1
|
Bhagwat A, Haldar T, Kanojiya P, Saroj SD. Bacterial metabolism in the host and its association with virulence. Virulence 2025; 16:2459336. [PMID: 39890585 PMCID: PMC11792850 DOI: 10.1080/21505594.2025.2459336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
The host restricted pathogens are competently dependent on their respective host for nutritional requirements. The bacterial metabolic pathways are surprisingly varied and remarkably flexible that in turn help them to successfully overcome competition and colonise their host. The metabolic adaptation plays pivotal role in bacterial pathogenesis. The understanding of host-pathogen metabolic crosstalk needs to be prioritized to decipher host-pathogen interactions. The review focuses on various aspects of host pathogen interactions that majorly involves adaptation of bacterial metabolism to counteract immune mechanisms by rectifying metabolic cues that provides pathogen the idea of different anatomical sites and the local physiology of the host. The key set of metabolites that are recognized as centre of competition between host and its pathogens are also briefly discussed. The factors that control the timely expression of virulence of bacterial pathogens is poorly understood. The perspective presented herein will facilitate us with a broader view of molecular mechanisms that modulates the expression of virulence factors in bacterial pathogens. The knowledge of crosslinked metabolic pathways of bacteria and their host will serve to develop novel potential therapeutics.
Collapse
Affiliation(s)
- Amrita Bhagwat
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Tiyasa Haldar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Poonam Kanojiya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sunil D. Saroj
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
2
|
Zhang Q, Yan D, Chen L. virK and mig-14 constitute a PhoP-dependent operon and contribute to the intracellular survival and polymyxin B resistance of Salmonella Typhi. Microb Pathog 2025; 205:107668. [PMID: 40345346 DOI: 10.1016/j.micpath.2025.107668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/30/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
In bacteria, adjacent and functionally similar genes are typically transcribed as operons. The virulence genes virK and mig-14 are acquired through horizontal gene transfer in Salmonella. Previous studies have reported that these two genes have similar functions in terms of bacterial survival within macrophages and resistance to antimicrobial peptides. Nevertheless, the specific expression characteristics of the two genes remain unclear. This study revealed that virK and mig-14 were transcribed as a single operon in Salmonella Typhi. The virK-mig-14 operon was found to be activated under conditions of early hyperosmotic stress and polymyxin B stimulation, and its activation was dependent on the presence of the regulator PhoP. The luminescence assay demonstrated that the activity of the virK promoter was markedly elevated in an environment conducive to operon activation, whereas the mig-14 promoter exhibited no discernible change. This suggests that mig-14 is predominantly transcribed as a component of the operon. In the PhoP activation environment, which has a mildly acidic pH, low Mg2+ levels, and intracellular macrophages, the virK-mig-14 operon exhibited significant activation. The absence of virK or mig-14 resulted in the impaired survival of Salmonella Typhi within macrophages and decreased its tolerance to polymyxin B. Collectively, this study shows that virK and mig-14 constitute an operon whose activation depends on PhoP and that it promotes S. Typhi's survival in macrophages and resistance to polymyxin B.
Collapse
Affiliation(s)
- Qisi Zhang
- Department of Clinical Laboratory, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450046, PR China
| | - Dongmei Yan
- Department of Clinical Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, 224000, PR China
| | - Long Chen
- Department of Clinical Laboratory, Zhangjiagang Hospital Affiliated to Soochow University, Zhangjiagang, 215600, PR China.
| |
Collapse
|
3
|
Ghosh S, Roy S, Baid N, Das UK, Rakshit S, Sanghavi P, Hajra D, Das S, Menon S, Sahil M, Shaw S, Rajmani RS, Adicherla H, Kaledhonkar S, Mondal J, Chakravortty D, Mallik R, Banerjee A. Host AAA-ATPase VCP/p97 lyses ubiquitinated intracellular bacteria as an innate antimicrobial defence. Nat Microbiol 2025; 10:1099-1114. [PMID: 40217128 DOI: 10.1038/s41564-025-01984-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025]
Abstract
Cell-autonomous immunity prevents intracellular pathogen growth through mechanisms such as ubiquitination and proteasomal targeting of bacteria for degradation. However, how the proteasome eradicates ubiquitinated bacteria has remained unclear. Here we show that host AAA-ATPase, VCP/p97, associates with diverse cytosol-exposed ubiquitinated bacteria (Streptococcus pneumoniae, Salmonella enterica serovar Typhimurium, Streptococcus pyogenes) and requires the ATPase activity in its D2 domain to reduce intracellular bacterial loads. Combining optical trap approaches along with molecular dynamic simulations, in vitro reconstitution and immunogold transmission electron microscopy, we demonstrate that p97 applies mechanical force to extract ubiquitinated surface proteins, BgaA and PspA, from S. pneumoniae cell membranes. This causes extensive membrane lysis and release of cytosolic content, thereby killing the pathogen. Further, p97 also controls S. pneumoniae proliferation in mice, ultimately protecting from fatal sepsis. Overall, we discovered a distinct innate antimicrobial function of p97 that can protect the host against lethal bacterial infections.
Collapse
Affiliation(s)
- Sourav Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Suvapriya Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Navin Baid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Udit Kumar Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sumit Rakshit
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Paulomi Sanghavi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Dipasree Hajra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sayani Das
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Sneha Menon
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Mohammad Sahil
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Sudipti Shaw
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Raju S Rajmani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology, Habsiguda, Hyderabad, Telangana, India
| | - Sandip Kaledhonkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research, Hyderabad, Telangana, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Roop Mallik
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
4
|
Voss OH, Moin I, Gaytan H, Sadik M, Ullah S, Rahman MS. Phosphatidylserine-binding receptor, CD300f, on macrophages mediates host invasion of pathogenic and non-pathogenic rickettsiae. Infect Immun 2025:e0005925. [PMID: 40310290 DOI: 10.1128/iai.00059-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding of how Rickettsia species invade host cells, including MΦ, remains poorly defined. In this study, we describe a mechanism of host invasion by Rickettsia species, involving rickettsial phosphatidylserine (PS), as a ligand, and the CD300f receptor on MΦ. Our data reveal that engulfment of both pathogenic Rickettsia typhi (the etiologic agent of murine typhus) and Rickettsia rickettsii (the etiologic agent of Rocky Mountain spotted fever) species, as well as the non-pathogenic Rickettsia montanensis, is significantly reduced in bone marrow-derived macrophages (BMDMΦ) from CD300f-/- mice, as compared to that of wild-type (WT) animals. Furthermore, our mechanistic analysis suggests bacterial PS as the potential source for the CD300f-mediated rickettsiae engulfment by MΦ. In vivo infection studies using WT and CD300f-/- C57BL/6J mice show that CD300f-/- animals are protected against R. typhi- or R. rickettsii-induced fatal rickettsiosis, which corroborates with the level of the bacterial burden detected in the spleens of the mice. Adoptive transfer studies reveal that CD300f-expressing MΦ are important mediators to control rickettsiosis in vivo. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment of rickettsiae within the host.
Collapse
Affiliation(s)
- Oliver H Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Imran Moin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hodalis Gaytan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Sadik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saif Ullah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Han Y, Liu X, Qu S, Duan X, Xiang Y, Jiang N, Yang S, Fang X, Xu L, Wen H, Yu Y, Huang S, Huang J, Zhu K. Tissue geometry spatiotemporally drives bacterial infections. Cell 2025:S0092-8674(25)00394-0. [PMID: 40262607 DOI: 10.1016/j.cell.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Epithelial tissues serve as the first line of host against bacterial infections. The self-organization of epithelial tissues continuously adapts to the architecture and mechanics of microenvironments, thereby dynamically impacting the initial niche of infections. However, the mechanism by which tissue geometry regulates bacterial infection remains poorly understood. Here, we showed geometry-guided infection patterns of bacteria in epithelial tissues using bioengineering strategies. We discovered that cellular traction forces play a crucial role in the regulation of bacterial invasive sites and marginal infection patterns in epithelial monolayers through triggering co-localization of mechanosensitive ion channel protein Piezo1 with bacteria. Further, we developed precise mechanobiology-based strategies to potentiate the antibacterial efficacy in animal models of wound and intestinal infection. Our findings demonstrate that tissue geometry exerts a key impact on mediating spatiotemporal infections of bacteria, which has important implications for the discovery and development of alternative strategies against bacterial infections.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, China
| | - Shaoqi Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yunqing Xiang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyu Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xu Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Hui Wen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yue Yu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shuqiang Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Liu J, Zhang L, Ma H, Sun H, Ge SA, Liu J, Fan S, Quan C. Quaternary ammonium chitosan-functionalized mesoporous silica nanoparticles: A promising targeted drug delivery system for the treatment of intracellular MRSA infection. Carbohydr Polym 2025; 352:123184. [PMID: 39843087 DOI: 10.1016/j.carbpol.2024.123184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/28/2024] [Accepted: 12/22/2024] [Indexed: 01/30/2025]
Abstract
The limited membrane permeability and bacterial resistance pose significant challenges in the management of intracellular drug-resistant bacterial infections. To overcome this issue, we developed a bacterial-targeted drug delivery system based on quaternary ammonium chitosan-modified mesoporous silica nanoparticles (MSN-NH2-CFP@HACC) for the treatment of intracellular Methicillin-resistant Staphylococcus aureus (MRSA) infections. This system utilizes amino-functionalized mesoporous silica nanoparticles to efficiently load cefoperazone (CFP), and the nanoparticles' surface is coated with 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) to target bacteria and enhance macrophage uptake. The findings indicate that MSN-NH2-CFP@HACC nanoparticles are efficiently internalized by macrophages, demonstrate accelerated drug release in acidic environments, and exhibit enhanced antibacterial properties, effectively suppressing the proliferation and intracellular escape of MRSA. Moreover, HACC enhances the bacterial capture ability of the nanoparticles and reduces resistance by disrupting bacterial membrane structures and inhibiting bacterial β-lactamase activity. In a murine model of MRSA bacteremia, MSN-NH2-CFP@HACC exhibited remarkable antibacterial efficacy and significantly attenuated severe inflammatory responses. In conclusion, MSN-NH2-CFP@HACC represent a promising antibiotic delivery system with exceptional antibacterial efficacy and favorable biocompatibility, thus presenting a novel strategy for addressing intracellular drug-resistant bacterial infections and demonstrating significant potential for clinical application.
Collapse
Affiliation(s)
- Junfeng Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Liying Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Haodi Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Haoyang Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Shu-Ai Ge
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Jieyi Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Shengdi Fan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian 116600, PR China; Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian 116600, PR China.
| |
Collapse
|
7
|
Zhang L, Duan X, Zhao Y, Zhang D, Zhang Y. Implications of intratumoral microbiota in tumor metastasis: a special perspective of microorganisms in tumorigenesis and clinical therapeutics. Front Immunol 2025; 16:1526589. [PMID: 39995663 PMCID: PMC11847830 DOI: 10.3389/fimmu.2025.1526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Tumor metastasis is the main cause of therapeutic failure and mortality in cancer patients. The intricate metastastic process is influenced by both the intrinsic properties of tumor cells and extrinsic factors, such as microorganisms. Notably, some microbiota have been discovered to colonize tumor tissues, collectively known as intratumoral microbiota. Intratumoral microbiota can modulate tumor progression through multiple mechanisms, including regulating immune responses, inducing genomic instability and gene mutations, altering metabolic pathways, controlling epigenetic pathways, and disrupting cancer-related signaling pathways. Furthermore, intratumoral microbiota have been shown to directly impact tumor metastasis by regulating cell adhesion, stem cell plasticity and stemness, mechanical stresses and the epithelial-mesenchymal transition. Indirectly, they may affect tumor metastasis by modulating the host immune system and the tumor microenvironment. These recent findings have reshaped our understanding of the relationship between microorganims and the metastatic process. In this review, we comprehensively summarize the existing knowledge on tumor metastasis and elaborate on the properties, origins and carcinogenic mechanisms of intratumoral microbiota. Moreover, we explore the roles of intratumoral microbiota in tumor metastasis and discuss their clinical implications. Ongoing research in this field will establish a solid foundation for novel therapeutic strategies and clinical treatments for various tumors.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| | | | | | | | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University,
Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Verdon N, Popescu O, Titmuss S, Allen RJ. Habitat fragmentation enhances microbial collective defence. J R Soc Interface 2025; 22:20240611. [PMID: 39933594 PMCID: PMC11813583 DOI: 10.1098/rsif.2024.0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Microbes often inhabit complex, spatially partitioned environments such as host tissue or soil, but the effects of habitat fragmentation on microbial ecology and infection dynamics are poorly understood. Here, we investigate how habitat fragmentation impacts a prevalent microbial collective defence mechanism: enzymatic degradation of an environmental toxin. Using a theoretical model, we predict that habitat fragmentation can strongly enhance the collective benefits of enzymatic toxin degradation. For the example of [Formula: see text]-lactamase-producing bacteria that mount a collective defence by degrading a [Formula: see text]-lactam antibiotic, we find that realistic levels of habitat fragmentation can allow a population to survive antibiotic doses that greatly exceed those required to kill a non-fragmented population. This 'habitat-fragmentation rescue' is a stochastic effect that originates from variation in bacterial density among different subpopulations and demographic noise. We also study the contrasting case of collective enzymatic foraging, where enzyme activity releases nutrients from the environment; here we find that increasing habitat fragmentation decreases the lag time for population growth but does not change the ecological outcome. Taken together, this work predicts that stochastic effects arising from habitat fragmentation can greatly enhance the effectiveness of microbial collective defence via enzymatic toxin degradation.
Collapse
Affiliation(s)
- Nia Verdon
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
| | - Ofelia Popescu
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EdinburghEH9 3FD, UK
| | - Simon Titmuss
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EdinburghEH9 3FD, UK
| | - Rosalind J. Allen
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany
- School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, EdinburghEH9 3FD, UK
| |
Collapse
|
9
|
Voss OH, Moin I, Gaytan H, Ullah S, Sadik M, Rahman MS. Phosphatidylserine-binding receptor, CD300f, on macrophages mediates host invasion of pathogenic and non-pathogenic rickettsiae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.10.593542. [PMID: 38766217 PMCID: PMC11100818 DOI: 10.1101/2024.05.10.593542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Some arthropod-borne obligate intracellular rickettsiae are among the most virulent human pathogens. Rickettsia species modulate immune (e.g., macrophages; MΦ) and non-immune cell (e.g., endothelial cells) responses to create a habitable environment for host colonization. In particular, MΦ play a crucial role in either terminating an infection at an early stage or succumbing to bacterial replication and colonization. However, our understanding on how Rickettsia species invade host cells, including MΦ, remain poorly defined. In this study, we describe a mechanism of host invasion by Rickettsia species, involving rickettsial phosphatidylserine (PS), as a ligand, and the CD300f receptor on MΦ. Using bone marrow-derived macrophages (BMDMΦ) from wild-type (WT) and CD300f-/- mice, we demonstrated that engulfment of both pathogenic R. typhi (the etiologic agent of murine typhus) and R. rickettsii (the etiologic agent of Rocky Mountain spotted fever) species as well as the non-pathogenic R. montanensis was significantly reduced in CD300f-/- BMDMΦ as compared to that of WT BMDMΦ. Furthermore, our mechanistic analysis suggests bacterial PS as the potential source for the CD300f-mediated rickettsiae engulfment by MΦ. In vivo infection studies using WT and CD300f-/- C57BL/6J mice showed that CD300f-/- animals were protected against R. typhi- or R. rickettsii-induced fatal rickettsiosis, which correlated with levels of bacterial burden detected in the spleens of mice. Adoptive transfer studies further revealed that CD300f-expressing MΦ are important mediators to control rickettsiosis in vivo. Collectively, our findings describe a previously unappreciated role for the efferocytic receptor, CD300f, to facilitate engulfment of rickettsiae within the host.
Collapse
|
10
|
Yang X, Tang X, Yi S, Guo T, Liao Y, Wang Y, Zhang X. Maltodextrin-derived nanoparticles resensitize intracellular dormant Staphylococcus aureus to rifampicin. Carbohydr Polym 2025; 348:122843. [PMID: 39562116 DOI: 10.1016/j.carbpol.2024.122843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
Intracellular bacteria are recognized as a crucial factor in the persistence and recurrence of infections. The efficacy of current antibiotic treatments faces substantial challenges due to the dormant state formation of intracellular bacteria. In this study, we devised a strategy aimed at reverting intracellular dormant bacteria to a metabolically active state, thereby increasing their vulnerability to antibiotics. We found that oligosaccharides, especially maltodextrin (MD), can be absorbed by dormant S. aureus, leading to their revival and restoration of sensitivity to rifampicin (Rif). We then synthesized a reactive oxygen species (ROS)-responsive MD-prodrug by covalently binding MD with 4-(hydroxymethyl) phenylboronic acid pinacol ester (MD-PBAP) and prepared a ROS-responsive nanoparticles (MDNP) using a nanoprecipitation and self-assembly method. Once internalized by host cells, MDNP was degraded to MD, reactivating dormant S. aureus, and enhancing their susceptibility to Rif. More importantly, MDNP treatment restored the sensitivity of intracellular persistent S. aureus to Rif in both a reservoir transfer model and whole-body infection model. Additionally, MDNP have demonstrated excellent biocompatibility in both in vitro and in vivo settings. These results offer a promising therapeutic avenue for managing persistent intracellular bacterial infections by reviving and resensitizing intracellular dormant bacteria to conventional antibiotics.
Collapse
Affiliation(s)
- Xiaodi Yang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Xiyu Tang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Sisi Yi
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Tao Guo
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Yue Liao
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Yan Wang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China
| | - Xiangjun Zhang
- College of Pharmacy, Chongqing Medical University, 400016 Chongqing, China.
| |
Collapse
|
11
|
Kuhm T, Taisne C, de Agrela Pinto C, Gross L, Giannopoulou EA, Huber ST, Pardon E, Steyaert J, Tans SJ, Jakobi AJ. Structural basis of antimicrobial membrane coat assembly by human GBP1. Nat Struct Mol Biol 2025; 32:172-184. [PMID: 39394410 PMCID: PMC11746146 DOI: 10.1038/s41594-024-01400-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/05/2024] [Indexed: 10/13/2024]
Abstract
Guanylate-binding proteins (GBPs) are interferon-inducible guanosine triphosphate hydrolases (GTPases) mediating host defense against intracellular pathogens. Their antimicrobial activity hinges on their ability to self-associate and coat pathogen-associated compartments or cytosolic bacteria. Coat formation depends on GTPase activity but how nucleotide binding and hydrolysis prime coat formation remains unclear. Here, we report the cryo-electron microscopy structure of the full-length human GBP1 dimer in its guanine nucleotide-bound state and describe the molecular ultrastructure of the GBP1 coat on liposomes and bacterial lipopolysaccharide membranes. Conformational changes of the middle and GTPase effector domains expose the isoprenylated C terminus for membrane association. The α-helical middle domains form a parallel, crossover arrangement essential for coat formation and position the extended effector domain for intercalation into the lipopolysaccharide layer of gram-negative membranes. Nucleotide binding and hydrolysis create oligomeric scaffolds with contractile abilities that promote membrane extrusion and fragmentation. Our data offer a structural and mechanistic framework for understanding GBP1 effector functions in intracellular immunity.
Collapse
Affiliation(s)
- Tanja Kuhm
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Clémence Taisne
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cecilia de Agrela Pinto
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Evdokia A Giannopoulou
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Stefan T Huber
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Els Pardon
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jan Steyaert
- VIB-VUB Center for Structural Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sander J Tans
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands
- AMOLF, Amsterdam, The Netherlands
| | - Arjen J Jakobi
- Department of Bionanoscience, Kavli Insitute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
12
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host clathrin suggests additional contributions for Sca4 during rickettsial infection. Infect Immun 2024; 92:e0026724. [PMID: 39535192 PMCID: PMC11629629 DOI: 10.1128/iai.00267-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single function or interaction, there are a growing number of secreted effectors capable of interacting with multiple host factors. However, few effectors secreted by arthropod-borne obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin in donor cells to promote cell-to-cell spread in the model Rickettsia species R. parkeri. We discovered that Sca4 also binds the host cell protein clathrin heavy chain (CHC, CLTC) via a conserved segment in the Sca4 N-terminus. In mammalian host cells, ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread. Unexpectedly, the contribution of CHC to spread was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell type-specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
Affiliation(s)
- Cassandra J. Vondrak
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chanakan Suwanbongkot
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Kevin R. Macaluso
- Department of Microbiology and Immunology, Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Crespillo-Casado A, Pothukuchi P, Naydenova K, Yip MCJ, Young JM, Boulanger J, Dharamdasani V, Harper C, Hammoudi PM, Otten EG, Boyle K, Gogoi M, Malik HS, Randow F. Recognition of phylogenetically diverse pathogens through enzymatically amplified recruitment of RNF213. EMBO Rep 2024; 25:4979-5005. [PMID: 39375464 PMCID: PMC11549300 DOI: 10.1038/s44319-024-00280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Innate immunity senses microbial ligands known as pathogen-associated molecular patterns (PAMPs). Except for nucleic acids, PAMPs are exceedingly taxa-specific, thus enabling pattern recognition receptors to detect cognate pathogens while ignoring others. How the E3 ubiquitin ligase RNF213 can respond to phylogenetically distant pathogens, including Gram-negative Salmonella, Gram-positive Listeria, and eukaryotic Toxoplasma, remains unknown. Here we report that the evolutionary history of RNF213 is indicative of repeated adaptation to diverse pathogen target structures, especially in and around its newly identified CBM20 carbohydrate-binding domain, which we have resolved by cryo-EM. We find that RNF213 forms coats on phylogenetically distant pathogens. ATP hydrolysis by RNF213's dynein-like domain is essential for coat formation on all three pathogens studied as is RZ finger-mediated E3 ligase activity for bacteria. Coat formation is not diffusion-limited but instead relies on rate-limiting initiation events and subsequent cooperative incorporation of further RNF213 molecules. We conclude that RNF213 responds to evolutionarily distant pathogens through enzymatically amplified cooperative recruitment.
Collapse
Affiliation(s)
- Ana Crespillo-Casado
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Prathyush Pothukuchi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Katerina Naydenova
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Matthew C J Yip
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jerome Boulanger
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Vimisha Dharamdasani
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Ceara Harper
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Pierre-Mehdi Hammoudi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Elsje G Otten
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Keith Boyle
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Felix Randow
- MRC Laboratory of Molecular Biology, Division of Protein and Nucleic Acid Chemistry, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
14
|
Bao P, Zhang XZ. Progress of tumor-resident intracellular bacteria for cancer therapy. Adv Drug Deliv Rev 2024; 214:115458. [PMID: 39383997 DOI: 10.1016/j.addr.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/12/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.
Collapse
Affiliation(s)
- Peng Bao
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China
| | - Xian-Zheng Zhang
- Department of Orthopedic Trauma and Microsurgery of Zhongnan Hospital, Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
15
|
Ge M, Ruan Z, Zhu YX, Wu W, Yang C, Lin H, Shi J. A natural killer cell mimic against intracellular pathogen infections. SCIENCE ADVANCES 2024; 10:eadp3976. [PMID: 39475620 PMCID: PMC11524181 DOI: 10.1126/sciadv.adp3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
In the competition between the pathogen infection and the host defense, infectious microorganisms may enter the host cells by evading host defense mechanisms and use the intracellular biomolecules as replication nutrient. Among them, intracellular Staphylococcus aureus relies on the host cells to protect itself from the attacks by antibiotics or immune system to achieve long-term colonization in the host, and the consequent clinical therapeutic failures and relapses after antibiotic treatment. Here, we demonstrate that intracellular S. aureus surviving well even in the presence of vancomycin can be effectively eliminated using an emerging cell-mimicking therapeutic strategy. These cell mimics with natural killer cell-like activity (NKMs) are composed of a redox-responsive degradable carrier, and perforin and granzyme B within the carrier. NKMs perform far more effectivly than clinical antibiotics in treating intracellular bacterial infections, providing a direct evidence of the NK cell-mimicking immune mechanism in the treatment of intracellular S. aureus.
Collapse
Affiliation(s)
- Min Ge
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zesong Ruan
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Ya-Xuan Zhu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
| | - Wencheng Wu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
| | - Chuang Yang
- Department of Orthopaedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, P. R. China
| | - Han Lin
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences, Shanghai 200050, P. R. China
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| |
Collapse
|
16
|
Chrobak-Chmiel D, Marszalik A, Golke A, Dolka B, Kwiecień E, Stefańska I, Czopowicz M, Rzewuska M, Kizerwetter-Świda M. Virulence and host specificity of staphylococci from Staphylococcus intermedius group of pigeon origin with an emphasis on Staphylococcus intermedius. Microb Pathog 2024; 195:106906. [PMID: 39208958 DOI: 10.1016/j.micpath.2024.106906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The Staphylococcus intermedius group (SIG) includes coagulase-positive staphylococci commonly found in animals. The taxonomic classification within the SIG has evolved with molecular techniques distinguishing five species. Despite their similarities, these species exhibit varied host affinities, with unclear implications for virulence and host interaction. This study aimed to investigate the presence of coagulase-positive staphylococci in pigeons and to detect genes encoding for selected virulence factors in isolated strains. Another goal was to determine the adhesion capabilities of randomly selected pigeon S. intermedius, S. delphini, and canine S. pseudintermedius strains to canine and pigeon corneocytes and their adhesion and invasion abilities to canine keratinocytes in vitro. In total, 121 coagulase-positive strains were isolated from domestic and feral pigeons. The most prevalent species were S. delphini B and S. intermedius in domestic and feral pigeons, respectively. We proved that pigeon strains carried genes encoding for exfoliative toxin SIET and leukotoxin Luk-I. Moreover, we found that S. intermedius showed higher adherence to pigeon than to canine corneocytes, aligning with its presumed natural host. No difference in adherence abilities of S. pseudintermedius to canine and pigeon corneocytes was observed. In this study, we also observed that S. pseudintermedius could successfully invade the canine keratinocytes, in contrary to S. delphini and S. intermedius. Moreover, only S. intermedius was not able to invade canine keratinocytes at all. These findings highlight the complex interplay between SIG bacteria, and their hosts, underscoring the need for further research to understand the mechanisms of host adaptation and pathogenicity within this group.
Collapse
Affiliation(s)
- Dorota Chrobak-Chmiel
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Anna Marszalik
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Golke
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Ewelina Kwiecień
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ilona Stefańska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Michał Czopowicz
- Division of Veterinary Epidemiology and Economics, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland
| | - Magdalena Rzewuska
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Magdalena Kizerwetter-Świda
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
| |
Collapse
|
17
|
Encinas A, Blade R, Abutaleb NS, Abouelkhair AA, Caine C, Seleem MN, Chmielewski J. Effects of Rigidity and Configuration of Charged Moieties within Cationic Amphiphilic Polyproline Helices on Cell Penetration and Antibiotic Activity. ACS Infect Dis 2024; 10:3052-3058. [PMID: 39054961 DOI: 10.1021/acsinfecdis.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Effective molecular strategies are needed to target pathogenic bacteria that thrive and proliferate within mammalian cells, a sanctuary inaccessible to many therapeutics. Herein, we present a class of cationic amphiphilic polyproline helices (CAPHs) with a rigid placement of the cationic moiety on the polyproline helix and assess the role of configuration of the unnatural proline residues making up the CAPHs. By shortening the distance between the guanidinium side chain and the proline backbone of the agents, a notable increase in cellular uptake and antibacterial activity was observed, whereas changing the configuration of the moieties on the pyrrolidine ring from cis to trans resulted in more modest increases. When the combination of these two activities was evaluated, the more rigid CAPHs were exceptionally effective at eradicating intracellular methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella infections within macrophages, significantly exceeding the clearance with the parent CAPH.
Collapse
Affiliation(s)
- Andrew Encinas
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Reena Blade
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Nader S Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Ahmed A Abouelkhair
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Colin Caine
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| | - Mohamed N Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, 205 Duck Pond Drive, Blacksburg, Virginia 24061, United States
- Center for One Health Research, Virginia Polytechnic Institute and State University, 1410 Prices Fork Road, Blacksburg, Virginia 24061, United States
| | - Jean Chmielewski
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2027, United States
| |
Collapse
|
18
|
Hu G, Huang J, Fussenegger M. Toward Photosynthetic Mammalian Cells through Artificial Endosymbiosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310310. [PMID: 38506612 DOI: 10.1002/smll.202310310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Photosynthesis in plants occurs within specialized organelles known as chloroplasts, which are postulated to have originated through endosymbiosis with cyanobacteria. In nature, instances are also observed wherein specific invertebrates engage in symbiotic relationships with photosynthetic bacteria, allowing them to subsist as photoautotrophic organisms over extended durations. Consequently, the concept of engineering artificial endosymbiosis between mammalian cells and cyanobacteria represents a promising avenue for enabling photosynthesis in mammals. The study embarked with the identification of Synechocystis PCC 6803 as a suitable candidate for establishing a long-term endosymbiotic relationship with macrophages. The cyanobacteria internalized by macrophages exhibited the capacity to rescue ATP deficiencies within their host cells under conditions of illumination. Following this discovery, a membrane-coating strategy is developed for the intracellular delivery of cyanobacteria into non-macrophage mammalian cells. This pioneering technique led to the identification of human embryonic kidney cells HEK293 as optimal hosts for achieving sustained endosymbiosis with Synechocystis PCC 6803. The study offers valuable insights that may serve as a reference for the eventual achievement of artificial photosynthesis in mammals.
Collapse
Affiliation(s)
- Guipeng Hu
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 48, Basel, CH-4056, Switzerland
| |
Collapse
|
19
|
Gtari M, Maaoui R, Ghodhbane-Gtari F, Ben Slama K, Sbissi I. MAGs-centric crack: how long will, spore-positive Frankia and most Protofrankia, microsymbionts remain recalcitrant to axenic growth? Front Microbiol 2024; 15:1367490. [PMID: 39144212 PMCID: PMC11323853 DOI: 10.3389/fmicb.2024.1367490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Nearly 50 years after the ground-breaking isolation of the primary Comptonia peregrina microsymbiont under axenic conditions, efforts to isolate a substantial number of Protofrankia and Frankia strains continue with enduring challenges and complexities. This study aimed to streamline genomic insights through comparative and predictive tools to extract traits crucial for isolating specific Frankia in axenic conditions. Pangenome analysis unveiled significant genetic diversity, suggesting untapped potential for cultivation strategies. Shared metabolic strategies in cellular components, central metabolic pathways, and resource acquisition traits offered promising avenues for cultivation. Ecological trait extraction indicated that most uncultured strains exhibit no apparent barriers to axenic growth. Despite ongoing challenges, potential caveats, and errors that could bias predictive analyses, this study provides a nuanced perspective. It highlights potential breakthroughs and guides refined cultivation strategies for these yet-uncultured strains. We advocate for tailored media formulations enriched with simple carbon sources in aerobic environments, with atmospheric nitrogen optionally sufficient to minimize contamination risks. Temperature adjustments should align with strain preferences-28-29°C for Frankia and 32-35°C for Protofrankia-while maintaining an alkaline pH. Given potential extended incubation periods (predicted doubling times ranging from 3.26 to 9.60 days, possibly up to 21.98 days), patience and rigorous contamination monitoring are crucial for optimizing cultivation conditions.
Collapse
Affiliation(s)
- Maher Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Radhi Maaoui
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Faten Ghodhbane-Gtari
- Department of Biological and Chemical Engineering, USCR Molecular Bacteriology and Genomics, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia
- Higher Institute of Biotechnology Sidi Thabet, University of La Manouba, Tunisia
| | - Karim Ben Slama
- LR Bioresources, Environment, and Biotechnology (LR22ES04), Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Imed Sbissi
- LR Pastoral Ecology, Arid Regions Institute, University of Gabes, Medenine, Tunisia
| |
Collapse
|
20
|
Vondrak CJ, Sit B, Suwanbongkot C, Macaluso KR, Lamason RL. A conserved interaction between the effector Sca4 and host endocytic machinery suggests additional roles for Sca4 during rickettsial infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600492. [PMID: 38979345 PMCID: PMC11230260 DOI: 10.1101/2024.06.24.600492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intracellular bacterial pathogens deploy secreted effector proteins that manipulate diverse host machinery and pathways to promote infection. Although many effectors carry out a single specific function or interaction, there are a growing number of secreted pathogen effectors capable of interacting with multiple host factors. However, few effectors secreted by obligate intracellular Rickettsia species have been linked to multiple host targets. Here, we investigated the conserved rickettsial secreted effector Sca4, which was previously shown to interact with host vinculin to promote cell-to-cell spread in the model Rickettsia species R. parkeri . We discovered that Sca4 also binds the host cell endocytic factor clathrin heavy chain (CHC, CLTC ) via a conserved segment in the Sca4 N-terminus. Ablation of CLTC expression or chemical inhibition of endocytosis reduced R. parkeri cell-to-cell spread, indicating that clathrin promotes efficient spread between mammalian cells. This activity was independent of Sca4 and appeared restricted to the recipient host cell, suggesting that the Sca4-clathrin interaction also regulates another aspect of the infectious lifecycle. Indeed, R. parkeri lacking Sca4 or expressing a Sca4 truncation unable to bind clathrin had markedly reduced burdens in tick cells, hinting at a cell-type specific function for the Sca4-clathrin interaction. Sca4 homologs from diverse Rickettsia species also bound clathrin, suggesting that the function of this novel effector-host interaction may be broadly important for rickettsial infection. We conclude that Sca4 has multiple targets during infection and that rickettsiae may manipulate host endocytic machinery to facilitate several stages of their life cycles.
Collapse
|
21
|
Xia Z, Liao Y, Gao G, Zhang S. Rifampicin-Loaded Polyelectrolyte Complex Eliminates Intracellular Bacteria through Thiol-Mediated Cellular Uptake and Oxidative Stress Enhancement. ACS APPLIED BIO MATERIALS 2024; 7:2544-2553. [PMID: 38507285 DOI: 10.1021/acsabm.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The poor accumulation of antibiotics in the cytoplasm leads to the poor eradication of intracellular bacteria. Herein, a polyelectrolyte complex (PECs@Rif) allowing direct cytosolic delivery of rifampicin (Rif) was developed for the treatment of intracellular infections by complexation of poly(α-lipoic acid) (pLA) and oligosaccharide (COS) in water and loading Rif. Due to the thiol-mediated cellular uptake, PECs@Rif delivered 3.9 times higher Rif into the cytoplasm than that of the free Rif during 8 h of incubation. After entering cells, PECs@Rif released Rif by dissociating pLA into dihydrolipoic acid (DHLA) in the presence of intracellular thioredoxin reductase (TrxR). Notably, DHLA could reduce endogenous Fe(III) to Fe(II) and provide a catalyst for the Fenton reaction to produce a large amount of reactive oxygen species (ROS), which would assist Rif in eradicating intracellular bacteria. In vitro assay showed that PECs@Rif reduced almost 2.8 orders of magnitude of intracellular bacteria, much higher than 0.7 orders of magnitude of free Rif. The bacteremia-bearing mouse models showed that PECs@Rif reduced bacterial levels in the liver, spleen, and kidney by 2.2, 3.7, and 2.3 orders of magnitude, respectively, much higher than free Rif in corresponding tissues. The direct cytosolic delivery in a thiol-mediated manner and enhanced oxidative stress proposed a feasible strategy for treating intracellular bacteria infection.
Collapse
Affiliation(s)
- Zhaoxin Xia
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yulong Liao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Ge Gao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Shiyong Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Liu J, Kang R, Tang D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol 2024; 45:274-287. [PMID: 38494365 DOI: 10.1016/j.it.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
23
|
Lanza A, Kimura S, Hirono I, Yoshitake K, Kinoshita S, Asakawa S. Transcriptome analysis of Edwardsiella piscicida during intracellular infection reveals excludons are involved with the activation of a mitochondrion-like energy generation program. mBio 2024; 15:e0352623. [PMID: 38349189 PMCID: PMC10936155 DOI: 10.1128/mbio.03526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024] Open
Abstract
Phylogenetic evidence suggests a shared ancestry between mitochondria and modern Proteobacteria, a phylum including several genera of intracellular pathogens. Studying these diverse pathogens, particularly during intracellular infection of their hosts, can reveal characteristics potentially representative of the mitochondrial-Proteobacterial ancestor by identifying traits shared with mitochondria. While transcriptomic approaches can provide global insights into intracellular acclimatization by pathogens, they are often limited by excess host RNAs in extracts. Here, we developed a method employing magnetic nanoparticles to enrich RNA from an intracellular Gammaproteobacterium, Edwardsiella piscicida, within zebrafish, Danio rerio, fin fibroblasts, enabling comprehensive exploration of the bacterial transcriptome. Our findings revealed that the intracellular E. piscicida transcriptome reflects a mitochondrion-like energy generation program characterized by the suppression of glycolysis and sugar transport, coupled with upregulation of the tricarboxylic acid (TCA) cycle and alternative import of simple organic acids that directly flux into TCA cycle intermediates or electron transport chain donors. Additionally, genes predicted to be members of excludons, loci of gene pairs antagonistically co-regulated by overlapping antisense transcription, are significantly enriched in the set of all genes with perturbed sense and antisense transcription, suggesting a general but important involvement of excludons with intracellular acclimatization. Notably, genes involved with the activation of the mitochondrion-like energy generation program, specifically with metabolite import and glycolysis, are also members of predicted excludons. Other intracellular Proteobacterial pathogens appear to employ a similar mitochondrion-like energy generation program, suggesting a potentially conserved mechanism for optimized energy acquisition from hosts centered around the TCA cycle.IMPORTANCEPhylogenetic evidence suggests that mitochondria and Proteobacteria, a phylum encompassing various intracellular pathogens, share a common ancestral lineage. In this study, we developed a novel method employing magnetic nanoparticles to explore the transcriptome of an aquatic Gammaproteobacterium, Edwardsiella piscicida, during intracellular infection of host cells. We show that the strategy E. piscicida uses to generate energy strikingly mirrors the function of mitochondria-energy generators devoid of glycolytic processes. Notably, several implicated genes are members of excludons-gene pairs antagonistically co-regulated by overlapping antisense transcription. Other intracellular Proteobacterial pathogens appear to adopt a similar mitochondrion-like energy generation program, indicating a possibly conserved strategy for optimized energy acquisition from hosts centered around the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Andre Lanza
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Chauhan M, Osbron CA, Koehler HS, Goodman AG. STING dependent BAX-IRF3 signaling results in apoptosis during late-stage Coxiella burnetii infection. Cell Death Dis 2024; 15:195. [PMID: 38459007 PMCID: PMC10924102 DOI: 10.1038/s41419-024-06573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
STING (STimulator of Interferon Genes) is a cytosolic sensor for cyclic dinucleotides (CDNs) and initiates an innate immune response upon binding to CDNs. Coxiella burnetii is a Gram-negative obligate intracellular bacterium and the causative agent of the zoonotic disease Q fever. The ability of C. burnetii to inhibit host cell death is a critical factor in disease development. Previous studies have shown that C. burnetii inhibits host cell apoptosis at early stages of infection. However, during the late-stages of infection, there is host cell lysis resulting in the release of bacteria to infect bystander cells. Thus, we investigated the role of STING during late-stages of C. burnetii infection and examined STING's impact on host cell death. We show that the loss of STING results in higher bacterial loads and abrogates IFNβ and IL6 induction at 12 days post-infection. The absence of STING during C. burnetii infection significantly reduces apoptosis through decreased caspase-8 and -3 activation. During infection, STING activates IRF3 which interacts with BAX. BAX then translocates to the mitochondria, which is followed by mitochondrial membrane depolarization. This results in increased cytosolic mtDNA in a STING-dependent manner. The presence of increased cytosolic mtDNA results in greater cytosolic 2'-3' cGAMP, creating a positive feedback loop and leading to further increases in STING activation and its downstream signaling. Taken together, we show that STING signaling is critical for BAX-IRF3-mediated mitochondria-induced apoptosis during late-stage C. burnetii infection.
Collapse
Affiliation(s)
- Manish Chauhan
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Heather S Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
25
|
Ren J, Ma X, Hu H, Wang D, Sun H, Liu J, Wang X, Zhou H. Edwardsiella piscicida causes iron storage disorders by an autophagy pathway in fish monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109417. [PMID: 38301814 DOI: 10.1016/j.fsi.2024.109417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Edwardsiella piscicida (E. piscicida) is a gram-negative pathogen that survives in intracellular environment. Currently, the interplay between E. piscicida and host cells has not been completely explored. In this study, we found that E. piscicida disturbed iron homeostasis in grass carp monocytes/macrophages to maintain its own growth. Further investigation revealed the bacteria induced an increase of intracellular iron, which was subjected to the degradation of ferritin. Moreover, the autophagy inhibitor impeded the degradation of ferritin and increase of intracellular iron in E. piscicida-infected monocytes/macrophages, implying possible involvement of autophagy response in the process of E. piscicida-broken iron homeostasis. Along this line, confocal microscopy observed that E. piscicida elicited the colocalization of ferritin with LC3-positive autophagosome in the monocytes/macrophages, indicating that E. piscicida mediated the degradation of ferritin possibly through the autophagic pathway. These results deepened our understanding of the interaction between E. piscicida and fish cells, hinting that the disruption of iron homeostasis was an important factor for pathogenicity of E. piscicida. They also indicated that autophagy was a possible mechanism governing intracellular iron metabolism in response to E. piscicida infection and might offer a new avenue for anti-E. piscicida strategies in the future.
Collapse
Affiliation(s)
- Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xiaoyu Ma
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hengyi Hu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hao Sun
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jiaxi Liu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
26
|
Tavares LS, Oliveira-Silva RL, Moura MT, da Silva JB, Benko-Iseppon AM, Lima-Filho JV. Reference genes for gene expression profiling in mouse models of Listeria monocytogenes infection. Biotechniques 2024; 76:104-113. [PMID: 38112054 DOI: 10.2144/btn-2023-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
RT-qPCR dissects transcription-based processes but requires reference genes (RGs) for data normalization. This study prospected RGs for mouse macrophages (pMØ) and spleen infected with Listeria monocytogenes. The pMØ were infected in vitro with L. monocytogenes or vehicle for 4 h. Mice were injected with L. monocytogenes (or vehicle) and euthanized 24 h post-injection. The RGs came from a multispecies primer set, from the literature or designed here. The RG ranking relied on GeNorm, NormFinder, BestKeeper, Delta-CT and RefFinder. B2m-H3f3a-Ppia were the most stable RGs for pMØ, albeit RG indexes fine-tuned estimations of cytokine relative expression. Actβ-Ubc-Ppia were the best RGs for spleen but modestly impacted the cytokine relative expression. Hence, mouse models of L. monocytogenes require context-specific RGs for RT-qPCR, thus reinforcing its paramount contribution to accurate gene expression profiling.
Collapse
Affiliation(s)
| | | | - Marcelo Tigre Moura
- Departamento de Biologia Celular e Molecular, Centro de Biotecnologia, Campus I, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| | | | | | - José Vitor Lima-Filho
- Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, PE, Brasil
| |
Collapse
|
27
|
Luo Y, Su L, Yang H, Geng A, Bai S, Zhou J. A disulfide molecule-vancomycin nanodrug delivery system efficiently eradicates intracellular bacteria. J Mater Chem B 2024; 12:2334-2345. [PMID: 38327236 DOI: 10.1039/d3tb02430j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Intracellular bacteria often lead to chronic and recurrent infections; however, most of the known antibiotics have poor efficacy against intracellular bacteria due to their poor cell membrane penetration efficiency into the cytosol. Here, a thiol-mediated nanodrug delivery system, named Van-DM NPs, was developed to improve vancomycin's penetration efficiency and intracellular antibacterial activities. Van-DM NPs were prepared through self-assembly of vancomycin (Van) and the disulfide molecule (DM) in NaOH buffer solution. On the one hand, the disulfide exchange reaction between Van-DM NPs and the bacterial surface enhances vancomycin accumulation in bacteria, increasing the local concentration of vancomycin. On the other hand, the disulfide exchange reaction between Van-DM NPs and the mammalian cell membrane triggered the translocation of Van-DM NPs across the mammalian cell membrane into the cell cytosol. These dual mechanisms promote antibacterial activities of vancomycin against both extracellular and intracellular bacteria S. aureus. Furthermore, in an intravenous S. aureus infection mouse model, Van-DM NPs exhibited high antibacterial capability and efficiently reduced the bacterial load in liver and spleen, where intracellular bacteria tend to reside. Altogether, the reported Van-DM NPs would be highly promising against intracellular pathogenic infections.
Collapse
Affiliation(s)
- Yuting Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Liu Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Hui Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Aizhen Geng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Jie Zhou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- China Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
28
|
Chen Y, Jiang Y, Xue T, Cheng J. Strategies for the eradication of intracellular bacterial pathogens. Biomater Sci 2024; 12:1115-1130. [PMID: 38284808 DOI: 10.1039/d3bm01498c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Intracellular pathogens affect a significant portion of world population and cause millions of deaths each year. They can invade host cells and survive inside them and are extremely resistant to immune systems and antibiotics. Current treatments have limitations, and therefore, new effective therapies are needed to combat this ongoing health challenge. Active research efforts have been made to develop many new strategies to eradicate these intracellular pathogens. In this review, we focus on the intracellular bacterial pathogens and first introduce several representative intracellular bacteria and the diseases they cause. We then discuss the challenges in eradicating these bacteria and summarize the current therapeutics for intracellular bacteria. Finally, recent advances in intracellular bacteria eradication are highlighted.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | - Yunjiang Jiang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518071, China
| | - Tianrui Xue
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Biomaterials and Drug Delivery Laboratory, School of Engineering, Westlake University, Hangzhou 310024, China
| |
Collapse
|
29
|
Abstract
Our understanding of free-living bacterial models like Escherichia coli far outpaces that of obligate intracellular bacteria, which cannot be cultured axenically. All obligate intracellular bacteria are host-associated, and many cause serious human diseases. Their constant exposure to the distinct biochemical niche of the host has driven the evolution of numerous specialized bacteriological and genetic adaptations, as well as innovative molecular mechanisms of infection. Here, we review the history and use of pathogenic Rickettsia species, which cause an array of vector-borne vascular illnesses, as model systems to probe microbial biology. Although many challenges remain in our studies of these organisms, the rich pathogenic and biological diversity of Rickettsia spp. constitutes a unique backdrop to investigate how microbes survive and thrive in host and vector cells. We take a bacterial-focused perspective and highlight emerging insights that relate to new host-pathogen interactions, bacterial physiology, and evolution. The transformation of Rickettsia spp. from pathogens to models demonstrates how recalcitrant microbes may be leveraged in the lab to tap unmined bacterial diversity for new discoveries. Rickettsia spp. hold great promise as model systems not only to understand other obligate intracellular pathogens but also to discover new biology across and beyond bacteria.
Collapse
Affiliation(s)
- Brandon Sit
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
30
|
Soni J, Sinha S, Pandey R. Understanding bacterial pathogenicity: a closer look at the journey of harmful microbes. Front Microbiol 2024; 15:1370818. [PMID: 38444801 PMCID: PMC10912505 DOI: 10.3389/fmicb.2024.1370818] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Bacteria are the most prevalent form of microorganisms and are classified into two categories based on their mode of existence: intracellular and extracellular. While most bacteria are beneficial to human health, others are pathogenic and can cause mild to severe infections. These bacteria use various mechanisms to evade host immunity and cause diseases in humans. The susceptibility of a host to bacterial infection depends on the effectiveness of the immune system, overall health, and genetic factors. Malnutrition, chronic illnesses, and age-related vulnerabilities are the additional confounders to disease severity phenotypes. The impact of bacterial pathogens on public health includes the transmission of these pathogens from healthcare facilities, which contributes to increased morbidity and mortality. To identify the most significant threats to public health, it is crucial to understand the global burden of common bacterial pathogens and their pathogenicity. This knowledge is required to improve immunization rates, improve the effectiveness of vaccines, and consider the impact of antimicrobial resistance when assessing the situation. Many bacteria have developed antimicrobial resistance, which has significant implications for infectious diseases and favors the survival of resilient microorganisms. This review emphasizes the significance of understanding the bacterial pathogens that cause this health threat on a global scale.
Collapse
Affiliation(s)
- Jyoti Soni
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sristi Sinha
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, Integrative Genomics of Host Pathogen Laboratory, Council of Scientific & Industrial Research-Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
31
|
Hermanns T, Uthoff M, Baumann U, Hofmann K. The structural basis for deubiquitination by the fingerless USP-type effector TssM. Life Sci Alliance 2024; 7:e202302422. [PMID: 38170641 PMCID: PMC10719079 DOI: 10.26508/lsa.202302422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Intracellular bacteria are threatened by ubiquitin-mediated autophagy, whenever the bacterial surface or enclosing membrane structures become targets of host ubiquitin ligases. As a countermeasure, many intracellular pathogens encode deubiquitinase (DUB) effectors to keep their surfaces free of ubiquitin. Most bacterial DUBs belong to the OTU or CE-clan families. The betaproteobacteria Burkholderia pseudomallei and Burkholderia mallei, causative agents of melioidosis and glanders, respectively, encode the TssM effector, the only known bacterial DUB belonging to the USP class. TssM is much shorter than typical eukaryotic USP enzymes and lacks the canonical ubiquitin-recognition region. By solving the crystal structures of isolated TssM and its complex with ubiquitin, we found that TssM lacks the entire "Fingers" subdomain of the USP fold. Instead, the TssM family has evolved the functionally analog "Littlefinger" loop, which is located towards the end of the USP domain and recognizes different ubiquitin interfaces than those used by USPs. The structures revealed the presence of an N-terminal immunoglobulin-fold domain, which is able to form a strand-exchange dimer and might mediate TssM localization to the bacterial surface.
Collapse
Affiliation(s)
- Thomas Hermanns
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Matthias Uthoff
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
32
|
Amason ME, Li L, Harvest CK, Lacey CA, Miao EA. Validation of the Intermolecular Disulfide Bond in Caspase-2. BIOLOGY 2024; 13:49. [PMID: 38248479 PMCID: PMC10813798 DOI: 10.3390/biology13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn A. Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
33
|
Yang LL, Li H, Liu D, Li K, Li S, Li Y, Du P, Yan M, Zhang Y, He W. Photodynamic therapy empowered by nanotechnology for oral and dental science: Progress and perspectives. NANOTECHNOLOGY REVIEWS 2023; 12. [DOI: 10.1515/ntrev-2023-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Abstract
Abstract
Photodynamic therapy (PDT), as a noninvasive therapeutic modality, has significantly revolutionized the contemporary management of oral and dental health. Recently, PDT has witnessed significant technological advancements, especially with the introduction of biomaterials and nanotechnologies, thus highlighting its potential as a multi-functional tool in therapeutics. In this review, our objective was to provide a comprehensive overview of the advancements in nanotechnology-enhanced PDT for the treatment of oral diseases, encompassing dental caries, root canal infection, periodontal disease, peri-implant inflammation, tooth staining, and whitening, as well as precancerous lesions and tumors. Furthermore, we extensively deliberated upon the persisting challenges and prospective avenues of nanotechnology-enhanced PDT in the realm of oral diseases, which will open up new possibilities for the application of nanotechnology-enhanced PDT in clinical implementation.
Collapse
Affiliation(s)
- Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Hangshuo Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Kaiyuan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Songya Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Yuhan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Pengxi Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Miaochen Yan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou 450052 , China
| |
Collapse
|
34
|
Voss OH, Gaytan H, Ullah S, Sadik M, Moin I, Rahman MS, Azad AF. Autophagy facilitates intracellular survival of pathogenic rickettsiae in macrophages via evasion of autophagosomal maturation and reduction of microbicidal pro-inflammatory IL-1 cytokine responses. Microbiol Spectr 2023; 11:e0279123. [PMID: 37819111 PMCID: PMC10715094 DOI: 10.1128/spectrum.02791-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Rickettsia spp. are intracellular bacterial parasites of a wide range of arthropod and vertebrate hosts. Some rickettsiae are responsible for several severe human diseases globally. One interesting feature of these pathogens is their ability to exploit host cytosolic defense responses to their benefits. However, the precise mechanism by which pathogenic Rickettsia spp. elude host defense responses remains unclear. Here, we observed that pathogenic Rickettsia typhi and Rickettsia rickettsii (Sheila Smith [SS]), but not non-pathogenic Rickettsia montanensis, become ubiquitinated and induce autophagy upon entry into macrophages. Moreover, unlike R. montanensis, R. typhi and R. rickettsii (SS) colocalized with LC3B but not with Lamp2 upon host cell entry. Finally, we observed that both R. typhi and R. rickettsii (SS), but not R. montanensis, reduce pro-inflammatory interleukin-1 (IL-1) responses, likely via an autophagy-mediated mechanism. In summary, we identified a previously unappreciated pathway by which both pathogenic R. typhi and R. rickettsii (SS) become ubiquitinated, induce autophagy, avoid autolysosomal destruction, and reduce microbicidal IL-1 cytokine responses to establish an intracytosolic niche in macrophages.
Collapse
Affiliation(s)
- Oliver H. Voss
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hodalis Gaytan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Saif Ullah
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohammad Sadik
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Imran Moin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Degabriel M, Valeva S, Boisset S, Henry T. Pathogenicity and virulence of Francisella tularensis. Virulence 2023; 14:2274638. [PMID: 37941380 PMCID: PMC10653695 DOI: 10.1080/21505594.2023.2274638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Tularaemia is a zoonotic disease caused by the Gram-negative bacterium, Francisella tularensis. Depending on its entry route into the organism, F. tularensis causes different diseases, ranging from life-threatening pneumonia to less severe ulceroglandular tularaemia. Various strains with different geographical distributions exhibit different levels of virulence. F. tularensis is an intracellular bacterium that replicates primarily in the cytosol of the phagocytes. The main virulence attribute of F. tularensis is the type 6 secretion system (T6SS) and its effectors that promote escape from the phagosome. In addition, F. tularensis has evolved a peculiar envelope that allows it to escape detection by the immune system. In this review, we cover tularaemia, different Francisella strains, and their pathogenicity. We particularly emphasize the intracellular life cycle, associated virulence factors, and metabolic adaptations. Finally, we present how F. tularensis largely escapes immune detection to be one of the most infectious and lethal bacterial pathogens.
Collapse
Affiliation(s)
- Manon Degabriel
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Stanimira Valeva
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| | - Sandrine Boisset
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
- Univ. Grenoble Alpes, CHU Grenoble Alpes, CNRS, CEA, UMR5075, Institut de Biologie Structurale, Grenoble, France
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Univ Lyon, LYON, France
| |
Collapse
|
36
|
Fajardo-Lubian A, Venturini C. Use of Bacteriophages to Target Intracellular Pathogens. Clin Infect Dis 2023; 77:S423-S432. [PMID: 37932114 DOI: 10.1093/cid/ciad515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Bacteriophages (phages) have shown great potential as natural antimicrobials against extracellular pathogens (eg, Escherichia coli or Klebsiella pneumoniae), but little is known about how they interact with intracellular targets (eg, Shigella spp., Salmonella spp., Mycobacterium spp.) in the mammalian host. Recent research has demonstrated that phages can enter human cells. However, for the design of successful clinical applications, further investigation is required to define their subcellular behavior and to understand the complex biological processes that underlie the interaction with their bacterial targets. In this review, we summarize the molecular evidence of phage internalization in eucaryotic cells, with specific focus on proof of phage activity against their bacterial targets within the eucaryotic host, and the current proposed strategies to overcome poor penetrance issues that may impact therapeutic use against the most clinically relevant intracellular pathogens.
Collapse
Affiliation(s)
- Alicia Fajardo-Lubian
- Faculty of Medicine and Health, Sydney ID Institute, University of Sydney, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Carola Venturini
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Faculty of Science, Sydney School of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
37
|
Wu J, Cai J, Tang Y, Lu B. The noncanonical inflammasome-induced pyroptosis and septic shock. Semin Immunol 2023; 70:101844. [PMID: 37778179 DOI: 10.1016/j.smim.2023.101844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/10/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Sepsis remains one of the most common and lethal conditions globally. Currently, no proposed target specific to sepsis improves survival in clinical trials. Thus, an in-depth understanding of the pathogenesis of sepsis is needed to propel the discovery of effective treatment. Recently attention to sepsis has intensified because of a growing recognition of a non-canonical inflammasome-triggered lytic mode of cell death termed pyroptosis upon sensing cytosolic lipopolysaccharide (LPS). Although the consequences of activation of the canonical and non-canonical inflammasome are similar, the non-canonical inflammasome formation requires caspase-4/5/11, which enzymatically cleave the pore-forming protein gasdermin D (GSDMD) and thereby cause pyroptosis. The non-canonical inflammasome assembly triggers such inflammatory cell death by itself; or leverages a secondary activation of the canonical NLRP3 inflammasome pathway. Excessive cell death induced by oligomerization of GSDMD and NINJ1 leads to cytokine release and massive tissue damage, facilitating devastating consequences and death. This review summarized the updated mechanisms that initiate and regulate non-canonical inflammasome activation and pyroptosis and highlighted various endogenous or synthetic molecules as potential therapeutic targets for treating sepsis.
Collapse
Affiliation(s)
- Junru Wu
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Jingjing Cai
- Department of Cardiology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410000, PR China
| | - Ben Lu
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410000, PR China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410000, PR China.
| |
Collapse
|
38
|
Bai S, Song J, Pu H, Yu Y, Song W, Chen Z, Wang M, Campbell-Valois FX, Wong WL, Cai Q, Wan M, Zhang C, Bai Y, Feng X. Chemical Biology Approach to Reveal the Importance of Precise Subcellular Targeting for Intracellular Staphylococcus aureus Eradication. J Am Chem Soc 2023; 145:23372-23384. [PMID: 37838963 DOI: 10.1021/jacs.3c09587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Intracellular bacterial pathogens, such as Staphylococcus aureus, that may hide in intracellular vacuoles represent the most significant manifestation of bacterial persistence. They are critically associated with chronic infections and antibiotic resistance, as conventional antibiotics are ineffective against such intracellular persisters due to permeability issues and mechanistic reasons. Direct subcellular targeting of S. aureus vacuoles suggests an explicit opportunity for the eradication of these persisters, but a comprehensive understanding of the chemical biology nature and significance of precise S. aureus vacuole targeting remains limited. Here, we report an oligoguanidine-based peptidomimetic that effectively targets and eradicates intracellular S. aureus persisters in the phagolysosome lumen, and this oligomer was utilized to reveal the mechanistic insights linking precise targeting to intracellular antimicrobial efficacy. The oligomer has high cellular uptake via a receptor-mediated endocytosis pathway and colocalizes with S. aureus persisters in phagolysosomes as a result of endosome-lysosome interconversion and lysosome-phagosome fusion. Moreover, the observation of a bacterium's altered susceptibility to the oligomer following a modification in its intracellular localization offers direct evidence of the critical importance of precise intracellular targeting. In addition, eradication of intracellular S. aureus persisters was achieved by the oligomer's membrane/DNA dual-targeting mechanism of action; therefore, its effectiveness is not hampered by the hibernation state of the persisters. Such precise subcellular targeting of S. aureus vacuoles also increases the agent's biocompatibility by minimizing its interaction with other organelles, endowing excellent in vivo bacterial targeting and therapeutic efficacy in animal models.
Collapse
Affiliation(s)
- Silei Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Junfeng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel NanoOptoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan 410073, China
- Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
| | - Yue Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Wenwen Song
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Min Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | | | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong SAR, China
| | - Qingyun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Muyang Wan
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunhui Zhang
- College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, and School of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
39
|
Smith HB, Lee K, Freeman MJ, Stevenson DM, Amador-Noguez D, Sauer JD. Listeria monocytogenes requires DHNA-dependent intracellular redox homeostasis facilitated by Ndh2 for survival and virulence. Infect Immun 2023; 91:e0002223. [PMID: 37754681 PMCID: PMC10580952 DOI: 10.1128/iai.00022-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
Listeria monocytogenes is a remarkably well-adapted facultative intracellular pathogen that can thrive in a wide range of ecological niches. L. monocytogenes maximizes its ability to generate energy from diverse carbon sources using a respiro-fermentative metabolism that can function under both aerobic and anaerobic conditions. Cellular respiration maintains redox homeostasis by regenerating NAD+ while also generating a proton motive force. The end products of the menaquinone (MK) biosynthesis pathway are essential to drive both aerobic and anaerobic cellular respirations. We previously demonstrated that intermediates in the MK biosynthesis pathway, notably 1,4-dihydroxy-2-naphthoate (DHNA), are required for the survival and virulence of L. monocytogenes independent of their role in respiration. Furthermore, we found that restoration of NAD+/NADH ratio through expression of water-forming NADH oxidase could rescue phenotypes associated with DHNA deficiency. Here, we extend these findings to demonstrate that endogenous production or direct supplementation of DHNA restored both the cellular redox homeostasis and metabolic output of fermentation in L. monocytogenes. Furthermore, exogenous supplementation of DHNA rescues the in vitro growth and ex vivo virulence of L. monocytogenes DHNA-deficient mutants. Finally, we demonstrate that exogenous DHNA restores redox balance in L. monocytogenes specifically through the recently annotated NADH dehydrogenase Ndh2, independent of its role in the extracellular electron transport pathway. These data suggest that the production of DHNA may represent an additional layer of metabolic adaptability by L. monocytogenes to drive energy metabolism in the absence of respiration-favorable conditions.
Collapse
Affiliation(s)
- Hans B. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kijeong Lee
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew J. Freeman
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Stevenson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Amador-Noguez
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
40
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
41
|
Nozawa T, Toh H, Iibushi J, Kogai K, Minowa-Nozawa A, Satoh J, Ito S, Murase K, Nakagawa I. Rab41-mediated ESCRT machinery repairs membrane rupture by a bacterial toxin in xenophagy. Nat Commun 2023; 14:6230. [PMID: 37802980 PMCID: PMC10558455 DOI: 10.1038/s41467-023-42039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 09/26/2023] [Indexed: 10/08/2023] Open
Abstract
Xenophagy, a type of selective autophagy, is a bactericidal membrane trafficking that targets cytosolic bacterial pathogens, but the membrane homeostatic system to cope with bacterial infection in xenophagy is not known. Here, we show that the endosomal sorting complexes required for transport (ESCRT) machinery is needed to maintain homeostasis of xenophagolysosomes damaged by a bacterial toxin, which is regulated through the TOM1L2-Rab41 pathway that recruits AAA-ATPase VPS4. We screened Rab GTPases and identified Rab41 as critical for maintaining the acidification of xenophagolysosomes. Confocal microscopy revealed that ESCRT components were recruited to the entire xenophagolysosome, and this recruitment was inhibited by intrabody expression against bacterial cytolysin, indicating that ESCRT targets xenophagolysosomes in response to a bacterial toxin. Rab41 translocates to damaged autophagic membranes via adaptor protein TOM1L2 and recruits VPS4 to complete ESCRT-mediated membrane repair in a unique GTPase-independent manner. Finally, we demonstrate that the TOM1L2-Rab41 pathway-mediated ESCRT is critical for the efficient clearance of bacteria through xenophagy.
Collapse
Affiliation(s)
- Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kohei Kogai
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Junko Satoh
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kazunori Murase
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
42
|
Yadav S, Dalai P, Gowda S, Nivsarkar M, Agrawal-Rajput R. Azithromycin alters Colony Stimulating Factor-1R (CSF-1R) expression and functional output of murine bone marrow-derived macrophages: A novel report. Int Immunopharmacol 2023; 123:110688. [PMID: 37499396 DOI: 10.1016/j.intimp.2023.110688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Antibiotic treatment may lead to side effects that require mechanistic explanation. We investigated the effect of azithromycin (AZM) treatment on bone marrow-derived macrophage (Mφ) generation, their functional output, and the subsequent effect on bacterial clearance in a mouse model of S. flexneri infection. To our fascination, AZM increased PU.1, C/EBPβ, CSF-1R/pCSF-1R expressions leading to M2-skewed in vitro BMDM generation. Altered Mφ-functions like- phagocytosis, oxidative stress generation, inflammasome-activation, cytokine release, and phenotype (pro-inflammatory-M1, anti-inflammatory-M2) even in the presence of infection were observed with AZM treatment. AZM increased CD206, egr2, arg1 (M2-marker) expression and activity while reducing CD68, inducible nitric oxide (iNOS) expression, and activity (M1-marker) in Mφs during infection. Pro-inflammatory cytokines (TNF-α, IL-12, IL-1β) were reduced and anti-inflammatory IL-10 release was augmented by AZM-treated-iMφs (aiMφs) along with decreased asc, nlrp3, aim2, nlrp1a, caspase1 expressions, and caspase3 activity signifying that aMφs/aiMφs were primed towards an anti-inflammatory phenotype. Interestingly, CSF-1R blockade increased NO, IL-12, TNF-α, IL-1β, decreased TGF-β release, and CD206 expression in aiMφs. T-cell co-stimulatory molecule cd40, cd86, and cd80 expressions were decreased in ai/aM1-Mφs and co-cultured CD8+, CD4+ T-cells had decreased proliferation, t-bet, IFN-γ, IL-17, IL-2 but increased foxp3, TGF-β, IL-4 which were rescued with CSF-1R blockade. Thus AZM affected Mφ-functions and subsequent T-cell responses independent of its antibacterial actions. This was validated in the balb/c model of S. flexneri infection. We conclude that AZM skewed BMDM generation to anti-inflammatory M2-like via increased CSF-1R expression. This warrants further investigation of AZM-induced altered-Mφ-generation during intracellular infections.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Parmeswar Dalai
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Sharath Gowda
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | | | - Reena Agrawal-Rajput
- Department of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India.
| |
Collapse
|
43
|
Chai Q, Lei Z, Liu CH. Pyroptosis modulation by bacterial effector proteins. Semin Immunol 2023; 69:101804. [PMID: 37406548 DOI: 10.1016/j.smim.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death featured with membrane pore formation that causes cellular swelling and allows the release of intracellular inflammatory mediators. This cell death process is elicited by the activation of the pore-forming proteins named gasdermins, and is intricately orchestrated by diverse regulatory factors in mammalian hosts to exert a prompt immune response against infections. However, growing evidence suggests that bacterial pathogens have evolved to regulate host pyroptosis for evading immune clearance and establishing progressive infection. In this review, we highlight current understandings of the functional role and regulatory network of pyroptosis in host antibacterial immunity. Thereafter, we further discuss the latest advances elucidating the mechanisms by which bacterial pathogens modulate pyroptosis through adopting their effector proteins to drive infections. A better understanding of regulatory mechanisms underlying pyroptosis at the interface of host-bacterial interactions will shed new light on the pathogenesis of infectious diseases and contribute to the development of promising therapeutic strategies against bacterial pathogens.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zehui Lei
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
44
|
Acevedo-Sánchez Y, Woida PJ, Kraemer S, Lamason RL. An obligate intracellular bacterial pathogen forms a direct, interkingdom membrane contact site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543771. [PMID: 37333133 PMCID: PMC10274737 DOI: 10.1101/2023.06.05.543771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Interorganelle communication regulates cellular homeostasis through the formation of tightly-associated membrane contact sites 1-3. Prior work has identified several ways that intracellular pathogens alter contacts between eukaryotic membranes 4-6, but there is no existing evidence for contact sites spanning eukaryotic and prokaryotic membranes. Here, using a combination of live-cell microscopy and transmission and focused-ion-beam scanning electron microscopy, we demonstrate that the intracellular bacterial pathogen Rickettsia parkeri forms a direct membrane contact site between its bacterial outer membrane and the rough endoplasmic reticulum (ER), with tethers that are approximately 55 nm apart. Depletion of the ER-specific tethers VAPA and VAPB reduced the frequency of rickettsia-ER contacts, suggesting these interactions mimic organelle-ER contacts. Overall, our findings illuminate a direct, interkingdom membrane contact site uniquely mediated by rickettsia that seems to mimic traditional host MCSs.
Collapse
Affiliation(s)
| | - Patrick J. Woida
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Stephan Kraemer
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Rebecca L. Lamason
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
45
|
Bird LE, Edgington-Mitchell LE, Newton HJ. Eat, prey, love: Pathogen-mediated subversion of lysosomal biology. Curr Opin Immunol 2023; 83:102344. [PMID: 37245414 DOI: 10.1016/j.coi.2023.102344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/30/2023]
Abstract
The mammalian lysosome is classically considered the 'garbage can' of the cell, contributing to clearance of infection through its primary function as a degradative organelle. Intracellular pathogens have evolved several strategies to evade contact with this harsh environment through subversion of endolysosomal trafficking or escape into the cytosol. Pathogens can also manipulate pathways that lead to lysosomal biogenesis or alter the abundance or activity of lysosomal content. This pathogen-driven subversion of lysosomal biology is highly dynamic and depends on a range of factors, including cell type, stage of infection, intracellular niche and pathogen load. The growing body of literature in this field highlights the nuanced and complex relationship between intracellular pathogens and the host lysosome, which is critical for our understanding of infection biology.
Collapse
Affiliation(s)
- Lauren E Bird
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia
| | | | - Hayley J Newton
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, VIC 3800, Australia.
| |
Collapse
|
46
|
Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother 2023; 160:114295. [PMID: 36709600 DOI: 10.1016/j.biopha.2023.114295] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/30/2023] Open
Abstract
Metabolites produced by the host and microbiota play a crucial role in how human bodies develop and remain healthy. Most of these metabolites are produced by microbiota and hosts in the digestive tract. Metabolites in the gut have important roles in energy metabolism, cellular communication, and host immunity, among other physiological activities. Although numerous host metabolites, such as free fatty acids, amino acids, and vitamins, are found in the intestine, metabolites generated by gut microbiota are equally vital for intestinal homeostasis. Furthermore, microbiota in the gut is the sole source of some metabolites, including short-chain fatty acids (SCFAs). Metabolites produced by microbiota, such as neurotransmitters and hormones, may modulate and significantly affect host metabolism. The gut microbiota is becoming recognized as a second endocrine system. A variety of chronic inflammatory disorders have been linked to aberrant host-microbiota interplays, but the precise mechanisms underpinning these disturbances and how they might lead to diseases remain to be fully elucidated. Microbiome-modulated metabolites are promising targets for new drug discovery due to their endocrine function in various complex disorders. In humans, metabolotherapy for the prevention or treatment of various disorders will be possible if we better understand the metabolic preferences of bacteria and the host in specific tissues and organs. Better disease treatments may be possible with the help of novel complementary therapies that target host or bacterial metabolism. The metabolites, their physiological consequences, and functional mechanisms of the host-microbiota interplays will be highlighted, summarized, and discussed in this overview.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Rui Chen
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - DuoDuo Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, People's Republic of China.
| | - Shuang Qi
- Department of Anethesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| | - Yan Liu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China.
| |
Collapse
|
47
|
Apte S, Bhutda S, Ghosh S, Sharma K, Barton TE, Dibyachintan S, Sahay O, Roy S, Sinha AR, Adicherla H, Rakshit J, Tang S, Datey A, Santra S, Joseph J, Sasidharan S, Hammerschmidt S, Chakravortty D, Oggioni MR, Santra MK, Neill DR, Banerjee A. An innate pathogen sensing strategy involving ubiquitination of bacterial surface proteins. SCIENCE ADVANCES 2023; 9:eade1851. [PMID: 36947610 PMCID: PMC10032600 DOI: 10.1126/sciadv.ade1851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Sensing of pathogens by ubiquitination is a critical arm of cellular immunity. However, universal ubiquitination targets on microbes remain unidentified. Here, using in vitro, ex vivo, and in vivo studies, we identify the first protein-based ubiquitination substrates on phylogenetically diverse bacteria by unveiling a strategy that uses recognition of degron-like motifs. Such motifs form a new class of intra-cytosolic pathogen-associated molecular patterns (PAMPs). Their incorporation enabled recognition of nonubiquitin targets by host ubiquitin ligases. We find that SCFFBW7 E3 ligase, supported by the regulatory kinase, glycogen synthase kinase 3β, is crucial for effective pathogen detection and clearance. This provides a mechanistic explanation for enhanced risk of infections in patients with chronic lymphocytic leukemia bearing mutations in F-box and WD repeat domain containing 7 protein. We conclude that exploitation of this generic pathogen sensing strategy allows conservation of host resources and boosts antimicrobial immunity.
Collapse
Affiliation(s)
- Shruti Apte
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Smita Bhutda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sourav Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Kuldeep Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Thomas E. Barton
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, L69 7BE Liverpool, UK
| | - Soham Dibyachintan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Osheen Sahay
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Suvapriya Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Akash Raj Sinha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Harikrishna Adicherla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007 Telangana, India
| | - Jyotirmoy Rakshit
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Shiying Tang
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Shweta Santra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Jincy Joseph
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sreeja Sasidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, D-17487 Greifswald, Germany
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru 560012, Karnataka, India
| | - Marco R. Oggioni
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Manas Kumar Santra
- Cancer Biology and Epigenetics Laboratory, National Centre for Cell Science, Ganeshkhind Road, Pune 411007, Maharashtra, India
| | - Daniel R. Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, L69 7BE Liverpool, UK
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| |
Collapse
|
48
|
Listeria InlB Expedites Vacuole Escape and Intracellular Proliferation by Promoting Rab7 Recruitment via Vps34. mBio 2023; 14:e0322122. [PMID: 36656016 PMCID: PMC9973280 DOI: 10.1128/mbio.03221-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Rapid phagosomal escape mediated by listeriolysin O (LLO) is a prerequisite for Listeria monocytogenes intracellular replication and pathogenesis. Escape takes place within minutes after internalization from vacuoles that are negative to the early endosomal Rab5 GTPase and positive to the late endosomal Rab7. Using mutant analysis, we found that the listerial invasin InlB was required for optimal intracellular proliferation of L. monocytogenes. Starting from this observation, we determined in HeLa cells that InlB promotes early phagosomal escape and efficient Rab7 acquisition by the Listeria-containing vacuole (LCV). Recruitment of the class III phosphoinositide 3-kinase (PI3K) Vps34 to the LCV and accumulation of its lipid product, phosphatidylinositol 3-phosphate (PI3P), two key endosomal maturation mediators, were also dependent on InlB. Small interfering RNA (siRNA) knockdown experiments showed that Vps34 was required for Rab7 recruitment and early (LLO-mediated) escape and supported InlB-dependent intracellular proliferation. Together, our data indicate that InlB accelerates LCV conversion into an escape-favorable Rab7 late phagosome via subversion of class III PI3K/Vps34 signaling. Our findings uncover a new function for the InlB invasin in Listeria pathogenesis as an intracellular proliferation-promoting virulence factor. IMPORTANCE Avoidance of lysosomal killing by manipulation of the endosomal compartment is a virulence mechanism assumed to be largely restricted to intravacuolar intracellular pathogens. Our findings are important because they show that cytosolic pathogens like L. monocytogenes, which rapidly escape the phagosome after internalization, can also extensively subvert endocytic trafficking as part of their survival strategy. They also clarify that, instead of delaying phagosome maturation (to allow time for LLO-dependent disruption, as currently thought), via InlB L. monocytogenes appears to facilitate the rapid conversion of the phagocytic vacuole into an escape-conducive late phagosome. Our data highlight the multifunctionality of bacterial virulence factors. At the cell surface, the InlB invasin induces receptor-mediated phagocytosis via class I PI3K activation, whereas after internalization it exploits class III PI3K (Vsp34) to promote intracellular survival. Systematically elucidating the mechanisms by which Listeria interferes with PI3K signaling all along the endocytic pathway may lead to novel anti-infective therapies.
Collapse
|
49
|
Maekawa T, Kashkar H, Coll NS. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ 2023; 30:258-268. [PMID: 36195671 PMCID: PMC9950082 DOI: 10.1038/s41418-022-01060-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022] Open
Abstract
Host organisms utilise a range of genetically encoded cell death programmes in response to pathogen challenge. Host cell death can restrict pathogen proliferation by depleting their replicative niche and at the same time dying cells can alert neighbouring cells to prepare environmental conditions favouring future pathogen attacks. As expected, many pathogenic microbes have strategies to subvert host cell death to promote their virulence. The structural and lifestyle differences between animals and plants have been anticipated to shape very different host defence mechanisms. However, an emerging body of evidence indicates that several components of the host-pathogen interaction machinery are shared between the two major branches of eukaryotic life. Many proteins involved in cell death execution or cell death-associated immunity in plants and animals exert direct effects on endomembrane and loss of membrane integrity has been proposed to explain the potential immunogenicity of dying cells. In this review we aim to provide a comparative view on how cell death processes are linked to anti-microbial defence mechanisms in plants and animals and how pathogens interfere with these cell death programmes. In comparison to the several well-defined cell death programmes in animals, immunogenic cell death in plant defence is broadly defined as the hypersensitive response. Our comparative overview may help discerning whether specific types of immunogenic cell death exist in plants, and correspondingly, it may provide new hints for previously undiscovered cell death mechanism in animals.
Collapse
Affiliation(s)
- Takaki Maekawa
- Department of Biology, Institute for Plant Sciences, University of Cologne, 50674, Cologne, Germany.
- CEPLAS Cluster of Excellence on Plant Sciences at the University of Cologne, Cologne, Germany.
| | - Hamid Kashkar
- Faculty of Medicine and University Hospital of Cologne, Institute for Molecular Immunology, University of Cologne, 50931, Cologne, Germany.
- Faculty of Medicine and University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany.
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, 08193, Bellaterra, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), 08001, Barcelona, Spain.
| |
Collapse
|
50
|
Kostow N, Welch MD. Manipulation of host cell plasma membranes by intracellular bacterial pathogens. Curr Opin Microbiol 2023; 71:102241. [PMID: 36442349 PMCID: PMC10074913 DOI: 10.1016/j.mib.2022.102241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2022]
Abstract
Manipulation of the host cell plasma membrane is critical during infection by intracellular bacterial pathogens, particularly during bacterial entry into and exit from host cells. To manipulate host cells, bacteria deploy secreted proteins that modulate or modify host cell components. Here, we review recent advances that suggest common themes by which bacteria manipulate the host cell plasma membrane. One theme is that bacteria use diverse strategies to target or influence host cell plasma membrane composition and shape. A second theme is that bacteria take advantage of host cell plasma membrane-associated pathways such as signal transduction, endocytosis, and exocytosis. Future investigation into how bacterial and host factors contribute to plasma membrane manipulation by bacterial pathogens will reveal new insights into pathogenesis and fundamental principles of plasma membrane biology.
Collapse
Affiliation(s)
- Nora Kostow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|