1
|
Qi P, Zhao J, Zhang H, Liu X, You Q, Niu J, Ye X, Li F. TRPM2 channels mediate ROS-induced actin remodeling and cell migration of prostate cancer cells. BMC Cancer 2025; 25:956. [PMID: 40437388 PMCID: PMC12117773 DOI: 10.1186/s12885-025-14333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 05/14/2025] [Indexed: 06/01/2025] Open
Abstract
BACKGROUND Actin remodeling plays important roles in pathophysiological processes such as cancer metastasis and angiogenesis. Reactive oxygen species (ROS) are signaling molecules thought to regulate cell migration by remodeling actin cytoskeleton. Earlier, we demonstrated that Transient receptor potential melastatin 2 (TRPM2) channels mediates H2O2-induced actin remodeling and cell migration in HeLa cells by manipulating Ca2+ and Zn2+. However, the mechanism by which ROS produced in models more relevant to pathophysiological circumstances affect the actin cytoskeleton, remains poorly unknown. Therefore, this study aimed to explore the effect of ROS produced from pathophysiological conditions on actin cytoskeleton and cell migration. And then investigates the role of TRPM2 channels in the regulation of these types of ROS-induced actin remodeling and cell migration in prostate cancer cells. METHODS The study utilized various molecular probes, reagents, and cell culture techniques. Prostate cancer (PC)-3 and DU145 cell line were cultured and treated with different compounds to induce ROS production and actin remodeling. The actin cytoskeleton was stained with phalloidin or labelled with pActin-tdTomato plasmid and imaged using confocal microscopy. Zn2+ and Ca2+ levels were measured by Fluozin3-AM and Fluo4-AM probes respectively. Cell migration as-says were performed to assess the role of TRPM2 channels. RESULTS We demonstrated that both H2O2 and palmitate induces TRPM2-dependent elevation of cytosolic Ca2+ and Zn2+, leading to actin remodeling both in PC-3 and DU145 cells. Inhibition or knockdown of TRPM2 channels or chelation of Zn2+ significantly reduced these effects. CONCLUSIONS TRPM2 channels and TRPM2-mediated Zn2+ are essential in ROS-induced actin remodeling and cell migration in prostate cancer cells. Preventing TRPM2 channel activation and chelating Zn2+ may offer potential therapeutic strategies for preventing cancer metastasis. Further research is needed to identify molecular targets of Zn2+ in the actin cytoskeleton and cancer cell migration.
Collapse
Affiliation(s)
- Pengwei Qi
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jingting Zhao
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongtian Zhang
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xingyu Liu
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China
| | - Qing You
- Ningxia Key Laboratory of Craniocerebral Diseases, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianguo Niu
- Ningxia Key Laboratory of Craniocerebral Diseases, School of Pharmaceutical Sciences and School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiangming Ye
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Fangfang Li
- Department of Rehabilitation Medicine, Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Ma J, Yu H, Yao S, Yan Y, Gu Z, Wang Z, Huang H, Chen D. Making cells inter-connected for signaling communication: a developmental view of cytonemes. Cell Commun Signal 2025; 23:241. [PMID: 40414867 DOI: 10.1186/s12964-025-02229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 05/01/2025] [Indexed: 05/27/2025] Open
Abstract
Cellular communication is a cornerstone of metazoan development, orchestrating cell behavior, differentiation, and tissue formation. Morphogens, key signaling molecules for patterning tissue architecture, are traditionally thought to act through diffusion or endocytosis but struggle to explain precise long-range gradient formation in complex tissues. The discovery of cytonemes, specialized actin-based membrane extensions, has introduced a novel mechanism for direct intercellular signaling. Their dynamic structure allows for long-range signaling, ensuring specificity and accuracy in morphogen delivery, which is essential for proper tissue patterning and cell differentiation. In this review, we summarize the latest advances of cytoneme research across different model organisms by focusing on the regulatory mechanisms and functional roles in stem cells and developmental disorders. We establish cytonemes as fundamental mediators of intercellular communication and emphasize their pivotal roles in developmental biology and potential implications in regenerative medicine and cancer therapy.
Collapse
Affiliation(s)
- Jiayue Ma
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Honglin Yu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Shuo Yao
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yan Yan
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhaoyu Gu
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Ziqi Wang
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang Province, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
- State Key Laboratory of Biobased Transportation Fuel Technology, Haining, 314400, Zhejiang, China.
- Zhejiang Key Laboratory of Medical Imaging Artificial Intelligence, Haining, 314400, Zhejiang, China.
| |
Collapse
|
3
|
Xiao K, Rangamani P. Glycocalyx-induced formation of membrane tubes. Biophys J 2025; 124:1631-1642. [PMID: 40219606 DOI: 10.1016/j.bpj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025] Open
Abstract
Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Although extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the spontaneous curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find there exist critical values of glycocalyx grafting density and glycopolymer length needed to induce the formation of tubular structures. The presence of a vertical actin force, line tension, and spontaneous curvature reduce this critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California; Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California.
| |
Collapse
|
4
|
Poliński P, Miret Cuesta M, Zamora-Moratalla A, Mantica F, Cantero-Recasens G, Viana C, Sabariego-Navarro M, Normanno D, Iñiguez LP, Morenilla-Palao C, Ordoño P, Bonnal S, Ellis JD, Gómez-Riera R, Fanlo-Ucar H, Yap DS, Martínez De Lagrán M, Fernández-Blanco Á, Rodríguez-Marin C, Permanyer J, Fölsz O, Dominguez-Sala E, Sierra C, Legutko D, Wojnacki J, Musoles Lleo JL, Cosma MP, Muñoz FJ, Blencowe BJ, Herrera E, Dierssen M, Irimia M. A highly conserved neuronal microexon in DAAM1 controls actin dynamics, RHOA/ROCK signaling, and memory formation. Nat Commun 2025; 16:4210. [PMID: 40328765 PMCID: PMC12056172 DOI: 10.1038/s41467-025-59430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Actin cytoskeleton dynamics is essential for proper nervous system development and function. A conserved set of neuronal-specific microexons influences multiple aspects of neurobiology; however, their roles in regulating the actin cytoskeleton are unknown. Here, we study a microexon in DAAM1, a formin-homology-2 (FH2) domain protein involved in actin reorganization. Microexon inclusion extends the linker region of the DAAM1 FH2 domain, altering actin polymerization. Genomic deletion of the microexon leads to neuritogenesis defects and increased calcium influx in differentiated neurons. Mice with this deletion exhibit postsynaptic defects, fewer immature dendritic spines, impaired long-term potentiation, and deficits in memory formation. These phenotypes are associated with increased RHOA/ROCK signaling, which regulates actin-cytoskeleton dynamics, and are partially rescued by treatment with a ROCK inhibitor. This study highlights the role of a conserved neuronal microexon in regulating actin dynamics and cognitive functioning.
Collapse
Affiliation(s)
- Patryk Poliński
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| | - Marta Miret Cuesta
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Gerard Cantero-Recasens
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Vall d'Hebron Research Institute (VHIR), Barcelona, Spain
| | - Carlotta Viana
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Davide Normanno
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institute of Human Genetics, Univ Montpellier, CNRS, Montpellier, France
| | - Luis P Iñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Raúl Gómez-Riera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Dominic S Yap
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Orsolya Fölsz
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Eduardo Dominguez-Sala
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- TecnoCampus, Universitat Pompeu Fabra, Department of Health Sciences, Mataró, Spain
| | - Cesar Sierra
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Legutko
- Nencki Institute of Experimental Biology, BRAINCITY, Warsaw, Poland
| | - José Wojnacki
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Juan Luis Musoles Lleo
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | | | | | - Mara Dierssen
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Biomedical Research Networking Center for Rare Diseases (CIBERER), Barcelona, Spain.
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
5
|
Gong R, Reynolds MJ, Carney KR, Hamilton K, Bidone TC, Alushin GM. Fascin structural plasticity mediates flexible actin bundle construction. Nat Struct Mol Biol 2025; 32:940-952. [PMID: 39833469 PMCID: PMC12086090 DOI: 10.1038/s41594-024-01477-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025]
Abstract
Fascin cross-links actin filaments (F-actin) into bundles that support tubular membrane protrusions including filopodia and stereocilia. Fascin dysregulation drives aberrant cell migration during metastasis, and fascin inhibitors are under development as cancer therapeutics. Here, we use cryo-EM, cryo-electron tomography coupled with custom denoising and computational modeling to probe human fascin-1's F-actin cross-linking mechanisms across spatial scales. Our fascin cross-bridge structure reveals an asymmetric F-actin binding conformation that is allosterically blocked by the inhibitor G2. Reconstructions of seven-filament hexagonal bundle elements, variability analysis and simulations show how structural plasticity enables fascin to bridge varied interfilament orientations, accommodating mismatches between F-actin's helical symmetry and bundle hexagonal packing. Tomography of many-filament bundles and modeling uncover geometric rules underlying emergent fascin binding patterns, as well as the accumulation of unfavorable cross-links that limit bundle size. Collectively, this work shows how fascin harnesses fine-tuned nanoscale structural dynamics to build and regulate micron-scale F-actin bundles.
Collapse
Affiliation(s)
- Rui Gong
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
| | - Matthew J Reynolds
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Keith R Carney
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Keith Hamilton
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA
| | - Tamara C Bidone
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Gregory M Alushin
- Laboratory of Structural Biophysics and Mechanobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
6
|
Richards CJ, Wierenga AT, Brouwers-Vos AZ, Kyrloglou E, Dillingh LS, Mulder PP, Palasantzas G, Schuringa JJ, Roos WH. Elastic properties of leukemic cells linked to maturation stage and integrin activation. iScience 2025; 28:112150. [PMID: 40201128 PMCID: PMC11978321 DOI: 10.1016/j.isci.2025.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/06/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Acute myeloid leukemia (AML) remains challenging to cure. In addition to mutations that alter cell functioning, biophysical properties are modulated by external cues. In particular, membrane proteins that interact with the bone marrow niche can induce cellular changes. Here, we develop an atomic force microscopy (AFM) approach to measure non-adherent AML cell mechanical properties. The Young's modulus of the AML cell line, THP-1, increased in response to retronectin, whereas knock-out of the adhesion protein ITGB1 resulted in no response to retronectin. Confocal microscopy revealed different actin cytoskeleton morphologies for wild-type and ITGB1 knock-out cells exposed to retronectin. These results indicate that ITGB1 mediates stimuli-induced cellular mechanoresponses through cytoskeletal changes. We next used AFM to investigate the elastic properties of primary AML cells and found that more committed cells had lower Young's moduli than immature AMLs. Overall, this provides a platform for investigating the molecular mechanisms involved in leukemic cell mechanoresponse.
Collapse
Affiliation(s)
- Ceri J. Richards
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| | - Albertus T.J. Wierenga
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Annet Z. Brouwers-Vos
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Emmanouil Kyrloglou
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Laura S. Dillingh
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Patty P.M.F.A. Mulder
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, the Netherlands
| | - Georgios Palasantzas
- Nanostructure Materials and Interfaces, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, the Netherlands
| | - Wouter H. Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
7
|
Pfister S, Le Berruyer V, Fam K, Collot M. A Photoactivatable Plasma Membrane Probe Based on a Self-Triggered Photooxidation Cascade for Live Cell Super-Resolution Microscopy. Angew Chem Int Ed Engl 2025:e202425276. [PMID: 40192285 DOI: 10.1002/anie.202425276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Super-resolution imaging based on the localization of single emitters requires a spatio-temporal control of the ON and OFF states. To this end, photoactivatable fluorophores are adapted as they can be turned on upon light irradiation. Here, we present a concept called self-triggered photooxidation cascade (STPC) based on the photooxidation of a plasma membrane-targeted leuco-rhodamine (LRhod-PM), a non-fluorescent reduced form of a rhodamine probe. Upon visible light irradiation the small number of oxidized rhodamines, Rhod-PM, acts as a photosensitizer to generate singlet oxygen capable of oxidizing the OFF state LRhod-PM thereby switching it to its ON state. We showed that this phenomenon is kinetically favored by a high local concentration and propagates quickly when the probe is embedded in membrane bilayers. In addition, we showed that the close proximity of the dyes favors the photobleaching. At the single-molecule level, the concomitant activation/bleaching phenomena allow reaching a single-molecule blinking regime enabling single-molecule localization microscopy for super-resolution of live cellular membranes and their thin processes including filopodia and tuneling nanotubes.
Collapse
Affiliation(s)
- Sonia Pfister
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Valentine Le Berruyer
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Kyong Fam
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| | - Mayeul Collot
- Chemistry of Photoresponsive Systems Laboratoire de Chémo-Biologie Synthétique et Thérapeutique (CBST) UMR 7199 CNRS, Université de Strasbourg, Illkirch, F-67400, France
| |
Collapse
|
8
|
Park YS, Choi Y, Lee JS. Focal adhesion dynamics-mediated cell migration and proliferation on silica bead arrays. Biomater Sci 2025; 13:1849-1857. [PMID: 40012335 DOI: 10.1039/d4bm01659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Interactions between cells and the extracellular matrix (ECM) alter cellular behaviors, including adhesion, migration, proliferation, and differentiation via focal adhesions that link the ECM to the actin cytoskeleton as an intracellular signaling pathway. Although nanomaterials with various mechanical, geometrical, and topographical features have been used to provide a variety of cell-ECM interactions, it remains unclear how their nanostructured surfaces affect cellular behavior. In this study, we investigated focal adhesion dynamics during the migration and proliferation of HeLa cells on silica bead (SB) arrays with various nanotopographies. Cell adhesion was altered according to the surface curvature and pinhole size of the SB arrays, and cell morphology was determined by the ratio of the adhesive and non-adhesive areas of cells on the SB arrays. In turn, this triggered different focal adhesion dynamics in cells. In addition, we demonstrated the rapid migration and high proliferation characteristics of rounded cells with weak adhesion based on confocal microscopy analysis and migration trajectory on SB arrays, indicating focal adhesion dynamics-mediated cell migration and proliferation on nanostructured surfaces.
Collapse
Affiliation(s)
- Yi-Seul Park
- Department of Chemistry, Sookmyung Women's University, Seoul 04310, Korea.
| | - Yerin Choi
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
9
|
McAtee C, Patel M, Hoshino D, Sung BH, von Lersner A, Shi M, Hong NH, Young A, Krystofiak E, Zijlstra A, Weaver AM. Secreted exosomes induce filopodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.20.604139. [PMID: 40161676 PMCID: PMC11952364 DOI: 10.1101/2024.07.20.604139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Filopodia are dynamic adhesive cytoskeletal structures that are critical for directional sensing, polarization, cell-cell adhesion, and migration of diverse cell types. Filopodia are also critical for neuronal synapse formation. While dynamic rearrangement of the actin cytoskeleton is known to be critical for filopodia biogenesis, little is known about the upstream extracellular signals. Here, we identify secreted exosomes as potent regulators of filopodia formation. Inhibition of exosome secretion inhibited the formation and stabilization of filopodia in both cancer cells and neurons and inhibited subsequent synapse formation by neurons. Rescue experiments with purified small and large extracellular vesicles (EVs) identified exosome-enriched small EVs (SEVs) as having potent filopodia-inducing activity. Proteomic analyses of cancer cell-derived SEVs identified the TGF-β family coreceptor endoglin as a key SEV-enriched cargo that regulates filopodia. Cancer cell endoglin levels also affected filopodia-dependent behaviors, including metastasis of cancer cells in chick embryos and 3D migration in collagen gels. As neurons do not express endoglin, we performed a second proteomics experiment to identify SEV cargoes regulated by endoglin that might promote filopodia in both cell types. We discovered a single SEV cargo that was altered in endoglin-KD cancer SEVs, the transmembrane protein Thrombospondin Type 1 Domain Containing 7A (THSD7A). We further found that both cancer cell and neuronal SEVs carry THSD7A and that add-back of purified THSD7A is sufficient to rescue filopodia defects of both endoglin-KD cancer cells and exosome-inhibited neurons. We also find that THSD7A induces filopodia formation through activation of the Rho GTPase, Cdc42. These findings suggest a new model for filopodia formation, triggered by exosomes carrying THSD7A.
Collapse
Affiliation(s)
- Caitlin McAtee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Mikin Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | | | - Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Ariana von Lersner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Nan Hyung Hong
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Anna Young
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource EM Facility, Vanderbilt University, Nashville, Tennessee, USA
| | - Andries Zijlstra
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
10
|
Liu J, Zhang P, Wu C, Luo B, Cao X, Tang J. Unveiling ac4C modification pattern: a prospective target for improving the response to immunotherapeutic strategies in melanoma. J Transl Med 2025; 23:287. [PMID: 40050821 PMCID: PMC11887236 DOI: 10.1186/s12967-025-06297-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/23/2025] [Indexed: 03/09/2025] Open
Abstract
Emerging evidence has confirmed the inextricable connection between N4-acetylcytidine (ac4C) mRNA modification and the clinical characteristics of malignancies. Nonetheless, it is uncertain whether and how ac4C mRNA modification patterns affect clinical outcomes in melanoma patients. This research integrated single-cell sequencing data and transcriptomics to pinpoint ac4C-related genes (acRG) linked to melanoma progression and evaluate their clinical implications. Cells with elevated acRG score were predominantly located within the melanocytes cluster. Intercellular communications between melanocytes and other cell subtypes were markedly strengthened in the acRG-high group. We developed and confirmed an excellent acRG-related signature (acRGS) utilizing a comprehensive set of 101 algorithm combinations derived from 10 machine learning algorithms. Hereby, the acRGS, including MYO10, ZNF667, MRAS, SCO2, MAPK10, PNMA6A, KPNA2, NT5DC2, BAIAP2L2 and NDST3, delineated ac4C-associated mRNA modification patterns in melanoma. The acRGS possesses distinctly superior performance to 120 previously reported signatures in melanoma and could predict the overall survival of melanoma patients across four external datasets. The substantial associations among immune checkpoint genes, immune cell infiltration, and tumor mutation burden with acRGS indicate that acRGS is helpful in identifying melanoma patients who are sensitive to immunotherapy. Besides, we confirmed that MYO10 was mainly overexpressed in melanoma tissues, and elevated MYO10 was positively correlated with malignant phenotypes and unfavorable prognosis in melanoma patients. Silencing MYO10 expression inhibited melanoma cell proliferation, migration and invasion in vitro as well as tumor growth in vivo. Taken together, the acRGS could function as a reliable and prospective tool to improve the clinical prognosis for melanoma individuals.
Collapse
Affiliation(s)
- Jianlan Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chaoqin Wu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Binlin Luo
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaojian Cao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Jian Tang
- Department of Plastic and Burns Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
11
|
Yuasa H, Matsubara T, Urushima H, Daikoku A, Ikenaga H, Kadono C, Kinoshita M, Kimura K, Ishizawa T, Ohta K, Kawada N, Ikeda K. Cdc42 is crucial for the early regulation of hepatic stellate cell activation. Am J Physiol Cell Physiol 2025; 328:C757-C775. [PMID: 39871537 DOI: 10.1152/ajpcell.00987.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/28/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The activation of hepatic stellate cells (HSCs) from a quiescent state is a cause of liver fibrosis and a therapeutic target. HSCs are resident mesenchymal cells located in the space of Disse, exhibiting specialized morphological characteristics such as a stellate shape, large lipid droplets, and direct adhesions to hepatocytes via microprojections called HSC spines. Morphological alterations in HSCs play a crucial role in initiating their activation. However, the mechanisms regulating these changes remain unexplored. In this study, we analyzed the morphological alterations associated with HSC activation in vivo using carbon tetrachloride treatment and identified the key factors regulating these changes in vitro. Following carbon tetrachloride treatment, HSCs exhibited shortened cell processes and HSC spines, adopting an oval shape. Subsequently, the HSCs underwent further morphological changes into two activated forms: flattened and complex shapes. In vitro, activation of cell division cycle 42 (Cdc42) maintained the morphological characteristics of quiescent HSCs. Cdc42 activation in HSC cell lines inhibited the expression of markers associated with activated HSCs. Cdc42 inhibitor treatment in vivo prevented quiescent HSCs from maintaining their morphological characteristics and hindered activated HSCs from reverting to the quiescent state. In addition, HSCs around fibrotic areas in the human liver exhibited morphological alterations indicative of early activation. These findings demonstrate that Cdc42 is a crucial regulator of morphological and molecular alterations associated with HSC activation, identifying it as a novel target for the development of therapeutic agents against liver fibrosis.NEW & NOTEWORTHY The activation of hepatic stellate cells from a quiescent state is a cause and a therapeutic target for liver fibrosis. Morphological alterations in the hepatic stellate cells play a critical role in initiating their activation. However, the mechanisms that regulate these alterations remain unexplored. Our results indicate that cell division cycle 42 is a crucial regulator of hepatic stellate cell activation and a novel target for the development of therapeutic agents against liver fibrosis.
Collapse
Affiliation(s)
- Hideto Yuasa
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Research Institute for Light-induced Acceleration System, Osaka Metropolitan University, Sakai, Japan
| | - Hayato Urushima
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Atsuko Daikoku
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroko Ikenaga
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Chiho Kadono
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Masahiko Kinoshita
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kenjiro Kimura
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Takeaki Ishizawa
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Keisuke Ohta
- Division Microscopic and Development Anatomy, Department of Anatomy, School of Medicine, Kurume University, Kurume, Japan
- Advanced Imaging Research Center, School of Medicine, Kurume University, Kurume, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
12
|
Liu S, Meng Y, Lan X, Li R, Kanchanawong P. Ground-state pluripotent stem cells are characterized by Rac1-dependent cadherin-enriched F-actin complexes. J Cell Sci 2025; 138:JCS263811. [PMID: 39886806 DOI: 10.1242/jcs.263811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
Pluripotent stem cells (PSCs) exhibit extraordinary differentiation potential and are thus highly valuable cellular model systems. However, although different PSC types corresponding to distinct stages of embryogenesis have been in common use, aspects of their cellular architecture and mechanobiology remain insufficiently understood. Here, we investigated how the actin cytoskeleton is regulated in different pluripotency states. We observed a drastic reorganization during the transition from ground-state naïve mouse embryonic stem cells (mESCs) into converted prime epiblast stem cells (EpiSCs). mESCs are characterized by prominent actin-enriched cortical structures that contain cadherin-based cell-cell junctional components, despite not locating at cell-cell junctions. We term these structures 'non-junctional cadherin complexes' (NJCCs) and show that they are under low mechanical tension, depend on the ectodomain but not the cytoplasmic domain of E-cadherin, and exhibit minimal Ca2+ dependence. Active Rac1 was identified as a negative regulator that promotes β-catenin dissociation and NJCC fragmentation. Our data suggests that NJCCs might arise from the cis-association of E-cadherin ectodomain, with potential roles in ground-state pluripotency, and could serve as structural markers to distinguish heterogeneous population of pluripotent stem cells.
Collapse
Affiliation(s)
- Shiying Liu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Yue Meng
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Xi Lan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
| | - Rong Li
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore
| | - Pakorn Kanchanawong
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
13
|
Yu RY, Jiang WG, Martin TA. The WASP/WAVE Protein Family in Breast Cancer and Their Role in the Metastatic Cascade. Cancer Genomics Proteomics 2025; 22:166-187. [PMID: 39993807 PMCID: PMC11880927 DOI: 10.21873/cgp.20495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 02/26/2025] Open
Abstract
The Wiskott-Aldrich syndrome protein (WASP) and the WASP family verprolin-homologous protein (WAVE) family are essential molecules that connect GTPases to the actin cytoskeleton, thereby controlling actin polymerisation through the actin-related protein 2/3 complex. This control is crucial for forming actin-based membrane protrusions necessary for cell migration and invasion. The elevated expression of WASP/WAVE proteins in invasive breast cancer cells highlights their significant role in promoting cell motility and invasion. This review summarises the discovery, structural properties, and activation mechanisms of WASP/WAVE proteins, focuses on the contribution of the WASP/WAVE family to breast cancer invasion and migration, particularly synthesises the results of nearly a decade of research in this field since 2015. By exploring promising therapeutic strategies for breast cancer, including small molecule inhibitors and biological agents, this review stresses the potential for developing anticancer drugs that target the WASP/WAVE family and associated pathways, intending to improve the prognosis for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Rhiannon Yannan Yu
- Cardiff-China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, U.K
| | - Wen G Jiang
- Cardiff-China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, U.K
| | - Tracey A Martin
- Cardiff-China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, U.K.
| |
Collapse
|
14
|
Pan Y, Liu Q, Li Q, Ren Z. Mechanistic insights into Uc001kfo-induced hepatocellular carcinoma metastasis. Discov Oncol 2025; 16:260. [PMID: 40025303 PMCID: PMC11872824 DOI: 10.1007/s12672-025-02000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Previous studies have identified the long non-coding RNA (lncRNA) Uc001kfo as significantly upregulated in hepatocellular carcinoma (HCC) tissues, particularly in advanced stages, compared to adjacent non-cancerous tissues. This study aims to further explore the molecular mechanisms by which Uc001kfo promotes HCC metastasis, focusing on its regulation of α-SMA expression. METHODS The study investigate the effects of Uc001kfo on proliferation, migration, and invasion in HCC cells using in vitro assays. Additionally, we also explored the molecular mechanism by which Uc001kfo indirectly regulates α-SMA gene transcription through its targeting of Sp1. Finally, we conducted preliminary validation in mice model to assess the potential for Uc001kfo-targeted silencing to inhibit HCC cell invasion and metastasis. RESULTS The results of the study demonstrate that the Uc001kfo/Sp1/α-SMA pathway plays a role in regulating HCC metastasis. Uc001kfo inhibits the degradation of Sp1 protein, thereby promoting Sp1 binding to the α-SMA promoter and enhancing its transcription. Consequently, silencing Uc001kfo can indirectly suppress α-SMA expression, effectively inhibiting HCC cell proliferation, invasion, and migration in vitro, as well as liver metastasis in mice through the spleen. CONCLUSION Uc001kfo plays a critical role in promoting HCC metastasis, making it a potential a promising therapeutic target for inhibiting tumor progression and metastasis in HCC.
Collapse
Affiliation(s)
- Yanfeng Pan
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Wulibao Street, Zhengzhou, Henan, China.
| | - Qin Liu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingqing Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Wulibao Street, Zhengzhou, Henan, China
| | - Zhenjun Ren
- Department of Emergency, The Shanghai Deji Hospital, 378# Gulang Road, Shanghai, China.
| |
Collapse
|
15
|
Lalioti VS, Gradilla AC, Jiménez-Jiménez C, Fernández-Pardo C, Sánchez-Hernández D, Aguirre-Tamaral A, Sánchez-Platero I, Jordán-Àlvarez S, Wakefield JG, Guerrero I. The Drosophila epidermal growth factor receptor pathway regulates Hedgehog signalling and cytoneme behaviour. Nat Commun 2025; 16:1994. [PMID: 40011425 PMCID: PMC11865286 DOI: 10.1038/s41467-025-57162-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
During Drosophila epithelial development, dynamic signalling filopodia (cytonemes) establish direct contacts between distant cells to facilitate the formation of the Hedgehog signalling gradient. However, not much is known about how cytonemes are regulated. In this study, we show that cytoneme dynamics and Hedgehog signalling in the Drosophila epithelia depend on the Epidermal Growth Factor pathway and on its downstream effector Ras1. We describe that EGFR/Ras1 pathway is required to maintain in the wing disc epithelium the basal plasma membrane levels of Interference Hedgehog (Ihog), a critical Hh co-receptor and adhesion protein. In addition, our data demonstrate that filamin A or Cheerio in Drosophila, responds to both Ihog and EGFR pathway and recruited to the basal site of the plasma membrane. This recruitment contributes to Ihog's role in stabilizing cytonemes.
Collapse
Affiliation(s)
- Vasiliki S Lalioti
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana-Citlali Gradilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Living Systems Institute/Department of Biosciences, University of Exeter, Exeter, UK
| | - Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Clara Fernández-Pardo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - David Sánchez-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrián Aguirre-Tamaral
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Department of Biology, University of Graz, Graz, Austria
| | - Irene Sánchez-Platero
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Sheila Jordán-Àlvarez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - James G Wakefield
- Living Systems Institute/Department of Biosciences, University of Exeter, Exeter, UK
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
16
|
Korenkova O, Liu S, Prlesi I, Pepe A, Albadri S, Del Bene F, Zurzolo C. Tunneling nanotubes enable intercellular transfer in zebrafish embryos. Dev Cell 2025; 60:524-534.e3. [PMID: 39541978 DOI: 10.1016/j.devcel.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/25/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Tunneling nanotubes (TNTs) are thin intercellular connections that facilitate the transport of diverse cargoes, ranging from ions to organelles. While TNT studies have predominantly been conducted in cell cultures, the existence of open-ended TNTs within live organisms remains unverified. Despite the observation of intercellular connections during embryonic development across various species, their functional role in facilitating material transfer between connected cells has not been confirmed. In this study, we performed mosaic labeling of gastrula cells in zebrafish embryos to demonstrate the coexistence of TNT-like structures alongside other cellular protrusions. These embryonic TNT-like connections exhibited a morphology similar to that of TNTs described in cell culture, appeared to have similar formation mechanisms, and could be induced by Eps8 overexpression and CK666 treatment. Most notably, we demonstrated their capability to transfer both soluble cargoes and organelles, thus confirming their open-endedness. This study demonstrates the existence of functional, open-ended TNTs in a living embryo.
Collapse
Affiliation(s)
- Olga Korenkova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France; Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Shiyu Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France; Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Inès Prlesi
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France
| | - Anna Pepe
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France
| | - Shahad Albadri
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Filippo Del Bene
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Chiara Zurzolo
- Institut Pasteur, Université Paris Cité, CNRS UMR 3691, Membrane Traffic and Pathogenesis, 75015 Paris, France.
| |
Collapse
|
17
|
Qiao Q, Song A, An K, Xu N, Jia W, Ruan Y, Bao P, Tao Y, Zhang Y, Wang X, Xu Z. Spontaneously Blinkogenic Probe for Wash-Free Single-Molecule Localization-Based Super-Resolution Imaging in Living Cells. Angew Chem Int Ed Engl 2025; 64:e202417469. [PMID: 39537575 DOI: 10.1002/anie.202417469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Single-molecule localization super-resolution fluorescence imaging relies on the fluorescence ON/OFF switching of fluorescent probes to break the diffraction limit. However, the unreacted or nonspecifically bound probes cause non-targeted ON/OFF switching, resulting in substantial fluorescence background that significantly reduces localization precision and accuracy. Here, we report a blinkogenic probe HM-DS655-Halo that remains blinking OFF until it binds to HaloTag, thereby triggering its self-blinking activity and enabling its application in direct SMLM imaging in living cells without wash-out steps. We employed the ratio of the duty cycle before and after self-blinking activation, termed as the parameter "RDC" to characterize blinkogenicity. The covalent binding to HaloTag induces HM-DS655-Halo to transition from a fluorescent OFF state to a fluorescence blinking state. This transition also leads to a change in the RDC value, which is calculated to be 12, ensuring super blinkogenicity to effectively suppress background signals in living cells. HM-DS655-Halo was successfully applied in dynamic SMLM imaging of diverse intracellular sub-structures with minimal background noise, including mitochondrial fission and contact, cell migration, and pseudopod growth.
Collapse
Affiliation(s)
- Qinglong Qiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Aoxuan Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai An
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wenhao Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyan Ruan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengjun Bao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Tao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinchan Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
18
|
Xu D, Guo M, Xu X, Luo G, Liu Y, Bush SJ, Wang C, Xu T, Zeng W, Liao C, Wang Q, Zhao W, Zhao W, Liu Y, Li S, Zhao S, Jiu Y, Sauvonnet N, Lu W, Sansonetti PJ, Ye K. Shigella infection is facilitated by interaction of human enteric α-defensin 5 with colonic epithelial receptor P2Y11. Nat Microbiol 2025; 10:509-526. [PMID: 39901059 DOI: 10.1038/s41564-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/02/2024] [Indexed: 02/05/2025]
Abstract
Human enteric α-defensin 5 (HD5) is an immune system peptide that acts as an important antimicrobial factor but is also known to promote pathogen infections by enhancing adhesion of the pathogens. The mechanistic basis of these conflicting functions is unknown. Here we show that HD5 induces abundant filopodial extensions in epithelial cells that capture Shigella, a major human enteroinvasive pathogen that is able to exploit these filopodia for invasion, revealing a mechanism for HD5-augmented bacterial invasion. Using multi-omics screening and in vitro, organoid, dynamic gut-on-chip and in vivo models, we identify the HD5 receptor as P2Y11, a purinergic receptor distributed apically on the luminal surface of the human colonic epithelium. Inhibitor screening identified cAMP-PKA signalling as the main pathway mediating the cytoskeleton-regulating activity of HD5. In illuminating this mechanism of Shigella invasion, our findings raise the possibility of alternative intervention strategies against HD5-augmented infections.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mengyao Guo
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Xu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Gan Luo
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Yaxin Liu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Chengyao Wang
- The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tun Xu
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxin Zeng
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chongbing Liao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wei Zhao
- The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wenying Zhao
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yuezhuangnan Liu
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shanshan Li
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Shuangshuang Zhao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Nathalie Sauvonnet
- Tissue Homeostasis group, Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université Paris Cité, Paris, France
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, Shanghai, China.
| | - Philippe J Sansonetti
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
- Institut Pasteur, Paris, France.
| | - Kai Ye
- Key Laboratory of Biomedical Information Engineering (MOE), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- The First Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China.
| |
Collapse
|
19
|
Huang B, Li X. Mechanisms of GPM6A in Malignant Tumors. Cancer Rep (Hoboken) 2025; 8:e70137. [PMID: 39957375 PMCID: PMC11831008 DOI: 10.1002/cnr2.70137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/20/2024] [Accepted: 01/25/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Glycoprotein M6A (GPM6A) encodes a transmembrane protein, expressing in large quantities on the cell surface of central nervous system (CNS) neurons. GPM6A acts importantly in neurodevelopment by modulating neuronal differentiation, migration, axon growth, synaptogenesis, and spine formation, but its role in malignancy remains controversial and requires further research. This article reviewed the mechanisms of GPM6A in colorectal cancer, liver cancer, lung cancer, glioblastoma, and other malignant tumors, and made a "one-stop" summary of the relevant mechanisms. RECENT FINDINGS Researches have indicated that GPM6A is related to malignant tumors. It affects epithelial-mesenchymal transition and induces the formation of filopodia, participating in the adhesion, migration, and metastasis of cancer cells. Its role in malignant tumors remains controversial, however. On the one hand, GPM6A may have carcinogenic properties and is related to poor prognosis of malignant tumors. It is highly expressed in lymphoblastic leukemia and is a potential oncogene. It also shows carcinogenic properties in colorectal cancer, glioblastoma, gonadotroph adenomas and so on. On the other hand, the expression of GPM6A decreases in lung adenocarcinoma, liver cancer, thyroid cancer, and so forth as the tumor progresses, and it can inhibit the progression of malignant tumors by inhibiting some signaling pathways, suggesting that it may be a tumor suppressor gene. CONCLUSION Carcinogenic or tumor suppressive? Although the biological function of GPM6A in the development of malignant tumors is still unclear, according to the current research progress, it is still expected to become an effective molecular marker for predicting tumor occurrence, metastasis and prognosis, as well as a new target for diagnosis and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operation Management and Evaluation Department, West China Second University HospitalSichuan UniversityChengduSichuanPeople's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduSichuanPeople's Republic of China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University)Ministry of EducationChengduSichuanPeople's Republic of China
- Emergency Department, West China Second University HospitalSichuan UniversityChengduSichuanPeople's Republic of China
| |
Collapse
|
20
|
A P, Gupta BS. Kinetics of vapor-liquid transition of active matter system in confined geometry. Phys Rev E 2025; 111:025405. [PMID: 40103025 DOI: 10.1103/physreve.111.025405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/13/2025] [Indexed: 03/20/2025]
Abstract
We study the kinetics of vapor-liquid phase separation in a quasi-one-dimensional confined active matter system using molecular dynamics simulations. Activity is invoked via the Vicsek rule, while passive interaction follows the Lennard-Jones potential. With the system density near the vapor branch, the evolution morphology features disconnected liquid clusters. In the passive limit, coarsening begins with nucleation, followed by an evaporation-condensation growth mechanism, leading to a metastable state without complete phase separation. We aim to understand the impact of Vicsek-like self-propulsion on the structure and growth of these clusters. Our key finding is that Vicsek activity results in a distinct growth mechanism, notably rapid cluster growth and the breakdown of the metastable state through ballistic aggregation. Relevant growth laws are analyzed and explained using appropriate theoretical models.
Collapse
Affiliation(s)
- Parameshwaran A
- Vellore Institute of Technology, Department of Physics, School of Advanced Sciences, Vellore, Tamil Nadu 632014, India
| | - Bhaskar Sen Gupta
- Vellore Institute of Technology, Department of Physics, School of Advanced Sciences, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
21
|
Ozkan S, Isildar B, Koyuturk M. Comparative analysis of the effects of different hypoxia mimetic agents on the secretome contents of conditioned medium obtained from mesenchymal stem/stromal cells cultured in 2 or 3-dimensional cell culture systems. Cytotechnology 2025; 77:11. [PMID: 39654545 PMCID: PMC11625095 DOI: 10.1007/s10616-024-00659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Paracrine factors secreted by mesenchymal stem/stromal cells (MSCs) have been demonstrated to have significant therapeutic potential. The secretome profiles of MSCs variate depending on culture conditions. Generally, the effects of a single preconditioning strategy on secretome profiles of MSCs were investigated. However, until now, there has been no study examining the combinatory effects of different preconditioning strategies in a comparative manner. This study aimed to evaluate the secretome contents of conditioned media obtained from human umbilical cord-derived MSCs cultured in 2- or 3-dimensional (D) culture systems preconditioned with deferoxamine (DFS) or dimethyloxalylglycine (DMOG). Immunocytochemical analysis showed that MSCs preconditioned with DFS or DMOG have increased nuclear hypoxia-inducible factor-1α expression. Transmission electron microscopic analysis showed that cells preconditioned with DFS or DMOG have increased autophagic vesicles, which could be attributed to altered energy metabolism under hypoxic conditions. It was revealed that hypoxia-mimetic agents added to the 2D-, or 3D-culture environment raised total protein concentrations per cell along with vascular endothelial growth factor. The concentrations of glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) were differentially regulated in 2D-, and 3D-culture system, that the secretions of GDNF and NGF per cell were more prominent in 3D- and 2D-culture systems, respectively. These findings indicate that hypoxic conditions alone significantly elevate total protein concentrations, while the contribution of the 3D environment is more modest than initially anticipated. However, concentrations of secreted growth factors may be affected differently depending on the topography of the culture condition and the types of hypoxia mimetic agents.
Collapse
Affiliation(s)
- Serbay Ozkan
- Faculty of Medicine, Histology and Embryology Department, Izmir Katip Çelebi University, Izmir, Turkey
| | - Basak Isildar
- Faculty of Medicine, Histology and Embryology Department, Balıkesir University, Balikesir, Turkey
| | - Meral Koyuturk
- Cerrahpaşa Faculty of Medicine, Histology and Embryology Department, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
22
|
Ruhoff VT, Leijnse N, Doostmohammadi A, Bendix PM. Filopodia: integrating cellular functions with theoretical models. Trends Cell Biol 2025; 35:129-140. [PMID: 38969554 DOI: 10.1016/j.tcb.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 07/07/2024]
Abstract
Filopodia, widely distributed on cell surfaces, are distinguished by their dynamic extensions, playing pivotal roles in a myriad of biological processes. Their functions span from mechanosensing and guidance to cell-cell communication during cellular organization in the early embryo. Filopodia have significant roles in pathogenic processes, such as cancer invasion and viral dissemination. Molecular mapping of the filopodome has revealed generic components essential for filopodia functions. In parallel, recent insights into biophysical mechanisms governing filopodia dynamics have provided the foundation for broader investigations of filopodia's biological functions. We highlight recent discoveries of engagement of filopodia in various stages of development and pathogenesis and present an overview of intricate molecular and physical features of these cellular structures across a spectrum of cellular activities.
Collapse
Affiliation(s)
| | - Natascha Leijnse
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Amin Doostmohammadi
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark
| | - Poul Martin Bendix
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 København Ø, Denmark.
| |
Collapse
|
23
|
Diakonova M, Carter-Su C, Svitkina T. Endogenous SH2B1 protein localizes to lamellipodia and filopodia: platinum replica electron-microscopy study. MICROPUBLICATION BIOLOGY 2025; 2025:10.17912/micropub.biology.001451. [PMID: 39897164 PMCID: PMC11787627 DOI: 10.17912/micropub.biology.001451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
The widely expressed adapter protein SH2B1 was initially identified as a binding partner and substrate of tyrosine kinase JAK2. SH2B1β potentiates JAK2 activation in response to different ligands, including growth hormone, leptin and prolactin. SH2B1β has been implicated in cell motility and regulation of actin rearrangement in response to growth hormone, prolactin and platelet-derived growth factor. Here we use immunofluorescence and platinum replica electron-microscopy (PREM) technique to study localization of endogenous SH2B1. We show that endogenous SH2B localizes to two actin-rich protrusive organelles in cells: lamellipodia and filopodia. Based on this and previously published data, we suggest that at least some SH2B1 isoforms directly bind to actin filaments in both structures. Additionally, SH2B1 isoforms may work as a partner of filamin A in lamellipodia and VASP in filopodia participating in modulation of the actin cytoskeleton in response to extracellular signals.
Collapse
Affiliation(s)
- Maria Diakonova
- Biological Sciences, University of Toledo, Toledo, Ohio, USA
| | | | | |
Collapse
|
24
|
Yao L, Li Y. Implementation of actin polymerization and depolymerization in a two-dimensional cell migration model and its implications on mammalian cell morphology and velocity. J Theor Biol 2025; 596:111977. [PMID: 39510349 DOI: 10.1016/j.jtbi.2024.111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Cell migration, a pivotal process in wound healing, immune response, and even cancer metastasis, manifests through intricate interplay between morphology, speed, and cytoskeletal dynamics. Mathematical modeling emerges as a powerful tool to dissect these complex interactions. This work presents a two-dimensional immersed boundary model for mammalian cell migration, incorporating both filamentous actin (F-actin) and monomeric actin (G-actin) to explicitly capture polymerization and depolymerization. This model builds upon our previous one-dimensional efforts, now enabling us to explore the impact of G-actin on not just cell velocity but also morphology. We compare predictions from both models, revealing that while the one-dimensional model captures core dynamics along the cell's axis, the two-dimensional model excels in portraying cell shape evolution and transverse variations in actin concentration and velocity. Our findings highlight the crucial role of including G-actin in shaping cell morphology. Actin velocity aligned with migration direction elongates the cell, while velocity normal to the membrane promotes spreading. Importantly, the model establishes a link between these microscopic aspects and macroscopic observables like cell shape, offering a deeper understanding of cell migration dynamics. This work not only provides a more comprehensive picture of cell migration but also paves the way for future studies exploring the interplay of actin dynamics, cell morphology, and biophysical parameters in diverse biological contexts.
Collapse
Affiliation(s)
- Lingxing Yao
- Department of Mathematics, University of Akron, Akron, OH 44325, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, SUNY, Binghamton, NY 13902, USA.
| |
Collapse
|
25
|
Greaves GE, Pinna A, Taylor JM, Porter AE, Phillips CC. In Depth Mapping of Mesoporous Silica Nanoparticles in Malignant Glioma Cells Using Scattering-Type Scanning Near-Field Optical Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:842-849. [PMID: 39735833 PMCID: PMC11672216 DOI: 10.1021/cbmi.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 12/31/2024]
Abstract
Mesoporous silica nanoparticles (MSNPs) are promising nanomedicine vehicles due to their biocompatibility and ability to carry large cargoes. It is critical in nanomedicine development to be able to map their uptake in cells, including distinguishing surface associated MSNPs from those that are embedded or internalized into cells. Conventional nanoscale imaging techniques, such as electron and fluorescence microscopies, however, generally require the use of stains and labels to image both the biological material and the nanomedicines, which can interfere with the biological processes at play. We demonstrate an alternative imaging technique for investigating the interactions between cells and nanostructures, scattering-type scanning near-field optical microscopy (s-SNOM). s-SNOM combines the chemical sensitivity of infrared spectroscopy with the nanoscale spatial resolving power of scanning probe microscopy. We use the technique to chemically map the uptake of MSNPs in whole human glioblastoma cells and show that the simultaneously acquired topographical information can provide the embedding status of the MSNPs. We focus our imaging efforts on the lamellipodia and filopodia structures at the peripheries of the cells due to their significance in cancer invasiveness.
Collapse
Affiliation(s)
- George E. Greaves
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
| | - Alessandra Pinna
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition
Road, SW72AZ London, U.K.
- School
of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, U.K.
- The
Francis Crick Institute, NW1 1AT London, U.K.
| | - Jonathan M. Taylor
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition
Road, SW72AZ London, U.K.
| | - Alexandra E. Porter
- Department
of Materials and London Centre for Nanotechnology, Imperial College, Exhibition
Road, SW72AZ London, U.K.
| | - Chris C. Phillips
- Experimental
Solid State Physics Group, Department of Physics, Imperial College, Exhibition Road, SW72AZ London, U.K.
| |
Collapse
|
26
|
Gentile F. The maximum size of cell-aggregates is determined by the competition between the strain energy and the binding energy of cells. Heliyon 2024; 10:e40560. [PMID: 39654728 PMCID: PMC11625300 DOI: 10.1016/j.heliyon.2024.e40560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The development of tissues and organs is affected by how cells interact with each other to form aggregates. Such an interaction is in turn determined by several different factors, such as inter-cellular attractive forces, cell motility, and the strain energy of cells. Here, we have used mathematical modelling and numerical simulations to explore how the interplay between these factors can influence the formation and stability of 2D cell aggregates. Cell aggregates were created by incrementally accumulating cells over an initial seed. The binding energy density of these aggregates was determined using the harmonic approximation and was integrated into a probabilistic model to estimate the maximum cluster size, beyond which the aggregate becomes unstable and breaks into smaller fragments. Our simulations reveal that the ratio of strain energy to internal adhesive energy (U s / U b ) critically impacts cell aggregation; smaller ratios allow for larger cluster sizes. These findings have significant implications for tissue engineering, in-vitro modeling, the study of neurodegenerative diseases, and tissue regeneration, providing insights into how physical and biological characteristics of cells influence their aggregation and stability.
Collapse
Affiliation(s)
- Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100, Catanzaro, Italy
| |
Collapse
|
27
|
Paradiso A, Volpi M, Martinez DC, Jaroszewicz J, Costantini M, Swieszkowski W. Engineering Biomimetic Microvascular Capillary Networks in Hydrogel Fibrous Scaffolds via Microfluidics-Assisted Co-Axial Wet-Spinning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65927-65941. [PMID: 39566902 PMCID: PMC11622188 DOI: 10.1021/acsami.4c15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
The microvascular bed plays a crucial role in establishing nutrient exchange and waste removal, as well as maintaining tissue metabolic activity in the human body. However, achieving microvascularization of engineered 3D tissue constructs is still an unsolved challenge. In this work, we developed biomimetic cell-laden hydrogel microfibers recapitulating oriented microvascular capillary-like networks by using a 3D bioprinting technique combined with microfluidics-assisted coaxial wet-spinning. Highly packed and aligned bundles embedding a coculture of human bone marrow-derived mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were produced by simultaneously extruding two different bioinks. To this aim, core-shell fibers were wet-spun in a coagulation bath to collect the scaffolds later on a rotary drum. Initially, the versatility of the proposed system was assessed for the extrusion of multimaterial core-shell hydrogel fibers. Subsequently, the platform was validated for the in vitro biofabrication of samples promoting optimal cell alignment along the fiber axis. After 3 weeks of culture, such fiber configuration resulted in the development of an oriented capillary-like network within the fibrin-based core and in the endothelial-specific CD31 marker expression upon MSC/HUVEC maturation. Synergistically, the vertical arrangement of the coaxial nozzle coupled with the rotation of the fiber collector facilitated the rapid creation of tightly packed bundles characterized by a dense, oriented, and extensively branched capillary network. Notably, such findings suggest that the proposed biofabrication strategy can be used for the microvascularization of tissue-specific 3D constructs.
Collapse
Affiliation(s)
- Alessia Paradiso
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Marina Volpi
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Diana C Martinez
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
28
|
Sharaf A, Frimat JP, Accardo A. Mechanical confinement matters: Unveiling the effect of two-photon polymerized 2.5D and 3D microarchitectures on neuronal YAP expression and neurite outgrowth. Mater Today Bio 2024; 29:101325. [PMID: 39569166 PMCID: PMC11576396 DOI: 10.1016/j.mtbio.2024.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
The effect of mechanical cues on cellular behaviour has been reported in multiple studies so far, and a specific aspect of interest is the role of mechanotransductive proteins in neuronal development. Among these, yes-associated protein (YAP) is responsible for multiple functions in neuronal development such as neuronal progenitor cells migration and differentiation while myocardin-related transcription factor A (MRTFA) facilitates neurite outgrowth and axonal pathfinding. Both proteins have indirectly intertwined fates via their signalling pathways. There is little literature investigating the roles of YAP and MRTFA in vitro concerning neurite outgrowth in mechanically confined microenvironments. Moreover, our understanding of their relationship in immature neurons cultured within engineered confined microenvironments is still lacking. In this study, we fabricated, via two-photon polymerization (2PP), 2.5D microgrooves and 3D polymeric microchannels, with a diameter range from 5 to 30 μm. We cultured SH-SY5Y cells and differentiated them into immature neuron-like cells on both 2.5D and 3D microstructures to investigate the effect of mechanical confinement on cell morphology and protein expression. In 2.5D microgrooves, both YAP and MRTFA nuclear/cytoplasmic (N/C) ratios exhibited maxima in the 10 μm grooves indicating a strong relation with mechanical-stress-inducing confinement. In 3D microchannels, both proteins' N/C ratio exhibited minima in presence of 5 or 10 μm channels, a behaviour that was opposite to the ones observed in the 2.5D microgrooves and that indicates how the geometry and mechanical confinement of 3D microenvironments are unique compared to 2.5D ones due to focal adhesion, actin, and nuclear polarization. Further, especially in presence of 2.5D microgrooves, cells featured an inversely proportional relationship between YAP N/C ratio and the average neurite length. Finally, we also cultured human induced pluripotent stem cells (hiPSCs) and differentiated them into cortical neurons on the microstructures for up to 2 weeks. Interestingly, YAP and MRTFA N/C ratios also showed a maximum around the 10 μm 2.5D microgrooves, indicating the physiological relevance of our study. Our results elucidate the possible differences induced by 2.5D and 3D confining microenvironments in neuronal development and paves the way for understanding the intricate interplay between mechanotransductive proteins and their effect on neural cell fate within engineered cell microenvironments.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands
| | - Jean-Philippe Frimat
- Department of Human Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Faculty of Mechanical Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, the Netherlands
| |
Collapse
|
29
|
Gudneppanavar R, Di Pietro C, H Öz H, Zhang PX, Cheng EC, Huang PH, Tebaldi T, Biancon G, Halene S, Hoppe AD, Kim C, Gonzalez AL, Krause DS, Egan ME, Gupta N, Murray TS, Bruscia EM. Ezrin drives adaptation of monocytes to the inflamed lung microenvironment. Cell Death Dis 2024; 15:864. [PMID: 39613751 PMCID: PMC11607083 DOI: 10.1038/s41419-024-07255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
Ezrin, an actin-binding protein, orchestrates the organization of the cortical cytoskeleton and plasma membrane during cell migration, adhesion, and proliferation. Its role in monocytes/macrophages (MΦs) is less understood. Here, we used a monocyte/MΦ-specific ezrin knock-out mouse model to investigate the contribution of ezrin to monocyte recruitment and adaptation to the lung extracellular matrix (ECM) in response to lipopolysaccharide (LPS). Our study revealed that LPS induces ezrin expression in monocytes/MΦs and is essential for monocytes to adhere to lung ECM, proliferate, and differentiate into tissue-resident interstitial MΦs. Mechanistically, the loss of ezrin in monocytes disrupts activation of focal adhesion kinase and AKT serine-threonine protein kinase signaling, essential for lung-recruited monocytes and monocyte-derived MΦs to adhere to the ECM, proliferate, and survive. In summary, our data show that ezrin plays a role beyond structural cellular support, influencing diverse monocytes/MΦ processes and signaling pathways during inflammation, facilitating their differentiation into tissue-resident macrophages.
Collapse
Affiliation(s)
| | - Caterina Di Pietro
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Hasan H Öz
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Toma Tebaldi
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Giulia Biancon
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Hematology, School of Medicine, Yale University, New Haven, CT, USA
| | - Adam D Hoppe
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, USA
| | - Catherine Kim
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Diane S Krause
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA
- Department of Laboratory Medicine, School of Medicine, Yale University, New Haven, CT, USA
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Neetu Gupta
- Department of Inflammation and Immunity, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Thomas S Murray
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
30
|
Xiao K, Rangamani P. Glycocalyx-induced formation of membrane tubes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625577. [PMID: 39651189 PMCID: PMC11623602 DOI: 10.1101/2024.11.27.625577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Tubular membrane structures are ubiquitous in cells and in the membranes of intracellular organelles such as the Golgi complex and the endoplasmic reticulum. Tubulation plays essential roles in numerous biological processes, including filopodia growth, trafficking, ion transport, and cellular motility. Understanding the fundamental mechanism of the formation of membrane tubes is thus an important problem in the fields of biology and biophysics. Though extensive studies have shown that tubes can be formed due to localized forces acting on the membrane or by the curvature induced by membrane-bound proteins, little is known about how membrane tubes are induced by glycocalyx, a sugar-rich layer at the cell surface. In this work, we develop a biophysical model that combines polymer physics theory and the Canham-Helfrich membrane theory to investigate how the glycocalyx generates cylindrical tubular protrusions on the cell membrane. Our results show that the glycocalyx alone can induce the formation of tubular membrane structures. This tube formation involves a first-order shape transition without any externally applied force or other curvature-inducing mechanisms. We also find that critical values of glycocalyx grafting density and glycopolymer length are needed to induce the formation of tubular structures. The presence of vertical actin force, line tension, and spontaneous curvature reduces the critical grafting density and length of polymer that triggers the formation of membrane tube, which suggests that the glycocalyx makes tube formation energetically more favorable when combined with an actin force, line tension, and spontaneous curvature. Significance Statement In many cells, the existence of glycocalyx, a thick layer of polymer meshwork comprising proteins and complex sugar chains coating the outside of the cell membrane, regulates the formation of membrane tubes. Here, we propose a theoretical model that combines polymer physics theory and the Canham-Helfrich membrane theory to study the formation of cylindrical tubular protrusions induced by the glycocalyx. Our findings indicate that glycocalyx plays an important role in the formation of membrane tubes. We find that there exists critical grafting density and length of polymer that triggers the formation of membrane tubes, and the glycocalyx-induced tube formation is facilitated when combined with actin forces, line tension, and spontaneous curvature. Our theoretical model has implications for understanding how biological membranes may form tubular structures.
Collapse
|
31
|
Taninaka A, Kurokawa H, Kamiyanagi M, Takeuchi O, Matsui H, Shigekawa H. Visualization of Stress Fiber Formation Induced by Photodynamic Therapy with Porphylipoprotein. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1862. [PMID: 39683251 DOI: 10.3390/nano14231862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
We investigated stress fiber formation induced by photodynamic therapy (PDT) with porphylipoprotein (PLP) by observing actin filaments by super-resolution confocal microscopy and measuring the cellular elastic modulus by atomic force microscopy. We identified different intracellular mechanisms of stress fiber formation between RGM1 epithelial cells, which were derived from rat gastric mucosa, and RGK1 cells, which were cancer-like mutants of RGM1. Our findings show that when PLP is used as a photosensitizer in PDT, it selectively induces necrosis in tumors with minimal impact on the surrounding normal tissues, as it is less likely to cause blood flow obstruction.
Collapse
Affiliation(s)
- Atsushi Taninaka
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
- TAKANO Co., Ltd., Miyada-mura, Kamiina-gun, Nagano 399-4301, Japan
| | - Hiromi Kurokawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Phycochemy Co., c/o ABES, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Mayuka Kamiyanagi
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Osamu Takeuchi
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hidemi Shigekawa
- Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| |
Collapse
|
32
|
Vahrmeijer N, Kriel J, Harrington BM, van Staden ADP, Vlok AJ, Engelbrecht L, Du Toit A, Loos B. Antisecretory Factor 16 (AF16): A Promising Avenue for the Treatment of Traumatic Brain Injury-An In Vitro Model Approach. J Mol Neurosci 2024; 74:106. [PMID: 39505761 PMCID: PMC11541381 DOI: 10.1007/s12031-024-02268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/16/2024] [Indexed: 11/08/2024]
Abstract
Traumatic brain injury (TBI) is caused by an external mechanical force to the head, resulting in abnormal brain functioning and clinical manifestations. Antisecretory factor (AF16) is a potential therapeutic agent for TBI treatment due to its ability to inhibit fluid secretion and decrease inflammation, intracranial pressure, and interstitial fluid build-up, key hallmarks presented in TBI. Here, we investigated the effect of AF16 in an in vitro model of neuronal injury, as well as its impact on key components of the autophagy pathway and mitochondrial dynamics. N2Awt cells were treated with AF16, injured using a scratch assay, and analysed using confocal microscopy, correlative light and electron microscopy (CLEM), flow cytometry, and western blotting. Our results reveal that AF16 enhances autophagy activity, regulates mitochondrial dynamics, and provides protection as early as 6 h post-injury. Fluorescently labelled AF16 was observed to localise to lysosomes and the autophagy compartment, suggesting a role for autophagy and mitochondrial quality control in conferring AF16-associated neuronal protection. This study concludes that AF16 has potential as a therapeutic agent for TBI treatment through is regulation of autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Nicola Vahrmeijer
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Jurgen Kriel
- Central Analytical Facilities, Stellenbosch University, Tygerberg Medical Campus, Clinical Building, 7Th Floor, Room 7063, Stellenbosch, South Africa
| | - Bradley M Harrington
- Department of Neurosurgery, Tygerberg University Hospital, Tygerberg, Cape Town, South Africa
| | - Anton Du Preez van Staden
- Division Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Adriaan Johannes Vlok
- Department of Neurosurgery, Tygerberg University Hospital, Tygerberg, Cape Town, South Africa
| | - Lize Engelbrecht
- Central Analytical Facilities, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Andre Du Toit
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Merriman Avenue, Mike de Vries Building, Stellenbosch, 7600, South Africa.
| |
Collapse
|
33
|
Lu Y, Walji T, Ravaux B, Pandey P, Yang C, Li B, Luvsanjav D, Lam KH, Zhang R, Luo Z, Zhou C, Habela CW, Snapper SB, Li R, Goldhamer DJ, Schmidtke DW, Pan D, Svitkina TM, Chen EH. Spatiotemporal coordination of actin regulators generates invasive protrusions in cell-cell fusion. Nat Cell Biol 2024; 26:1860-1877. [PMID: 39487253 DOI: 10.1038/s41556-024-01541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Invasive membrane protrusions play a central role in a variety of cellular processes. Unlike filopodia, invasive protrusions are mechanically stiff and propelled by branched actin polymerization. However, how branched actin filaments are organized to create finger-like invasive protrusions is unclear. Here, by examining the mammalian fusogenic synapse, where invasive protrusions are generated to promote cell membrane juxtaposition and fusion, we have uncovered the mechanism underlying invasive protrusion formation. We show that two nucleation-promoting factors for the Arp2/3 complex, WAVE and N-WASP, exhibit different localization patterns in the protrusions. Whereas WAVE is closely associated with the plasma membrane at the leading edge of the protrusive structures, N-WASP is enriched with WIP along the actin bundles in the shafts of the protrusions. During protrusion initiation and growth, the Arp2/3 complex nucleates branched actin filaments to generate low-density actin clouds in which the large GTPase dynamin organizes the new branched actin filaments into bundles, followed by actin-bundle stabilization by WIP, the latter functioning as an actin-bundling protein. Disruption of any of these components results in defective protrusions and failed myoblast fusion in cultured cells and mouse embryos. Together, our study has revealed the intricate spatiotemporal coordination between two nucleation-promoting factors and two actin-bundling proteins in building invasive protrusions at the mammalian fusogenic synapse and has general implications in understanding invasive protrusion formation in cellular processes beyond cell-cell fusion.
Collapse
Affiliation(s)
- Yue Lu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tezin Walji
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin Ravaux
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pratima Pandey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Delgermaa Luvsanjav
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin H Lam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Ruihui Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhou Luo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chuanli Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christa W Habela
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scott B Snapper
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Rong Li
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - David J Goldhamer
- Department of Molecular and Cell Biology, University of Connecticut Stem Cell Institute, Storrs, CT, USA
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth H Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
34
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
35
|
Liu X, Huan P, Liu B. The small GTPase Cdc42 regulates shell field morphogenesis in a gastropod mollusk. Dev Biol 2024; 515:7-17. [PMID: 38942110 DOI: 10.1016/j.ydbio.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
In most mollusks (conchiferans), the early tissue responsible for shell development, namely, the shell field, shows a common process of invagination during morphogenesis. Moreover, lines of evidence indicated that shell field invagination is not an independent event, but an integrated output reflecting the overall state of shell field morphogenesis. Nevertheless, the underlying mechanisms of this conserved process remain largely unknown. We previously found that actomyosin networks (regularly organized filamentous actin (F-actin) and myosin) may play essential roles in this process by revealing the evident aggregation of F-actin in the invaginated region and demonstrating that nonmuscle myosin II (NM II) is required for invagination in the gastropod Lottia peitaihoensis (= Lottia goshimai). Here, we investigated the roles of the Rho family of small GTPases (RhoA, Rac1, and Cdc42) to explore the upstream regulators of actomyosin networks. Functional assays using small molecule inhibitors suggested that Cdc42 modulates key events of shell field morphogenesis, including invagination and cell rearrangements, while the roles of RhoA and Rac1 may be nonspecific or negligible. Further investigations revealed that the Cdc42 protein was concentrated on the apical side of shell field cells and colocalized with F-actin aggregation. The aggregation of these two molecules could be prevented by treatment with Cdc42 inhibitors. These findings suggest a possible regulatory cascade of shell field morphogenesis in which Cdc42 recruits F-actin (actomyosin networks) on the apical side of shell field cells, which then generates resultant mechanical forces that mediate correct shell field morphogenesis (cell shape changes, invagination and cell rearrangement). Our results emphasize the roles of the cytoskeleton in early shell development and provide new insights into molluscan shell evolution.
Collapse
Affiliation(s)
- Xinyu Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
36
|
Shebanova A, Perrin QM, Zhu K, Gudlur S, Chen Z, Sun Y, Huang C, Lim ZW, Mondarte EA, Sun R, Lim S, Yu J, Miao Y, Parikh AN, Ludwig A, Miserez A. Cellular Uptake of Phase-Separating Peptide Coacervates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402652. [PMID: 39214144 PMCID: PMC11558145 DOI: 10.1002/advs.202402652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Peptide coacervates self-assembling via liquid-liquid phase separation are appealing intracellular delivery vehicles of macromolecular therapeutics (proteins, DNA, mRNA) owing to their non-cytotoxicity, high encapsulation capacity, and efficient cellular uptake. However, the mechanisms by which these viscoelastic droplets cross the cellular membranes remain unknown. Here, using multimodal imaging, data analytics, and biochemical inhibition assays, we identify the key steps by which droplets enter the cell. We find that the uptake follows a non-canonical pathway and instead integrates essential features of macropinocytosis and phagocytosis, namely active remodeling of the actin cytoskeleton and appearance of filopodia-like protrusions. Experiments using giant unilamellar vesicles show that the coacervates attach to the bounding membrane in a charge- and cholesterol-dependent manner but do not breach the lipid bilayer barrier. Cell uptake in the presence of small molecule inhibitors - interfering with actin and tubulin polymerization - confirm the active role of cytoskeleton remodeling, most prominently evident in electron microscopy imaging. These findings suggest a peculiar internalization mechanism for viscoelastic, glassy coacervate droplets combining features of non-specific uptake of fluids by macropinocytosis and particulate uptake of phagocytosis. The broad implications of this study will enable to enhance the efficacy and utility of coacervate-based strategies for intracellular delivery of macromolecular therapeutics.
Collapse
Affiliation(s)
- Anastasia Shebanova
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Quentin Moana Perrin
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Kexin Zhu
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
| | - Sushanth Gudlur
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Zilin Chen
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Yue Sun
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Congxi Huang
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Zhi Wei Lim
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Evan Angelo Mondarte
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Ruoxuan Sun
- School of Chemistry, Chemical Engineering and BiotechnologyNTU70 Nanyang DriveSingapore637457Singapore
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and BiotechnologyNTU70 Nanyang DriveSingapore637457Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Jing Yu
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Yansong Miao
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Atul N. Parikh
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
- Departments of Biomedical Engineering and Materials Science & EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Alexander Ludwig
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
- NTU Institute of Structural BiologyNTU59 Nanyang DriveSingapore636921Singapore
| | - Ali Miserez
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
| |
Collapse
|
37
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. eLife 2024; 12:RP90603. [PMID: 39480891 PMCID: PMC11527427 DOI: 10.7554/elife.90603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, University of ChicagoChicagoUnited States
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, University of ChicagoChicagoUnited States
| |
Collapse
|
38
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Aïqui-Reboul-Paviet O, Bakhache W, Bernard E, Holsteyn L, Neyret A, Briant L. The Rac1-PAK1-Arp2/3 signaling axis regulates CHIKV nsP1-induced filopodia and optimal viral genome replication. J Virol 2024; 98:e0061224. [PMID: 39297643 PMCID: PMC11495065 DOI: 10.1128/jvi.00612-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/10/2024] [Indexed: 10/23/2024] Open
Abstract
Alphavirus infection induces dramatic remodeling of host cellular membranes, producing filopodia-like and intercellular extensions. The formation of filopodia-like extensions has been primarily assigned to the replication protein nsP1, which binds and reshapes the host plasma membrane when expressed alone. While reported decades ago, the molecular mechanisms behind nsP1 membrane deformation remain unknown. Using mammalian epithelial cells and Chikungunya virus (CHIKV) as models, we characterized nsP1-induced membrane deformations as highly dynamic actin-rich lamellipodia and filopodia-like extensions. Through pharmacological inhibition and genetic invalidation, we identified the critical contribution of the Rac1 GTPase and its downstream effectors PAK1 and the actin nucleator Arp2 in nsP1-induced membrane deformation. An intact Rac1-PAK1-Arp2 signaling axis was also required for optimal CHIKV genome replication. Therefore, our results designate the Rac1-PAK1-Arp2 pathway as an essential signaling node for CHIKV infection and establish a parallel requirement for host factors involved in nsP1-induced plasma membrane reshaping and assembly of a functional replication complex.IMPORTANCEThe alphavirus nsP1 protein dramatically remodels host cellular membranes, resulting in the formation of filopodia-like extensions. Although described decades ago, the molecular mechanisms controlling these membrane deformations and their functional importance remain elusive. Our study provides mechanistic insight, uncovering the critical role of the Rac1 GTPase, along with its downstream effectors PAK1 and the actin nucleator Arp2, in the nsP1-associated phenotype. Furthermore, we demonstrate that the Rac1-PAK1-Arp2 pathway is essential for optimal CHIKV genome replication. Our findings establish a parallel in the cellular mechanisms governing nsP1-induced plasma membrane reshaping and the production of a functional replication complex in infected cells.
Collapse
Affiliation(s)
| | - William Bakhache
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Eric Bernard
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Lise Holsteyn
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Aymeric Neyret
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| | - Laurence Briant
- RNA Viruses and Metabolism Team, IRIM-CNRS UMR9004, Montpellier, France
| |
Collapse
|
40
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
41
|
Vessella T, Rozen EJ, Shohet J, Wen Q, Zhou HS. Investigation of Cell Mechanics and Migration on DDR2-Expressing Neuroblastoma Cell Line. Life (Basel) 2024; 14:1260. [PMID: 39459560 PMCID: PMC11509142 DOI: 10.3390/life14101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Neuroblastoma is a devastating disease accounting for ~15% of all childhood cancer deaths. Collagen content and fiber association within the tumor stroma influence tumor progression and metastasis. High expression levels of collagen receptor kinase, Discoidin domain receptor II (DDR2), are associated with the poor survival of neuroblastoma patients. Additionally, cancer cells generate and sustain mechanical forces within their environment as a part of their normal physiology. Despite this, evidence regarding whether collagen-activated DDR2 signaling dysregulates these migration forces is still elusive. To address these questions, a novel shRNA DDR2 knockdown neuroblastoma cell line (SH-SY5Y) was engineered to evaluate the consequence of DDR2 on cellular mechanics. Atomic force microscopy (AFM) and traction force microscopy (TFM) were utilized to unveil the biophysical altercations. DDR2 downregulation was found to significantly reduce proliferation, cell stiffness, and cellular elongation. Additionally, DDR2-downregulated cells had decreased traction forces when plated on collagen-coated elastic substrates. Together, these results highlight the important role that DDR2 has in reducing migration mechanics in neuroblastoma and suggest DDR2 may be a promising novel target for future therapies.
Collapse
Affiliation(s)
- Theadora Vessella
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA;
| | - Esteban J. Rozen
- Crnic Institute Bolder Branch, BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, CO 80303, USA
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jason Shohet
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Qi Wen
- Department of Physics, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA
| | - Hong Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, USA;
| |
Collapse
|
42
|
Behjat A, Sanaei S, Mosallanejad MH, Atapour M, Sheikholeslam M, Saboori A, Iuliano L. A novel titanium alloy for load-bearing biomedical implants: Evaluating the antibacterial and biocompatibility of Ti536 produced via electron beam powder bed fusion additive manufacturing process. BIOMATERIALS ADVANCES 2024; 163:213928. [PMID: 38941776 DOI: 10.1016/j.bioadv.2024.213928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
Additive manufacturing (AM) of Ti-based biomedical implants is a pivotal research topic because of its ability to produce implants with complicated geometries. Despite desirable mechanical properties and biocompatibility of Ti alloys, one major drawback is their lack of inherent antibacterial properties, increasing the risk of postoperative infections. Hence, this research focuses on the Ti536 (Ti5Al3V6Cu) alloy, developed through Electron Beam Powder Bed Fusion (EB-PBF), exploring bio-corrosion, antibacterial features, and cell biocompatibility. The microstructural characterization revealed grain refinement and the formation of Ti2Cu precipitates with different morphologies and sizes in the Ti matrix. Electrochemical tests showed that Cu content minimally influenced the corrosion current density, while it slightly affected the stability, defect density, and chemical composition of the passive film. According to the findings, the Ti536 alloy demonstrated enhanced antibacterial properties without compromising its cell biocompatibility and corrosion behavior, thanks to Ti2Cu precipitates. This can be attributed to both the release of Cu ions and the Ti2Cu precipitates. The current study suggests that the EB-PBF fabricated Ti536 sample is well-suited for use in load-bearing applications within the medical industry. This research also offers an alloy design roadmap for novel biomedical Ti-based alloys with superior biological performance using AM methods.
Collapse
Affiliation(s)
- Amir Behjat
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Saber Sanaei
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Hossein Mosallanejad
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Luca Iuliano
- Integrated Additive Manufacturing Center, Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
43
|
Albu M, Affolter E, Gentile A, Xu Y, Kikhi K, Howard S, Kuenne C, Priya R, Gunawan F, Stainier DYR. Distinct mechanisms regulate ventricular and atrial chamber wall formation. Nat Commun 2024; 15:8159. [PMID: 39289341 PMCID: PMC11408654 DOI: 10.1038/s41467-024-52340-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/29/2024] [Indexed: 09/19/2024] Open
Abstract
Tissues undergo distinct morphogenetic processes to achieve similarly shaped structures. In the heart, cardiomyocytes in both the ventricle and atrium build internal structures for efficient contraction. Ventricular wall formation (trabeculation) is initiated by cardiomyocyte delamination. How cardiomyocytes build the atrial wall is poorly understood. Using longitudinal imaging in zebrafish, we found that at least 25% of the atrial cardiomyocytes elongate along the long axis of the heart. These cell shape changes result in cell intercalation and convergent thickening, leading to the formation of the internal muscle network. We tested factors important for ventricular trabeculation including Nrg/ErbB and Notch signaling and found no evidence for their role in atrial muscle network formation. Instead, our data suggest that atrial cardiomyocyte elongation is regulated by Yap, which has not been implicated in trabeculation. Altogether, these data indicate that distinct cellular and molecular mechanisms build the internal muscle structures in the atrium and ventricle.
Collapse
Affiliation(s)
- Marga Albu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Eileen Affolter
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Alessandra Gentile
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Yanli Xu
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Khrievono Kikhi
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Flow Cytometry Service Group, Max Planck for Heart and Lung Research, Bad Nauheim, Germany
| | - Sarah Howard
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Carsten Kuenne
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rashmi Priya
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Francis Crick Institute, London, UK
| | - Felix Gunawan
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute of Cell Biology, University of Münster, Münster, Germany
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
44
|
Shangguan J, Rock RS. Hundreds of myosin 10s are pushed to the tips of filopodia and could cause traffic jams on actin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.26.546598. [PMID: 37425746 PMCID: PMC10327019 DOI: 10.1101/2023.06.26.546598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Myosin 10 (Myo10) is a motor protein known for its role in filopodia formation. Although Myo10-driven filopodial dynamics have been characterized, there is no information about the absolute number of Myo10 molecules during the filopodial lifecycle. To better understand molecular stoichiometries and packing restraints in filopodia, we measured Myo10 abundance in these structures. We combined SDS-PAGE densitometry with epifluorescence microscopy to quantitate HaloTag-labeled Myo10 in U2OS cells. About 6% of total intracellular Myo10 localizes to filopodia, where it enriches at opposite cellular ends. Hundreds of Myo10s are in a typical filopodium, and their distribution across filopodia is log-normal. Some filopodial tips even contain more Myo10 than accessible binding sites on the actin filament bundle. Live-cell movies reveal a dense cluster of over a hundred Myo10 molecules that initiates filopodial elongation. Hundreds of Myo10 molecules continue to accumulate during filopodial growth, but accumulation ceases when retraction begins. Rates of filopodial elongation, second-phase elongation, and retraction are inversely related to Myo10 quantities. Our estimates of Myo10 molecules in filopodia provide insight into the physics of packing Myo10, its cargo, and other filopodia-associated proteins in narrow membrane compartments. Our protocol provides a framework for future work analyzing Myo10 abundance and distribution upon perturbation.
Collapse
Affiliation(s)
- Julia Shangguan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, USA
| | - Ronald S Rock
- Department of Biochemistry and Molecular Biology, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
45
|
Jawahar A, Vermeil J, Heuvingh J, du Roure O, Piel M. The third dimension of the actin cortex. Curr Opin Cell Biol 2024; 89:102381. [PMID: 38905917 DOI: 10.1016/j.ceb.2024.102381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The actin cortex, commonly described as a thin 2-dimensional layer of actin filaments beneath the plasma membrane, is beginning to be recognized as part of a more dynamic and three-dimensional composite material. In this review, we focus on the elements that contribute to the three-dimensional architecture of the actin cortex. We also argue that actin-rich structures such as filopodia and stress fibers can be viewed as specialized integral parts of the 3D actin cortex. This broadens our definition of the cortex, shifting from its simplified characterization as a thin, two-dimensional layer of actin filaments.
Collapse
Affiliation(s)
- Anumita Jawahar
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France.
| | - Joseph Vermeil
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France; Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| | - Julien Heuvingh
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Olivia du Roure
- Physique et Mécanique des Milieux Hétérogènes, ESPCI Paris, PSL University, CNRS, Université Paris Cité, Sorbonne Université, Paris, France
| | - Matthieu Piel
- Institut Curie and Institut Pierre Gilles de Gennes, PSL University, CNRS, Paris, France
| |
Collapse
|
46
|
Hu HT, Nishimura T, Kawana H, Dante RAS, D’Angelo G, Suetsugu S. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front Cell Dev Biol 2024; 12:1422227. [PMID: 39035026 PMCID: PMC11257967 DOI: 10.3389/fcell.2024.1422227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Extracellular vesicles (EVs) are crucial for transferring bioactive materials between cells and play vital roles in both health and diseases. Cellular protrusions, including filopodia and microvilli, are generated by the bending of the plasma membrane and are considered to be rigid structures facilitating various cellular functions, such as cell migration, adhesion, and environment sensing. Compelling evidence suggests that these protrusions are dynamic and flexible structures that can serve as sources of a new class of EVs, highlighting the unique role they play in intercellular material transfer. Cytonemes are specialized filopodia protrusions that make direct contact with neighboring cells, mediating the transfer of bioactive materials between cells through their tips. In some cases, these tips fuse with the plasma membrane of neighboring cells, creating tunneling nanotubes that directly connect the cytosols of the adjacent cells. Additionally, virus particles can be released from infected cells through small bud-like of plasma membrane protrusions. These different types of protrusions, which can transfer bioactive materials, share common protein components, including I-BAR domain-containing proteins, actin cytoskeleton, and their regulatory proteins. The dynamic and flexible nature of these protrusions highlights their importance in cellular communication and material transfer within the body, including development, cancer progression, and other diseases.
Collapse
Affiliation(s)
- Hooi Ting Hu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Kawana
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Rachelle Anne So Dante
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Gisela D’Angelo
- Institut Curie, PSL Research University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
47
|
Ergün S, Aslan S, Demir D, Kayaoğlu S, Saydam M, Keleş Y, Kolcuoğlu D, Taşkurt Hekim N, Güneş S. Beyond Death: Unmasking the Intricacies of Apoptosis Escape. Mol Diagn Ther 2024; 28:403-423. [PMID: 38890247 PMCID: PMC11211167 DOI: 10.1007/s40291-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Apoptosis, or programmed cell death, maintains tissue homeostasis by eliminating damaged or unnecessary cells. However, cells can evade this process, contributing to conditions such as cancer. Escape mechanisms include anoikis, mitochondrial DNA depletion, cellular FLICE inhibitory protein (c-FLIP), endosomal sorting complexes required for transport (ESCRT), mitotic slippage, anastasis, and blebbishield formation. Anoikis, triggered by cell detachment from the extracellular matrix, is pivotal in cancer research due to its role in cellular survival and metastasis. Mitochondrial DNA depletion, associated with cellular dysfunction and diseases such as breast and prostate cancer, links to apoptosis resistance. The c-FLIP protein family, notably CFLAR, regulates cell death processes as a truncated caspase-8 form. The ESCRT complex aids apoptosis evasion by repairing intracellular damage through increased Ca2+ levels. Antimitotic agents induce mitotic arrest in cancer treatment but can lead to mitotic slippage and tetraploid cell formation. Anastasis allows cells to resist apoptosis induced by various triggers. Blebbishield formation suppresses apoptosis indirectly in cancer stem cells by transforming apoptotic cells into blebbishields. In conclusion, the future of apoptosis research offers exciting possibilities for innovative therapeutic approaches, enhanced diagnostic tools, and a deeper understanding of the complex biological processes that govern cell fate. Collaborative efforts across disciplines, including molecular biology, genetics, immunology, and bioinformatics, will be essential to realize these prospects and improve patient outcomes in diverse disease contexts.
Collapse
Affiliation(s)
- Sercan Ergün
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey.
| | - Senanur Aslan
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Dilbeste Demir
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sümeyye Kayaoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Mevsim Saydam
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yeda Keleş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Damla Kolcuoğlu
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Neslihan Taşkurt Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Güneş
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
- Department of Multidisciplinary Molecular Medicine, Institute of Graduate Studies, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
48
|
Rasouli M, Shahghasempour L, Shirbaghaee Z, Hosseinzadeh S, Abbaszadeh HA, Fattahi R, Ranjbari J, Soleimani M. Mesenchymal stem cell therapy using Pal-KTTKS-enriched carboxylated cellulose improves burn wound in rat model. Arch Dermatol Res 2024; 316:353. [PMID: 38850353 DOI: 10.1007/s00403-024-03082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/06/2023] [Accepted: 04/26/2024] [Indexed: 06/10/2024]
Abstract
Despite the great progress in developing wound dressings, delayed wound closure still remains a global challenge. Thus, developing novel wound dressings and employing advanced strategies, including tissue engineering, are urgently desired. The carboxylated cellulose was developed through the in situ synthesis method and further reinforced by incorporating pal-KTTKS to stimulate collagen synthesis and improve wound healing. The developed composites supported cell adhesion and proliferation and showed good biocompatibility. To boost wound-healing performance, adipose-derived mesenchymal stem cells (MSC) were seeded on the pal-KTTKS-enriched composites to be implanted in a rat model of burn wound healing. Healthy male rats were randomly divided into four groups and wound-healing performance of Vaseline gauze (control), carboxylated cellulose (CBC), pal-KTTKS-enriched CBC (KTTKS-CBC), and MSCs seeded on the KTTKS-CBC composites (MSC-KTTKS-CBC) were evaluated on days 3, 7, and 14 post-implantation. In each group, the designed therapeutic dressings were renewed every 5 days to increase wound-healing performance. We found that KTTKS-CBC and MSC-KTTKS-CBC composites exhibited significantly better wound healing capability, as evidenced by significantly alleviated inflammation, increased collagen deposition, improved angiogenesis, and considerably accelerated wound closure. Nevertheless, the best wound-healing performance was observed in the MSC-KTTKS-CBC groups among all four groups. This research suggests that the MSC-KTTKS-CBC composite offers a great deal of promise as a wound dressing to enhance wound regeneration and expedite wound closure in the clinic.
Collapse
Affiliation(s)
- Mehdi Rasouli
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lida Shahghasempour
- Department of Microbiology, Islamic Azad University, Karaj BranchKaraj, Iran
| | - Zeinab Shirbaghaee
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat-Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Fattahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Ranjbari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Cao W, Zhang Y, Li L, Liu B, Ding J, Chen X. Physical cues of scaffolds promote peripheral nerve regeneration. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0189181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The effective treatment of long-gap peripheral nerve injury (PNI) remains a challenge in clinical settings. The autograft, the gold standard for the long-gap PNI therapy, has several limitations, including a limited supply of donor nerve, size mismatch between the donor and recipient sites, functional loss at the donor site, neuroma formation, and the requirement for two operations. With the increasing abundance of biocompatible materials with adjustable structures and properties, tissue engineering provides a promising avenue for bridging peripheral nerve gaps and addressing the above issues of autograft. The physical cues provided by tissue engineering scaffolds, essential for regulating the neural cell fate and microenvironments, have received considerable research attention. This review elaborates on three major physical cues of tissue engineering scaffolds for peripheral nerve regeneration: topological structure, mechanical support, and electrical stimulation. These three aspects are analogs to Lego bricks, wherein different combinations result in diverse functions. Innovative and more effective bricks, along with multi-level and all-around integration, are expected to provide new advances in tissue engineering for peripheral nerve generation.
Collapse
Affiliation(s)
- Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University 3 , 163 Xianlin Avenue, Nanjing 210023, People's Republic of China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University 3 , 163 Xianlin Avenue, Nanjing 210023, People's Republic of China
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University 4 , 1 Xinmin Street, Changchun 130061, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 1 , 5625 Renmin Street, Changchun 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China 2 , 96 Jinzhai Road, Hefei 230026, People's Republic of China
| |
Collapse
|
50
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|