasma cell differentiation, and the antioxidant response. CD80high MZ B cells expressed more autoreactive B cell receptors (BCRs) that recognized double-stranded DNA or CII, expressed more immunoglobulin heavy chain sequences with shorter complementarity-determining region 3 sequences, and included more clonotypes with no N-nucleotides or with B-1a BCR sequences than CD80low MZ B cells. Adoptive transfer experiments showed that CD21+CD23+ transitional 2 MZ precursors preferentially generated CD80low MZ B cells and that a proportion of CD80low MZ B cells were converted into CD80high MZ B cells; in contrast, CD80high MZ B cells stably remained CD80high MZ B cells. In summary, MZ B cells can be divided into two subpopulations according to their CD80 expression levels, Ab-producing capacity, radioresistance, and autoreactivity, and these findings may suggest a hierarchical composition of MZ B cells with differential stability and BCR specificity.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Yeunjung Ko
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Immunology and Microbiology Graduate Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hyun Woo Lee
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Won Joon Oh
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Hun Gi Hong
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Dinuka Ariyaratne
- Department of Immunology and Molecular Medicine, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Se Jin Im
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Tae Jin Kim
- Department of Immunology, Graduate School of Basic Medical Science, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
50
|
Wang T, Xiong X, Xiao N, Yan Y, Liu X, Xie Q, Su X, Chen M, Peng J, Wang S, Mei H, Lin G, Gong F, Cheng L. The therapeutic effect of anti-CD19 antibody on DHEA-induced PCOS mice. Int Immunopharmacol 2024; 130:111711. [PMID: 38428145 DOI: 10.1016/j.intimp.2024.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Immune dysregulation has been summarized as a critical factor in the occurrence and development of Polycystic ovary syndrome (PCOS), but potential mediators and mechanisms remain unclear. Our previous study showed that CD19+ B cells were involved in the pathogenesis of dehydroepiandrosterone (DHEA)-induced PCOS mice. Here, we studied the therapeutic potential of anti-CD19 antibody (aCD19 Ab) on DHEA-induced PCOS mice. The results showed that aCD19 Ab treatment improved ovarian pathological structure and function of PCOS mice, manifested by an increased number of corpus luteum, a decreased number of cystic follicles and atretic follicles, and regular estrus cycles. The aCD19 Ab treatment reduced the proportion of splenic CD21+ CD23low marginal zone B cells as well as the level of serum IgM and decreased the percentage of peripheral blood and splenic neutrophils. In particular, aCD19 Ab treatment reduced the apoptosis of granulosa cells and macrophage infiltration in ovarian secondary follicles of PCOS mice, as well as the expression of TNF-α in ovarian tissue and serum TNF-α levels. Moreover, we confirmed that TNF-α induced the apoptosis of human ovarian granulosa tumor cell line cells in vitro. Thus, our work demonstrates that aCD19 Ab treatment improves ovarian pathological phenotype and function by reducing local and systemic inflammation in PCOS mice, which may provide a novel insight into PCOS therapy.
Collapse
Affiliation(s)
- Ting Wang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xingliang Xiong
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Na Xiao
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China; Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Yizhong Yan
- National Engineering and Research Center of Human Stem Cells, Changsha, China
| | - Xiaoyang Liu
- Guangxiu Hospital, Hunan Normal University, Changsha, China
| | - Qi Xie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Xian Su
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China
| | - Maosheng Chen
- Huaihua City Maternal and Child Health Care Hospital, HuaiHua, China
| | - Jing Peng
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China
| | - Siqi Wang
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China
| | - Hua Mei
- National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fei Gong
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China; National Engineering and Research Center of Human Stem Cells, Changsha, China; Hunan Guangxiu Hi-tech Life Technology Co. Ltd, Changsha, China; Guangxiu Hospital, Hunan Normal University, Changsha, China; NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|