1
|
Foley DJ, Cotter O, Davidson L, Lawler M, Walsh AM, Cloak F, Ward M, Meehan M, Cunney R, Martin C, McKeown P, Fallon U, Ó Maoldomhnaigh C. Changes in Epidemiology in Pediatric Invasive Group A Streptococcal Infections in Ireland During the 2022-2023 Outbreak. Pediatr Infect Dis J 2025; 44:511-516. [PMID: 40106787 DOI: 10.1097/inf.0000000000004746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
BACKGROUND From October 2022 to June 2023, there was a 4-fold increase in pediatric invasive group A streptococcus cases (iGAS) in the Republic of Ireland. This project aimed to better understand the clinical characteristics and disease course of iGAS in children in Ireland to inform Public Health interventions and messaging for carers, clinicians and the public. METHODS All cases of iGAS notified to Public Health under 16 years from October 2022 to June 2023 inclusive were collated. A clinical case review of every death and hospitalization was performed under the auspices of the National Incident Management team using an online questionnaire. Analysis was performed using a 2-sided Fischer's exact test and 1-way analysis of variance. RESULTS Of 180 cases of iGAS in children, 167 had clinical data collected; 33 of 49 with skin and soft tissue infection had active varicella, and 69 of 167 had at least 1 respiratory viral coinfection. Seventy-four of 167 required therapeutic procedural intervention, and 34 of 167 required pediatric intensive care unit admission. Ten of 12 patients who died had necrotizing pneumonia, and 8 had an out-of-hospital cardiac arrest. Compared with historical data, significant changes in iGAS epidemiology in children were seen, with an increase in respiratory diagnoses, a decrease in musculoskeletal disease and an increased need for procedural intervention. CONCLUSIONS The rapidity and severity of secondary deterioration and death in children with iGAS highlight the importance of sepsis awareness in primary and secondary care. The high prevalence of viral coinfection emphasizes the importance of current vaccine uptake and expansion of the national schedule to include varicella zoster virus.
Collapse
Affiliation(s)
- Deirdre J Foley
- From the Paediatric Infectious Diseases Department, Children's Health Ireland, Dublin, Ireland
| | - Orla Cotter
- Department of Public Health, HSE Health Region Dublin and Midlands, Dublin, Ireland
| | - Lucy Davidson
- From the Paediatric Infectious Diseases Department, Children's Health Ireland, Dublin, Ireland
| | - Marguerite Lawler
- From the Paediatric Infectious Diseases Department, Children's Health Ireland, Dublin, Ireland
| | - Aaron M Walsh
- School of Biochemistry and Immunology, Trinity College, Dublin, Ireland
| | - Fiona Cloak
- Healthcare-associated Infections Epidemiology Team, Health Protection Surveillance Centre, Dublin, Ireland
| | - Mary Ward
- Department of Public Health, HSE Health Region Dublin and Midlands, Dublin, Ireland
| | - Mary Meehan
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Robert Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Ciara Martin
- National Clinical Advisor and Group Lead, Children and Young People, Children's Health Ireland, Dublin, Ireland
| | - Paul McKeown
- Department of Epidemiology, Health Protection Surveillance Centre, Dublin, Ireland
| | - Una Fallon
- Department of Public Health, HSE Health Region Dublin and Midlands, Dublin, Ireland
| | - Cilian Ó Maoldomhnaigh
- From the Paediatric Infectious Diseases Department, Children's Health Ireland, Dublin, Ireland
| |
Collapse
|
2
|
Ma AX, Lin L, Zhang Q, Zhang MY, Jiang LH, Chen J, Liu SL, Wang ZG, Pang DW. Ratiometric Dual-Response Quantum Dot Spherical Nucleic Acid for Monitoring Viral Secondary Bacterial Infections. Anal Chem 2025; 97:9422-9429. [PMID: 40257288 DOI: 10.1021/acs.analchem.5c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Viral-bacterial coinfections present intricate pathologies that exacerbate disease progression and elevate mortality rates. Understanding the dynamic interplay between viruses and bacteria during coinfection is critical for developing effective therapeutic interventions. However, current diagnostic tools primarily rely on static detection methods, limiting their ability to monitor real-time infection dynamics. Here, we introduce a ratiometric, dual-responsive quantum dot spherical nucleic acid (QD-SNA) probe capable of simultaneously detecting viral- and bacterial-specific markers in vivo. This probe enables real-time monitoring of coinfections, as demonstrated in a mouse model of influenza virus (H1N1) and methicillin-resistant Staphylococcus aureus infection. By providing dynamic, visual insights into the coinfection process, the QD-SNA probe holds significant potential for preclinical drug screening and the diagnosis of respiratory pathogen infections.
Collapse
Affiliation(s)
- Ai-Xin Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Leping Lin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Qing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Ming-Yu Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Lin-Han Jiang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Jiaxuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
3
|
Yu M, Lin A, Baharom F, Li S, Legendre M, Covés-Datson E, Sohlberg E, Schlisio S, Loré K, Markovitz DM, Smed-Sörensen A. A genetically engineered therapeutic lectin inhibits human influenza A virus infection and sustains robust virus-specific CD8 T cell expansion. PLoS Pathog 2025; 21:e1013112. [PMID: 40333697 PMCID: PMC12057898 DOI: 10.1371/journal.ppat.1013112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Seasonal influenza continues to be a global health problem. Current existing vaccines and antivirals against influenza have limited effectiveness, and typically do not stay ahead of the viral evolutionary curve. Broad-spectrum antiviral agents that are effective therapeutically and prophylactically are much needed. We have created a promising new broad-spectrum anti-influenza agent using molecular engineering of a lectin from bananas, H84T, which is well-tolerated and protective in small animal models. However, the potency and effect of H84T on human immune cells and influenza-specific immune responses are undetermined. We found that H84T efficiently inhibited influenza A virus (IAV) replication in primary human dendritic cells (DCs) isolated from blood and tonsil, preserved DC viability and allowed acquisition and presentation of viral antigen. Excitingly, H84T-treated DCs subsequently initiated effective expansion of IAV-specific CD8 T cells. Furthermore, H84T preserved the capacity of IAV-exposed DCs to present a second non-IAV antigen and induce robust antigen-specific CD8 T cell expansion. Our data support H84T as a potent antiviral in humans as it not only effectively inhibits IAV infection, but also preserves induction of robust pathogen-specific adaptive immune responses against diverse antigens, which likely is clinically beneficial.
Collapse
Affiliation(s)
- Meng Yu
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ang Lin
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Faezzah Baharom
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maureen Legendre
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Evelyn Covés-Datson
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ebba Sohlberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Schlisio
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - David M. Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Programs in Cellular and Molecular Biology, Immunology, and Cancer Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna Smed-Sörensen
- Department of Medicine Solna, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Wu S, Kang M, Liu Y, Xiao Y, Deng J, Zhang W, Liao Q. Clinical and molecular characteristics of Staphylococcus aureus isolates from patients with COVID-19 in Southwest China. BMC Infect Dis 2025; 25:546. [PMID: 40247159 PMCID: PMC12004627 DOI: 10.1186/s12879-025-10868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND This study investigated the clinical and molecular characteristics of Staphylococcus aureus (S. aureus) isolates from patients with coronavirus disease 19 (COVID- 19) at West China Hospital between December 1, 2022 and January 31, 2023. METHODS In total, 102 strains isolated from sputum, bronchoalveolar lavage fluid, endotracheal aspirates, and blood were collected from 102 patients and subjected to multilocus sequence typing and antimicrobial susceptibility testing. Eighteen virulence genes were also analyzed by polymerase chain reaction. RESULTS Seventy-five patients were discharged and 27 died. The predominant comorbidities were hypertension, diabetes mellitus, and cardiac disease. Twenty-eight known sequence types (STs) and 10 novel ones (ST8773/CC398, ST9221/CC5, ST9222/CC59, ST9223/CC8, ST9224/CC22, ST9225/CC1, ST9226/CC5, ST9227/CC59, ST9228/CC59, ST9229/CC398) were identified. The dominant molecular types were ST15 (CC15), ST59 (CC59), and ST5 (CC5). Among the three most prevalent STs, ST5 was significantly more resistant to levofloxacin, moxifloxacin, ciprofloxacin, and sulfamethoxazole than were ST59 and ST15. ST59 and ST5 had higher rates of resistance to erythromycin and clindamycin than ST15. All isolates contained at least eight virulence genes. The hemolysin gene hlb was found to be more prevalent in ST59 (100%) and ST5 (84.6%) than in ST15 (0) (P < 0.001). The prevalence of the enterotoxin gene seb in ST59 (100%) was significantly higher than that in ST5 (23.1%) and ST15 (20%) (P < 0.001), while the carrying rate of the sec gene was significantly higher in ST5 (76.9%) than that in ST59 (0) and ST15 (0) (P < 0.001). CONCLUSIONS The S. aureus isolates from patients with COVID- 19 in Southwest China exhibited a high degree of genetic diversity. Different STs exhibited different antimicrobial resistance patterns and virulence gene carrying rates.
Collapse
Affiliation(s)
- Siying Wu
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Mei Kang
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| | - Ya Liu
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Yuling Xiao
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Jin Deng
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Weili Zhang
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Quanfeng Liao
- Division of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| |
Collapse
|
5
|
Zubiria-Barrera C, Yamba LY, Klassert TE, Bos M, Ahl J, Wasserstrom L, Slevogt H, Riesbeck K. Profiling the nasopharyngeal Microbiome in patients with community-acquired pneumonia caused by Streptococcus pneumoniae: diagnostic challenges and ecological insights. Med Microbiol Immunol 2025; 214:19. [PMID: 40208342 PMCID: PMC11985632 DOI: 10.1007/s00430-025-00828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/23/2025] [Indexed: 04/11/2025]
Abstract
Community-acquired pneumonia (CAP) is a significant health threat for adults. Although conjugate vaccines have reduced pneumococcal CAP incidence in children, Streptococcus pneumoniae-related CAP remains prevalent among older adults. The nasopharynx acts as a reservoir for S. pneumoniae, yet the interplay between this pathogen and the nasopharyngeal microbiome during and after pneumonia remains poorly understood. This study included 61 adult patients diagnosed with pneumococcal CAP and 61 matched healthy controls. An S. pneumoniae-specific PCR, urine antigen tests and bacterial cultures were performed. Nasopharyngeal swabs collected at admission and three months post-infection were analyzed for microbiome dynamics through 16 S rRNA gene amplicon sequencing. 16 S rRNA gene amplicon sequencing revealed Streptococcus spp. in the majority of all nasopharyngeal samples during infection compared to the other diagnostic test performed. While overall bacterial biomass did not differ between groups, patients exhibited higher alpha diversity (p = 0.012) and lower microbiome stability post-infection. Beta diversity analysis distinguished infection from healthy status (p = 0.002). Taxonomic analysis showed similar core microbiota across groups, but Streptococcus spp. was significantly more abundant during infection, particularly in those patients with viral co-infections. Notably, unique significant bacterial interactions were identified both during and after infection, as well as in healthy states. A negative correlation was observed between Corynebacterium and Streptococcus spp. in infected patients, suggesting a potential antagonistic interaction between these taxa. The nasopharyngeal microbiome in patients with pneumococcal CAP demonstrates persistent disruption post-infection, characterized by lower resilience three months after acute illness. Additionally, we identified specific bacterial interplays during and after infection that differed from those in healthy donors. These bacterial dynamics might play critical roles in pathogen colonization resistance and infection prevention. Thus, our findings highlight the need for further investigation into microbial interactions and potential microbiome-based therapies for respiratory infections, particularly in vulnerable populations.
Collapse
Affiliation(s)
- Cristina Zubiria-Barrera
- Department of Respiratory Medicine and Infectious Diseases, MHH, German Center for Lung Research (DZL), BREATH, Hannover, Germany.
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Linda Yamba Yamba
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Clinical Microbiology, Infection Control and Prevention, Skåne University Hospital, Lund, Sweden
| | - Tilman E Klassert
- Department of Respiratory Medicine and Infectious Diseases, MHH, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Malena Bos
- Department of Respiratory Medicine and Infectious Diseases, MHH, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Jonas Ahl
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Infectious Diseases, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Lisa Wasserstrom
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Clinical Microbiology, Infection Control and Prevention, Skåne University Hospital, Lund, Sweden
| | - Hortense Slevogt
- Department of Respiratory Medicine and Infectious Diseases, MHH, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Respiratory Infection Dynamics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
- Clinical Microbiology, Infection Control and Prevention, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
6
|
Hu Z, Wu X, Yao D, Liu J, Kong Q, Zhou YJ, Zhang X. Ficolin A and ficolin B aggravate poly(I:C) secondary LPS stimulation-induced acute lung injury by modulating alveolar and interstitial macrophages. Cytokine 2025; 188:156868. [PMID: 39892107 DOI: 10.1016/j.cyto.2025.156868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Respiratory viral infection, represented by influenza virus, is easily followed by bacterial infection, the main cause of death. Clinical studies have shown that even mild influenza virus infection followed by secondary bacterial infection can mediate severe pneumonia and lung injury. In this study, mice were intranasally stimulated by polyinosinic-polycytidylic acid [poly(I:C)] followed by lipopolysaccharide (LPS) to simulate respiratory RNA virus secondary Gram-negative bacterial infection. The results demonstrated that poly(I:C) followed by LPS stimulation induced more weight loss, worse lung pathological injury, additional recruitment of neutrophils and interstitial macrophages, and elevated expression of ficolin A/B in the lung neutrophils, alveolar and interstitial macrophages. Knockout of ficolin A/B alleviated the body weight loss, the lung pathological injury, and the pulmonary inflammatory score. Mechanically, knockout of ficolin A/B was associated with reduced interstitial macrophage recruitment and alveolar macrophage exhaustion. These results suggest that ficolin A/B is a potential therapeutic target for severe pneumonia induced by respiratory RNA virus secondary Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Ziqi Hu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Xu Wu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Duoduo Yao
- Department of Nursing and Hospital Infection Management, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianhua Liu
- Department of Clinical Laboratory, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qingli Kong
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yu-Jie Zhou
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xulong Zhang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Baker JM, Dickson RP. The Microbiome and Pulmonary Immune Function. Clin Chest Med 2025; 46:77-91. [PMID: 39890294 DOI: 10.1016/j.ccm.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
In the last decade, the lung microbiome field has matured into a promising area of translational and clinical research due to emerging evidence indicating a role for respiratory microbiota in lung immunity and pathogenesis. Here, we review recent insights pertaining to the lung microbiome's relationship with pulmonary immune function. We discuss areas of future investigation that will be essential to the development of immunomodulatory therapies targeting the respiratory microbiome.
Collapse
Affiliation(s)
- Jennifer M Baker
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Robert P Dickson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA; Weil Institute for Critical Care Research & Innovation, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Li Y, Bhagirath A, Badr S, Zhang P, Chen L, Dadashi M, Surette MG, Duan K. The Fem cell-surface signaling system is regulated by ExsA in Pseudomonas aeruginosa and affects pathogenicity. iScience 2025; 28:111629. [PMID: 39850353 PMCID: PMC11754118 DOI: 10.1016/j.isci.2024.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/12/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in Pseudomonas aeruginosa, is involved in the uptake of iron-chelating mycobactin produced by Mycobacterium spp. In this report, we present the data that indicates the femA-PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS. Intriguingly, the Fem system also influenced virulence factors in P. aeruginosa, including the quorum sensing systems, pyocyanin production, biofilm formation, and the type six secretion systems (T6SSs). Using a Galleria mellonella infection model we observed that a femA deletion in PAO1 significantly increased the host survival rate while femI over-expression decreased it, suggesting a role for the Fem system in pathogenicity in vivo. Our data indicate the Fem system is a target of the T3SS master activator ExsA, and it affects P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Anjali Bhagirath
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS B3H 1W2, Canada
| | - Sara Badr
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Pansong Zhang
- College of Life Sciences, Northwest University, Xian 710069, China
| | - Lin Chen
- College of Life Sciences, Northwest University, Xian 710069, China
| | - Maryam Dadashi
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Michael G. Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Kangmin Duan
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Department of Medical Microbiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 0W2, Canada
| |
Collapse
|
9
|
Khan ZA, Ali AS, Ahmed I, Farooqi J, Irfan M. Frequency of viral etiology in community-acquired pneumonia. Monaldi Arch Chest Dis 2025. [PMID: 39820606 DOI: 10.4081/monaldi.2025.3161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025] Open
Abstract
The identification of etiology is very important when managing patients with community-acquired pneumonia (CAP). In Pakistan, studies regarding the viral etiology in CAP are scarce. The main objective of this study was to evaluate the frequency of viral etiology in CAP patients and analyze the clinical features and their impact on prognosis. Medical records of CAP patients admitted to Aga Khan University Hospital (Karachi, Pakistan) from March 2022 to February 2023 were retrospectively reviewed, patients who had microbiological tests performed within 48 hours of the hospital admission were included, and the frequency of viral and bacterial etiology was calculated. Patients who were immunocompromised were excluded. Epidemiological and clinical characteristics were examined, and the impact on prognosis was explored. A total of 166 patients were included; 115 (69.3%) patients were identified as having pneumonia with known causative microorganisms. A total of 83 (72.1%) patients had a viral etiology alone, 18 (15.6%) had only bacterial infection, and 14 (12.2%) had a viral and bacterial co-infection. Influenza A was most frequently detected (n=46/97; 47.4%), followed by Rhinovirus/Enterovirus (n=19/97; 19.6%). Staphylococcus aureus accounted for the majority (n=18; 56.3%) of cases among bacteria. Bacterial and viral-bacterial co-infection was significantly higher among non-survivors (38.1% vs. 16.6%, p=0.034). Confusion-Urea-Respiratory Rate-Blood Pressure-Age of 65 scores of 3-5 [odds ratio (OR) 4.234; 95% confidence interval 1.156-15.501], leukocytosis (OR 0.137; 0.030-0.636), high C-reactive protein (>10mg/L) (OR 1.008; 1.001-1.014), high serum procalcitonin level (≥0.5 ng/mL) (OR 10.731; 3.018-38.153), and mechanical ventilation required (OR 47.104; 13.644-162.625) were associated with mortality. Mechanical ventilation requirement was independently associated with increased odds of mortality (OR 43.407; 8.083-233.085). Of 166 patients, 21 (12.7%) had died, with the highest percentage (28.6%) seen in the viral-bacterial coinfection group (p=0.046). To conclude, respiratory viruses are increasingly being recognized as an important etiology in CAP, with higher mortality seen in bacterial infection, whether alone or with viral co-infection.
Collapse
Affiliation(s)
- Zain Ahmad Khan
- Section of Pulmonary and Critical Care, Department of Medicine, Aga Khan University, Karachi
| | - Akbar Shoukat Ali
- Section of Pulmonary and Critical Care, Department of Medicine, Aga Khan University, Karachi
| | - Imran Ahmed
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi
| | - Joveria Farooqi
- Section of Microbiology, Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi
| | - Muhammad Irfan
- Section of Pulmonary and Critical Care, Department of Medicine, Aga Khan University, Karachi
| |
Collapse
|
10
|
Grasty MA, L'Etoile N, Nitsche LJ, Takeda M, Fisher BT, Drant S, Mavroudis CD. Aortic Rupture in a Pediatric Patient With Influenza. World J Pediatr Congenit Heart Surg 2025; 16:130-132. [PMID: 39501655 DOI: 10.1177/21501351241282281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
Abstract
Influenza can lead to significant morbidity and mortality in children. Aortopathy tends to occur in adults during influenza season; however, aortic pathology in children with influenza is exceedingly rare. This report describes a child who experienced an aortic rupture during an influenza infection without evidence of secondary bacterial infection or connective tissue disorder.
Collapse
Affiliation(s)
- Madison A Grasty
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathan L'Etoile
- Division of Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lindsay J Nitsche
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Moe Takeda
- Division of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian T Fisher
- Division of Infectious Disease, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stacy Drant
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Constantine D Mavroudis
- Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
11
|
Hutchinson EC, Amorim MJ, Yamauchi Y. Understanding Influenza. Methods Mol Biol 2025; 2890:1-26. [PMID: 39890719 DOI: 10.1007/978-1-0716-4326-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Abstract
Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease, and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This chapter briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we currently understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader's own research will help us to understand it better.
Collapse
Affiliation(s)
| | - Maria João Amorim
- Católica Biomedical Research Centre (CBR), Católica Medical School, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Yohei Yamauchi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
12
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
13
|
Li H, Zong Y, Li J, Zhou Z, Chang Y, Shi W, Guo J. Research trends and hotspots on global influenza and inflammatory response based on bibliometrics. Virol J 2024; 21:313. [PMID: 39623458 PMCID: PMC11613568 DOI: 10.1186/s12985-024-02588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
The influenza virus is considered as a kind of significant zoonotic infectious disease identified to date, with severe infections in humans characterized by excessive inflammation and tissue damage, usually resulting in serious complications. Although the molecular mechanisms underlying inflammation after influenza infection have been extensively studied, bibliometric analysis on the research hotspots and developing trends in this field has not been published heretofore. Articles related to influenza and inflammatory response were retrieved from the Web of Science Core Collection (WoSCC) database (1992-2024) and analyzed using various visualization tools. Finally, this study collected a total of 2,176 relevant articles, involving 13,184 researchers, 2,647 institutions, 78 countries/regions, and published in 723 journals. Most articles were published in the United States (928 articles), China (450 articles) and the United Kingdom (158 articles). Ross Vlahos was the most productive author. Furthermore, some journals, such as PLoS One and Frontiers in Immunology, made much contribution to the topic. The future research trends include airway stem cells and neuroendocrine cells as new directions for the treatment of influenza complications, as well as measures related to prevention, treatment, and research and development based on the COVID-19 pandemic. Through bibliometric analysis and summary of inflammatory response of influenza-related articles, this study ultimately summarizes new directions for preventing and treating influenza.
Collapse
Affiliation(s)
- Hui Li
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yanping Zong
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jiajie Li
- Key Laboratory of Xin'an Medical Education, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Zheng Zhou
- Key Laboratory of Xin'an Medical Education, Anhui University of Traditional Chinese Medicine, Hefei, 230012, China
| | - Yonglong Chang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Weibing Shi
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China.
| | - Jinchen Guo
- Center for Xin'an Medicine and Modemization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
14
|
Lewnard JA, Hong V, Grant LR, Ackerson BK, Bruxvoort KJ, Pomichowski M, Arguedas A, Cané A, Jodar L, Gessner BD, Tartof SY. Association of Pneumococcal Conjugate Vaccination With Severe Acute Respiratory Syndrome Coronavirus 2 Infection Among Older Adult Recipients of Coronavirus Disease 2019 Vaccines: A Longitudinal Cohort Study. J Infect Dis 2024; 230:e1082-e1091. [PMID: 39101606 PMCID: PMC11566223 DOI: 10.1093/infdis/jiae387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Pneumococcal carriage is associated with increased acquisition and duration of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among adults. While pneumococcal conjugate vaccines (PCVs) prevent carriage of vaccine-serotype pneumococci, their potential impact on coronavirus disease 2019 (COVID-19)-related outcomes remains poorly understood in populations with prevalent immunity against SARS-CoV-2. METHODS We undertook a retrospective cohort study of adults aged ≥65 years in the Kaiser Permanente Southern California healthcare system who had received ≥2 COVID-19 vaccine doses, comparing risk of SARS-CoV-2 infection between 1 January 2021 and 31 December 2022 among recipients and nonrecipients of 13-valent PCV (PCV13) employing multiple strategies to mitigate bias from differential test-seeking behavior. RESULTS The ajusted hazard ratio of confirmed SARS-CoV-2 infection comparing PCV13 recipients to nonrecipients was 0.92 (95% confidence interval [CI], .90-.95), corresponding to prevention of 3.9 (95% CI, 2.6-5.3) infections per 100 person-years. Following receipt of 2, 3, and ≥4 COVID-19 vaccine doses, aHRs (95% CI) were 0.85 (.81-.89), 0.94 (.90-.97), and 0.99 (.93-1.04), respectively. The aHR (95% CI) for persons who had not received COVID-19 vaccination in the preceding 6 months was 0.90 (.86-.93), versus 0.94 (.91-.98) within 6 months after COVID-19 vaccination. Similarly, aHRs (95% CI) were 0.92 (.89-.94) for persons without history of documented SARS-CoV-2 infection, versus 1.00 (.90-1.12) for persons with documented prior infection. CONCLUSIONS Among older adults who had received ≥2 COVID-19 vaccine doses, PCV13 was associated with modest protection against SARS-CoV-2 infection. Protective effects of PCV13 were greater among individuals expected to have weaker immune protection against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Joseph A Lewnard
- Center for Computational Biology, School of Public Health
- College of Statistics, Data Science, and Society
- Augmented Graduate Group in Computational Precision Health, University of California, Berkeley
| | - Vennis Hong
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | | | - Bradley K Ackerson
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Katia J Bruxvoort
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham
| | - Magdalena Pomichowski
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | | | | | - Luis Jodar
- Pfizer Vaccines, Collegeville, Pennsylvania
| | | | - Sara Y Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
- Department of Health Systems Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, California
| |
Collapse
|
15
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
16
|
Lansbury L, McKeever TM, Lawrence H, Pick H, Baskaran V, Edwards-Pritchard RC, Ashton D, Rodrigo C, Daniel P, Litt D, Eletu S, Parmar H, Sheppard CL, Ladhani S, Trotter C, Lim WS. Carriage of Streptococcus pneumoniae in adults hospitalised with community-acquired pneumonia. J Infect 2024; 89:106277. [PMID: 39306250 DOI: 10.1016/j.jinf.2024.106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
OBJECTIVES We aimed to determine the prevalence of and risk factors for nasopharyngeal and oral pneumococcal carriage in adults with community-acquired pneumonia (CAP), and the relationship between carried and disease-causing serotypes. METHODS Between 2016 and 2018, nasopharyngeal swabs, oral-fluid, and urine were collected from hospitalised adults recruited into a prospective cohort study of CAP. Pneumococcal carriage was detected by semi-quantitative real-time PCR of direct and culture-enriched nasopharyngeal swabs and culture-enriched oral-fluid. LytA and piaB positive/indeterminate samples underwent semi-quantitative serotype/serogroup-specific real-time-PCR. Serotypes in urine were identified using a 24-valent serotype-specific urinary-antigen assay. RESULTS We included 465 CAP patients. Nasopharyngeal carriage was detected in 34/103 (33.0%) swabbed pneumococcal pneumonia patients and oral carriage in 18/155 (12%) of sampled pneumococcal pneumonia patients. Concordance between nasopharyngeal/urine serotypes and oral/urine serotypes was 70.6% and 50% respectively. Serotypes 3 (26%, 22.2%), 8 (19.7%, 19.4%), non-typeable (11.6%, 13.9%) and 19A/F (7.5%, 8.3%) were most prevalent in urine and nasopharyngeal swabs respectively, with non-typeable (35%) and 15A/F (17%) most prevalent in oral-fluid. Pneumococcal carriage was significantly associated with pneumococcal pneumonia (nasopharyngeal adjusted odds ratio [aOR] 8.1, 95% confidence interval [CI] 3.8-17.2; oral aOR 5.5, 95% CI 2.1-13.3). All-cause CAP patients ≥65 years had lower odds of nasopharyngeal carriage (aOR 0.47, 95% CI 0.24-0.91) and current smokers had higher odds of oral carriage (aOR 2.69, 95% CI 1.10-6.60). CONCLUSIONS The association between nasopharyngeal carriage and pneumococcal CAP was strong. Adult carriage and disease from serotypes 8 and 19A may support direct protection of adults with PCV vaccines.
Collapse
Affiliation(s)
- Louise Lansbury
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK.
| | - Tricia M McKeever
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Hannah Lawrence
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Harry Pick
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Vadsala Baskaran
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Rochelle C Edwards-Pritchard
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Deborah Ashton
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK
| | - Chamira Rodrigo
- Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Priya Daniel
- Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK; Immunisation and Vaccine Preventable Diseases, UK Health Security Agency, Colindale, UK
| | - Seyi Eletu
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Hanshi Parmar
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Carmen L Sheppard
- Respiratory and Vaccine Preventable Bacteria Reference Unit, UK Health Security Agency, Colindale, UK
| | - Shamez Ladhani
- Immunisation and Vaccine Preventable Diseases, UK Health Security Agency, Colindale, UK
| | - Caroline Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Wei Shen Lim
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, UK; Department of Respiratory Medicine, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
17
|
Spottiswoode N, Tsitsiklis A, Chu VT, Phan HV, DeVoe C, Love C, Ghale R, Bloomstein J, Zha BS, Maguire CP, Glascock A, Sarma A, Mourani PM, Kalantar KL, Detweiler A, Neff N, Haller SC, DeRisi JL, Erle DJ, Hendrickson CM, Kangelaris KN, Krummel MF, Matthay MA, Woodruff PG, Calfee CS, Langelier CR. Microbial dynamics and pulmonary immune responses in COVID-19 secondary bacterial pneumonia. Nat Commun 2024; 15:9339. [PMID: 39472555 PMCID: PMC11522429 DOI: 10.1038/s41467-024-53566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
Secondary bacterial pneumonia (2°BP) is associated with significant morbidity following respiratory viral infection, yet remains incompletely understood. In a prospective cohort of 112 critically ill adults intubated for COVID-19, we comparatively assess longitudinal airway microbiome dynamics and the pulmonary transcriptome of patients who developed 2°BP versus controls who did not. We find that 2°BP is significantly associated with both mortality and corticosteroid treatment. The pulmonary microbiome in 2°BP is characterized by increased bacterial RNA mass and dominance of culture-confirmed pathogens, detectable days prior to 2°BP clinical diagnosis, and frequently also present in nasal swabs. Assessment of the pulmonary transcriptome reveals suppressed TNFα signaling in patients with 2°BP, and sensitivity analyses suggest this finding is mediated by corticosteroid treatment. Further, we find that increased bacterial RNA mass correlates with reduced expression of innate and adaptive immunity genes in both 2°BP patients and controls. Taken together, our findings provide fresh insights into the microbial dynamics and host immune features of COVID-19-associated 2°BP, and suggest that suppressed immune signaling, potentially mediated by corticosteroid treatment, permits expansion of opportunistic bacterial pathogens.
Collapse
Affiliation(s)
- Natasha Spottiswoode
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Alexandra Tsitsiklis
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Victoria T Chu
- Department of Pediatrics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Hoang Van Phan
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Catherine DeVoe
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Christina Love
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
| | - Rajani Ghale
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Beth Shoshana Zha
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | | | - Aartik Sarma
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Peter M Mourani
- Department of Pediatrics, Arkansas Children's, Little Rock, AR, USA
| | | | | | - Norma Neff
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Sidney C Haller
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Joseph L DeRisi
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - David J Erle
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Carolyn M Hendrickson
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | | | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Michael A Matthay
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Prescott G Woodruff
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
- Lung Biology Center, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Department of Medicine, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, CA, USA
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Creusat F, Jouan Y, Gonzalez L, Barsac E, Ilango G, Lemoine R, Soulard D, Hankard A, Boisseau C, Guillon A, Lin Q, de Amat Herbozo C, Sencio V, Winter N, Sizaret D, Trottein F, Si-Tahar M, Briard B, Mallevaey T, Faveeuw C, Baranek T, Paget C. IFN-γ primes bone marrow neutrophils to acquire regulatory functions in severe viral respiratory infections. SCIENCE ADVANCES 2024; 10:eadn3257. [PMID: 39392875 PMCID: PMC11468905 DOI: 10.1126/sciadv.adn3257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Neutrophil subsets endowed with regulatory/suppressive properties are widely regarded as deleterious immune cells that can jeopardize antitumoral response and/or antimicrobial resistance. Here, we describe a sizeable fraction of neutrophils characterized by the expression of programmed death-ligand 1 (PD-L1) in biological fluids of humans and mice with severe viral respiratory infections (VRI). Biological and transcriptomic approaches indicated that VRI-driven PD-L1+ neutrophils are endowed with potent regulatory functions and reduced classical antimicrobial properties, as compared to their PD-L1- counterpart. VRI-induced regulatory PD-L1+ neutrophils were generated remotely in the bone marrow in an IFN-γ-dependent manner and were quickly mobilized into the inflamed lungs where they fulfilled their maturation. Neutrophil depletion and PD-L1 blockade during experimental VRI resulted in higher mortality, increased local inflammation, and reduced expression of resolving factors. These findings suggest that PD-L1+ neutrophils are important players in disease tolerance by mitigating local inflammation during severe VRI and that they may constitute relevant targets for future immune interventions.
Collapse
Affiliation(s)
- Florent Creusat
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Youenn Jouan
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
- Service de Chirurgie Cardiaque et de Réanimation Chirurgicale Cardio-Vasculaire, CHRU de Tours, Tours, France
| | - Loïc Gonzalez
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Emilie Barsac
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Guy Ilango
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Roxane Lemoine
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Cytometry and Single-cell Immunobiology Core Facility, University of Tours, Tours, France
| | - Daphnée Soulard
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Antoine Hankard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Chloé Boisseau
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service de Médecine Intensive et Réanimation, CHRU de Tours, Tours, France
| | - Qiaochu Lin
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Valentin Sencio
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Winter
- INRAe (Institut National de la Recherche pour l'Agriculture, l'Alimentation et l’Environnement), Université de Tours, ISP, 37380 Nouzilly, France
| | - Damien Sizaret
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
- Service d’Anatomie et Cytologie Pathologiques, CHRU de Tours, Tours, France
| | - François Trottein
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Benoit Briard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Thierry Mallevaey
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christelle Faveeuw
- Centre d’Infection et d’Immunité de Lille, Inserm U1019, CNRS UMR 8204, Université de Lille, CHU Lille- Institut Pasteur de Lille, 59000 Lille, France
| | - Thomas Baranek
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| | - Christophe Paget
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine de Tours, Tours, France
| |
Collapse
|
19
|
Raghavan S, Kim KS. Host immunomodulation strategies to combat pandemic-associated antimicrobial-resistant secondary bacterial infections. Int J Antimicrob Agents 2024; 64:107308. [PMID: 39168417 DOI: 10.1016/j.ijantimicag.2024.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/20/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The incidence of secondary bacterial infections has increased in recent decades owing to various viral pandemics. These infections further increase the morbidity and mortality rates associated with viral infections and remain a significant challenge in clinical practice. Intensive antibiotic therapy has mitigated the threat of such infections; however, overuse and misuse of antibiotics have resulted in poor outcomes, such as inducing the emergence of bacterial populations with antimicrobial resistance (AMR) and reducing the therapeutic options for this crisis. Several antibiotic substitutes have been suggested and employed; however, they have certain limitations and novel alternatives are urgently required. This review highlights host immunomodulation as a promising strategy against secondary bacterial infections to overcome AMR. The definition and risk factors of secondary bacterial infections, features and limitations of currently available therapeutic strategies, host immune responses, and future perspectives for treating such infections are discussed.
Collapse
Affiliation(s)
- Srimathi Raghavan
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, Korea.
| |
Collapse
|
20
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
David C, Verney C, Si-Tahar M, Guillon A. The deadly dance of alveolar macrophages and influenza virus. Eur Respir Rev 2024; 33:240132. [PMID: 39477353 PMCID: PMC11522969 DOI: 10.1183/16000617.0132-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024] Open
Abstract
Influenza A virus (IAV) is one of the leading causes of respiratory infections. The lack of efficient anti-influenza therapeutics requires a better understanding of how IAV interacts with host cells. Alveolar macrophages are tissue-specific macrophages that play a critical role in lung innate immunity and homeostasis, yet their role during influenza infection remains unclear. First, our review highlights an active IAV replication within alveolar macrophages, despite an abortive viral cycle. Such infection leads to persistent alveolar macrophage inflammation and diminished phagocytic function, alongside direct mitochondrial damage and indirect metabolic shifts in the alveolar micro-environment. We also discuss the "macrophage disappearance reaction", which is a drastic reduction of the alveolar macrophage population observed after influenza infection in mice but debated in humans, with unclear underlying mechanisms. Furthermore, we explore the dual nature of alveolar macrophage responses to IAV infection, questioning whether they are deleterious or protective for the host. While IAV may exploit immuno-evasion strategies and induce alveolar macrophage alteration or depletion, this could potentially reduce excessive inflammation and allow for the replacement of more effective cells. Despite these insights, the pathophysiological role of alveolar macrophages during IAV infection in humans remains understudied, urging further exploration to unravel their precise contributions to disease progression and resolution.
Collapse
Affiliation(s)
- Camille David
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
| | - Charles Verney
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
- CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
| | - Antoine Guillon
- INSERM, Centre d'Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Tours, France
- CHRU de Tours, Service de Médecine Intensive Réanimation, Tours, France
| |
Collapse
|
22
|
Piechowicz L, Kosznik-Kwaśnicka K, Jarzembowski T, Daca A, Necel A, Bonawenturczak A, Werbowy O, Stasiłojć M, Pałubicka A. Staphylococcus aureus Co-Infection in COVID-19 Patients: Virulence Genes and Their Influence on Respiratory Epithelial Cells in Light of Risk of Severe Secondary Infection. Int J Mol Sci 2024; 25:10050. [PMID: 39337536 PMCID: PMC11431965 DOI: 10.3390/ijms251810050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Pandemics from viral respiratory tract infections in the 20th and early 21st centuries were associated with high mortality, which was not always caused by a primary viral infection. It has been observed that severe course of infection, complications and mortality were often the result of co-infection with other pathogens, especially Staphylococcus aureus. During the COVID-19 pandemic, it was also noticed that patients infected with S. aureus had a significantly higher mortality rate (61.7%) compared to patients infected with SARS-CoV-2 alone. Our previous studies have shown that S. aureus strains isolated from patients with COVID-19 had a different protein profile than the strains in non-COVID-19 patients. Therefore, this study aims to analyze S. aureus strains isolated from COVID-19 patients in terms of their pathogenicity by analyzing their virulence genes, adhesion, cytotoxicity and penetration to the human pulmonary epithelial cell line A549. We have observed that half of the tested S. aureus strains isolated from patients with COVID-19 had a necrotizing effect on the A549 cells. The strains also showed greater variability in terms of their adhesion to the human cells than their non-COVID-19 counterparts.
Collapse
Affiliation(s)
- Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Katarzyna Kosznik-Kwaśnicka
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Tomasz Jarzembowski
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Agnieszka Daca
- Department of Physiopathology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Debowa 25, 80-204 Gdansk, Poland
| | - Ada Bonawenturczak
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Olesia Werbowy
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Małgorzata Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
| | - Anna Pałubicka
- Specialist Hospital in Koscierzyna Sp. z o.o., Department of Laboratory and Microbiological Diagnostics, Koscierzyna, Alojzego Piechowskiego 36, 83-400 Koscierzyna, Poland
| |
Collapse
|
23
|
Sanches Santos Rizzo Zuttion M, Parimon T, Bora SA, Yao C, Lagree K, Gao CA, Wunderink RG, Kitsios GD, Morris A, Zhang Y, McVerry BJ, Modes ME, Marchevsky AM, Stripp BR, Soto CM, Wang Y, Merene K, Cho S, Victor BL, Vujkovic-Cvijin I, Gupta S, Cassel SL, Sutterwala FS, Devkota S, Underhill DM, Chen P. Antibiotic use during influenza infection augments lung eosinophils that impair immunity against secondary bacterial pneumonia. J Clin Invest 2024; 134:e180986. [PMID: 39255040 PMCID: PMC11527449 DOI: 10.1172/jci180986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024] Open
Abstract
A leading cause of mortality after influenza infection is the development of a secondary bacterial pneumonia. In the absence of a bacterial superinfection, prescribing antibacterial therapies is not indicated but has become a common clinical practice for those presenting with a respiratory viral illness. In a murine model, we found that antibiotic use during influenza infection impaired the lung innate immunologic defenses toward a secondary challenge with methicillin-resistant Staphylococcus aureus (MRSA). Antibiotics augment lung eosinophils, which have inhibitory effects on macrophage function through the release of major basic protein. Moreover, we demonstrated that antibiotic treatment during influenza infection caused a fungal dysbiosis that drove lung eosinophilia and impaired MRSA clearance. Finally, we evaluated 3 cohorts of hospitalized patients and found that eosinophils positively correlated with antibiotic use, systemic inflammation, and worsened outcomes. Altogether, our work demonstrates a detrimental effect of antibiotic treatment during influenza infection that has harmful immunologic consequences via recruitment of eosinophils to the lungs, thereby increasing the risk of developing a secondary bacterial infection.
Collapse
Affiliation(s)
| | | | | | - Changfu Yao
- Department of Medicine
- Women’s Guild Lung Institute
| | - Katherine Lagree
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Georgios D. Kitsios
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alison Morris
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
| | - Bryan J. McVerry
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine and
- Center for Medicine and the Microbiome, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - Barry R. Stripp
- Department of Medicine
- Women’s Guild Lung Institute
- Department of Biomedical Sciences
| | | | - Ying Wang
- Department of Medicine
- Women’s Guild Lung Institute
| | | | - Silvia Cho
- Department of Medicine
- Women’s Guild Lung Institute
| | | | - Ivan Vujkovic-Cvijin
- Department of Medicine
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Suman Gupta
- Department of Medicine
- Women’s Guild Lung Institute
| | | | | | - Suzanne Devkota
- Department of Medicine
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David M. Underhill
- Department of Biomedical Sciences
- Widjaja Foundation Inflammatory Bowel Disease Institute, and
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Department of Medicine
- Women’s Guild Lung Institute
- Department of Biomedical Sciences
| |
Collapse
|
24
|
Guo M, Li Y, Tang J, Wang Q, Wang Q, Zhou H, Lin H, Ma Z, Fan H. Glaesserella parasuis serotype 4 exploits fibronectin via RlpA for tracheal colonization following porcine circovirus type 2 infection. PLoS Pathog 2024; 20:e1012513. [PMID: 39264911 PMCID: PMC11392263 DOI: 10.1371/journal.ppat.1012513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality, but the role played by PCV2 and bacterial and host factors contributing to this process have not been defined. Bacterial attachment is assumed to occur via specific receptor-ligand interactions between adhesins on the bacterial cell and host proteins adsorbed to the implant surface. Mass spectrometry (MS) analysis of PCV2-infected swine tracheal epithelial cells (STEC) revealed that the expression of Extracellular matrix protein (ECM) Fibronectin (Fn) increased significantly on the infected cells surface. Importantly, efficient G. parasuis serotype 4 (GPS4) adherence to STECs was imparted by interactions with Fn. Furthermore, abrogation of adherence was gained by genetic knockout of Fn, Fn and Integrin β1 antibody blocking. Fn is frequently exploited as a receptor for bacterial pathogens. To explore the GPS4 adhesin that interacts with Fn, recombinant Fn N-terminal type I and type II domains were incubated with GPS4, and the interacting proteins were pulled down for MS analysis. Here, we show that rare lipoprotein A (RlpA) directly interacts with host Fibronectin mediating GPS4 adhesion. Finally, we found that PCV2-induced Fibronectin expression and adherence of GPS4 were prevented significantly by TGF-β signaling pathway inhibitor SB431542. Our data suggest the RlpA-Fn interaction to be a potentially promising novel therapeutic target to combat PCV2 and GPS4 coinfection.
Collapse
Affiliation(s)
- Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qiancheng Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
25
|
Yu M, Lin A, Baharom F, Li S, Legendre M, Covés-Datson E, Sohlberg E, Schlisio S, Loré K, Markovitz DM, Smed-Sörensen A. A genetically engineered therapeutic lectin inhibits human influenza A virus infection and sustains robust virus-specific CD8 T cell expansion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608041. [PMID: 39211151 PMCID: PMC11360990 DOI: 10.1101/2024.08.15.608041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Native banana lectin (BanLec) is antiviral but highly mitogenic, which limits its therapeutic value. In contrast, the genetically engineered H84T BanLec (H84T) is not mitogenic but remains effective against influenza A virus (IAV) infection in mouse models. However, the potency and effect of H84T on human immune cells and IAV-specific immune responses is undetermined. We found that H84T efficiently inhibited IAV replication in human dendritic cells (DCs) from blood and tonsils, which preserved DC viability and allowed acquisition and presentation of viral antigen. Consequently, H84T-treated DCs initiated effective expansion of IAV-specific CD8 T cells. Furthermore, H84T preserved the capacity of IAV-exposed DCs to present a second non-IAV antigen and induce robust CD8 T cell expansion. This supports H84T as a potent antiviral in humans as it effectively inhibits IAV infection without disrupting DC function, and preserves induction of antigen-specific adaptive immune responses against diverse antigens, which likely is clinically beneficial.
Collapse
|
26
|
Chen J, Zhu Y, Yuan Q. Predicting potential microbe-disease associations based on dual branch graph convolutional network. J Cell Mol Med 2024; 28:e18571. [PMID: 39086148 PMCID: PMC11291560 DOI: 10.1111/jcmm.18571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Studying the association between microbes and diseases not only aids in the prevention and diagnosis of diseases, but also provides crucial theoretical support for new drug development and personalized treatment. Due to the time-consuming and costly nature of laboratory-based biological tests to confirm the relationship between microbes and diseases, there is an urgent need for innovative computational frameworks to anticipate new associations between microbes and diseases. Here, we propose a novel computational approach based on a dual branch graph convolutional network (GCN) module, abbreviated as DBGCNMDA, for identifying microbe-disease associations. First, DBGCNMDA calculates the similarity matrix of diseases and microbes by integrating functional similarity and Gaussian association spectrum kernel (GAPK) similarity. Then, semantic information from different biological networks is extracted by two GCN modules from different perspectives. Finally, the scores of microbe-disease associations are predicted based on the extracted features. The main innovation of this method lies in the use of two types of information for microbe/disease similarity assessment. Additionally, we extend the disease nodes to address the issue of insufficient features due to low data dimensionality. We optimize the connectivity between the homogeneous entities using random walk with restart (RWR), and then use the optimized similarity matrix as the initial feature matrix. In terms of network understanding, we design a dual branch GCN module, namely GlobalGCN and LocalGCN, to fine-tune node representations by introducing side information, including homologous neighbour nodes. We evaluate the accuracy of the DBGCNMDA model using five-fold cross-validation (5-fold-CV) technique. The results show that the area under the receiver operating characteristic curve (AUC) and area under the precision versus recall curve (AUPR) of the DBGCNMDA model in the 5-fold-CV are 0.9559 and 0.9630, respectively. The results from the case studies using published experimental data confirm a significant number of predicted associations, indicating that DBGCNMDA is an effective tool for predicting potential microbe-disease associations.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Yongjun Zhu
- School of Electronic and Information EngineeringSuzhou University of Science and TechnologySuzhouChina
| | - Qun Yuan
- Department of Respiratory Medicine, The Affiliated Suzhou Hospital of NanjingUniversity Medical SchoolSuzhouChina
| |
Collapse
|
27
|
Grondin JA, Jamal A, Mowna S, Seto T, Khan WI. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024; 13:608. [PMID: 39204209 PMCID: PMC11356857 DOI: 10.3390/pathogens13080608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Intestinal parasites, including helminths and protozoa, account for a significant portion of the global health burden. The gastrointestinal (GI) tract not only serves as the stage for these parasitic infections but also as the residence for millions of microbes. As the intricacies of the GI microbial milieu continue to unfold, it is becoming increasingly apparent that the interactions between host, parasite, and resident microbes help dictate parasite survival and, ultimately, disease outcomes. Across both clinical and experimental models, intestinal parasites have been shown to impact microbial composition and diversity. Reciprocally, microbes can directly influence parasitic survival, colonization and expulsion. The gut microbiota can also indirectly impact parasites through the influence and manipulation of the host. Studying this host-parasite-microbiota axis may help bring about novel therapeutic strategies for intestinal parasitic infection as well as conditions such as inflammatory bowel disease (IBD). In this review, we explore the relationship between intestinal parasites, with a particular focus on common protozoa and helminths, and the gut microbiota, and how these interactions can influence the host defence and intestinal immune response. We will also explore the impact of this tripartite relationship in a clinical setting and its broader implications for human health.
Collapse
Affiliation(s)
- Jensine A. Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Asif Jamal
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Sadrina Mowna
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Tyler Seto
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada; (J.A.G.); (A.J.); (S.M.); (T.S.)
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
28
|
Hernandez-Morfa M, Reinoso-Vizcaino NM, Zappia VE, Olivero NB, Cortes PR, Stempin CC, Perez DR, Echenique J. Intracellular Streptococcus pneumoniae develops enhanced fluoroquinolone persistence during influenza A coinfection. Front Microbiol 2024; 15:1423995. [PMID: 39035445 PMCID: PMC11258013 DOI: 10.3389/fmicb.2024.1423995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/23/2024] Open
Abstract
Streptococcus pneumoniae is a major pathogen responsible for severe complications in patients with prior influenza A virus (IAV) infection. We have previously demonstrated that S. pneumoniae exhibits increased intracellular survival within IAV-infected cells. Fluoroquinolones (FQs) are widely used to treat pneumococcal infections. However, our prior work has shown that S. pneumoniae can develop intracellular FQ persistence, a phenomenon triggered by oxidative stress within host cells. This persistence allows the bacteria to withstand high FQ concentrations. In this study, we show that IAV infection enhances pneumococcal FQ persistence during intracellular survival within pneumocytes, macrophages, and neutrophils. This enhancement is partly due to increased oxidative stress induced by the viral infection. We find that this phenotype is particularly pronounced in autophagy-proficient host cells, potentially resulting from IAV-induced blockage of autophagosome-lysosome fusion. Moreover, we identified several S. pneumoniae genes involved in oxidative stress response that contribute to FQ persistence, including sodA (superoxide dismutase), clpL (chaperone), nrdH (glutaredoxin), and psaB (Mn+2 transporter component). Our findings reveal a novel mechanism of antibiotic persistence promoted by viral infection within host cells. This underscores the importance of considering this phenomenon when using FQs to treat pneumococcal infections, especially in patients with concurrent influenza A infection.
Collapse
Affiliation(s)
- Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nicolas M. Reinoso-Vizcaino
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Cinthia C. Stempin
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jose Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
29
|
Prada GI, Băjenaru OL, Chelu GC, Matei-Lincă CM, Nuţă CR, Moscu SG. Protecting the elderly from influenza in the context of immune system senescence. Elderly aged 65 and over are vulnerable to influenza and its associated complications.: Position paper by the Romanian Society of Gerontology and Geriatrics. J Med Life 2024; 17:746-754. [PMID: 39440332 PMCID: PMC11493167 DOI: 10.25122/jml-2024-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/26/2024] [Indexed: 10/25/2024] Open
Abstract
Influenza affects millions globally each year, often causing severe complications, hospitalizations, and deaths, particularly among the elderly. As the global population ages, infections will pose a growing health risk. Annual vaccination remains the most effective way to prevent influenza and its complications. After the age of 65, people suffering from chronic diseases become the majority of this population category. All the data support that most of the population over 65 years old, whose immune system goes through immunosenescence, presents multimorbidity, requiring age-appropriate anti-influenza protection. The immune response to the traditional influenza vaccine has been proven to be lower in the elderly, highlighting the need for a more immunogenic vaccine specifically tailored to the elderly population group. Therefore, high-dose (HD) influenza vaccines have demonstrated their safety and are more effective in preventing influenza and its associated complications compared to standard-dose (SD) vaccines in the elderly in the context of immunosenescence. These recommendations focus on the safety, effectiveness, and efficacy of HD influenza vaccines, adapted to the elderly and available on the Romanian market, to increase the vaccination rate and, thus, protect against influenza infection and its complications. Therefore, strategies such as increased accessibility and free immunizations, as well as ensuring that flu vaccines for the elderly are prescribed without restrictions based on the number of comorbidities, should be used.
Collapse
Affiliation(s)
- Gabriel-Ioan Prada
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Ovidiu-Lucian Băjenaru
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| | - Gabriela-Cristina Chelu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| | | | - Cătălina-Raluca Nuţă
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| | - Sînziana-Georgeta Moscu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute of Gerontology and Geriatrics Ana Aslan, Bucharest, Romania
| |
Collapse
|
30
|
Hiller NL, Orihuela CJ. Biological puzzles solved by using Streptococcus pneumoniae: a historical review of the pneumococcal studies that have impacted medicine and shaped molecular bacteriology. J Bacteriol 2024; 206:e0005924. [PMID: 38809015 PMCID: PMC11332154 DOI: 10.1128/jb.00059-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
The major human pathogen Streptococcus pneumoniae has been the subject of intensive clinical and basic scientific study for over 140 years. In multiple instances, these efforts have resulted in major breakthroughs in our understanding of basic biological principles as well as fundamental tenets of bacterial pathogenesis, immunology, vaccinology, and genetics. Discoveries made with S. pneumoniae have led to multiple major public health victories that have saved the lives of millions. Studies on S. pneumoniae continue today, where this bacterium is being used to dissect the impact of the host on disease processes, as a powerful cell biology model, and to better understand the consequence of human actions on commensal bacteria at the population level. Herein we review the major findings, i.e., puzzle pieces, made with S. pneumoniae and how, over the years, they have come together to shape our understanding of this bacterium's biology and the practice of medicine and modern molecular biology.
Collapse
Affiliation(s)
- N. Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Carlos J. Orihuela
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Gingerich A, Mahoney L, McCormick AL, Miller RJ, Mousa J. Human monoclonal antibodies protect against viral-mediated pneumococcal superinfection. Front Immunol 2024; 15:1364622. [PMID: 38933273 PMCID: PMC11199387 DOI: 10.3389/fimmu.2024.1364622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Introduction Community-acquired pneumonia (CAP) is a global health concern, with 25% of cases attributed to Streptococcus pneumoniae (Spn). Viral infections like influenza A virus (IAV), respiratory syncytial virus (RSV), and human metapneumovirus (hMPV) increase the risk of Spn, leading to severe complications due to compromised host immunity. Methods We evaluated the efficacy of an anti-PhtD monoclonal antibody (mAb) cocktail therapy (PhtD3 + 7) in improving survival rates in three viral/bacterial coinfection models: IAV/Spn, hMPV/Spn, and RSV/Spn. Results The PhtD3 + 7 mAb cocktail outperformed antiviral mAbs, resulting in prolonged survival. In the IAV/Spn model, it reduced bacterial titers in blood and lungs by 2-4 logs. In the hMPV/Spn model, PhtD3 + 7 provided greater protection than the hMPV-neutralizing mAb MPV467, significantly reducing bacterial titers. In the RSV/Spn model, PhtD3 + 7 offered slightly better protection than the antiviral mAb D25, uniquely decreasing bacterial titers in blood and lungs. Discussion Given the threat of antibiotic resistance, our findings highlight the potential of anti-PhtD mAb therapy as an effective option for treating viral and secondary pneumococcal coinfections.
Collapse
Affiliation(s)
- Aaron Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Lauren Mahoney
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Anna L. McCormick
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Rose J. Miller
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jarrod Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
32
|
Pokhrel V, Kuntal BK, Mande SS. Role and significance of virus-bacteria interactions in disease progression. J Appl Microbiol 2024; 135:lxae130. [PMID: 38830797 DOI: 10.1093/jambio/lxae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/22/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Understanding disease pathogenesis caused by bacteria/virus, from the perspective of individual pathogen has provided meaningful insights. However, as viral and bacterial counterparts might inhabit the same infection site, it becomes crucial to consider their interactions and contributions in disease onset and progression. The objective of the review is to highlight the importance of considering both viral and bacterial agents during the course of coinfection. The review provides a unique perspective on the general theme of virus-bacteria interactions, which either lead to colocalized infections that are restricted to one anatomical niche, or systemic infections that have a systemic effect on the human host. The sequence, nature, and underlying mechanisms of certain virus-bacteria interactions have been elaborated with relevant examples from literature. It also attempts to address the various applied aspects, including diagnostic and therapeutic strategies for individual infections as well as virus-bacteria coinfections. The review aims to aid researchers in comprehending the intricate interplay between virus and bacteria in disease progression, thereby enhancing understanding of current methodologies and empowering the development of novel health care strategies to tackle coinfections.
Collapse
Affiliation(s)
- Vatsala Pokhrel
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhusan K Kuntal
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| | - Sharmila S Mande
- TCS Research, Tata Consultancy Services Ltd., TCS SP2 SEZ, Hinjewadi Phase 3, Pune 411057, India
| |
Collapse
|
33
|
Bimbo-Szuhai E, Botea MO, Romanescu DD, Beiusanu C, Gavrilas GM, Popa GM, Antal D, Bontea MG, Sachelarie L, Macovei IC. Inflammatory Biomarkers for Assessing In-Hospital Mortality Risk in Severe COVID-19-A Retrospective Study. J Pers Med 2024; 14:503. [PMID: 38793085 PMCID: PMC11122362 DOI: 10.3390/jpm14050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Our study aims to investigate the utility of inflammatory factors as prognostic indicators for disease severity and mortality in COVID-19 patients admitted to the Intensive Care Unit (ICU) Department of Pelican Clinical Hospital Oradea Romania. While elevated white blood cell (WBC) levels are associated with COVID-19 severity and mortality, they may not effectively predict the risk of death; (2) Methods: In our ICU department, we conducted assessments on the 10th and 14th days of COVID-19 patients' hospitalization, measuring the following markers: C-reactive protein (CRP) levels, procalcitonin (PCT) levels, granulocytes/lymphocytes (G/L) ratios, ferritin levels, age, and obesity status. We included a total of 209 eligible COVID-19 patients in the final analysis. Our goal was to identify biomarkers that could quickly identify high-risk patients with a potential for disease progression and mortality; (3) Results: Our study (a retrospective, single-center observational cohort study) demonstrated statistically significant differences in predicting mortality and disease severity based on G/L ratio (p < 0.0001), PCT (p < 0.0002), CRP (p < 0.0001), ferritin (p < 0.0001), age (p < 0.0001), and obesity (p < 0.0001); (4) Conclusions: Having a G/L ratio exceeding 20 units, along with elevated levels of PCR, PCT, and ferritin in older and obese patients on the 3rd day of ICU admission, represents significant risk factors for in-hospital mortality in severe COVID-19 patients.
Collapse
Affiliation(s)
- Erika Bimbo-Szuhai
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.B.-S.); (G.M.G.); (M.G.B.)
- Pelican Hospital, 410450 Oradea, Romania; (M.O.B.); (D.D.R.); (G.M.P.); (D.A.); (I.C.M.)
| | - Mihai Octavian Botea
- Pelican Hospital, 410450 Oradea, Romania; (M.O.B.); (D.D.R.); (G.M.P.); (D.A.); (I.C.M.)
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Dana Diana Romanescu
- Pelican Hospital, 410450 Oradea, Romania; (M.O.B.); (D.D.R.); (G.M.P.); (D.A.); (I.C.M.)
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Corina Beiusanu
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.B.-S.); (G.M.G.); (M.G.B.)
| | - Gabriela Maria Gavrilas
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.B.-S.); (G.M.G.); (M.G.B.)
| | - Georgiana Maria Popa
- Pelican Hospital, 410450 Oradea, Romania; (M.O.B.); (D.D.R.); (G.M.P.); (D.A.); (I.C.M.)
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Dania Antal
- Pelican Hospital, 410450 Oradea, Romania; (M.O.B.); (D.D.R.); (G.M.P.); (D.A.); (I.C.M.)
| | - Mihaela Gabriela Bontea
- Department of Morphological Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.B.-S.); (G.M.G.); (M.G.B.)
| | - Liliana Sachelarie
- Department of Preclinical Disciplines Apollonia, Faculty of Medicine, University from Iasi, 700511 Iași, Romania
| | - Iulia Codruta Macovei
- Pelican Hospital, 410450 Oradea, Romania; (M.O.B.); (D.D.R.); (G.M.P.); (D.A.); (I.C.M.)
- Department of Surgery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
34
|
Arleevskaya MI, Novikov AA, Valeeva AR, Korovina MO, Serdiuk IL, Popov VA, Carlé C, Renaudineau Y. At Early Rheumatoid Arthritis Stage, the Infectious Spectrum Is Driven by Non-Familial Factors and Anti-CCP Immunization. J Clin Med 2024; 13:2796. [PMID: 38792338 PMCID: PMC11122272 DOI: 10.3390/jcm13102796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Background/Objectives: Patients with rheumatoid arthritis (RA) are prone to develop infections. Methods: Accordingly, 195 untreated early (e)RA patients and 398 healthy controls were selected from women in Tatarstan's cohort to study infectious history in the anamnesis (four criteria) and in the previous year (16 criteria). Information about annual infections was collected face-to-face from year to year by a qualified rheumatologist/general practitioner and included the active use of information from medical records. Results: In the anamnesis, tuberculosis, and pneumonia, and in the previous year, respiratory tract infections, skin infections, and herpes simplex virus reactivation incidence were reported to be increased in eRA patients, as well as the event number and duration of acute and chronic tonsillitis. Moreover, more bacterial-suspected upper respiratory infections and urinary tract infections were retrieved in sporadic eRA patients as compared to familial eRA patients. An elevated immunization against CCP prevented respiratory tract infection in those with HSV exacerbation. Finally, associations were retrieved between infection (event number/delay) and RA indices: (i) chronic tonsillitis exacerbations with disease activity and health assessment (HAQ) in familial eRA; (ii) bacterial-suspected upper respiratory infections with the number of swollen and tender joints in sporadic eRA; and (iii) HSV exacerbation with inflammation in eRA patients with negative/low response against CCP. Here, we demonstrate the complex nature of the interplay of RA with specific infections. Conclusions: For the first time, differences in the patterns of annual trivial infections and their links with RA indices were found in cohorts of familial and sporadic cases of the disease. Additionally, for the first time, we identified a remarkable relationship between early RA and exacerbations of chronic tonsillitis, as well as tuberculosis in the patient's history. Altogether, this study supports the existence of a complex interplay between infections and RA at onset driven by familial status and the presence of anti-CCP Ab at elevated levels.
Collapse
Affiliation(s)
- Marina I. Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (A.R.V.); (M.O.K.); (I.L.S.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Andrej A. Novikov
- Institute of Artificial Intelligence, Innopolis University, 420500 Innopolis, Russia;
| | - Anna R. Valeeva
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (A.R.V.); (M.O.K.); (I.L.S.)
- Institute of Environmental Sciences, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Marina O. Korovina
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (A.R.V.); (M.O.K.); (I.L.S.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Igor L. Serdiuk
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia; (A.R.V.); (M.O.K.); (I.L.S.)
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Vladimir A. Popov
- Institute of Physics, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Caroline Carlé
- Department of Immunology, Hôspital Purpan, INSERM U1291, CNRS U5051, Université Toulouse IIII, 31062 Toulouse, France; (C.C.); (Y.R.)
| | - Yves Renaudineau
- Department of Immunology, Hôspital Purpan, INSERM U1291, CNRS U5051, Université Toulouse IIII, 31062 Toulouse, France; (C.C.); (Y.R.)
| |
Collapse
|
35
|
Zhang L, Zhou E, Liu C, Tian X, Xue B, Zhang K, Luo B. Avian influenza and gut microbiome in poultry and humans: A "One Health" perspective. FUNDAMENTAL RESEARCH 2024; 4:455-462. [PMID: 38933214 PMCID: PMC11197557 DOI: 10.1016/j.fmre.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 06/28/2024] Open
Abstract
A gradual increase in avian influenza outbreaks has been found in recent years. It is highly possible to trigger the next human pandemic due to the characteristics of antigenic drift and antigenic shift in avian influenza virus (AIV). Although great improvements in understanding influenza viruses and the associated diseases have been unraveled, our knowledge of how these viruses impact the gut microbiome of both poultry and humans, as well as the underlying mechanisms, is still improving. The "One Health" approach shows better vitality in monitoring and mitigating the risk of avian influenza, which requires a multi-sectoral effort and highlights the interconnection of human health with environmental sustainability and animal health. Therefore, monitoring the gut microbiome may serve as a sentinel for protecting the common health of the environment, animals, and humans. This review summarizes the interactions between AIV infection and the gut microbiome of poultry and humans and their potential mechanisms. With the presented suggestions, we hope to address the current major challenges in the surveillance and prevention of microbiome-related avian influenza with the "One Health" approach.
Collapse
Affiliation(s)
- Ling Zhang
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Erkai Zhou
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ce Liu
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoyu Tian
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baode Xue
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kai Zhang
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Bin Luo
- Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai 200030, China
- Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China
| |
Collapse
|
36
|
Moon S, Han S, Jang IH, Ryu J, Rha MS, Cho HJ, Yoon SS, Nam KT, Kim CH, Park MS, Seong JK, Lee WJ, Yoon JH, Chung YW, Ryu JH. Airway epithelial CD47 plays a critical role in inducing influenza virus-mediated bacterial super-infection. Nat Commun 2024; 15:3666. [PMID: 38693120 PMCID: PMC11063069 DOI: 10.1038/s41467-024-47963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Respiratory viral infection increases host susceptibility to secondary bacterial infections, yet the precise dynamics within airway epithelia remain elusive. Here, we elucidate the pivotal role of CD47 in the airway epithelium during bacterial super-infection. We demonstrated that upon influenza virus infection, CD47 expression was upregulated and localized on the apical surface of ciliated cells within primary human nasal or bronchial epithelial cells. This induced CD47 exposure provided attachment sites for Staphylococcus aureus, thereby compromising the epithelial barrier integrity. Through bacterial adhesion assays and in vitro pull-down assays, we identified fibronectin-binding proteins (FnBP) of S. aureus as a key component that binds to CD47. Furthermore, we found that ciliated cell-specific CD47 deficiency or neutralizing antibody-mediated CD47 inactivation enhanced in vivo survival rates. These findings suggest that interfering with the interaction between airway epithelial CD47 and pathogenic bacterial FnBP holds promise for alleviating the adverse effects of super-infection.
Collapse
Affiliation(s)
- Sungmin Moon
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seunghan Han
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaechan Ryu
- Microenvironment and Immunity Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Min-Seok Rha
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Vaccine Innovation Center, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Airway Mucus Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
37
|
Cohn O, Yankovitz G, Mandelboim M, Peshes-Yaloz N, Brandes R, Bacharach E, Gat-Viks I. The host transcriptional response to superinfection by influenza A virus and Streptococcus pneumoniae. mSystems 2024; 9:e0104823. [PMID: 38446104 PMCID: PMC11019783 DOI: 10.1128/msystems.01048-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Secondary bacterial challenges during influenza virus infection "superinfection") cause excessive mortality and hospitalization. Here, we present a longitudinal study of bulk gene expression changes in murine lungs during superinfection, with an initial influenza A virus infection and a subsequent Streptococcus pneumoniae infection. In addition to the well-characterized impairment of the host response, we identified superinfection-specific alterations in the global transcriptional program that are linked to the host's ability to resist the pathogens. Particularly, whereas superinfected mice manifested an excessive rapid induction of the resistance-to-infection program, there was a substantial tissue-level rewiring of this program: upon superinfection, interferon-regulated genes were switched from positive to negative correlations with the host's resistance state, whereas genes of fatty acid metabolism switched from negative to positive correlations with resistance states. Thus, the transcriptional resistance state in superinfection is reprogrammed toward repressed interferon signaling and induced fatty acid metabolism. Our findings suggest new insights into a tissue-level remodeling of the host defense upon superinfection, providing promising targets for future therapeutic interventions. IMPORTANCE Secondary bacterial infections are the most frequent complications during influenza A virus (IAV) pandemic outbreaks, contributing to excessive morbidity and mortality in the human population. Most IAV-related deaths are attributed to Streptococcus pneumoniae (SP) infections, which usually begin within the first week of IAV infection in the respiratory tracts. Here, we focused on longitudinal transcriptional responses during a superinfection model consisting of an SP infection that follows an initial IAV infection, comparing superinfection to an IAV-only infection, an SP-only infection, and control treatments. Our longitudinal data allowed a fine analysis of gene expression changes during superinfection. For instance, we found that superinfected mice exhibited rapid gene expression induction or reduction within the first 12 h after encountering the second pathogen. Cell proliferation and immune response activation processes were upregulated, while endothelial processes, vasculogenesis, and angiogenesis were downregulated, providing promising targets for future therapeutic interventions. We further analyzed the longitudinal transcriptional responses in the context of a previously defined spectrum of the host's resistance state, revealing superinfection-specific reprogramming of resistance states, such as reprogramming of fatty acid metabolism and interferon signaling. The reprogrammed functions are compelling new targets for switching the pathogenic superinfection state into a single-infection state.
Collapse
Affiliation(s)
- Ofir Cohn
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gal Yankovitz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat Gan, Israel
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naama Peshes-Yaloz
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Brandes
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Irit Gat-Viks
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Zhang S, Li B, Zeng L, Yang K, Jiang J, Lu F, Li L, Li W. Exploring the immune-inflammatory mechanism of Maxing Shigan Decoction in treating influenza virus A-induced pneumonia based on an integrated strategy of single-cell transcriptomics and systems biology. Eur J Med Res 2024; 29:234. [PMID: 38622728 PMCID: PMC11017673 DOI: 10.1186/s40001-024-01777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.
Collapse
Affiliation(s)
- Shiying Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Bei Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Luohu People's Hospital, Shenzhen, China
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junyao Jiang
- School of Life Science, Westlake University, Hangzhou, China
| | - Fangguo Lu
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ling Li
- Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Weiqing Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China.
- Shenzhen Luohu People's Hospital, Shenzhen, China.
- The Third Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
39
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
40
|
Massimi L, Cinalli G, Frassanito P, Arcangeli V, Auer C, Baro V, Bartoli A, Bianchi F, Dietvorst S, Di Rocco F, Gallo P, Giordano F, Hinojosa J, Iglesias S, Jecko V, Kahilogullari G, Knerlich-Lukoschus F, Laera R, Locatelli D, Luglietto D, Luzi M, Messing-Jünger M, Mura R, Ragazzi P, Riffaud L, Roth J, Sagarribay A, Pinheiro MS, Spazzapan P, Spennato P, Syrmos N, Talamonti G, Valentini L, Van Veelen ML, Zucchelli M, Tamburrini G. Intracranial complications of sinogenic and otogenic infections in children: an ESPN survey on their occurrence in the pre-COVID and post-COVID era. Childs Nerv Syst 2024; 40:1221-1237. [PMID: 38456922 PMCID: PMC10973035 DOI: 10.1007/s00381-024-06332-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND COVID-19 pandemic is thought to have changed the epidemiology of some pediatric neurosurgical disease: among them are the intracranial complications of sinusitis and otitis (ICSO). According to some studies on a limited number of cases, both streptococci-related sinusitis and ICSO would have increased immediately after the pandemic, although the reason is not clear yet (seasonal changes versus pandemic-related effects). The goal of the present survey of the European Society for Pediatric Neurosurgery (ESPN) was to collect a large number of cases from different European countries encompassing the pre-COVID (2017-2019), COVID (2020-2021), and post-COVID period (2022-June 2023) looking for possible epidemiological and/or clinical changes. MATERIAL AND METHODS An English language questionnaire was sent to ESPN members about year of the event, patient's age and gender, presence of immune-deficit or other favoring risk factors, COVID infection, signs and symptoms at onset, site of primary infection, type of intracranial complication, identified germ, type and number of surgical operations, type and duration of medical treatment, clinical and radiological outcome, duration of the follow-up. RESULTS Two hundred fifty-four cases were collected by 30 centers coming from 14 different European countries. There was a statistically significant difference between the post-COVID period (129 children, 86 cases/year, 50.7% of the whole series) and the COVID (40 children, 20 cases/year, 15.7%) or the pre-COVID period (85 children, 28.3 cases/year, 33.5%). Other significant differences concerned the presence of predisposing factors/concurrent diseases (higher in the pre-COVID period) and previous COVID infection (higher in the post-COVID period). No relevant differences occurred as far as demographic, microbiological, clinical, radiological, outcome, morbidity, and mortality data were concerned. Paranasal sinuses and middle ear/mastoid were the most involved primary site of infection (71% and 27%, respectively), while extradural or subdural empyema and brain abscess were the most common ICSO (73% and 17%, respectively). Surgery was required in 95% of cases (neurosurgical and ENT procedure in 71% and 62% of cases, respectively) while antibiotics in 99% of cases. After a 12.4-month follow-up, a full clinical and radiological recovery was obtained in 85% and 84% of cases, respectively. The mortality rate was 2.7%. CONCLUSIONS These results suggest that the occurrence of ICSO was significantly increased after the pandemic. Such an increase seems to be related to the indirect effects of the pandemic (e.g., immunity debt) rather than to a direct effect of COVID infection or to seasonal fluctuations. ICSO remain challenging diseases but the pandemic did not affect the management strategies nor their prognosis. The epidemiological change of sinusitis/otitis and ICSO should alert about the appropriate follow-up of children with sinusitis/otitis.
Collapse
Affiliation(s)
- L Massimi
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University Medical School, Rome, Italy
| | - G Cinalli
- Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - P Frassanito
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - V Arcangeli
- Clinical Psychology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - C Auer
- Department of Neurosurgery, Johannes Kepler University Linz, Kepler University Hospital GmbH, Linz, Austria
| | - V Baro
- Pediatric and Functional Neurosurgery, Department of Neurosciences, University of Padova, Padua, Italy
| | - A Bartoli
- Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland
| | - F Bianchi
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - S Dietvorst
- University Hospitals Leuven, Leuven, Belgium
| | - F Di Rocco
- Hôpital Femme-Mère-Enfant, Université de Lyon, Lyon, France
| | - P Gallo
- Birmingham Children's Hospital, Birmingham, UK
| | - F Giordano
- University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - J Hinojosa
- Hospital Sant Joan de Déu, Barcelona, Spain
| | - S Iglesias
- Hospital Regional Universitario de Malaga, Malaga, Spain
| | - V Jecko
- Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - G Kahilogullari
- Department of Neurosurgery, Ankara University, Ankara, Turkey
| | - F Knerlich-Lukoschus
- Division Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - R Laera
- Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - D Locatelli
- Neurosurgery Department, Università Dell'Insubria, Ospedale di Circolo e Macchi Foundation, Varese, Italy
| | - D Luglietto
- Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - M Luzi
- Azienda Ospedaliero Universitaria Delle Marche, Ancona, Italy
| | | | - R Mura
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - P Ragazzi
- Department of Pediatric Neurosurgery, Ospedale Infantile Regina Margherita, Città della Salute e della Scienza, Turin, Italy
| | - L Riffaud
- Rennes University Hospital, Rennes, France
| | - J Roth
- Dana Children's Hospital, Tel Aviv Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - A Sagarribay
- Hospital Dona Estefânia-Centro Hospitalar Universitário, Lisboa, Portugal
- Hospital CUF Descobertas, Lisboa, Portugal
| | - M Santos Pinheiro
- Centro Hospitalar Lisboa Norte-Hospital Santa Maria, Lisboa, Portugal
| | - P Spazzapan
- University Medical Center-Ljubljana, Ljubljana, Slovenia
| | - P Spennato
- Santobono-Pausilipon Children's Hospital, AORN, Naples, Italy
| | - N Syrmos
- Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - L Valentini
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M L Van Veelen
- Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - M Zucchelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto Scienze Neurologiche Di Bologna, Boulogne, Italy
| | - G Tamburrini
- Pediatric Neurosurgery, Neuroscience-Sense Organs-Chest Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Department of Neuroscience, Catholic University Medical School, Rome, Italy
| |
Collapse
|
41
|
Liu X, Van Maele L, Matarazzo L, Soulard D, Alves Duarte da Silva V, de Bakker V, Dénéréaz J, Bock FP, Taschner M, Ou J, Gruber S, Nizet V, Sirard JC, Veening JW. A conserved antigen induces respiratory Th17-mediated broad serotype protection against pneumococcal superinfection. Cell Host Microbe 2024; 32:304-314.e8. [PMID: 38417443 DOI: 10.1016/j.chom.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/06/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024]
Abstract
Several vaccines targeting bacterial pathogens show reduced efficacy upon concurrent viral infection, indicating that a new vaccinology approach is required. To identify antigens for the human pathogen Streptococcus pneumoniae that are effective following influenza infection, we performed CRISPRi-seq in a murine model of superinfection and identified the conserved lafB gene as crucial for virulence. We show that LafB is a membrane-associated, intracellular protein that catalyzes the formation of galactosyl-glucosyl-diacylglycerol, a glycolipid important for cell wall homeostasis. Respiratory vaccination with recombinant LafB, in contrast to subcutaneous vaccination, was highly protective against S. pneumoniae serotypes 2, 15A, and 24F in a murine model. In contrast to standard capsule-based vaccines, protection did not require LafB-specific antibodies but was dependent on airway CD4+ T helper 17 cells. Healthy human individuals can elicit LafB-specific immune responses, indicating LafB antigenicity in humans. Collectively, these findings present a universal pneumococcal vaccine antigen that remains effective following influenza infection.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China; Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Laurye Van Maele
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Laura Matarazzo
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Daphnée Soulard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vinicius Alves Duarte da Silva
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Julien Dénéréaz
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Florian P Bock
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Michael Taschner
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Jinzhao Ou
- Department of Pathogen Biology, Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Stephan Gruber
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jean-Claude Sirard
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, 59000 Lille, France.
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Chollet L, Heumel S, Deruyter L, Bouilloux F, Delval L, Robert V, Gevaert MH, Pichavant M, Sencio V, Robil C, Wolowczuk I, Sokol H, Auger S, Douablin A, Langella P, Chatel JM, Grangette C, Trottein F. Faecalibacterium duncaniae as a novel next generation probiotic against influenza. Front Immunol 2024; 15:1347676. [PMID: 38590519 PMCID: PMC11000806 DOI: 10.3389/fimmu.2024.1347676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
The gut-lung axis is critical during viral respiratory infections such as influenza. Gut dysbiosis during infection translates into a massive drop of microbially produced short-chain fatty acids (SCFAs). Among them, butyrate is important during influenza suggesting that microbiome-based therapeutics targeting butyrate might hold promises. The butyrate-producing bacterium Faecalibacterium duncaniae (formerly referred to as F. prausnitzii) is an emerging probiotic with several health-promoting characteristics. To investigate the potential effects of F. duncaniae on influenza outcomes, mice were gavaged with live F. duncaniae (A2-165 or I-4574 strains) five days before infection. Supplementation of F. duncaniae was associated with less severe disease, a lower pulmonary viral load, and lower levels of lung inflammation. F. duncaniae supplementation impacted on gut dysbiosis induced by infection, as assessed by 16S rRNA sequencing. Interestingly, F. duncaniae administration was associated with a recovery in levels of SCFAs (including butyrate) in infected animals. The live form of F. duncaniae was more potent that the pasteurized form in improving influenza outcomes. Lastly, F. duncaniae partially protected against secondary (systemic) bacterial infection. We conclude that F. duncaniae might serve as a novel next generation probiotic against acute viral respiratory diseases.
Collapse
Affiliation(s)
- Loïc Chollet
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Séverine Heumel
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Lucie Deruyter
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | | | - Lou Delval
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Véronique Robert
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Marie-Hélène Gevaert
- Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Univ. Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, Lille, France
| | - Muriel Pichavant
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Valentin Sencio
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Cyril Robil
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - Harry Sokol
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre de Recherche Saint-Antoine, Centre de Recherche scientifique Saint-Antoine (CRSA), Assistance Public – Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, Gastroenterology Department, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM) Fédérations Hospitalo-Universitaires (FHU), Paris, France
| | - Sandrine Auger
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | | | - Philippe Langella
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Jean-Marc Chatel
- Unité Mixte de Recherche 1319 (UMR1319) Micalis, Université Paris-Saclay, Institut National de Recherche Pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), AgroParisTech, Jouy-en-Josas, France
| | - Corinne Grangette
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| | - François Trottein
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017 - CIIL – Centre d′Infection et d′Immunité de Lille, Lille, France
| |
Collapse
|
43
|
Kang VJW, Huang YS, Chen MC, Chiang PY, Sheng WH, Wang HC, Wang TC, Chang YC. CT findings of 144 in-hospital patients with influenza pneumonia: A retrospective analysis. J Formos Med Assoc 2024; 123:381-389. [PMID: 37640653 DOI: 10.1016/j.jfma.2023.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/08/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND/PURPOSE Patients with influenza infection during their period of admission may have worse computed tomography (CT) manifestation according to the clinical status. This study aimed to evaluate the CT findings of in-hospital patients due to clinically significant influenza pneumonia with correlation of clinical presentations. METHODS In this retrospective, single center case series, 144 patients were included. All in-hospital patients were confirmed influenza infection and underwent CT scan. These patients were divided into three groups according to the clinical status of the most significant management: (1) without endotracheal tube and mechanical ventilator (ETTMV) or extracorporeal membrane oxygenation (ECMO); (2) with ETTMV; (3) with ETTMV and ECMO. Pulmonary opacities were scored according to extent. Spearman rank correlation analysis was used to evaluate the correlation between clinical parameters and CT scores. RESULTS The predominant CT manifestation of influenza infection was mixed ground-glass opacity (GGO) and consolidation with both lung involvement. The CT scores were all reach significant difference among all three groups (8.73 ± 6.29 vs 12.49 ± 6.69 vs 18.94 ± 4.57, p < 0.05). The chest CT score was correlated with age, mortality, and intensive care unit (ICU) days (all p values were less than 0.05). In addition, the CT score was correlated with peak lactate dehydrogenase (LDH) level and peak C-reactive protein (CRP) level (all p values were less than 0.05). Concomitant bacterial infection had higher CT score than primary influenza pneumonia (13.02 ± 7.27 vs 8.95 ± 5.99, p < 0.05). CONCLUSION Thin-section chest CT scores correlated with clinical and laboratory parameters in in-hospital patients with influenza pneumonia.
Collapse
Affiliation(s)
| | - Yu-Sen Huang
- Department of Medical Imaging, National Taiwan University, Taipei, Taiwan.
| | - Mei-Chi Chen
- Department of Medical Imaging, National Taiwan University, Taipei, Taiwan.
| | - Pin-Yi Chiang
- Department of Medical Imaging, National Taiwan University, Taipei, Taiwan.
| | - Wang-Huei Sheng
- Division of Infectious Diseases, Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taiwan.
| | - Hao-Chien Wang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taiwan; Division of Chest Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Teh-Chen Wang
- Department Medical Imaging, Taipei City Hospital Yang-Ming Branch, Taipei, Taiwan.
| | - Yeun-Chung Chang
- Department of Medical Imaging, National Taiwan University, Taipei, Taiwan; Department of Radiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
44
|
Xie L, Luo G, Yang Z, Wu WC, Chen J, Ren Y, Zeng Z, Ye G, Pan Y, Zhao WJ, Chen YQ, Hou W, Sun Y, Guo D, Yang Z, Li J, Holmes EC, Li Y, Chen L, Shi M. The clinical outcome of COVID-19 is strongly associated with microbiome dynamics in the upper respiratory tract. J Infect 2024; 88:106118. [PMID: 38342382 DOI: 10.1016/j.jinf.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVES The respiratory tract is the portal of entry for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although a variety of respiratory pathogens other than SARS-CoV-2 have been associated with severe cases of COVID-19 disease, the dynamics of the upper respiratory microbiota during disease the course of disease, and how they impact disease manifestation, remain uncertain. METHODS We collected 349 longitudinal upper respiratory samples from a cohort of 65 COVID-19 patients (cohort 1), 28 samples from 28 recovered COVID-19 patients (cohort 2), and 59 samples from 59 healthy controls (cohort 3). All COVID-19 patients originated from the earliest stage of the epidemic in Wuhan. Based on a modified clinical scale, the disease course was divided into five clinical disease phases (pseudotimes): "Healthy" (pseudotime 0), "Incremental" (pseudotime 1), "Critical" (pseudotime 2), "Complicated" (pseudotime 3), "Convalescent" (pseudotime 4), and "Long-term follow-up" (pseudotime 5). Using meta-transcriptomics, we investigated the features and dynamics of transcriptionally active microbes in the upper respiratory tract (URT) over the course of COVID-19 disease, as well as its association with disease progression and clinical outcomes. RESULTS Our results revealed that the URT microbiome exhibits substantial heterogeneity during disease course. Two clusters of microbial communities characterized by low alpha diversity and enrichment for multiple pathogens or potential pathobionts (including Acinetobacter and Candida) were associated with disease progression and a worse clinical outcome. We also identified a series of microbial indicators that classified disease progression into more severe stages. Longitudinal analysis revealed that although the microbiome exhibited complex and changing patterns during COVID-19, a restoration of URT microbiomes from early dysbiosis toward more diverse status in later disease stages was observed in most patients. In addition, a group of potential pathobionts were strongly associated with the concentration of inflammatory indicators and mortality. CONCLUSION This study revealed strong links between URT microbiome dynamics and disease progression and clinical outcomes in COVID-19, implying that the treatment of severe disease should consider the full spectrum of microbial pathogens present.
Collapse
Affiliation(s)
- Linlin Xie
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gengyan Luo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zhongzhou Yang
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei-Chen Wu
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Jintao Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yuting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhikun Zeng
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guangming Ye
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yunbao Pan
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Jing Zhao
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences/Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yanni Sun
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Deying Guo
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Yirong Li
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Liangjun Chen
- Wuhan Research Center for Infectious Diseases and Tumors of the Chinese Academy of Medical Sciences/Hubei Engineering Center for Infectious Disease Prevention, Control and Treatment/Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Mang Shi
- State key laboratory for biocontrol, Shenzhen Key Laboratory of Systems Medicine for inflammatory diseases, School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
45
|
Brown L, Sutton KJ, Browne C, Bartelt-Hofer J, Greiner W, Petitjean A, Roiz J. Cost of illness of the vaccine-preventable diseases influenza, herpes zoster and pneumococcal disease in France. Eur J Public Health 2024; 34:170-175. [PMID: 38061039 PMCID: PMC10843936 DOI: 10.1093/eurpub/ckad212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The incidence of certain vaccine-preventative diseases, such as influenza, herpes zoster and pneumococcal infection, continues to be high despite the availability of vaccines, resulting in a substantial health and economic burden on society, particularly among older adults aged ≥65 years. METHODS A cost calculator was developed to assess the cost of illness of influenza, herpes zoster and pneumococcal disease in France. Direct medical costs related to diagnosis and treatment in the older adult population in both inpatient and outpatient settings were modelled over a 1-year time horizon. Scenario analyses were conducted to determine the impact of hospitalizations on the results by considering only influenza-attributed diagnoses. RESULTS In France, influenza has the highest incidence, followed by herpes zoster and pneumococcal disease. Similarly, influenza poses the greatest cost burden among all older adults, while pneumococcal disease poses the greatest cost burden among those aged 65-74 years. When considering only influenza-attributed diagnoses, the number of inpatient visits and associated costs was reduced by 63% in the overall older adult population. In the low-incidence season, the number of inpatient visits and associated costs were reduced by 69%, while in the high-incidence season, the number of inpatient visits and associated costs increased by 63%. CONCLUSION Influenza remains a leading vaccine-preventable disease among older adults in France, resulting in a substantial economic burden that could be prevented by increasing vaccine uptake.
Collapse
|
46
|
Zhao D, Sun Y, Guo J, Tang Y, Wang Z, Wen X, Dong Y, Liu Y. Pathogenic Characteristics of an Infection with Canine Influenza Virus and Streptococcus equi subsp. zooepidemicus Alone or in Combination in Mice. Transbound Emerg Dis 2024; 2024:2237621. [PMID: 40303164 PMCID: PMC12016976 DOI: 10.1155/2024/2237621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 05/02/2025]
Abstract
Both Streptococcus equi subsp. zooepidemicus (SEZ) and canine influenza virus (CIV) are two important pathogens causing infectious respiratory disease in dogs and are frequently codetected in respiratory secretions. However, the clinical significance of viral/bacterial coinfection remains unknown. This study investigated the pathogenic characteristics of infection with CIV and SEZ alone or in combination in mice. Our data indicated that the severity of the disease is related to the challenge order of CIV and SEZ. Coinfection of CIV and SEZ induced higher weight loss in mice than single infection, except for the VB group (viral followed by secondary bacterial infection). Compared with the concurrent or sequential infection groups of CIV and SEZ, mice in the CIV-SEZ preincubation group exhibited more obvious weight loss, higher mortality, and significantly enhanced burden of SEZ and CIV in tissues. Interestingly, viral and bacterial preincubation before coinfection caused typical pulmonary fibrosis in mice. Correspondingly, transforming growth factor (TGF)-β was upregulated, and its canonical small mother against decapentaplegic (Smad) 2/3 signaling was noticeably induced. Further investigation indicated that the activity of the viral neuraminidase (NA) enzyme upon sialic acid was considerably increased due to the direct interaction of CIV with SEZ, which may be related to the activation of the TGF-β signaling pathway. These findings implicate an unexpected contribution of the direct interaction between CIV and SEZ to synergistic pathogenicity.
Collapse
Affiliation(s)
- Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaru Sun
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jingjing Guo
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuping Tang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhibo Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xia Wen
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Guo M, Zhang J, Wang Q, Tang J, Li Y, Zhou H, Lin H, Ma Z, Fan H. Porcine circovirus type 2 and Glaesserella parasuis serotype 4 co-infection activates Snail1 to disrupt the intercellular junctions and facilitate bacteria translocation across the tracheal epithelium. Vet Microbiol 2024; 288:109954. [PMID: 38104440 DOI: 10.1016/j.vetmic.2023.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Clinically, Porcine circovirus type 2 (PCV2) often causes disease through coinfection with other bacterial pathogens, including Glaesserella parasuis (G. parasuis), which causes high morbidity and mortality. However, the mechanism of PCV2 and G. parasuis serotype 4 (GPS4) co-infection is still not fully understood. In this study, swine tracheal epithelial cells (STEC) were used as a barrier model, and our results showed that PCV2 infection increased the adhesion of GPS4 to STEC, while decreasing the levels of ZO-1, Occludin and increasing tracheal epithelial permeability, and ultimately facilitated GPS4 translocation. Snail1 is a transcriptional repressor, and has been known to induce epithelial-to-mesenchymal transition (EMT) during development or in cancer metastasis. Importantly, we found that Snail1, as a transcriptional repressor, was crucial in destroying the tracheal epithelial barrier induced by PCV2, GPS4, PCV2 and GPS4 coinfection. For the first time, we found that PCV2, GPS4, PCV2 and GPS4 coinfection cross-activates TGF-β and p38/MAPK signaling pathways to upregulate the expression of Snail1, down-regulate the levels of ZO-1 and Occludin, and thus disrupt the integrity of tracheal epithelial barrier then promoting GPS4 translocation. Finally, PCV2 and GPS4 co-infection also can activate TGF-β and p38/MAPK signaling pathways in vivo and upregulate Snail1, ultimately down-regulating the expression of ZO-1 and Occludin. Our study elucidates how PCV2 infection promotes GPS4 to breach the tracheal epithelial barrier and aggravate clinical manifestations.
Collapse
Affiliation(s)
- Mengru Guo
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianan Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qing Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jinsheng Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China; College of Animal Science, Anhui Science and Technology University, Fengyang, China.
| |
Collapse
|
48
|
Romagny S, Sixt T, Moretto F, Ray P, Ricolfi F, Piroth L, Blot M. The evolution of lung computed tomography findings in COVID-19 from 2020 to 2023: more signs of co-infection. ERJ Open Res 2024; 10:00727-2023. [PMID: 38410711 PMCID: PMC10895429 DOI: 10.1183/23120541.00727-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/28/2023] [Indexed: 02/28/2024] Open
Abstract
Significant changes were observed in the lung imaging of hospitalised COVID-19 patients from 2020 to 2023, with the emergence of more signs of co-infection https://bit.ly/3TaQlJ2.
Collapse
Affiliation(s)
- Sabrina Romagny
- Emergency Department, Dijon-Bourgogne University Hospital, Dijon, France
| | - Thibault Sixt
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
| | - Florian Moretto
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
| | - Patrick Ray
- Emergency Department, Dijon-Bourgogne University Hospital, Dijon, France
| | - Frederic Ricolfi
- Department of Radiology, Dijon-Bourgogne University Hospital, Dijon, France
| | - Lionel Piroth
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
- CHU Dijon-Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- LabEx LipSTIC, University of Burgundy, Dijon, France
| | - Mathieu Blot
- Department of Infectious Diseases, Dijon-Bourgogne University Hospital, Dijon, France
- CHU Dijon-Bourgogne, INSERM, Université de Bourgogne, CIC 1432, Module Épidémiologie Clinique, Dijon, France
- LabEx LipSTIC, University of Burgundy, Dijon, France
- Lipness Team, INSERM Research Centre LNC-UMR1231 and LabEx LipSTIC, University of Burgundy, Dijon, France
| |
Collapse
|
49
|
Nucera F, Bonina L, Cipolla A, Pirina P, Hansbro PM, Adcock IM, Caramori G. Poxviridae Pneumonia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:183-204. [PMID: 38801579 DOI: 10.1007/978-3-031-57165-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviridae family includes several viruses that infecting humans usually causes skin lesions only, but in some cases their clinical course is complicated by viral pneumonia (with or without bacterial superinfections). Historically variola virus has been the poxviridae most frequently associated with the development of pneumonia with many large outbreaks worldwide before its eradication in 1980. It is still considered a biological threat for its potential in biological warfare and bioterrorism. Smallpox pneumonia can be severe with the onset of acute respiratory distress syndrome (ARDS) and death. Vaccinia virus, used for vaccination against smallpox exceptionally, in immunocompromised patients, can induce generalized (with also lung involvement) severe disease after vaccination. MPXV virus occasionally can cause pneumonia particularly in immunocompromised patients. The pathophysiology of poxviridae pneumonia is still an area of active research; however, in animal models these viruses can cause both direct damage to the lower airways epithelium and a hyperinflammatory syndrome, like a cytokine storm. Multiple mechanisms of immune evasion have also been described. The treatment of poxviridae pneumonia is mainly based on careful supportive care. Despite the absence of randomized clinical trials in patients with poxviridae pneumonia there are antiviral drugs, such as tecovirimat, cidofovir and brincidofovir, FDA-approved for use in smallpox and also available under an expanded access protocol for treatment of MPXV. There are 2 (replication-deficient modified vaccinia Ankara and replication-competent vaccinia virus) smallpox vaccines FDA-approved with the first one also approved for prevention of MPXV in adults that are at high risk of infection.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Messina, Italy
| | - Letterio Bonina
- Virologia, Dipartimento di Patologia delle Malattie Umane "G. Barresi", Università degli Studi di Messina, Messina, Italy
| | - Antonino Cipolla
- Pneumologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Catania, Catania, Italy
| | - Pietro Pirina
- Pneumologia, Dipartimento di Medicina, Chirurgia e Farmacia, Università degli Studi di Sassari, Sassari, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
50
|
Jia L, Luo H, Li L, Wang M, Liu J, Liang Y, Li S, Jiang Y, Yang J, Song H. Targeting complement hyperactivation: a novel therapeutic approach for severe pneumonia induced by influenza virus/staphylococcus aureus coinfection. Signal Transduct Target Ther 2023; 8:467. [PMID: 38155175 PMCID: PMC10754916 DOI: 10.1038/s41392-023-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 12/30/2023] Open
Affiliation(s)
- Leili Jia
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Haihua Luo
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lizhong Li
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Mingyao Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, China
| | - Yuan Liang
- Institute for Disease Control and Prevention of PLA, Beijing, China
| | - Shan Li
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong Jiang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, 100005, Beijing, China.
| | - Hongbin Song
- Institute for Disease Control and Prevention of PLA, Beijing, China.
| |
Collapse
|