1
|
Deng P, Qin B, Liang A, Zhou Q, Fu X, Liu X, Lao C, Li X, He S, Tang L, Zhao Z, Chen W, Liu D, Li Y, Shi Y. Triatoma rubrofasciata as a potential vector for bartonellosis. Emerg Microbes Infect 2025; 14:2494291. [PMID: 40231453 PMCID: PMC12051607 DOI: 10.1080/22221751.2025.2494291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/11/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Bartonella spp. are most often transmitted by arthropod vectors or animal bites and scratches. However, the vector species involved in the transmission of human bartonellosis remain poorly understood. This study investigated the presence of Bartonella in Triatoma rubrofasciata from Guangxi and Hainan provinces in China, evaluating its potential as a vector. Bartonella was identified in T. rubrofasciata samples through PCR amplification and sequencing of the ITS, gltA, and rpoB genes. The survival duration of Bartonella in triatomines, along with the potential for transovarial transmission was examined. Transmission experiments were conducted to determine whether T. rubrofasciata could transmit Bartonella to mice. Additionally, Bartonella spp. were also compared across rats, ticks, and cat fleas collected from the same regions. Results: Six Bartonella species were identified in T. rubrofasciata, including B. rochalimae, B. elizabethae, B. tribocorum, B. queenslandensis, B. silvatica, and B. coopersplainsensis. And the first three species are zoonotic. B. rochalimae and B. elizabethae were able to persist in T. rubrofasciata for at least eight weeks, although transovarial transmission of them was not observed. In comparison to rats, ticks, and cat fleas, T. rubrofasciata exhibited a higher diversity of Bartonella species. Laboratory experiments confirmed that B. elizabethae can infect mice through T. rubrofasciata bites or intraperitoneal injection of T. rubrofasciata feces. This study supports the hypothesis that T. rubrofasciata may serve as a vector for bartonellosis. These results broaden the current understanding of Bartonella transmission dynamics and highlight the potential role of triatomines in the spread of this disease.
Collapse
Affiliation(s)
- Peichao Deng
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Binglian Qin
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Anli Liang
- College of Animal Science and Technology, Guangxi Agricultural Engineering Vocational and Technical College, Nanning, People’s Republic of China
| | - Qingan Zhou
- Department of Livestock Disease Diagnosis, Animal Disease Prevention and Control Center of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Xiaoyin Fu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Xiaoquan Liu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Chenghui Lao
- Laboratory Department, Changle Town Health Center, Beihai, People’s Republic of China
| | - Xiaoqin Li
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Shanshan He
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Lili Tang
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Ziwen Zhao
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Wenjie Chen
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Dengyu Liu
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yanwen Li
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Yunliang Shi
- Parasitology Department, School of Basic Medical Sciences, Guangxi Medical University, Nanning, People’s Republic of China
- Key Laboratory of Basic Research on Regional Diseases (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| |
Collapse
|
2
|
Li H, Feng W, An T, Dai P, Liu YJ. Polystyrene microplastics reduce honeybee survival by disrupting gut microbiota and metabolism. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104704. [PMID: 40274082 DOI: 10.1016/j.etap.2025.104704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Polystyrene microplastics (PS-MPs) pose significant risks to honeybee health. However, how microplastics (MPs) adversely influence honeybee survival through the gut pathway, especially the metabolic processes, remains poorly understood. To conduct the experiment, the honeybees (Apis mellifera L.) were exposed to PS-MPs (0.5 μm and 5 μm) at environmental concentrations of 25 mg/L and 50 mg/L for 21 days. Results revealed that PS-MPs reduced honeybee survival rates and food consumption. The accumulation of PS-MPs in honeybee guts caused structural damage to gut walls and elevated oxidative stress levels. Additionally, PS-MPs altered gut microbial communities, with a decrease in Lactobacillus and an increase in Bartonella. Gut metabolomics analysis indicated that PS-MPs disrupted metabolic pathways, upregulated amino acid and carbohydrate metabolism, and downregulated alpha-linolenic acid and lipid metabolism. Our study offers important insights into the physiological effects of accumulated MPs on honeybees, highlighting the critical need for effective strategies to manage environmental pollutants.
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wangjiang Feng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Tong An
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Pingli Dai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yong-Jun Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Kondo Y, Suzuki M, Sato S, Maruyama S, Sei A, Ma X, Nakano K, Doi Y, Tsukamoto K. Differential vasoproliferative traits of Bartonella henselae strains associated with autotransporter BafA variants. Microbiol Spectr 2025; 13:e0192524. [PMID: 39611834 PMCID: PMC11705867 DOI: 10.1128/spectrum.01925-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Bartonella henselae, a Gram-negative facultative intracellular bacterium, is the etiological agent of cat-scratch disease and also causes bacillary angiomatosis in immunocompromised individuals. Although the ability to promote vascular endothelial cell proliferation differs among Bartonella species, variations among strains within B. henselae remain unclear. Bartonella angiogenic factor A (BafA) and Bartonella adhesin A (BadA) have been identified as autotransporters of B. henselae that are involved in endothelial cell proliferation. Although strain-specific differences in the expression of BadA and the VirB/D4 type IV secretion system have been reported, BafA expression among B. henselae strains has yet to be examined. Therefore, the present study investigated the proliferation-promoting ability of 13 B. henselae strains from several sources in human umbilical vein endothelial cells (HUVECs). We identified BafA variants 1 and 2 based on the deduced amino acid sequences of its passenger domain. The recombinant proteins of both variants exhibited similar proliferation activity against HUVECs. However, BafA variant 2 strains showed cytotoxicity at a high bacterial inoculum in a direct coculture with HUVECs, which was attenuated in an indirect coculture. These strains, in contrast to BafA variant 1 strains, highly expressed BadA and exhibited bacterial aggregation. Based on a core genome SNP analysis of 50 B. henselae strains, the BafA variant types corresponded to clades 1-4. These results indicate that vasoproliferative traits differ among B. henselae clades based on the variant types. Therefore, this study provides a new conceptual framework in which the clades of B. henselae may predict their pathogenicity in humans.IMPORTANCEBartonella species including Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis cause vasoproliferative lesions. Their proliferation-promoting ability in vascular endothelial cells differs among Bartonella species; however, it is unclear whether these differences exist among B. henselae strains. We herein showed that B. henselae strains exhibited variable proliferation-promoting ability and cytotoxicity in vascular endothelial cells, which corresponded to the bafA gene variants possessed by the strains. The expression levels of Bartonella angiogenic factor A (BafA) and Bartonella adhesin A, as well as the degree of proliferation-promoting ability and cytotoxicity in endothelial cells, varied among the strains. A core genome SNP analysis of strains using whole genome sequencing data divided B. henselae strains into four clades, with each clade corresponding to BafA variants 1-4. These results suggest the differential vasoproliferative potency of B. henselae, with potential implications in clinical management, including risk stratification and predictions of the clinical course.
Collapse
Affiliation(s)
- Yuka Kondo
- Laboratory of Bacterial Zoonoses, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Shingo Sato
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Soichi Maruyama
- Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Akiko Sei
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Xingyan Ma
- Laboratory of Bacterial Zoonoses, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kota Nakano
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kentaro Tsukamoto
- Laboratory of Bacterial Zoonoses, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Xi Y, Li X, Liu L, Xiu F, Yi X, Chen H, You X. Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella. Virulence 2024; 15:2322961. [PMID: 38443331 PMCID: PMC10936683 DOI: 10.1080/21505594.2024.2322961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/20/2024] [Indexed: 03/07/2024] Open
Abstract
Gram-negative Bartonella species are facultative intracellular bacteria that can survive in the harsh intracellular milieu of host cells. They have evolved strategies to evade detection and degradation by the host immune system, which ensures their proliferation in the host. Following infection, Bartonella alters the initial immunogenic surface-exposed proteins to evade immune recognition via antigen or phase variation. The diverse lipopolysaccharide structures of certain Bartonella species allow them to escape recognition by the host pattern recognition receptors. Additionally, the survival of mature erythrocytes and their resistance to lysosomal fusion further complicate the immune clearance of this species. Certain Bartonella species also evade immune attacks by producing biofilms and anti-inflammatory cytokines and decreasing endothelial cell apoptosis. Overall, these factors create a challenging landscape for the host immune system to rapidly and effectively eradicate the Bartonella species, thereby facilitating the persistence of Bartonella infections and creating a substantial obstacle for therapeutic interventions. This review focuses on the effects of three human-specific Bartonella species, particularly their mechanisms of host invasion and immune escape, to gain new perspectives in the development of effective diagnostic tools, prophylactic measures, and treatment options for Bartonella infections.
Collapse
Affiliation(s)
- Yixuan Xi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinru Li
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Lu Liu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Feichen Xiu
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Xinchao Yi
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| | - Hongliang Chen
- Chenzhou NO.1 People’s Hospital, The Affiliated Chenzhou Hospital, Hengyang Medical College, University of South China, ChenZhou, China
| | - Xiaoxing You
- Institute of Pathogenic Biology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
5
|
Oršolić M, Sarač N, Balen Topić M. Vector-Borne Zoonotic Lymphadenitis-The Causative Agents, Epidemiology, Diagnostic Approach, and Therapeutic Possibilities-An Overview. Life (Basel) 2024; 14:1183. [PMID: 39337966 PMCID: PMC11433605 DOI: 10.3390/life14091183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
In addition to common skin pathogens, acute focal lymphadenitis in humans can, in rare cases, be caused by a zoonotic pathogen. Furthermore, it can develop in the absence of any direct or indirect contact with infected animals, in cases when the microorganism is transmitted by a vector. These clinical entities are rare, and therefore often not easily recognized, yet many zoonotic illnesses are currently considered emerging or re-emerging in many regions. Focal zoonotic vector-borne lymphadenitis and its numerous causative agents, with their variegated clinical manifestations, have been described in some case reports and small case series. Therefore, we summarized those data in this narrative overview, with the aim of raising clinical awareness, which could improve clinical outcomes. This overview briefly covers reported pathogens, their vectors and geographic distribution, and their main clinical manifestations, diagnostic possibilities, and recommended therapy. Vector-borne tularemia, plague, bartonellosis, rickettsioses, borreliosis, and Malayan filariasis are mentioned. According to the existing data, when acute focal bacterial vector-borne zoonotic lymphadenitis is suspected, in severe or complicated cases it seems prudent to apply combined aminoglycoside (or quinolone) plus doxycycline as an empirical therapy, pending definite diagnostic results. In this field, the "one health approach" and further epidemiological and clinical studies are needed.
Collapse
Affiliation(s)
- Martina Oršolić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
| | - Nikolina Sarač
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
| | - Mirjana Balen Topić
- University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Mirogojska 8, 10 000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Caceres IP, Ruml A, Montejano R, Jalali O, Rosen T. Bacillary Angiomatosis in a Patient With HIV and Disseminated Mycobacterium avium Complex Infection. Cureus 2024; 16:e63392. [PMID: 39077245 PMCID: PMC11283915 DOI: 10.7759/cureus.63392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
Bartonella is a genus of arthropod-borne bacterial pathogens that typically cause persistent infections of erythrocytes and endothelial cells in mammalian hosts. The species that primarily infect humans are Bartonella henselae and Bartonella quintana. Depending on immune status, the clinical presentation of B. henselae may differ, manifesting as cat-scratch disease in immunocompetent individuals or bacillary angiomatosis (BA) and peliosis in immunocompromised patients. The cutaneous manifestations of BA are typically characterized by occasionally painful, angiomatous papules and nodules, often with a chronic, persistent course. Herein, we present a case of biopsy-confirmed B. henselae infection in a 32-year-old HIV-positive female with acquired immunodeficiency syndrome in the setting of disseminated Mycobacterium avium complex infection, an association that has been less frequently described. This case serves as an important reminder to consider uncommon opportunistic infectious etiologies when examining immunocompromised patients, as prompt diagnosis and treatment are essential in this patient population.
Collapse
Affiliation(s)
| | | | | | - Omid Jalali
- Dermatology, Baylor College of Medicine, Houston, USA
| | - Theodore Rosen
- Dermatology, Michael E. DeBakey Veterans Affairs Medical Center, Baylor College of Medicine, Houston, USA
| |
Collapse
|
7
|
Sepulveda P, Stegger M, Monti G, Canales N, Mella A, Butaye P, Müller A. Draft genomes of 16 Bartonella henselae strains from cats in Valdivia, Chile. Microbiol Resour Announc 2023; 12:e0064823. [PMID: 37847065 PMCID: PMC10652885 DOI: 10.1128/mra.00648-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/21/2023] [Indexed: 10/18/2023] Open
Abstract
Bartonella henselae is a primary zoonotic agent, having cats as asymptomatic reservoirs. In humans, it causes cat scratch disease. Here, we report the whole genome sequences of 16 strains isolated from cats in Valdivia city, Southern Chile. Strains showed little variability in the multilocus sequence typing profiles.
Collapse
Affiliation(s)
- Paulina Sepulveda
- Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Instituto de Medicina Preventiva Veterinaria, Valdivia, Chile
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
- Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Perth, Australia
| | - Gustavo Monti
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Nivia Canales
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Armin Mella
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Patrick Butaye
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ananda Müller
- Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Ghent, Belgium
- Instituto de Ciencias Clínicas Veterinaria, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
8
|
Jin X, Gou Y, Xin Y, Li J, Sun J, Li T, Feng J. Advancements in understanding the molecular and immune mechanisms of Bartonella pathogenicity. Front Microbiol 2023; 14:1196700. [PMID: 37362930 PMCID: PMC10288214 DOI: 10.3389/fmicb.2023.1196700] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Bartonellae are considered to be emerging opportunistic pathogens. The bacteria are transmitted by blood-sucking arthropods, and their hosts are a wide range of mammals including humans. After a protective barrier breach in mammals, Bartonella colonizes endothelial cells (ECs), enters the bloodstream, and infects erythrocytes. Current research primarily focuses on investigating the interaction between Bartonella and ECs and erythrocytes, with recent attention also paid to immune-related aspects. Various molecules related to Bartonella's pathogenicity have been identified. The present review aims to provide a comprehensive overview of the newly described molecular and immune responses associated with Bartonella's pathogenicity.
Collapse
Affiliation(s)
- Xiaoxia Jin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Yuze Gou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Yuxian Xin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Jingwei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jingrong Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
| | - Tingting Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation and Lanzhou Center for Tuberculosis Research, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Feng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Drummond MR, Dos Santos LS, de Almeida AR, Lins KDA, Barjas-Castro ML, Diniz PPVDP, Velho PENF. Comparison of molecular methods for Bartonella henselae detection in blood donors. PLoS Negl Trop Dis 2023; 17:e0011336. [PMID: 37262044 DOI: 10.1371/journal.pntd.0011336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
The Bartonella genus consists of neglected pathogens associated with potentially transfusional-transmitted and fatal human diseases. We aimed to evaluate Bartonella sp. prevalence in 500 blood donors and compare the results with the data already published about these samples. We used molecular diagnostic methods to detect Bartonella sp.-DNA from blood and liquid culture samples: (A) conventional PCR for two gene regions, the ITS targeting the genus Bartonella and the specific gltA Bartonella henselae; (B) nested PCR for the ftsZ gene and (C) qualitative real-time PCR for the gltA gene, both B. henselae specific. We obtained 30/500 (6%) DNA detections from the blood samples; 77/500 (15.4%) DNA detections from liquid culture samples and five (1%) samples had DNA detection from both. In total, we detected B. henselae DNA from 102/500 (20.4%) donors. The samples used in this study had already been submitted for Bartonella sp.-DNA detection using only a conventional PCR in liquid culture. Sixteen samples (3.2%) were positive previously, and from these 16 samples, 13 were negative in the new investigation. We concluded that the use of liquid culture combined with different molecular tests increases the possibility of detecting Bartonella sp.-DNA, but the tests do not avoid false-negative results. More than a fifth of blood donors had at least one PCR that detected Bartonella sp.-DNA among the eight molecular reactions performed now (four reactions in whole blood and four in liquid culture). Seven percent had B. henselae-DNA detection for two or more distinct regions. Considering the results obtained previously, the DNA of Bartonella spp. was detected or the agent isolated in 23% of analyzed blood donors. The results establish that the low bacteremia and the fastidious characteristics of the bacterium are challenges to laboratory diagnosis and can make it difficult to confirm the infection in patients with bartonelloses.
Collapse
Affiliation(s)
- Marina Rovani Drummond
- Applied Research in Dermatology and Bartonella Infection Laboratory, University of Campinas-UNICAMP; Campinas, Sao Paulo, Brazil
| | - Luciene Silva Dos Santos
- Applied Research in Dermatology and Bartonella Infection Laboratory, University of Campinas-UNICAMP; Campinas, Sao Paulo, Brazil
| | - Amanda Roberta de Almeida
- Applied Research in Dermatology and Bartonella Infection Laboratory, University of Campinas-UNICAMP; Campinas, Sao Paulo, Brazil
| | - Karina de Almeida Lins
- Applied Research in Dermatology and Bartonella Infection Laboratory, University of Campinas-UNICAMP; Campinas, Sao Paulo, Brazil
| | | | | | - Paulo Eduardo Neves Ferreira Velho
- Applied Research in Dermatology and Bartonella Infection Laboratory, University of Campinas-UNICAMP; Campinas, Sao Paulo, Brazil
- Division of Dermatology, Department of Medicine, UNICAMP, Campinas, Sao Paulo, Brazil
| |
Collapse
|
10
|
Taber R, Pankowski A, Ludwig AL, Jensen M, Magsamen V, Lashnits E. Bartonellosis in Dogs and Cats, an Update. Vet Clin North Am Small Anim Pract 2022; 52:1163-1192. [DOI: 10.1016/j.cvsm.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Liu Y, Chen J, Lang H, Zheng H. Bartonella choladocola sp. nov. and Bartonella apihabitans sp. nov., two novel species isolated from honey bee gut. Syst Appl Microbiol 2022; 45:126372. [DOI: 10.1016/j.syapm.2022.126372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022]
|
12
|
Shamshiri Z, Goudarztalejerdi A, Zolhavarieh SM, Greco G, Sazmand A, Chomel BB. Molecular detection and identification of Bartonella species in cats from Hamedan and Kermanshah, Western Iran. Comp Immunol Microbiol Infect Dis 2022; 89:101879. [PMID: 36116272 DOI: 10.1016/j.cimid.2022.101879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Bartonella species are emerging vector-borne zoonotic pathogens which infect a wide range of domestic and wild animals as well as humans. Cats are the primary reservoir hosts for several zoonotic Bartonella spp., the most common being B. henselae the causative agent of cat scratch disease. Despite the important role of cats in the epidemiology of bartonellosis, there is limited information about the prevalence and species infecting cats in Iran. The aim of present study was molecular detection and identification of Bartonella species in cats from two western provinces Hamedan and Kermanshah. From December 2018 to February 2021, 87 cats (n = 26 from Hamedan, n = 61 from Kermanshah) were examined clinically, their bodies were searched for collection of ectoparasites, and cephalic or saphenous blood specimens were collected. Genomic DNA was extracted from blood specimens and conventional PCRs targeting the rpoB, and ITS regions of Bartonella spp. were performed. Positive samples were sequenced and analysed phylogenetically. Bartonella DNA was detected in 11/87 cats (12.64 %). Sequencing results revealed the presence of B. henselae in cats from Hamedan, and B. clarridgeiae and B. henselae in cats from Kermanshah. A statistical association between cat origin and the prevalence of Bartonella spp. was observed in the studied population. This study confirms for the first time the circulation of Bartonella spp. in cats in two western Iranian provinces. Prevention strategies e.g. ectoparasites control, and regular examination of pet and urban cats are suggested for minimising Bartonella infection in cats and subsequently in humans.
Collapse
Affiliation(s)
- Zahra Shamshiri
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978 Hamedan, Iran.
| | - Ali Goudarztalejerdi
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978 Hamedan, Iran.
| | - Seyed Masoud Zolhavarieh
- Department of Clinical Sciences, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978 Hamedan, Iran.
| | - Grazia Greco
- Department of Veterinary Medicine, University of Bari, Valenzano, 70010 Bari, Italy.
| | - Alireza Sazmand
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, 6517658978 Hamedan, Iran.
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States.
| |
Collapse
|
13
|
The Passenger Domain of Bartonella bacilliformis BafA Promotes Endothelial Cell Angiogenesis via the VEGF Receptor Signaling Pathway. mSphere 2022; 7:e0008122. [PMID: 35379004 PMCID: PMC9044958 DOI: 10.1128/msphere.00081-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bartonella bacilliformis is a Gram-negative bacterial pathogen that provokes pathological angiogenesis and causes Carrion’s disease, a neglected tropical disease restricted to South America. Little is known about how B. bacilliformis facilitates vasoproliferation resulting in hemangioma in the skin in verruga peruana, the chronic phase of Carrion’s disease. Here, we demonstrate that B. bacilliformis extracellularly secrets a passenger domain of the autotransporter BafA exhibiting proangiogenic activity. The B. bacilliformis-derived BafA passenger domain (BafABba) increased the number of human umbilical endothelial cells (HUVECs) and promoted tube-like morphogenesis. Neutralizing antibody against BafABba detected the BafA derivatives from the culture supernatant of B. bacilliformis and inhibited the infection-mediated hyperproliferation of HUVECs. Moreover, stimulation with BafABba promoted phosphorylation of vascular endothelial growth factor receptor 2 (VEGFR2) and extracellular-signal-regulated kinase 1/2 in HUVECs. Suppression of VEGFR2 by anti-VEGFR2 antibody or RNA interference reduced the sensitivity of cells to BafABba. In addition, surface plasmon resonance analysis confirmed that BafABba directly interacts with VEGFR2 with lower affinity than VEGF or Bartonella henselae-derived BafA. These findings indicate that BafABba acts as a VEGFR2 agonist analogous to the previously identified B. henselae- and Bartonella quintana-derived BafA proteins despite the low sequence similarity. The identification of a proangiogenic factor produced by B. bacilliformis that directly stimulates endothelial cells provides an important insight into the pathophysiology of verruga peruana. IMPORTANCEBartonella bacilliformis causes life-threatening bacteremia or dermal eruption known as Carrion’s disease in South America. During infection, B. bacilliformis promotes endothelial cell proliferation and the angiogenic process, but the underlying molecular mechanism has not been well understood. We show that B. bacilliformis induces vasoproliferation and angiogenesis by producing the proangiogenic autotransporter BafA. As the cellular/molecular basis for angiogenesis, BafA stimulates the signaling pathway of vascular endothelial growth factor receptor 2 (VEGFR2). Identification of functional BafA protein from B. bacilliformis in addition to B. henselae and B. quintana, the causes of cat scratch disease and trench fever, raises the possibility that BafA is a common virulence factor for human-pathogenic Bartonella.
Collapse
|
14
|
Bos F, Chauveau B, Ruel J, Fontant G, Campistron E, Meunier C, Jambon F, Moreau K, Delmas Y, Couzi L, Korbi S, Charrier M, Viallard JF, Luciani L, Merville P, Lazaro E, Kaminski H. Serious and atypical presentations of Bartonella henselae infection in kidney transplant recipients. Open Forum Infect Dis 2022; 9:ofac059. [PMID: 35211636 PMCID: PMC8863078 DOI: 10.1093/ofid/ofac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
This article describes 5 cases of bartonellosis with fever and atypical clinical presentations in kidney transplant recipients: thrombotic microangiopathies, recurrent hemophagocytosis, and immune reconstitution syndrome after treatment. The diagnosis, the pathological lesions, and treatments are described. Bartonellosis must be researched in solid organ transplant recipients with fever of undetermined origin.
Collapse
Affiliation(s)
- Feline Bos
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Jules Ruel
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Fontant
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Elise Campistron
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Camille Meunier
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Frédéric Jambon
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Karine Moreau
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Yahsou Delmas
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Skander Korbi
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | - Manon Charrier
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Viallard
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Internal Medicine, Bordeaux University Hospital, Bordeaux, France
| | - Léa Luciani
- Centre National de Référence des Rickettsies, Coxiella et Bartonella IHU-Méditerranée Infection, APHM, Marseille, France
| | - Pierre Merville
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Estibaliz Lazaro
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Internal Medicine, Bordeaux University Hospital, Bordeaux, France
| | - Hannah Kaminski
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
15
|
Jurja S, Stroe AZ, Pundiche MB, Docu Axelerad S, Mateescu G, Micu AO, Popescu R, Oltean A, Docu Axelerad A. The Clinical Profile of Cat-Scratch Disease’s Neuro-Ophthalmological Effects. Brain Sci 2022; 12:brainsci12020217. [PMID: 35203980 PMCID: PMC8870711 DOI: 10.3390/brainsci12020217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 12/29/2022] Open
Abstract
Cat-scratch disease is an illness caused by Bartonella henselae that occurs as a result of contact with an infected kitten or dog, such as a bite or scratch. It is more prevalent in children and young adults, as well as immunocompromised individuals. There are limited publications examining the features of CSD in patients. As such, the purpose of this research was to assess the clinical neuro-ophthalmological consequences of CSD reported in the literature. Among the ophthalmologic disorders caused by cat-scratch disease in humans, Parinaud oculoglandular syndrome, uveitis, vitritis, retinitis, retinochoroiditis and optic neuritis are the most prevalent. The neurological disorders caused by cat-scratch disease in humans include encephalopathy, transverse myelitis, radiculitis, and cerebellar ataxia. The current review addresses the neuro-ophthalmological clinical manifestations of cat-scratch disease, as described in papers published over the last four decades (1980–2022). All the data gathered were obtained from PubMed, Medline and Google Scholar. The current descriptive review summarizes the most-often-encountered clinical symptomatology in instances of cat-scratch disease with neurological and ocular invasion. Thus, the purpose of this review is to increase knowledge of cat-scratch disease’s neuro-ophthalmological manifestations.
Collapse
Affiliation(s)
- Sanda Jurja
- Department of Ophthalmology, Faculty of Medicine, ‘Ovidius’ University of Constanta, 900527 Constanta, Romania;
- County Emergency Clinical Hospital “Sf. Apostol Andrei”, Tomis Street, nr. 145, 900591 Constanta, Romania; (M.B.P.); (A.D.A.)
| | - Alina Zorina Stroe
- County Emergency Clinical Hospital “Sf. Apostol Andrei”, Tomis Street, nr. 145, 900591 Constanta, Romania; (M.B.P.); (A.D.A.)
- Department of Neurology, General Medicine Faculty, Ovidius University, 900470 Constanta, Romania
- Correspondence: ; Tel.: +40-727-987-950
| | - Mihaela Butcaru Pundiche
- County Emergency Clinical Hospital “Sf. Apostol Andrei”, Tomis Street, nr. 145, 900591 Constanta, Romania; (M.B.P.); (A.D.A.)
- Surgery Department, Faculty of General Medicine, ‘Ovidius’ University of Constanta, 900470 Constanta, Romania
| | | | - Garofita Mateescu
- Morphology Department, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Alexandru Octavian Micu
- Department of Economic Engineering in Transports, Maritime University of Constanta, Str. Mircea cel Bătrân, 104, 900663 Constanta, Romania;
| | - Raducu Popescu
- Physical Education, Sport and Kinetotherapy Department, ‘Ovidius’ University of Constanta, 900470 Constanta, Romania; (R.P.); (A.O.)
| | - Antoanela Oltean
- Physical Education, Sport and Kinetotherapy Department, ‘Ovidius’ University of Constanta, 900470 Constanta, Romania; (R.P.); (A.O.)
| | - Any Docu Axelerad
- County Emergency Clinical Hospital “Sf. Apostol Andrei”, Tomis Street, nr. 145, 900591 Constanta, Romania; (M.B.P.); (A.D.A.)
- Department of Neurology, General Medicine Faculty, Ovidius University, 900470 Constanta, Romania
| |
Collapse
|
16
|
Jiang Q, Liu X, Yang Q, Chen L, Yang D. Salivary Microbiome in Adenoid Cystic Carcinoma Detected by 16S rRNA Sequencing and Shotgun Metagenomics. Front Cell Infect Microbiol 2022; 11:774453. [PMID: 34970508 PMCID: PMC8712576 DOI: 10.3389/fcimb.2021.774453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/25/2021] [Indexed: 01/14/2023] Open
Abstract
Microorganisms are confirmed to be closely related to the occurrence and development of cancers in human beings. However, there has been no published report detailing relationships between the oral microbiota and salivary adenoid cystic carcinoma (SACC). In this study, unstimulated saliva was collected from 13 SACC patients and 10 healthy controls. The microbial diversities, compositions and functions were comprehensively analyzed after 16S rRNA sequencing and whole-genome shotgun metagenomic sequencing. The alpha diversity showed no significant difference between SACC patients and healthy controls, while beta diversity showed a separation trend. The SACC patients showed higher abundances of Streptococcus and Rothia, while Prevotella and Alloprevotella were more abundant in healthy controls. The prevalent KEGG pathways, carbohydrate-active enzymes, antibiotic resistances and virulence factors as well as the biomarkers in SACC were determined by functional gene analysis. Our study preliminarily investigated the salivary microbiome of SACC patients compared with healthy controls and might be the basis for further studies on novel diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xing Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Qifen Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
17
|
Lormand JD, Kim SK, Walters-Marrah GA, Brownfield BA, Fromme JC, Winkler WC, Goodson JR, Lee VT, Sondermann H. Structural characterization of NrnC identifies unifying features of dinucleotidases. eLife 2021; 10:70146. [PMID: 34533457 PMCID: PMC8492067 DOI: 10.7554/elife.70146] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
RNA degradation is fundamental for cellular homeostasis. The process is carried out by various classes of endolytic and exolytic enzymes that together degrade an RNA polymer to mono-ribonucleotides. Within the exoribonucleases, nano-RNases play a unique role as they act on the smallest breakdown products and hence catalyze the final steps in the process. We recently showed that oligoribonuclease (Orn) acts as a dedicated diribonuclease, defining the ultimate step in RNA degradation that is crucial for cellular fitness (Kim et al., 2019). Whether such a specific activity exists in organisms that lack Orn-type exoribonucleases remained unclear. Through quantitative structure-function analyses, we show here that NrnC-type RNases share this narrow substrate length preference with Orn. Although NrnC and Orn employ similar structural features that distinguish these two classes of dinucleases from other exonucleases, the key determinants for dinuclease activity are realized through distinct structural scaffolds. The structures, together with comparative genomic analyses of the phylogeny of DEDD-type exoribonucleases, indicate convergent evolution as the mechanism of how dinuclease activity emerged repeatedly in various organisms. The evolutionary pressure to maintain dinuclease activity further underlines the important role these analogous proteins play for cell growth.
Collapse
Affiliation(s)
- Justin D Lormand
- Department of Molecular Medicine, Cornell University, Ithaca, United States
| | - Soo-Kyoung Kim
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | | | - Bryce A Brownfield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - J Christopher Fromme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States
| | - Wade C Winkler
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Jonathan R Goodson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, United States
| | - Holger Sondermann
- Department of Molecular Medicine, Cornell University, Ithaca, United States.,CSSB Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.,Christian-Albrechts-Universität, Kiel, Germany
| |
Collapse
|
18
|
Dhersin R, Dubée V, Pasco-Papon A, Fournier HD, Pailhories H, Urbanski G, Lavigne C. Brain abscess caused by Bartonella henselae associated with arteriovenous malformation. Infect Dis Now 2021; 51:574-576. [PMID: 34486526 DOI: 10.1016/j.idnow.2020.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/10/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Robin Dhersin
- Department of infectious diseases, University hospital of Angers, Angers, France.
| | - Vincent Dubée
- Department of infectious diseases, University hospital of Angers, Angers, France; CRCINA, Inserm, Université de Nantes, Université d'Angers, Angers, 44200, France
| | - Anne Pasco-Papon
- Department of radiology, University hospital of Angers, Angers, France
| | | | - Hélène Pailhories
- Department of bacteriology, University hospital of Angers, Angers, France; Laboratoire HIFIH, UPRES EA3859, SFR 4208, Université d'Angers, Angers, France
| | - Geoffrey Urbanski
- Department of internal medicine, University hospital of Angers, Angers, France
| | - Christian Lavigne
- Department of internal medicine, University hospital of Angers, Angers, France
| |
Collapse
|
19
|
The Relationship between Mycoplasmas and Cancer: Is It Fact or Fiction ? Narrative Review and Update on the Situation. JOURNAL OF ONCOLOGY 2021; 2021:9986550. [PMID: 34373693 PMCID: PMC8349275 DOI: 10.1155/2021/9986550] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
More than one million new cancer cases occur worldwide every year. Although many clinical trials are applied and recent diagnostic tools are employed, curing cancer disease is still a great challenge for mankind. Heredity and epigenetics are the main risk factors often related to cancer. Although, the infectious etiological role in carcinogenesis was also theorized. By establishing chronic infection and inflammation in their hosts, several microorganisms were suggested to cause cell transformation. Of these suspicious microorganisms, mycoplasmas were well regarded because of their intimate parasitism with host cells, as well as their silent and insidious role during infections. This assumption has opened many questions about the real role played by mycoplasmas in oncogenesis. Herein, we presented a sum up of many studies among the hundreds which had addressed the Mycoplasma-cancer topic over the past 50 years. Research studies in this field have first started by approving the mycoplasmas malignancy potential. Indeed, using animal models and in vitro experiments in various cell lines from human and other mammalians, many mycoplasmas were proven to cause varied modifications leading to cell transformation. Moreover, many studies have looked upon the Mycoplasma-cancer subject from an epidemiological point of view. Diverse techniques were used to assess the mycoplasmas prevalence in patients with cancer from different countries. Not less than 10 Mycoplasma species were detected in the context of at least 15 cancer types affecting the brain, the breast, the lymphatic system, and different organs in the genitourinary, respiratory, gastrointestinal, and urinary tracts. Based on these revelations, one should concede that detection of mycoplasmas often linked to ‘‘wolf in sheep's clothing” is not a coincidence and might have a role in cancer. Thorough investigations are needed to better elucidate this role. This would have a substantial impact on the improvement of cancer diagnosis and its prevention.
Collapse
|
20
|
Bartonella henselae Persistence within Mesenchymal Stromal Cells Enhances Endothelial Cell Activation and Infectibility That Amplifies the Angiogenic Process. Infect Immun 2021; 89:e0014121. [PMID: 34031126 DOI: 10.1128/iai.00141-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, Bartonella henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of B. henselae, the mechanisms by which B. henselae induces EC activation are not completely clear, as well as the possible contributions of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections, exerting antimicrobial properties but also acting as a shelter for pathogens. Here, we delved into the role of MSCs as a reservoir of B. henselae and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclearly bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of epidermal growth factor receptor (EGFR), Toll-like receptor 2 (TLR2), and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors vascular endothelial growth factor (VEGF), fibroblast growth factor 7 (FGF-7), matrix metallopeptidase 9 (MMP-9), placental growth factor (PIGF), serpin E1, thrombospondin 1 (TSP-1), urokinase-type plasminogen activator (uPA), interleukin 6 (IL-6), platelet-derived growth factor D (PDGF-D), chemokine ligand 5 (CCL5), and C-X-C motif chemokine ligand 8 (CXCL8). Supernatants from B. henselae-infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion, and reorganization in tube-like structures. Altogether, these results indicate MSCs as a still underestimated niche for persistent B. henselae infection and reveal MSC-EC cross talk that may contribute to exacerbate bacterium-induced angiogenesis and granuloma formation.
Collapse
|
21
|
Okaro U, George S, Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms 2021; 9:835. [PMID: 33919891 PMCID: PMC8070961 DOI: 10.3390/microorganisms9040835] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023] Open
Abstract
Bartonella henselae (B. henselae) is a gram-negative bacterium that causes cat scratch disease, bacteremia, and endocarditis, as well as other clinical presentations. B. henselae has been shown to form a biofilm in vitro that likely plays a role in the establishment and persistence of the bacterium in the host. Biofilms are also known to form in the cat flea vector; hence, the ability of this bacterium to form a biofilm has broad biological significance. The release of B. henselae from a biofilm niche appears to be important in disease persistence and relapse in the vertebrate host but also in transmission by the cat flea vector. It has been shown that the BadA adhesin of B. henselae is critical for adherence and biofilm formation. Thus, the upregulation of badA is important in initiating biofilm formation, and down-regulation is important in the release of the bacterium from the biofilm. We summarize the current knowledge of biofilm formation in Bartonella species and the role of BadA in biofilm formation. We discuss the evidence that defines possible mechanisms for the regulation of the genes required for biofilm formation. We further describe the regulation of those genes in the conditions that mimic both the arthropod vector and the mammalian host for B. henselae. The treatment for persistent B. henselae infection remains a challenge; hence, a better understanding of the mechanisms by which this bacterium persists in its host is critical to inform future efforts to develop drugs to treat such infections.
Collapse
Affiliation(s)
- Udoka Okaro
- Foundational Sciences Directorate, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702, USA;
| | - Sierra George
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| | - Burt Anderson
- Department of Molecular Medicine, MDC7, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA;
| |
Collapse
|
22
|
Brčić I, Spasić S, England JS, Zuo Y, Velez-Torres J, Diaz-Perez JA, Gorkiewicz G, Rosenberg AE. Clear Cell Change in Reactive Angiogenesis: A Potential Diagnostic Pitfall. Am J Surg Pathol 2021; 45:531-536. [PMID: 33002917 DOI: 10.1097/pas.0000000000001595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Reactive angiogenesis is commonplace, occurs in many circumstances, and is important in the repair of injured tissue. Histologically, it is characterized by newly formed capillaries arranged in a lobular architecture and lined by plump endothelial cells. We have encountered a form of reactive angiogenesis not well described; composed of large endothelial cells with abundant clear cytoplasm that causes diagnostic challenges. The cohort includes 10 patients, aged 4 to 61, mean 40 years; 7 males, 3 females. One case involved bone (ilium), and 9 involved soft tissue: fingers (n=2), toes (n=2), hip joint (n=1), shoulder (n=1), thigh (n=2), and anal mucosa (n=1). Clinically, the patients had chronic ulcers, osteomyelitis, or localized infection. All cases exhibited a lobular proliferation of capillaries lined by large polyhedral endothelial cells that obscured the vessel lumens and were admixed with acute and chronic inflammation. The endothelial nuclei were vesicular with small nucleoli and the cytoplasm was abundant and clear or palely eosinophilic. The endothelial cells were stained with CD31 and ERG (7/7 cases), CD34 (6/6), FLI1 (4/4), and were negative for keratin and CD68 (6/6). Periodic acid-Schiff stain and periodic acid-Schiff stain-diastase on 3 cases did not demonstrate glycogen. Using a polymerase chain reaction, no Bartonella henselae was found in all 6 cases tested. Reactive angiogenesis with clear cell change unassociated with Bartonella spp. has not been described. It causes diagnostic challenges and the differential diagnosis includes benign and malignant tumors, as well as unusual infections. It is important to distinguish between these possibilities because of the significant impact on treatment and prognosis.
Collapse
Affiliation(s)
- Iva Brčić
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Smiljana Spasić
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jonathan S England
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Yiqin Zuo
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Jaylou Velez-Torres
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Gregor Gorkiewicz
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
23
|
Abdul-Wahab OMS, Al-Shyarba MH, Mardassi BBA, Sassi N, Al Fayi MSS, Otifi H, Al Murea AH, Mlik B, Yacoub E. Molecular detection of urogenital mollicutes in patients with invasive malignant prostate tumor. Infect Agent Cancer 2021; 16:6. [PMID: 33472649 PMCID: PMC7816065 DOI: 10.1186/s13027-021-00344-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The etiology of prostate cancer (PCa) is multiple and complex. Among the causes recently cited are chronic infections engendered by microorganisms that often go unnoticed. A typical illustration of such a case is infection due to mollicutes bacteria. Generally known by their lurking nature, urogenital mollicutes are the most incriminated in PCa. This study was thus carried out in an attempt to establish the presence of these mollicutes by PCR in biopsies of confirmed PCa patients and to evaluate their prevalence. METHODS A total of 105 Formalin-Fixed Paraffin-Embedded prostate tissues collected from 50 patients suffering from PCa and 55 with benign prostate hyperplasia were subjected to PCR amplification targeting species-specific genes of 5 urogenital mollicutes species, Mycoplasma genitalium, M. hominis, M. fermentans, Ureaplasma parvum, and U. urealyticum. PCR products were then sequenced to confirm species identification. Results significance was statistically assessed using Chi-square and Odds ratio tests. RESULTS PCR amplification showed no positive results for M. genitalium, M. hominis, and M. fermentans in all tested patients. Strikingly, Ureaplasma spp. were detected among 30% (15/50) of PCa patients. Nucleotide sequencing further confirmed the identified ureaplasma species, which were distributed as follows: 7 individuals with only U. parvum, 5 with only U. urealyticum, and 3 co-infection cases. Association of the two ureaplasma species with PCa cases proved statistically significant (P < 0.05), and found to represent a risk factor. Of note, Ureaplasma spp. were mostly identified in patients aged 60 and above with prostatic specific antigen (PSA) level > 4 ng/ml and an invasive malignant prostate tumor (Gleason score 8-10). CONCLUSIONS This study uncovered a significant association of Ureaplasma spp. with PCa arguing in favour of their potential involvement in this condition. Yet, this finding, though statistically supported, warrants a thorough investigation at a much larger scale.
Collapse
Affiliation(s)
| | - Mishari H Al-Shyarba
- Department of Surgery, College of Medicine, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | - Boutheina Ben Abdelmoumen Mardassi
- Specialized Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Nessrine Sassi
- Specialized Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Majed Saad Shaya Al Fayi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | - Hassan Otifi
- Department of Pathology, College of Medicine, King Khalid University, P.O. Box 641, Abha, 61421, Saudi Arabia
| | | | - Béhija Mlik
- Specialized Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia
| | - Elhem Yacoub
- Specialized Unit of Mycoplasmas, Laboratory of Molecular Microbiology, Vaccinology, and Biotechnology Development, Institut Pasteur de Tunis, University of Tunis El-Manar, Tunis, Tunisia.
| |
Collapse
|
24
|
The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat Commun 2020; 11:3571. [PMID: 32678094 PMCID: PMC7366657 DOI: 10.1038/s41467-020-17391-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. The underlying mechanisms are unclear, but involve secretion of an unidentified mitogenic factor. Here, we use functional transposon-mutant screening in Bartonella henselae to identify such factor as a pro-angiogenic autotransporter, called BafA. The passenger domain of BafA induces cell proliferation, tube formation and sprouting of microvessels, and drives angiogenesis in mice. BafA interacts with vascular endothelial growth factor (VEGF) receptor-2 and activates the downstream signaling pathway, suggesting that BafA functions as a VEGF analog. A BafA homolog from a related pathogen, Bartonella quintana, is also functional. Our work unveils the mechanistic basis of vasoproliferative lesions observed in bartonellosis, and we propose BafA as a key pathogenic factor contributing to bacterial spread and host adaptation. Pathogenic bacteria of the genus Bartonella can induce vasoproliferative lesions during infection. Here, Tsukamoto et al. show that this effect is caused by a secreted protein that induces cell proliferation and angiogenesis by acting as an analog of the host’s vascular endothelial growth factor (VEGF).
Collapse
|
25
|
Leishmania Infection Induces Macrophage Vascular Endothelial Growth Factor A Production in an ARNT/HIF-Dependent Manner. Infect Immun 2019; 87:IAI.00088-19. [PMID: 31451620 PMCID: PMC6803331 DOI: 10.1128/iai.00088-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cutaneous leishmaniasis is characterized by vascular remodeling. Following infection with Leishmania parasites, the vascular endothelial growth factor A (VEGF-A)/VEGF receptor 2 (VEGFR-2) signaling pathway mediates lymphangiogenesis, which is critical for lesion resolution. Therefore, we investigated the cellular and molecular mediators involved in VEGF-A/VEGFR-2 signaling using a murine model of infection. We found that macrophages are the predominant cell type expressing VEGF-A during Leishmania major infection. Given that Leishmania parasites activate hypoxia-inducible factor 1α (HIF-1α) and this transcription factor can drive VEGF-A expression, we analyzed the expression of HIF-1α during infection. We showed that macrophages were also the major cell type expressing HIF-1α during infection and that infection-induced VEGF-A production is mediated by ARNT/HIF activation. Furthermore, mice deficient in myeloid ARNT/HIF signaling exhibited larger lesions without differences in parasite numbers. These data show that L. major infection induces macrophage VEGF-A production in an ARNT/HIF-dependent manner and suggest that ARNT/HIF signaling may limit inflammation by promoting VEGF-A production and, thus, lymphangiogenesis during infection.
Collapse
|
26
|
Okaro U, Green R, Mohapatra S, Anderson B. The trimeric autotransporter adhesin BadA is required for in vitro biofilm formation by Bartonella henselae. NPJ Biofilms Microbiomes 2019; 5:10. [PMID: 30886729 PMCID: PMC6418236 DOI: 10.1038/s41522-019-0083-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/01/2019] [Indexed: 01/10/2023] Open
Abstract
Bartonella henselae (Bh) is a Gram-negative rod transmitted to humans by a scratch from the common house cat. Infection of humans with Bh can result in a range of clinical diseases including lymphadenopathy observed in cat-scratch disease and more serious disease from persistent bacteremia. It is a common cause of blood-culture negative endocarditis as the bacterium is capable of growing as aggregates, and forming biofilms on infected native and prosthetic heart valves. The aggregative growth requires a trimeric autotransporter adhesin (TAA) called Bartonella adhesin A (BadA). TAAs are found in all Bartonella species and many other Gram-negative bacteria. Using Bh Houston-1, Bh Houston-1 ∆badA and Bh Houston-1 ∆badA/pNS2PTrc badA (a partial complement of badA coding for a truncated protein of 741 amino acid residues), we analyze the role of BadA in adhesion and biofilm formation. We also investigate the role of environmental factors such as temperature on badA expression and biofilm formation. Real-time cell adhesion monitoring and electron microscopy show that Bh Houston-1 adheres and forms biofilm more efficiently than the Bh Houston-1 ∆badA. Deletion of the badA gene significantly decreases adhesion, the first step in biofilm formation in vitro, which is partially restored in Bh Houston-1 ∆badA/pNS2PTrc badA. The biofilm formed by Bh Houston-1 includes polysaccharides, proteins, and DNA components and is susceptible to enzymatic degradation of these components. Furthermore, both pH and temperature influence both badA expression and biofilm formation. We conclude that BadA is required for optimal adhesion, agglutination and biofilm formation.
Collapse
Affiliation(s)
- Udoka Okaro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burt Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
27
|
Regier Y, Komma K, Weigel M, Kraiczy P, Laisi A, Pulliainen AT, Hain T, Kempf VAJ. Combination of microbiome analysis and serodiagnostics to assess the risk of pathogen transmission by ticks to humans and animals in central Germany. Parasit Vectors 2019; 12:11. [PMID: 30616666 PMCID: PMC6322329 DOI: 10.1186/s13071-018-3240-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Arthropod-borne diseases remain a major health-threat for humans and animals worldwide. To estimate the distribution of pathogenic agents and especially Bartonella spp., we conducted tick microbiome analysis and determination of the infection status of wild animals, pets and pet owners in the state of Hesse, Germany. RESULTS In total, 189 engorged ticks collected from 163 animals were tested. Selected ticks were analyzed by next generation sequencing (NGS) and confirmatory PCRs, blood specimens of 48 wild animals were analyzed by PCR to confirm pathogen presence and sera of 54 dogs, one cat and 11 dog owners were analyzed by serology. Bartonella spp. were detected in 9.5% of all ticks and in the blood of 17 roe deer. Further data reveal the presence of the human and animal pathogenic species of genera in the family Spirochaetaceae (including Borrelia miyamotoi and Borrelia garinii), Bartonella spp. (mainly Bartonella schoenbuchensis), Rickettsia helvetica, Francisella tularensis and Anaplasma phagocytophilum in ticks. Co-infections with species of several genera were detected in nine ticks. One dog and five dog owners were seropositive for anti-Bartonella henselae-antibodies and one dog had antibodies against Rickettsia conorii. CONCLUSIONS This study provides a snapshot of pathogens circulating in ticks in central Germany. A broad range of tick-borne pathogens are present in ticks, and especially in wild animals, with possible implications for animal and human health. However, a low incidence of Bartonella spp., especially Bartonella henselae, was detected. The high number of various detected pathogens suggests that ticks might serve as an excellent sentinel to detect and monitor zoonotic human pathogens.
Collapse
Affiliation(s)
- Yvonne Regier
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Kassandra Komma
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Peter Kraiczy
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| | - Arttu Laisi
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Arto T. Pulliainen
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku, Turku, Finland
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Giessen, Germany
| | - Volkhard A. J. Kempf
- University Hospital, Goethe-University, Institute for Medical Microbiology and Infection Control, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Regier Y, Komma K, Weigel M, Pulliainen AT, Göttig S, Hain T, Kempf VAJ. Microbiome Analysis Reveals the Presence of Bartonella spp. and Acinetobacter spp. in Deer Keds ( Lipoptena cervi). Front Microbiol 2018; 9:3100. [PMID: 30619179 PMCID: PMC6306446 DOI: 10.3389/fmicb.2018.03100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022] Open
Abstract
The deer ked (Lipoptena cervi) is distributed in Europe, North America, and Siberia and mainly infests cervids as roe deer, fallow deer, and moose. From a one health perspective, deer keds occasionally bite other animals or humans and are a potential vector for Bartonella schoenbuchensis. This bacterium belongs to a lineage of ruminant-associated Bartonella spp. and is suspected to cause dermatitis and febrile diseases in humans. In this study, we analyzed the microbiome from 130 deer keds collected from roe deer, fallow deer and humans in the federal states of Hesse, Baden-Wuerttemberg, and Brandenburg, Germany. Endosymbiontic Arsenophonus spp. and Bartonella spp. represented the biggest portion (~90%) of the microbiome. Most Bartonella spp. (n = 93) were confirmed to represent B. schoenbuchensis. In deer keds collected from humans, no Bartonella spp. were detected. Furthermore, Acinetobacter spp. were present in four samples, one of those was confirmed to represent A. baumannii. These data suggest that deer keds harbor only a very narrow spectrum of bacteria which are potentially pathogenic for animals of humans.
Collapse
Affiliation(s)
- Yvonne Regier
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Kassandra Komma
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
| | - Arto T. Pulliainen
- Research Center for Cancer, Infections and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, Giessen, Germany
- German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Volkhard A. J. Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| |
Collapse
|
29
|
Deng H, Pang Q, Zhao B, Vayssier-Taussat M. Molecular Mechanisms of Bartonella and Mammalian Erythrocyte Interactions: A Review. Front Cell Infect Microbiol 2018; 8:431. [PMID: 30619777 PMCID: PMC6299047 DOI: 10.3389/fcimb.2018.00431] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
Bartonellosis is an infectious disease caused by Bartonella species that are distributed worldwide with animal and public health impact varying according to Bartonella species, infection phase, immunological characteristics, and geographical region. Bartonella is widely present in various mammals including cats, rodents, ruminants, and humans. At least 13 Bartonella species or subspecies are zoonotic. Each species has few reservoir animals in which it is often asymptomatic. Bartonella infection may lead to various clinical symptoms in humans. As described in the B.tribocorum-rat model, when Bartonella was seeded into the blood stream, they could escape immunity, adhered to and invaded host erythrocytes. They then replicated and persisted in the infected erythrocytes for several weeks. This review summarizes the current knowledge of how Bartonella prevent phagocytosis and complement activation, what pathogenesis factors are involved in erythrocyte adhesion and invasion, and how Bartonella could replicate and persist in mammalian erythrocytes. Current advances in research will help us to decipher molecular mechanisms of interactions between Bartonella and mammalian erythrocytes and may help in the development of biological strategies for the prevention and control of bartonellosis.
Collapse
Affiliation(s)
- Hongkuan Deng
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Qiuxiang Pang
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Bosheng Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, China
| | - Muriel Vayssier-Taussat
- UMR BIPAR, INRA, ANSES, École Nationale Vétérinaire d'Alfort, Université Paris-Est Créteil Val-de-Marne, Maisons-Alfort, France
| |
Collapse
|
30
|
Álvarez-Fernández A, Breitschwerdt EB, Solano-Gallego L. Bartonella infections in cats and dogs including zoonotic aspects. Parasit Vectors 2018; 11:624. [PMID: 30514361 PMCID: PMC6280416 DOI: 10.1186/s13071-018-3152-6] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/14/2018] [Indexed: 12/20/2022] Open
Abstract
Bartonellosis is a vector-borne zoonotic disease with worldwide distribution that can infect humans and a large number of mammals including small companion animals (cats and dogs). In recent years, an increasing number of studies from around the world have reported Bartonella infections, although publications have predominantly focused on the North American perspective. Currently, clinico-pathological data from Europe are more limited, suggesting that bartonellosis may be an infrequent or underdiagnosed infectious disease in cats and dogs. Research is needed to confirm or exclude Bartonella infection as a cause of a spectrum of feline and canine diseases. Bartonella spp. can cause acute or chronic infections in cats, dogs and humans. On a comparative medical basis, different clinical manifestations, such as periods of intermittent fever, granulomatous inflammation involving the heart, liver, lymph nodes and other tissues, endocarditis, bacillary angiomatosis, peliosis hepatis, uveitis and vasoproliferative tumors have been reported in cats, dogs and humans. The purpose of this review is to provide an update and European perspective on Bartonella infections in cats and dogs, including clinical, diagnostic, epidemiological, pathological, treatment and zoonotic aspects.
Collapse
Affiliation(s)
- Alejandra Álvarez-Fernández
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Edward B. Breitschwerdt
- Department of Clinical Sciences and the Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC 27607 USA
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
31
|
Konradt C, Hunter CA. Pathogen interactions with endothelial cells and the induction of innate and adaptive immunity. Eur J Immunol 2018; 48:1607-1620. [PMID: 30160302 DOI: 10.1002/eji.201646789] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/24/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
There are over 10 trillion endothelial cells (EC) that line the vasculature of the human body. These cells not only have specialized functions in the maintenance of homeostasis within the circulation and various tissues but they also have a major role in immune function. EC also represent an important replicative niche for a subset of viral, bacterial, and parasitic organisms that are present in the blood or lymph; however, there are major gaps in our knowledge regarding how pathogens interact with EC and how this influences disease outcome. In this article, we review the literature on EC-pathogen interactions and their role in innate and adaptive mechanisms of resistance to infection and highlight opportunities to address prominent knowledge gaps.
Collapse
Affiliation(s)
- Christoph Konradt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Grohmann E, Christie PJ, Waksman G, Backert S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol Microbiol 2018; 107:455-471. [PMID: 29235173 PMCID: PMC5796862 DOI: 10.1111/mmi.13896] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/06/2023]
Abstract
Type IV secretion systems (T4SSs) are versatile multiprotein nanomachines spanning the entire cell envelope in Gram-negative and Gram-positive bacteria. They play important roles through the contact-dependent secretion of effector molecules into eukaryotic hosts and conjugative transfer of mobile DNA elements as well as contact-independent exchange of DNA with the extracellular milieu. In the last few years, many details on the molecular mechanisms of T4SSs have been elucidated. Exciting structures of T4SS complexes from Escherichia coli plasmids R388 and pKM101, Helicobacter pylori and Legionella pneumophila have been solved. The structure of the F-pilus was also reported and surprisingly revealed a filament composed of pilin subunits in 1:1 stoichiometry with phospholipid molecules. Many new T4SSs have been identified and characterized, underscoring the structural and functional diversity of this secretion superfamily. Complex regulatory circuits also have been shown to control T4SS machine production in response to host cell physiological status or a quorum of bacterial recipient cells in the vicinity. Here, we summarize recent advances in our knowledge of 'paradigmatic' and emerging systems, and further explore how new basic insights are aiding in the design of strategies aimed at suppressing T4SS functions in bacterial infections and spread of antimicrobial resistances.
Collapse
Affiliation(s)
- Elisabeth Grohmann
- Beuth University of Applied Sciences Berlin, Life Sciences and Technology, D-13347 Berlin, Germany
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, USA
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom
| | - Steffen Backert
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Staudtstrasse 5, D-91058 Erlangen, Germany
| |
Collapse
|
33
|
Abstract
Carrion's disease (CD) is a neglected biphasic vector-borne illness related to Bartonella bacilliformis. It is found in the Andean valleys and is transmitted mainly by members of the Lutzomyia genus but also by blood transfusions and from mother to child. The acute phase, Oroya fever, presents severe anemia and fever. The lethality is high in the absence of adequate treatment, despite the organism being susceptible to most antibiotics. Partial immunity is developed after infection by B. bacilliformis, resulting in high numbers of asymptomatic carriers. Following infection there is the chronic phase, Peruvian warts, involving abnormal proliferation of the endothelial cells. Despite potentially being eradicable, CD has been expanded due to human migration and geographical expansion of the vector. Moreover, in vitro studies have demonstrated the risk of the development of antimicrobial resistance. These findings, together with the description of new Bartonella species producing CD-like infections, the presence of undescribed potential vectors in new areas, the lack of adequate diagnostic tools and knowledge of the immunology and bacterial pathogenesis of CD, and poor international visibility, have led to the risk of increasing the potential expansion of resistant strains which will challenge current treatment schemes as well as the possible appearance of CD in areas where it is not endemic.
Collapse
Affiliation(s)
- Cláudia Gomes
- Institute for Global Health, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Joaquim Ruiz
- Institute for Global Health, Barcelona Centre for International Health Research, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Niche Construction and Exploitation by Agrobacterium: How to Survive and Face Competition in Soil and Plant Habitats. Curr Top Microbiol Immunol 2018; 418:55-86. [PMID: 29556826 DOI: 10.1007/82_2018_83] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agrobacterium populations live in different habitats (bare soil, rhizosphere, host plants), and hence face different environmental constraints. They have evolved the capacity to exploit diverse resources and to escape plant defense and competition from other microbiota. By modifying the genome of their host, Agrobacterium populations exhibit the remarkable ability to construct and exploit the ecological niche of the plant tumors that they incite. This niche is characterized by the accumulation of specific, low molecular weight compounds termed opines that play a critical role in Agrobacterium 's lifestyle. We present and discuss the functions, advantages, and costs associated with this niche construction and exploitation.
Collapse
|
35
|
Abstract
Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.
Collapse
|
36
|
Molecular survey of Bartonella henselae and Bartonella clarridgeiae in pet cats across Japan by species-specific nested-PCR. Epidemiol Infect 2017; 145:2694-2700. [PMID: 28780918 DOI: 10.1017/s0950268817001601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cats are known to be the main reservoir for Bartonella henselae and Bartonella clarridgeiae, which are the agents of 'cat-scratch disease' in humans. In the present study, we investigated the prevalence of the two Bartonella species on 1754 cat bloods collected from all prefectures in Japan during 2007-2008 by a nested-polymerase chain reaction (PCR) targeting the 16S-23S rRNA internal transcribed spacer region. Overall, Bartonella DNA was detected in 4·6% (80/1754) of the cats examined. The nested-PCR showed that 48·8% (39/80) of the positive cats were infected with B. henselae mono-infection, 33·8% (27/80) with B. clarridgeiae mono-infection and 17·5% (14/80) were infected with both species. The prevalence (5·9%; 65/1103) of Bartonella infection in the western part of Japan was significantly higher than that (2·3%; 15/651) of eastern Japan (P < 0·001). Statistical analysis of the cats examined suggested a significant association between Bartonella infection and FeLV infection (OR = 1·9; 95% CI = 1·1-3·4), but not with FIV infection (OR = 1·6; 95% CI = 1·0-2·6).
Collapse
|
37
|
Kanda Y, Osaki M, Okada F. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction. Int J Mol Sci 2017; 18:E867. [PMID: 28422073 PMCID: PMC5412448 DOI: 10.3390/ijms18040867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
38
|
Scorpio DG. Do cats serve as good sentinels for Bartonella species infection risk in people and animals? Vet Rec 2017; 180:322-324. [PMID: 28364072 DOI: 10.1136/vr.j1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Diana G Scorpio
- Animal Program Director, National Institutes of Health, Vaccine Research Center, Building 40 Bethesda, Maryland, USA; e-mail:
| |
Collapse
|
39
|
Seroprevalence of Bartonella Species in Patients with Ocular Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1020:33-42. [PMID: 28405890 DOI: 10.1007/5584_2017_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bartonella species, vector-borne etiologic agents of many systemic or self-limited infections, are responsible for a widening spectrum of diseases in humans, including inflammatory conditions of the eye. The aim of this study was to determine whether there is any relationship between uveitis and the evidence of Bartonella spp. infection in the serum, ocular fluid, and cataract mass in patients with intraocular inflammation. Polymerase chain reaction (PCR)-based tests and DNA sequencing were performed on surgery-extracted specimens of intraocular fluid and lens mass of 33 patients. Sera from 51 patients and 101 control subjects were tested for the presence of specific antibodies against Bartonella spp. Neither IgM-class antibodies against Bartonella spp. nor Bartonella spp. DNA were detected. A specific IgG-class antibody was found in 33.3% of the patients with uveitis. The rate of positive Bartonella serology was higher among the uveitis patients than that in control subjects. This high rate may in part result from unrecognized indirect mechanisms rather than the immediate presence and multiplication of Bartonella spp. in the eyeball. Nonetheless we believe that screening for Bartonella spp. should become part of the diagnostic workup in uveitis.
Collapse
|
40
|
Tu N, Carroll RK, Weiss A, Shaw LN, Nicolas G, Thomas S, Lima A, Okaro U, Anderson B. A family of genus-specific RNAs in tandem with DNA-binding proteins control expression of the badA major virulence factor gene in Bartonella henselae. Microbiologyopen 2016; 6. [PMID: 27790856 PMCID: PMC5387305 DOI: 10.1002/mbo3.420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022] Open
Abstract
Bartonella henselae is a gram‐negative zoonotic bacterium that causes infections in humans including endocarditis and bacillary angiomatosis. B. henselae has been shown to grow as large aggregates and form biofilms in vitro. The aggregative growth and the angiogenic host response requires the trimeric autotransporter adhesin BadA. We examined the transcriptome of the Houston‐1 strain of B. henselae using RNA‐seq revealing nine novel, highly‐expressed intergenic transcripts (Bartonella regulatory transcript, Brt1‐9). The Brt family of RNAs is unique to the genus Bartonella and ranges from 194 to 203 nucleotides with high homology and stable predicted secondary structures. Immediately downstream of each of the nine RNA genes is a helix‐turn‐helix DNA‐binding protein (transcriptional regulatory protein, Trp1‐9) that is poorly transcribed under the growth conditions used for RNA‐seq. Using knockdown or overexpressing strains, we show a role of both the Brt1 and Trp1 in the regulation of badA and also in biofilm formation. Based on these data, we hypothesize that Brt1 is a trans‐acting sRNA that also serves as a cis‐acting riboswitch to control the expression of badA. This family of RNAs together with the downstream Trp DNA‐binding proteins represents a novel coordinated regulatory circuit controlling expression of virulence‐associated genes in the bartonellae.
Collapse
Affiliation(s)
- Nhan Tu
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Andy Weiss
- Department of Cellular, Molecular and Microbiology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Lindsey N Shaw
- Department of Cellular, Molecular and Microbiology, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| | - Gael Nicolas
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Thomas
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Amorce Lima
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Udoka Okaro
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Burt Anderson
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
41
|
Regier Y, O Rourke F, Kempf VAJ. Bartonella spp. - a chance to establish One Health concepts in veterinary and human medicine. Parasit Vectors 2016; 9:261. [PMID: 27161111 PMCID: PMC4862191 DOI: 10.1186/s13071-016-1546-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/27/2016] [Indexed: 12/02/2022] Open
Abstract
Infectious diseases remain a remarkable health threat for humans and animals. In the past, the epidemiology, etiology and pathology of infectious agents affecting humans and animals have mostly been investigated in separate studies. However, it is evident, that combined approaches are needed to understand geographical distribution, transmission and infection biology of “zoonotic agents”. The genus Bartonella represents a congenial example of the synergistic benefits that can arise from such combined approaches: Bartonella spp. infect a broad variety of animals, are linked with a constantly increasing number of human diseases and are transmitted via arthropod vectors. As a result, the genus Bartonella is predestined to play a pivotal role in establishing a One Health concept combining veterinary and human medicine.
Collapse
Affiliation(s)
- Yvonne Regier
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Fiona O Rourke
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe-University, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Characterization of the general stress response in Bartonella henselae. Microb Pathog 2015; 92:1-10. [PMID: 26724735 DOI: 10.1016/j.micpath.2015.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/14/2015] [Accepted: 12/22/2015] [Indexed: 11/20/2022]
Abstract
Bacteria utilize a general stress response system to combat stresses from their surrounding environments. In alpha-proteobacteria, the general stress response uses an alternate sigma factor as the main regulator and incorporates it with a two-component system into a unique regulatory circuit. This system has been described in several alpha-proteobacterial species, including the pathogens Bartonella quintana and Brucella abortus. Most of the studies have focused on characterizing the PhyR anti-anti-sigma factor, the NepR anti-sigma factor, and the alternate sigma factor. However, not enough attention is directed toward studying the role of histidine kinases in the general stress response. Our study identifies the general stress response system in Bartonella henselae, where the gene synteny is conserved and both the PhyR and alternate sigma factor have similar sequence and domain structures with other alpha-proteobacteria. Our data showed that the general stress response genes are up-regulated under conditions that mimic the cat flea vector. Furthermore, we showed that both RpoE and PhyR positively regulate this system and that RpoE also affects transcription of genes encoding heme-binding proteins and the gene encoding the BadA adhesin. Finally, we identified a histidine kinase, annotated as BH13820 that can potentially phosphorylate PhyR.
Collapse
|
43
|
Pultorak E, Linder K, Maggi R, Balakrishnan N, Breitschwerdt E. Prevalence of Bartonella spp. in Canine Cutaneous Histiocytoma. J Comp Pathol 2015; 153:14-21. [DOI: 10.1016/j.jcpa.2015.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|
44
|
Relationship between the Presence of Bartonella Species and Bacterial Loads in Cats and Cat Fleas (Ctenocephalides felis) under Natural Conditions. Appl Environ Microbiol 2015; 81:5613-21. [PMID: 26070666 DOI: 10.1128/aem.01370-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/05/2015] [Indexed: 11/20/2022] Open
Abstract
Cats are considered the main reservoir of three zoonotic Bartonella species: Bartonella henselae, Bartonella clarridgeiae, and Bartonella koehlerae. Cat fleas (Ctenocephalides felis) have been experimentally demonstrated to be a competent vector of B. henselae and have been proposed as the potential vector of the two other Bartonella species. Previous studies have reported a lack of association between the Bartonella species infection status (infected or uninfected) and/or bacteremia levels of cats and the infection status of the fleas they host. Nevertheless, to date, no study has compared the quantitative distributions of these bacteria in both cats and their fleas under natural conditions. Thus, the present study explored these relationships by identifying and quantifying the different Bartonella species in both cats and their fleas. Therefore, EDTA-blood samples and fleas collected from stray cats were screened for Bartonella bacteria. Bacterial loads were quantified by high-resolution melt real-time quantitative PCR assays. The results indicated a moderate correlation between the Bartonella bacterial loads in the cats and their fleas when both were infected with the same Bartonella species. Moreover, a positive effect of the host infection status on the Bartonella bacterial loads of the fleas was observed. Conversely, the cat bacterial loads were not affected by the infection status of their fleas. Our results suggest that the Bartonella bacterial loads of fleas are positively affected by the presence of the bacteria in their feline host, probably by multiple acquisitions/accumulation and/or multiplication events.
Collapse
|
45
|
O'Rourke F, Mändle T, Urbich C, Dimmeler S, Michaelis UR, Brandes RP, Flötenmeyer M, Döring C, Hansmann ML, Lauber K, Ballhorn W, Kempf VAJ. Reprogramming of myeloid angiogenic cells by Bartonella henselae leads to microenvironmental regulation of pathological angiogenesis. Cell Microbiol 2015; 17:1447-63. [PMID: 25857345 DOI: 10.1111/cmi.12447] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/09/2015] [Accepted: 04/06/2015] [Indexed: 12/27/2022]
Abstract
The contribution of myeloid cells to tumour microenvironments is a decisive factor in cancer progression. Tumour-associated macrophages (TAMs) mediate tumour invasion and angiogenesis through matrix remodelling, immune modulation and release of pro-angiogenic cytokines. Nothing is known about how pathogenic bacteria affect myeloid cells in these processes. Here we show that Bartonella henselae, a bacterial pathogen causing vasculoproliferative diseases (bacillary angiomatosis), reprogrammes human myeloid angiogenic cells (MACs), a pro-angiogenic subset of circulating progenitor cells, towards a TAM-like phenotype with increased pro-angiogenic capacity. B. henselae infection resulted in inhibition of cell death, activation of angiogenic cellular programmes and induction of M2 macrophage polarization. MACs infected with B. henselae incorporated into endothelial sprouts and increased angiogenic growth. Infected MACs developed a vascular mimicry phenotype in vitro, and expression of B. henselae adhesin A was essential in inducing these angiogenic effects. Secretome analysis revealed that increased pro-angiogenic activities were associated with the creation of a tumour-like microenvironment dominated by angiogenic inflammatory cytokines and matrix remodelling compounds. Our results demonstrate that manipulation of myeloid cells by pathogenic bacteria can contribute to microenvironmental regulation of pathological tissue growth and suggest parallels underlying both bacterial infections and cancer.
Collapse
Affiliation(s)
- Fiona O'Rourke
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Tanja Mändle
- Institute for Medical Microbiology and Infection Control, Eberhard Karls University, Tübingen, Germany
| | - Carmen Urbich
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - U Ruth Michaelis
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Matthias Flötenmeyer
- Department for Electronmicroscopy, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute for Pathology, Goethe University, Frankfurt am Main, Germany
| | - Martin-Leo Hansmann
- Dr. Senckenberg Institute for Pathology, Goethe University, Frankfurt am Main, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, Ludwig Maximilian University, Munich, Germany
| | - Wibke Ballhorn
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
46
|
Lima A, Cha BJ, Amin J, Smith LK, Anderson B. Zebrafish embryo model of Bartonella henselae infection. Zebrafish 2014; 11:434-46. [PMID: 25026365 DOI: 10.1089/zeb.2014.1001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bartonella henselae (Bh) is an emerging zoonotic pathogen that has been associated with a variety of human diseases, including bacillary angiomatosis that is characterized by vasoproliferative tumor-like lesions on the skin of some immunosuppressed individuals. The study of Bh pathogenesis has been limited to in vitro cell culture systems due to the lack of an animal model. Therefore, we wanted to investigate whether the zebrafish embryo could be used to model human infection with Bh. Our data showed that Tg(fli1:egfp)(y1) zebrafish embryos supported a sustained Bh infection for 7 days with >10-fold bacterial replication when inoculated in the yolk sac. We showed that Bh recruited phagocytes to the site of infection in the Tg(mpx:GFP)uwm1 embryos. Infected embryos showed evidence of a Bh-induced angiogenic phenotype and an increase in the expression of genes encoding pro-inflammatory factors and pro-angiogenic markers. However, infection of zebrafish embryos with a deletion mutant in the major adhesin (BadA) resulted in little or no bacterial replication and a diminished host response, providing the first evidence that BadA is critical for in vivo infection. Thus, the zebrafish embryo provides the first practical model of Bh infection that will facilitate efforts to identify virulence factors and define molecular mechanisms of Bh pathogenesis.
Collapse
Affiliation(s)
- Amorce Lima
- 1 Department of Molecular Medicine, University of South Florida Morsani College of Medicine , Tampa, Florida
| | | | | | | | | |
Collapse
|
47
|
Angelakis E, Raoult D. Pathogenicity and treatment of Bartonella infections. Int J Antimicrob Agents 2014; 44:16-25. [DOI: 10.1016/j.ijantimicag.2014.04.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
|
48
|
Ko S, Kang JG, Kim HC, Klein TA, Choi KS, Song JW, Youn HY, Chae JS. Prevalence, Isolation and Molecular Characterization of Bartonella Species in Republic of Korea. Transbound Emerg Dis 2014; 63:56-67. [PMID: 24661833 DOI: 10.1111/tbed.12217] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Indexed: 12/17/2022]
Abstract
To determine the prevalence of Bartonella species and identify which species of Bartonella naturally infects the striped field mouse (Apodemus agrarius) in the Republic of Korea (ROK), spleens from 200 mice were assayed by nested polymerase chain reaction (nPCR) targeting the RNA polymerase subunit beta (rpoB) gene and the 16S-23S internal transcribed spacer (ITS) region for members of the genus Bartonella. Utilizing PCR techniques, the prevalence of Bartonella spp. ranged from 31.5% (63/200) to 62.0% (124/200) for the rpoB and ITS gene fragments, respectively. The most prevalent species, Bartonella grahamii, was assigned to 17 genotypes and closely related to the zoonotic pathogens, B. taylorii, B. tribocorum, B. phoceensis and B. henselae, which also were detected. Two Bartonella isolates (KRBG28 and KRBG32) were recovered from blood of A. agrarius captured in Gyeonggi Province, ROK. Comparison of the 16S rRNA, hemin-binding protein E (hbpE), glutamate dehydrogenase 1 (gdh1), invasion-associated protein B (ialB), cell division protein (ftsZ), citrate synthase (gltA), 60 kDa heat shock protein (groEL), rpoB gene fragments and the ITS region sequences from the isolates with GenBank was confirmed as B. grahamii. Phylogenetic analysis based on the alignment of concatenated sequences (4933 bp) of KRBG28 and KRBG32 clustered with B. grahamii, forming an independent clade between Asian and American/European B. grahamii genogroups.
Collapse
Affiliation(s)
- S Ko
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu Seoul, Korea
| | - J-G Kang
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu Seoul, Korea
| | - H-C Kim
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, APO AP, USA
| | - T A Klein
- Public Health Command Region-Pacific, Camp Zama Japan; 65th Medical Brigade, APO AP, USA
| | - K-S Choi
- School of Animal Science and Biotechnology, College of Ecology and Environmental Sciences, Kyungpook National University, Sangju, Korea
| | - J-W Song
- Department of Microbiology, Institute for Viral Diseases and Bank for Pathogenic Viruses, College of Medicine, Korea University, Anam-Dong Sungbuk-Gu, Seoul, Korea
| | - H-Y Youn
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu Seoul, Korea
| | - J-S Chae
- Laboratory of Veterinary Internal Medicine, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Gwanak-gu Seoul, Korea
| |
Collapse
|
49
|
Stein RA. Streptococcus infantarius and carcinogenesis: a new chapter in colorectal pathology. Int J Clin Pract 2013; 67:1220-4. [PMID: 24246203 DOI: 10.1111/ijcp.12295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/17/2013] [Indexed: 12/14/2022] Open
Abstract
As mirrored by several topics throughout history, the causal link between infectious diseases and cancer was initially viewed with disbelief and subsequently forgotten, only to be rediscovered decades later, when it started flourishing into a vibrant multidisciplinary field . Just a few years ago, it was estimated that over 20% of all cancers are causally linked to infectious diseases, most frequently caused by bacteria, viruses, and parasites .
Collapse
Affiliation(s)
- R A Stein
- Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA. ,
| |
Collapse
|
50
|
Liu M, Biville F. Managing iron supply during the infection cycle of a flea borne pathogen, Bartonella henselae. Front Cell Infect Microbiol 2013; 3:60. [PMID: 24151576 PMCID: PMC3799009 DOI: 10.3389/fcimb.2013.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022] Open
Abstract
Bartonella are hemotropic bacteria responsible for emerging zoonoses. Most Bartonella species appear to share a natural cycle that involves an arthropod transmission, followed by exploitation of a mammalian host in which they cause long-lasting intra-erythrocytic bacteremia. Persistence in erythrocytes is considered an adaptation to transmission by bloodsucking arthropod vectors and a strategy to obtain heme required for Bartonella growth. Bartonella genomes do not encode for siderophore biosynthesis or a complete iron Fe3+ transport system. Only genes, sharing strong homology with all components of a Fe2+ transport system, are present in Bartonella genomes. Also, Bartonella genomes encode for a complete heme transport system. Bartonella must face various environments in their hosts and vectors. In mammals, free heme and iron are rare and oxygen concentration is low. In arthropod vectors, toxic heme levels are found in the gut where oxygen concentration is high. Bartonella genomes encode for 3–5 heme-binding proteins. In Bartonella henselae heme-binding proteins were shown to be involved in heme uptake process, oxidative stress response, and survival inside endothelial cells and in the flea. In this report, we discuss the use of the heme uptake and storage system of B. henselae during its infection cycle. Also, we establish a comparison with the iron and heme uptake systems of Yersinia pestis used during its infection cycle.
Collapse
Affiliation(s)
- Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Avian Disease Research Center, Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu/Ya'an , Sichuan, China
| | | |
Collapse
|