1
|
Parker LE, Papanicolaou KN, Zalesak-Kravec S, Weinberger EM, Kane MA, Foster DB. Retinoic acid signaling and metabolism in heart failure. Am J Physiol Heart Circ Physiol 2025; 328:H792-H813. [PMID: 39933792 DOI: 10.1152/ajpheart.00871.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Nearly 70 years after studies first showed that the offspring of vitamin A (retinol, ROL)-deficient rats exhibit structural cardiac defects and over 20 years since the role of vitamin A's potent bioactive metabolite hormone, all-trans retinoic acid (ATRA), was elucidated in embryonic cardiac development, the role of the vitamin A metabolites, or retinoids, in adult heart physiology and heart and vascular disease, remains poorly understood. Studies have shown that low serum levels of retinoic acid correlate with higher all-cause and cardiovascular mortality, though the relationship between circulating retinol and ATRA levels, cardiac tissue ATRA levels, and intracellular cardiac ATRA signaling in the context of heart and vascular disease has only begun to be addressed. We have recently shown that patients with idiopathic dilated cardiomyopathy show a nearly 40% decline of in situ cardiac ATRA levels, despite adequate local stores of retinol. Moreover, we and others have shown that the administration of ATRA forestalls the development of heart failure (HF) in rodent models. In this review, we summarize key facets of retinoid metabolism and signaling and discuss mechanisms by which impaired ATRA signaling contributes to several HF hallmarks including hypertrophy, contractile dysfunction, poor calcium handling, redox imbalance, and fibrosis. We highlight unresolved issues in cardiac ATRA metabolism whose pursuit will help refine therapeutic strategies aimed at restoring ATRA homeostasis.
Collapse
Affiliation(s)
- Lauren E Parker
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Kyriakos N Papanicolaou
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | | | - Eva M Weinberger
- School of Medicine, Imperial College London, London, United Kingdom
| | - Maureen A Kane
- School of Pharmacy, University of Maryland, Baltimore, Maryland, United States
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
2
|
Wang Y, Zhang Y, Kim K, Han J, Okin D, Jiang Z, Yang L, Subramaniam A, Means TK, Nestlé FO, Fitzgerald KA, Randolph GJ, Lesser CF, Kagan JC, Mathis D, Benoist C. A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control. Immunity 2024; 57:2737-2754.e12. [PMID: 39571575 PMCID: PMC11634661 DOI: 10.1016/j.immuni.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024]
Abstract
Ligand-dependent transcription factors of the nuclear receptor (NR) family regulate diverse aspects of metazoan biology, enabling communications between distant organs via small lipophilic molecules. Here, we examined the impact of each of 35 NRs on differentiation and homeostatic maintenance of all major immunological cell types in vivo through a "Rainbow-CRISPR" screen. Receptors for retinoic acid exerted the most frequent cell-specific roles. NR requirements varied for resident macrophages of different tissues. Deletion of either Rxra or Rarg reduced frequencies of GATA6+ large peritoneal macrophages (LPMs). Retinoid X receptor alpha (RXRα) functioned conventionally by orchestrating LPM differentiation through chromatin and transcriptional regulation, whereas retinoic acid receptor gamma (RARγ) controlled LPM survival by regulating pyroptosis via association with the inflammasome adaptor ASC. RARγ antagonists activated caspases, and RARγ agonists inhibited cell death induced by several inflammasome activators. Our findings provide a broad view of NR function in the immune system and reveal a noncanonical role for a retinoid receptor in modulating inflammasome pathways.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Yanbo Zhang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Kyungsub Kim
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jichang Han
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Okin
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Liang Yang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Arum Subramaniam
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Terry K Means
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Frank O Nestlé
- Immunology and Inflammatory Research Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Gwendalyn J Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cammie F Lesser
- Center for Bacterial Pathogenesis and Department of Microbiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
3
|
Xu L, Xu Y, Wang G, Tu X, Xu J, Zheng H, Wang D, Su Y, Zhang XK, Zeng Z. Halogenated retinoid derivatives as dual RARα and RXRα modulators for treating acute promyelocytic leukemia cells. Eur J Med Chem 2024; 277:116779. [PMID: 39163777 DOI: 10.1016/j.ejmech.2024.116779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Acute promyelocytic leukemia (APL), a distinctive subtype of acute myeloid leukemia (AML), is characterized by the t(15; 17) translocation forming the PML-RARα fusion protein. Recent studies have revealed a crucial role of retinoid X receptor α (RXRα) in PML-RARα's tumorigenesis. This necessitates the development of dual RARα and RXRα targeting compounds for treating APL. Here, we developed a pair of brominated retinoid isomers, 5a and 5b, exhibiting RARα agonistic selectivity among the RAR subtypes and RXRα partial agonistic activities. In the treatment of APL cells, low doses (RARα activation range) of 5a and 5b degrade PML-RARα and strongly induce differentiation, while higher doses (RXRα activation range) induce G2/M arrest and apoptosis in both all-trans retinoic acid (ATRA)-sensitive and resistant cells. We replaced the bromine in 5a with chlorine or iodine to obtain compounds 7 or 8a. Interestingly, the chlorinated compound 7 tends to activate RXRα and induce G2/M arrest and apoptosis, while the iodinated compound 8a tends to activate RARα and induce differentiation. Together, our work underscores several advantages and characteristics of halogens in the rational design of RARα and RXRα ligands, offering three promising drug candidates for treating both ATRA-sensitive and resistant APL.
Collapse
Affiliation(s)
- Lin Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Yunqing Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Guijiang Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xuhuang Tu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiale Xu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hongzhi Zheng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Daohu Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China
| | - Ying Su
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China; NucMito Pharmaceuticals Co., Ltd., Xiamen, 361000, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
4
|
Powała K, Żołek T, Brown G, Kutner A. Molecular Interactions of Selective Agonists and Antagonists with the Retinoic Acid Receptor γ. Int J Mol Sci 2024; 25:6568. [PMID: 38928275 PMCID: PMC11203493 DOI: 10.3390/ijms25126568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
All-trans retinoic acid (ATRA), the major active metabolite of all-trans retinol (vitamin A), is a key hormonal signaling molecule. In the adult organism, ATRA has a widespread influence on processes that are crucial to the growth and differentiation of cells and, in turn, the acquisition of mature cell functions. Therefore, there is considerable potential in the use of retinoids to treat diseases. ATRA binds to the retinoic acid receptors (RAR) which, as activated by ATRA, selectively regulate gene expression. There are three main RAR isoforms, RARα, RARβ, and RARγ. They each have a distinct role, for example, RARα and RARγ regulate myeloid progenitor cell differentiation and hematopoietic stem cell maintenance, respectively. Hence, targeting an isoform is crucial to developing retinoid-based therapeutics. In principle, this is exemplified when ATRA is used to treat acute promyelocytic leukemia (PML) and target RARα within PML-RARα oncogenic fusion protein. ATRA with arsenic trioxide has provided a cure for the once highly fatal leukemia. Recent in vitro and in vivo studies of RARγ have revealed the potential use of agonists and antagonists to treat diseases as diverse as cancer, heterotopic ossification, psoriasis, and acne. During the final drug development there may be a need to design newer compounds with added modifications to improve solubility, pharmacokinetics, or potency. At the same time, it is important to retain isotype specificity and activity. Examination of the molecular interactions between RARγ agonists and the ligand binding domain of RARγ has revealed aspects to ligand binding that are crucial to RARγ selectivity and compound activity and key to designing newer compounds.
Collapse
Affiliation(s)
- Katarzyna Powała
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Teresa Żołek
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland
| | - Geoffrey Brown
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK;
| | - Andrzej Kutner
- Department of Drug Chemistry Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha, 02-097 Warsaw, Poland;
| |
Collapse
|
5
|
Wang D, Pei P, Shea F, Spinney R, Chang A, Lahann J, Mallery SR. Growth modulatory effects of fenretinide encompass keratinocyte terminal differentiation: a favorable outcome for oral squamous cell carcinoma chemoprevention. Carcinogenesis 2024; 45:436-449. [PMID: 38470060 PMCID: PMC11519021 DOI: 10.1093/carcin/bgae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is worldwide health problem associated with high morbidity and mortality. From both the patient and socioeconomic perspectives, prevention of progression of premalignant oral intraepithelial neoplasia (OIN) to OSCC is clearly the preferable outcome. Optimal OSCC chemopreventives possess a variety of attributes including high tolerability, bioavailability, efficacy and preservation of an intact surface epithelium. Terminal differentiation, which directs oral keratinocytes leave the proliferative pool to form protective cornified envelopes, preserves the protective epithelial barrier while concurrently eliminating growth-aberrant keratinocytes. This study employed human premalignant oral keratinocytes and an OSCC cell line to evaluate the differentiation-inducing capacity of the synthetic retinoid, fenretinide (4HPR). Full-thickness oral mucosal explants were evaluated for proof of concept differentiation studies. Results of this study characterize the ability of 4HPR to fulfill all requisite components for keratinocyte differentiation, i.e. nuclear import via binding to cellular RA binding protein-II (molecular modeling), binding to and subsequent activation of retinoic acid nuclear receptors (receptor activation assays), increased expression and translation of genes associated with keratinocyte differentiation [Reverse transcription polymerase chain reaction (RT-PCR), immunoblotting] upregulation of a transglutaminase enzyme essential for cornified envelope formation (transglutaminase 3, functional assay) and augmentation of terminal differentiation in human oral epithelial explants (image-analyses quantified corneocyte desquamation). These data build upon the chemoprevention repertoire of 4HPR that includes function as a small molecule kinase inhibitor and inhibition of essential mechanisms necessary for basement membrane invasion. An upcoming clinical trial, which will assess whether a 4HPR-releasing mucoadhesive patch induces histologic, clinical and molecular regression in OIN lesions, will provide essential clinical insights.
Collapse
Affiliation(s)
- Daren Wang
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Ping Pei
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Fortune Shea
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Richard Spinney
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Albert Chang
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Department of Chemical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Material Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Macromolecular Science and Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Susan R Mallery
- Division of Oral Maxillofacial Pathology, College of Dentistry, The Ohio State University, Columbus, OH, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
6
|
Kim MJ, Kulkarni V, Goode MA, Sivesind TE. Exploring the interactions of antihistamine with retinoic acid receptor beta (RARB) by molecular dynamics simulations and genome-wide meta-analysis. J Mol Graph Model 2023; 124:108539. [PMID: 37331258 PMCID: PMC10529808 DOI: 10.1016/j.jmgm.2023.108539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Kaposi sarcoma (KS) is one of the most common AIDS-related malignant neoplasms, which can leave lesions on the skin among HIV patients. These lesions can be treated with 9-cis-retinoic acid (9-cis-RA), an endogenous ligand of retinoic acid receptors that has been FDA-approved for treatment of KS. However, topical application of 9-cis-RA can induce several unpleasant side effects, like headache, hyperlipidemia, and nausea. Hence, alternative therapeutics with less side effects are desirable. There are case reports associating over-the-counter antihistamine usage with regression of KS. Antihistamines competitively bind to H1 receptor and block the action of histamine, best known for being released in response to allergens. Furthermore, there are already dozens of antihistamines that are FDA-approved with less side effects than 9-cis-RA. This led our team to conduct a series of in-silico assays to determine whether antihistamines can activate retinoic acid receptors. First, we utilized high-throughput virtual screening and molecular dynamics simulations to model high-affinity interactions between antihistamines and retinoic acid receptor beta (RARβ). We then performed systems genetics analysis to identify a genetic association between H1 receptor itself and molecular pathways involved in KS. Together, these findings advocate for exploration of antihistamines against KS, starting with our two promising hit compounds, bepotastine and hydroxyzine, for experimental validation study in the future.
Collapse
Affiliation(s)
- Minjae J Kim
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | | | - Micah A Goode
- University of Tennessee Health Sciences Center School of Medicine, Memphis, TN, USA.
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
7
|
Ghorayshian A, Danesh M, Mostashari-Rad T, fassihi A. Discovery of novel RARα agonists using pharmacophore-based virtual screening, molecular docking, and molecular dynamics simulation studies. PLoS One 2023; 18:e0289046. [PMID: 37616260 PMCID: PMC10449137 DOI: 10.1371/journal.pone.0289046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 07/10/2023] [Indexed: 08/26/2023] Open
Abstract
Nuclear retinoic acid receptors (RARs) are ligand-dependent transcription factors involved in various biological processes, such as embryogenesis, cell proliferation, differentiation, reproduction, and apoptosis. These receptors are regulated by retinoids, i.e., retinoic acid (RA) and its analogs, as receptor agonists. RAR agonists are promising therapeutic agents for the treatment of serious dermatological disorders, including some malignant conditions. By inducing apoptosis, they are able to inhibit the proliferation of diverse cancer cell lines. Also, RAR agonists have recently been identified as therapeutic options for some neurodegenerative diseases. These features make retinoids very attractive molecules for medical purposes. Synthetic selective RAR agonists have several advantages over endogenous ones, but they suffer poor pharmacokinetic properties. These compounds are normally lipophilic acids with unfavorable drug-like features such as poor oral bioavailability. Recently, highly selective, potent, and less toxic RAR agonists with proper lipophilicity, thus, good oral bioavailability have been developed for some therapeutic applications. In the present study, ligand and structure-based virtual screening technique was exploited to introduce some novel RARα agonists. Pharmacokinetic assessment was also performed in silico to suggest those compounds which have optimized drug-like features. Finally, two compounds with the best in silico pharmacological features are proposed as lead molecules for future development of RARα agonists.
Collapse
Affiliation(s)
- Atefeh Ghorayshian
- Department of Cell and Molecular Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mahshid Danesh
- Functional Genomics & System Biology Group, Department of Bioinformatics, Biocenter, Am Hubland, University of Wuerzburg, Wuerzburg, Germany
| | - Tahereh Mostashari-Rad
- Department of Artificial Intelligence, Smart University of Medical Sciences, Tehran, Iran
| | - Afshin fassihi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Vyas SP, Goswami R. Calcitriol and Retinoic acid antagonize each other to suppress the production of IL-9 by Th9 cells. J Nutr Biochem 2021; 96:108788. [PMID: 34087410 DOI: 10.1016/j.jnutbio.2021.108788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/29/2022]
Abstract
Distinct T helper cells, including Th9 cells help maintain homeostasis in the immune system. Vitamins play pivotal role in the immune system through many mechanisms, including regulating the differentiation of T helper cells. Calcitriol (1,25-dihydroxyvitamin D3) and retinoic acid possess hormone-like properties and are the bioactive metabolites of vitamin D and A, respectively, that signal through heterodimers containing the common retinoid X receptor. In contrast to individual treatment with the vitamins that significantly attenuates IL-9 production from Th9 cells, Th9 cells treated with both vitamins demonstrated IL-9 production similar to untreated Th9 cells. This is associated with reciprocal expression of PU.1 and Foxp3. While the recruitment of PU.1 was significantly impaired to the Il9 gene in the presence of calcitriol or retinoic acid in Th9 cells, addition of both vitamins together increased the recruitment of PU.1 to the Il9 gene. Calcitriol and retinoic acid together impaired the recruitment of HDAC1 to the Il9 gene without impacting Gcn5 recruitment. Importantly, retinoic acid negated the effect of calcitriol and impaired the binding of VDR on the Il9 gene by dampened VDR-RXR formation. Collectively, our data show that calcitriol and retinoic acid antagonize each other to regulate the differentiation of Th9 cells.
Collapse
|
9
|
Antony P, Fournel S, Zoll J, Mantz JM, Befort K, Massotte D, Giégé P, Céraline J, Metzger D, Becker H, Drouard L, Florentz C, Martin R, Nébigil C, Potier S, Schaefer A, Schaeffer E, Schuster C, Bresson A, Quéméneur E, Choulier L, Matt N, Monassier L, Lugnier C, Freysz L, Hoffmann J, Dreyfus H, Romier C. La Société de Biologie de Strasbourg : 100 ans au service de la science et de la société. Biol Aujourdhui 2020; 214:137-148. [PMID: 33357372 DOI: 10.1051/jbio/2020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Indexed: 11/14/2022]
Abstract
Founded in 1919, the Society of Biology of Strasbourg (SBS) is a learned society whose purpose is the dissemination and promotion of scientific knowledge in biology. Subsidiary of the Society of Biology, the SBS celebrated its Centenary on Wednesday, the 16th of October 2019 on the Strasbourg University campus and at the Strasbourg City Hall. This day allowed retracing the various milestones of the SBS, through its main strengths, its difficulties and its permanent goal to meet scientific and societal challenges. The common thread of this day was the transmission of knowledge related to the past, the present, but also the future. At the start of the 21st century, the SBS must continue to reinvent itself to pursue its objective of transmitting scientific knowledge in biology and beyond. Scientific talks performed by senior scientists and former SBS thesis prizes awardees, a round table, and informal discussions reflected the history and the dynamism of the SBS association. All SBS Centennial participants have set the first milestone for the SBS Bicentennial.
Collapse
Affiliation(s)
- Pierre Antony
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Sylvie Fournel
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Joffrey Zoll
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Jean-Marie Mantz
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Katia Befort
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Dominique Massotte
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Philippe Giégé
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Jocelyn Céraline
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Daniel Metzger
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Hubert Becker
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Laurence Drouard
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Catherine Florentz
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Robert Martin
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Canan Nébigil
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Serge Potier
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Adrien Schaefer
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Evelyne Schaeffer
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Catherine Schuster
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Anne Bresson
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Eric Quéméneur
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Laurence Choulier
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Nicolas Matt
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Laurent Monassier
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Claire Lugnier
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Louis Freysz
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Jules Hoffmann
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Henri Dreyfus
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Christophe Romier
- Société de Biologie de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
10
|
Yuzuriha K, Yoshida A, Li S, Kishimura A, Mori T, Katayama Y. Synthesis of peptide conjugates with vitamins for induction of antigen-specific immunotolerance. J Pept Sci 2020; 26:e3275. [PMID: 32671962 DOI: 10.1002/psc.3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/06/2020] [Accepted: 06/20/2020] [Indexed: 11/07/2022]
Abstract
In this report, we designed conjugates of an antigen peptide with the immunosuppressive vitamins all-trans retinoic acid (ATRA) and vitamin D3 for efficient induction of antigen-specific immunotolerance. We established a synthetic scheme for the preparation of the peptide-vitamin conjugates, which the chemically unstable vitamins tolerated. Among the obtained conjugates, the ATRA conjugate successfully suppressed inflammatory effects in macrophages and dendritic cells and induced antigen presentation in dendritic cells. This synthetic method of conjugate is conceivably applicable to other antigen peptides for induction of antigen-specific immunotolerance.
Collapse
Affiliation(s)
- Kazuki Yuzuriha
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Ayaka Yoshida
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Shunyi Li
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Akihiro Kishimura
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka, 819-0395, Japan.,Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, 819-0395, Japan.,Center for Future Chemistry, Kyushu University, Fukuoka, 819-0395, Japan.,International Research Center for Molecular Systems, Kyushu University, Fukuoka, 819-0395, Japan.,Centre for Advanced Medicine Innovation, Kyushu University, Fukuoka, 812-8582, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan City, ROC, 32023, Taiwan
| |
Collapse
|
11
|
Abstract
This chapter has been conceived as an introductory text to aid in the understanding of the key design strategies for the development of synthetic analogs of endogenous retinoids as ligands for the retinoic acid receptors (RARs) and retinoid X receptors (RXRs). The structure and binding characteristics of the endogenous retinoids are first explained to put the main chemical design challenges in context. Existing biochemical and structural data is then used to describe the guiding principles used to develop agonists and antagonists of the RARs and RXRs. In light of the increasing proliferation of biophysical methods that employ fluorescence measurements or molecular tags, we also examine the application of retinoids as probes and the chemical principles required to develop these tools.
Collapse
Affiliation(s)
| | - Andrew Whiting
- Department of Chemistry, Durham University, Lower Mountjoy, Durham, United Kingdom
| |
Collapse
|
12
|
Sugimoto K, Ichikawa-Tomikawa N, Kashiwagi K, Endo C, Tanaka S, Sawada N, Watabe T, Higashi T, Chiba H. Cell adhesion signals regulate the nuclear receptor activity. Proc Natl Acad Sci U S A 2019; 116:24600-24609. [PMID: 31740618 PMCID: PMC6900646 DOI: 10.1073/pnas.1913346116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell adhesion is essential for proper tissue architecture and function in multicellular organisms. Cell adhesion molecules not only maintain tissue integrity but also possess signaling properties that contribute to diverse cellular events such as cell growth, survival, differentiation, polarity, and migration; however, the underlying molecular basis remains poorly defined. Here we identify that the cell adhesion signal initiated by the tight-junction protein claudin-6 (CLDN6) regulates nuclear receptor activity. We show that CLDN6 recruits and activates Src-family kinases (SFKs) in second extracellular domain-dependent and Y196/200-dependent manners, and SFKs in turn phosphorylate CLDN6 at Y196/200. We demonstrate that the CLDN6/SFK/PI3K/AKT axis targets the AKT phosphorylation sites in the retinoic acid receptor γ (RARγ) and the estrogen receptor α (ERα) and stimulates their activities. Interestingly, these phosphorylation motifs are conserved in 14 of 48 members of human nuclear receptors. We propose that a similar link between diverse cell adhesion and nuclear receptor signalings coordinates a wide variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Kotaro Sugimoto
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Naoki Ichikawa-Tomikawa
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Korehito Kashiwagi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Chihiro Endo
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Satoshi Tanaka
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, 060-8556 Sapporo, Japan
| | - Tetsuya Watabe
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University School of Medicine, 960-1295 Fukushima, Japan;
| |
Collapse
|
13
|
Haffez H, Chisholm DR, Tatum NJ, Valentine R, Redfern C, Pohl E, Whiting A, Przyborski S. Probing biological activity through structural modelling of ligand-receptor interactions of 2,4-disubstituted thiazole retinoids. Bioorg Med Chem 2018; 26:1560-1572. [PMID: 29439915 PMCID: PMC5933457 DOI: 10.1016/j.bmc.2018.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/18/2017] [Accepted: 02/02/2018] [Indexed: 01/04/2023]
Abstract
Retinoids, such as all-trans-retinoic acid (ATRA), regulate cellular differentiation and signalling pathways in chordates by binding to nuclear retinoic acid receptors (RARα/β/γ). Polar interactions between receptor and ligand are important for binding and facilitating the non-polar interactions and conformational changes necessary for RAR-mediated transcriptional regulation. The constraints on activity and RAR-type specificity with respect to the structural link between the polar and non-polar functions of synthetic retinoids are poorly understood. To address this, predictions from in silico ligand-RAR docking calculations and molecular dynamics simulations for a small library of stable, synthetic retinoids (designated GZ series) containing a central thiazole linker structure and different hydrophobic region substituents, were tested using a ligand binding assay and a range of cellular biological assays. The docking analysis showed that these thiazole-containing retinoids were well suited to the binding pocket of RARα, particularly via a favorable hydrogen bonding interaction between the thiazole and Ser232 of RARα. A bulky hydrophobic region (i.e., present in compounds GZ23 and GZ25) was important for interaction with the RAR binding pockets. Ligand binding assays generally reflected the findings from in silico docking, and showed that GZ25 was a particularly strongly binding ligand for RARα/β. GZ25 also exhibited higher activity as an inducer of neuronal differentiation than ATRA and other GZ derivatives. These data demonstrate that GZ25 is a stable synthetic retinoid with improved activity which efficiently regulates neuronal differentiation and help to define the key structural requirements for retinoid activity enabling the design and development of the next generation of more active, selective synthetic retinoids as potential therapeutic regulators of neurogenesis.
Collapse
Key Words
- atra, all-trans retinoic acid
- af, activation function
- esi, electronic supplementary information
- gz, compound series code
- h12, helix 12
- lbd, ligand binding domain
- rar, retinoic acid receptor
- rare, retinoic acid response element
- rxr, retinoid x receptor
- ttn, 1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene hydrophobic region
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Biochemistry and Molecular Biology, Pharmacy College, Helwan University, Cairo, Egypt; Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - David R Chisholm
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK
| | - Natalie J Tatum
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Roy Valentine
- High Force Research Limited, Bowburn North Industrial Estate, Bowburn, Durham DH6 5PF, UK
| | - Christopher Redfern
- Northern Institute for Cancer Research, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Ehmke Pohl
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK; Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Centre for Sustainable Chemical Processes, Durham University, South Road, Durham DH1 3LE, UK.
| | - Stefan Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
14
|
Vogeler S, Galloway TS, Isupov M, Bean TP. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals. PLoS One 2017; 12:e0176024. [PMID: 28426724 PMCID: PMC5398557 DOI: 10.1371/journal.pone.0176024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 01/15/2023] Open
Abstract
Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, United Kingdom
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail Isupov
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, United Kingdom
| |
Collapse
|
15
|
Haffez H, Chisholm DR, Valentine R, Pohl E, Redfern C, Whiting A. The molecular basis of the interactions between synthetic retinoic acid analogues and the retinoic acid receptors. MEDCHEMCOMM 2017; 8:578-592. [PMID: 30108774 PMCID: PMC6072416 DOI: 10.1039/c6md00680a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/17/2017] [Indexed: 01/17/2023]
Abstract
All-trans-retinoic acid (ATRA) and its synthetic analogues EC23 and EC19 direct cellular differentiation by interacting as ligands for the retinoic acid receptor (RARα, β and γ) family of nuclear receptor proteins. To date, a number of crystal structures of natural and synthetic ligands complexed to their target proteins have been solved, providing molecular level snap-shots of ligand binding. However, a deeper understanding of receptor and ligand flexibility and conformational freedom is required to develop stable and effective ATRA analogues for clinical use. Therefore, we have used molecular modelling techniques to define RAR interactions with ATRA and two synthetic analogues, EC19 and EC23, and compared their predicted biochemical activities to experimental measurements of relative ligand affinity and recruitment of coactivator proteins. A comprehensive molecular docking approach that explored the conformational space of the ligands indicated that ATRA is able to bind the three RAR proteins in a number of conformations with one extended structure being favoured. In contrast the biologically-distinct isomer, 9-cis-retinoic acid (; 9CRA), showed significantly less conformational flexibility in the RAR binding pockets. These findings were used to inform docking studies of the synthetic retinoids EC23 and EC19, and their respective methyl esters. EC23 was found to be an excellent mimic for ATRA, and occupied similar binding modes to ATRA in all three target RAR proteins. In comparison, EC19 exhibited an alternative binding mode which reduces the strength of key polar interactions in RARα/γ but is well-suited to the larger RARβ binding pocket. In contrast, docking of the corresponding esters revealed the loss of key polar interactions which may explain the much reduced biological activity. Our computational results were complemented using an in vitro binding assay based on FRET measurements, which showed that EC23 was a strongly binding, pan-agonist of the RARs, while EC19 exhibited specificity for RARβ, as predicted by the docking studies. These findings can account for the distinct behaviour of EC23 and EC19 in cellular differentiation assays, and additionally, the methods described herein can be further applied to the understanding of the molecular basis for the selectivity of different retinoids to RARα, β and γ.
Collapse
Affiliation(s)
- Hesham Haffez
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
- Department of Biochemistry and Molecular Biology , Pharmacy College , Helwan University , Cairo , Egypt
| | - David R Chisholm
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Ehmke Pohl
- Department of Biosciences & Biophysical Sciences , Institute Durham University , South Road , Durham DH1 3LE , UK
| | - Christopher Redfern
- Northern Institute for Cancer Research , Medical School , Newcastle University , Newcastle upon Tyne , NE2 4HH , UK
| | - Andrew Whiting
- Department of Chemistry Durham University , South Road , Durham , DH1 3LE , UK .
| |
Collapse
|
16
|
Chebaro Y, Sirigu S, Amal I, Lutzing R, Stote RH, Rochette-Egly C, Rochel N, Dejaegere A. Allosteric Regulation in the Ligand Binding Domain of Retinoic Acid Receptorγ. PLoS One 2017; 12:e0171043. [PMID: 28125680 PMCID: PMC5268703 DOI: 10.1371/journal.pone.0171043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/13/2017] [Indexed: 11/29/2022] Open
Abstract
Retinoic acid (RA) plays key roles in cell differentiation and growth arrest through nuclear retinoic acid receptors (RARs), which are ligand-dependent transcription factors. While the main trigger of RAR activation is the binding of RA, phosphorylation of the receptors has also emerged as an important regulatory signal. Phosphorylation of the RARγ N-terminal domain (NTD) is known to play a functional role in neuronal differentiation. In this work, we investigated the phosphorylation of RARγ ligand binding domain (LBD), and present evidence that the phosphorylation status of the LBD affects the phosphorylation of the NTD region. We solved the X-ray structure of a phospho-mimetic mutant of the LBD (RARγ S371E), which we used in molecular dynamics simulations to characterize the consequences of the S371E mutation on the RARγ structural dynamics. Combined with simulations of the wild-type LBD, we show that the conformational equilibria of LBD salt bridges (notably R387-D340) are affected by the S371E mutation, which likely affects the recruitment of the kinase complex that phosphorylates the NTD. The molecular dynamics simulations also showed that a conservative mutation in this salt bridge (R387K) affects the dynamics of the LBD without inducing large conformational changes. Finally, cellular assays showed that the phosphorylation of the NTD of RARγ is differentially regulated by retinoic acid in RARγWT and in the S371N, S371E and R387K mutants. This multidisciplinary work highlights an allosteric coupling between phosphorylations of the LBD and the NTD of RARγ and supports the importance of structural dynamics involving electrostatic interactions in the regulation of RARs activity.
Collapse
Affiliation(s)
- Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Serena Sirigu
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Ismail Amal
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Régis Lutzing
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Roland H. Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Natacha Rochel
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Centre National de la Recherche Scientifique (CNRS) UMR 7104, Université de Strasbourg, Illkirch, France
| |
Collapse
|
17
|
Comptour A, Rouzaire M, Belville C, Bouvier D, Gallot D, Blanchon L, Sapin V. Nuclear retinoid receptors and pregnancy: placental transfer, functions, and pharmacological aspects. Cell Mol Life Sci 2016; 73:3823-37. [PMID: 27502420 PMCID: PMC11108506 DOI: 10.1007/s00018-016-2332-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
Animal models of vitamin A (retinol) deficiency have highlighted its crucial role in reproduction and placentation, whereas an excess of retinoids (structurally or functionally related entities) can cause toxic and teratogenic effects in the embryo and foetus, especially in the first trimester of human pregnancy. Knock-out experimental strategies-targeting retinoid nuclear receptors RARs and RXRs have confirmed that the effects of vitamin A are mediated by retinoic acid (especially all-trans retinoic acid) and that this vitamin is essential for the developmental process. All these data show that the vitamin A pathway and metabolism are as important for the well-being of the foetus, as they are for that of the adult. Accordingly, during this last decade, extensive research on retinoid metabolism has yielded detailed knowledge on all the actors in this pathway, spurring the development of antagonists and agonists for therapeutic and research applications. Natural and synthetic retinoids are currently used in clinical practice, most often on the skin for the treatment of acne, and as anti-oncogenic agents in acute promyelocytic leukaemia. However, because of the toxicity and teratogenicity of retinoids during pregnancy, their pharmacological use needs a sound knowledge of their metabolism, molecular aspects, placental transfer, and action.
Collapse
Affiliation(s)
- Aurélie Comptour
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Marion Rouzaire
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Corinne Belville
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
- GReD, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Damien Bouvier
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
- Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Denis Gallot
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
- Obstetrics and Gynecology Department, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France
| | - Loïc Blanchon
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France
| | - Vincent Sapin
- EA7281, Retinoids, Reproduction Developmental Diseases, School of Medicine, Clermont Université, Université d'Auvergne, 63000, Clermont-Ferrand, France.
- Biochemistry and Molecular Biology Department, CHU Clermont-Ferrand, 63000, Clermont-Ferrand, France.
- Laboratoire de Biochimie Médicale, 4R3, Faculté de Médecine, 28 Place Henri-Dunant, BP38, 63001, Clermont-Ferrand Cedex, France.
| |
Collapse
|
18
|
Álvarez S, Lieb M, Martínez C, Khanwalkar H, Rodríguez-Barrios F, Álvarez R, Gronemeyer H, de Lera AR. Modulation of Retinoic Acid Receptor Subtypes by 5- and 8-Substituted (Naphthalen-2-yl)-based Arotinoids. ChemMedChem 2015; 10:1378-91. [PMID: 26012882 DOI: 10.1002/cmdc.201500150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 12/29/2022]
Abstract
Retinoid receptors (RARs and RXRs) transduce the signals of their natural and synthetic ligands (retinoids and rexinoids) to cellular transcriptional machinery to induce gene programs that control diverse biological and physiological effects on organisms. All-trans-retinoic acid, the natural ligand for RARs, is used therapeutically for the treatment of acute promyelocytic leukemia (APL), whereas the synthetic rexinoid bexarotene (a representative member of the aromatic retinoids or arotinoids) is approved for the treatment of cutaneous T-cell lymphoma (CTCL). Other retinoids have found applications in the topical treatment of skin disorders. In continuation of previous work on the naphthalene-based arotinoid scaffold, we synthesized a new series of (3-halo)benzoic acids connected to C5- or C8-substituted naphthyl rings via (E)-ethenyl and amide and, for the C5 series, (E)-chalcone linkers. These compounds were evaluated as RAR modulators in comparison with previously described dihydronaphthalene arotinoids with the same substitution pattern. Transactivation studies in this series revealed an absence of synergy between small halogen atoms (F, Cl) at C3 and the groups at C5 or C8, as had been observed on some of the dihydronaphthalene analogues. Instead, non-halogenated 4-(2-naphthamido)benzoic acid derivatives transactivated toward the RARβ subtype in preference to the paralogues. The derivatives with bulkier substituents at C8 were characterized as dual RARβ/RARα antagonists, and (E)-4-[(8-(phenylethynyl)naphthalene-2-yl)ethenyl]benzoic acid (11 c), with an ethenyl connector, was shown to be a potent antagonist of RARα.
Collapse
Affiliation(s)
- Susana Álvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain)
| | - Michele Lieb
- Department of Cancer Biology, Institut de Génetique et de Biologie Moleculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, BP 163, Ilkirch Cedex, C.U. de Strasbourg (France)
| | - Claudio Martínez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain)
| | - Harshal Khanwalkar
- Department of Cancer Biology, Institut de Génetique et de Biologie Moleculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, BP 163, Ilkirch Cedex, C.U. de Strasbourg (France)
| | - Fátima Rodríguez-Barrios
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain)
| | - Rosana Álvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain).
| | - Hinrich Gronemeyer
- Department of Cancer Biology, Institut de Génetique et de Biologie Moleculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, BP 163, Ilkirch Cedex, C.U. de Strasbourg (France).
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, CINBIO and IBI, As Lagoas-Marcosende, 36310 Vigo (Spain).
| |
Collapse
|
19
|
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P, Nervi C. Retinoic acid receptors: from molecular mechanisms to cancer therapy. Mol Aspects Med 2015; 41:1-115. [PMID: 25543955 DOI: 10.1016/j.mam.2014.12.003] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported.
Collapse
Affiliation(s)
- Alessandra di Masi
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Loris Leboffe
- Department of Science, Roma Tre University, Viale Guglielmo Marconi 446, Roma I-00146, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Francesca Pagano
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100
| | - Laura Cicconi
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy
| | - Cécile Rochette-Egly
- Department of Functional Genomics and Cancer, IGBMC, CNRS UMR 7104 - Inserm U 964, University of Strasbourg, 1 rue Laurent Fries, BP10142, Illkirch Cedex F-67404, France.
| | - Francesco Lo-Coco
- Department of Biomedicine and Prevention, University of Roma "Tor Vergata", Via Montpellier 1, Roma I-00133, Italy; Laboratory of Neuro-Oncohematology, Santa Lucia Foundation, Via Ardeatina, 306, Roma I-00142, Italy.
| | - Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Via della Vasca Navale 79, Roma I-00146, Italy.
| | - Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnologies, University of Roma "La Sapienza", Corso della Repubblica 79, Latina I-04100.
| |
Collapse
|
20
|
Martínez C, Lieb M, Álvarez S, Rodríguez-Barrios F, Álvarez R, Khanwalkar H, Gronemeyer H, de Lera AR. Dual RXR Agonists and RAR Antagonists Based on the Stilbene Retinoid Scaffold. ACS Med Chem Lett 2014; 5:533-7. [PMID: 24900875 DOI: 10.1021/ml400521f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/19/2014] [Indexed: 01/24/2023] Open
Abstract
Arotinoids containing a C5,C8-diphenylnaphthalene-2-yl ring linked to a (C3-halogenated) benzoic acid via an ethenyl connector (but not the corresponding naphthamides), which are prepared by Horner-Wadsworth-Emmons reaction of naphthaldehydes and benzylphosphonates, display the rather unusual property of being RXR agonists (15-fold induction of the RXR reporter cell line was achieved at 3- to 10-fold lower concentration than 9-cis-retinoic acid) and RAR antagonists as shown by transient transactivation studies. The binding of such bulky ligands suggests that the RXR ligand-binding domain is endowed with some degree of structural elasticity.
Collapse
Affiliation(s)
- Claudio Martínez
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Michele Lieb
- Equipe
Labellisée Ligue Contre le Cancer, Department of Functional
Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/UdS, BP 10142, 67404 Illkirch,
Cedex, C. U. de Strasbourg, France
| | - Susana Álvarez
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Fátima Rodríguez-Barrios
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Rosana Álvarez
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| | - Harshal Khanwalkar
- Equipe
Labellisée Ligue Contre le Cancer, Department of Functional
Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/UdS, BP 10142, 67404 Illkirch,
Cedex, C. U. de Strasbourg, France
| | - Hinrich Gronemeyer
- Equipe
Labellisée Ligue Contre le Cancer, Department of Functional
Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/UdS, BP 10142, 67404 Illkirch,
Cedex, C. U. de Strasbourg, France
| | - Angel R. de Lera
- Departamento
de Química Orgánica, Facultade de Química, CINBIO, Universidade de Vigo, and Instituto de Investigación Biomédica de Vigo (IBIV), 36310 Vigo, Spain
| |
Collapse
|
21
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
22
|
le Maire A, Bourguet W. Retinoic acid receptors: structural basis for coregulator interaction and exchange. Subcell Biochem 2014; 70:37-54. [PMID: 24962880 DOI: 10.1007/978-94-017-9050-5_3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the form of heterodimers with retinoid X receptors (RXRs), retinoic acid receptors (RARs) are master regulators of gene expression in humans and important drug targets. They act as ligand-dependent transcription factors that regulate a large variety of gene networks controlling cell growth, differentiation, survival and death. The biological functions of RARs rely on a dynamic series of coregulator exchanges controlled by ligand binding. Unliganded RARs exert a repressor activity by interacting with transcriptional corepressors which themselves serve as docking platforms for the recruitment of histone deacetylases that impose a higher order structure on chromatin which is not permissive to gene transcription. Upon ligand binding, the receptor undergoes conformational changes inducing corepressor release and the recruitment of coactivators with histone acetylase activities allowing chromatin decompaction and gene transcription. In the following, we review the structural determinants of the interaction between RAR and either type of coregulators both at the level of the individual receptor and in the context of the RAR-RXR heterodimers. We also discuss the molecular details of the fine tuning of these associations by the various pharmacological classes of ligands.
Collapse
Affiliation(s)
- Albane le Maire
- Inserm U1054, Centre de Biochimie Structurale, 29 rue de Navacelles, 34090, Montpellier, France,
| | | |
Collapse
|
23
|
Álvarez R, Vaz B, Gronemeyer H, de Lera ÁR. Functions, therapeutic applications, and synthesis of retinoids and carotenoids. Chem Rev 2013; 114:1-125. [PMID: 24266866 DOI: 10.1021/cr400126u] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rosana Álvarez
- Departamento de Química Orgánica, Centro de Investigación Biomédica (CINBIO), and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo , 36310 Vigo, Spain
| | | | | | | |
Collapse
|
24
|
Xia Z, Cao X, Rico-Bautista E, Yu J, Chen L, Chen J, Bobkov A, Wolf DA, Zhang XK, Dawson MI. Relative impact of 3- and 5-hydroxyl groups of cytosporone B on cancer cell viability. MEDCHEMCOMM 2012; 4:332-339. [PMID: 24795803 DOI: 10.1039/c2md20243c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and the shortest route, thus far, for preparing cytosporone B (Csn-B) is reported. Csn-B and two analogs were used to probe the importance of hydroxyl groups at the 3- and 5-positions of the Csn-B benzene ring in inhibiting the viability of human H460 lung cancer and LNCaP prostate cancer cells, inducing H460 cell apoptosis, and interacting with the NR4A1 (TR3) ligand-binding domain (LBD). These studies indicate that Csn-B and 5-Me-Csn-B, having a phenolic hydroxyl at the 3-position of their aromatic rings, had similar activities in inhibiting cancer cell viability and in inducing apoptosis, whereas 3,5-(Me)2-Csn-B was unable to do so. These results are in agreement with ligand-binding experiments showing that the interaction with the NR4A1 LBD required the presence of the 3-hydroxyl group.
Collapse
Affiliation(s)
- Zebin Xia
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Xihua Cao
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Elizabeth Rico-Bautista
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Jinghua Yu
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Liqun Chen
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Jiebo Chen
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Andrey Bobkov
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Dieter A Wolf
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Xiao-Kun Zhang
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Marcia I Dawson
- Cancer Center, Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| |
Collapse
|
25
|
Gurkan-Alp AS, Mumcuoglu M, Andac CA, Dayanc E, Cetin-Atalay R, Buyukbingol E. Synthesis, anticancer activities and molecular modeling studies of novel indole retinoid derivatives. Eur J Med Chem 2012; 58:346-54. [PMID: 23142674 DOI: 10.1016/j.ejmech.2012.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
In this study, novel (E)-3-(5-substituted-1H-indol-3-yl)-1-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)prop-2-en-1-one (5(a-e)) derivatives were synthesized and their anticancer effects were determined in vitro. Novel indole retinoid compounds except 5e have anti-proliferative capacity in liver, breast and colon cancer cell lines. This anti-proliferative effect was further analyzed in breast cancer cell line panel by using the most potent compound 5a. It was determined that 5a can inhibit proliferation at very low IC(50) concentrations in all of the breast cancer cell lines. Here, we present some evidence on apoptotic termination of cancer cell proliferation which may be primarily driven by the inhibition of RXRα and, to a lesser extent, RXRγ.
Collapse
Affiliation(s)
- A Selen Gurkan-Alp
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara 06100 Turkey.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
INTRODUCTION Retinoid X receptors (subtypes RXRα or NR2B1, RXRβ or NR2B2 and RXRγ or NR2B3, which originate from three distinct genes) are promiscuous partners with heterodimeric associations to other members of the Nuclear Receptor (NR) superfamily. Some of the heterodimers are "permissive" and transcriptionally active in the presence of either an RXR ligand ("rexinoid") or a NR partner ligand, whereas others are "non-permissive" and unresponsive to rexinoids alone. In rodent models, rexinoids and partner agonists (mainly PPARγ, LXR, FXR) produce beneficial effects on insulin sensitization, diabetes and obesity, but secondary effects have also been noted, such as a raise in tryglyceride levels, supression of the thyroid hormone axis and induction of hepatomegaly. AREAS COVERED The authors review recent advances in rexinoid design, including further optimization of known scaffolds, and the discovery of novel RXR modulators by virtual ligand screening or from bioactive natural products. The understanding of rexinoid functions in permissive and non-permissive heterodimers is firmly based on structural knowledge. By strenghtening or disrupting the interaction surface with coregulators rexinoids exert agonist or (partial) antagonist activities. The activity state of the heterodimer can also be fine-tuned by the cellular context and the nature of coregulators. EXPERT OPINION The synthetic chemistry toolbox has provided a panel of agonists, partial (ant)agonists and/or heterodimer-selective rexinoids starting from existing, naturally occurring or serendipitously discovered scaffolds. These compounds have an unexplored therapeutic potential that might overcome some of the current limitations of rexinoids in therapy, such as hypertriglyceridemia.
Collapse
Affiliation(s)
- Belén Vaz
- Departamento de Química Orgánica, Facultad de Química and Centro de Investigaciones Biomédicas (CINBIO), Universidade de Vigo, Vigo, Spain
| | | |
Collapse
|
27
|
Singarapu KK, Zhu J, Tonelli M, Rao H, Assadi-Porter FM, Westler WM, DeLuca HF, Markley JL. Ligand-specific structural changes in the vitamin D receptor in solution. Biochemistry 2011; 50:11025-33. [PMID: 22112050 DOI: 10.1021/bi201637p] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin D receptor (VDR) is a member of the nuclear hormone receptor superfamily. When bound to a variety of vitamin D analogues, VDR manifests a wide diversity of physiological actions. The molecular mechanism by which different vitamin D analogues cause specific responses is not understood. The published crystallographic structures of the ligand binding domain of VDR (VDR-LBD) complexed with ligands that have differential biological activities have exhibited identical protein conformations. Here we report that rat VDR-LBD (rVDR-LBD) in solution exhibits differential chemical shifts when bound to three ligands that cause diverse responses: the natural hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)₂D₃], a potent agonist analogue, 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D₃ [2MD], and an antagonist, 2-methylene-(22E)-(24R)-25-carbobutoxy-26,27-cyclo-22-dehydro-1α,24-dihydroxy-19-norvitamin D₃ [OU-72]. Ligand-specific chemical shifts mapped not only to residues at or near the binding pocket but also to residues remote from the ligand binding site. The complexes of rVDR-LBD with native hormone and the potent agonist 2MD exhibited chemical shift differences in signals from helix-12, which is part of the AF2 transactivation domain that appears to play a role in the selective recruitment of coactivators. By contrast, formation of the complex of rVDR-LBD with the antagonist OU-72 led to disappearance of signals from residues in helices-11 and -12. We present evidence that disorder in this region of the receptor in the antagonist complex prevents the attachment of coactivators.
Collapse
Affiliation(s)
- Kiran K Singarapu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Xia Z, Correa RG, Das JK, Farhana L, Castro DJ, Yu J, Oshima RG, Fontana JA, Reed JC, Dawson MI. Analogues of Orphan Nuclear Receptor Small Heterodimer Partner Ligand and Apoptosis Inducer (E)-4-[3-(1-Adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic Acid. 2. Impact of 3-Chloro Group Replacement on Inhibition of Proliferation and Induction of Apoptosis of Leukemia and Cancer Cell Lines. J Med Chem 2011; 55:233-49. [DOI: 10.1021/jm2011436] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zebin Xia
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| | - Ricardo G. Correa
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| | - Jayanta K. Das
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit,
Michigan 48201,
United States
| | - Lulu Farhana
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit,
Michigan 48201,
United States
| | - David J. Castro
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| | - Jinghua Yu
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| | - Robert G. Oshima
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| | - Joseph A. Fontana
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit,
Michigan 48201,
United States
| | - John C. Reed
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| | - Marcia I. Dawson
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,
United States
| |
Collapse
|
29
|
Rosen MD, Privalsky ML. Thyroid hormone receptor mutations in cancer and resistance to thyroid hormone: perspective and prognosis. J Thyroid Res 2011; 2011:361304. [PMID: 21760978 PMCID: PMC3134260 DOI: 10.4061/2011/361304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/16/2011] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.
Collapse
Affiliation(s)
- Meghan D Rosen
- Department of Microbiology, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|
30
|
Modulation of RXR function through ligand design. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:57-69. [PMID: 21515403 DOI: 10.1016/j.bbalip.2011.04.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 12/22/2022]
Abstract
As the promiscuous partner of heterodimeric associations, retinoid X receptors (RXRs) play a key role within the Nuclear Receptor (NR) superfamily. Some of the heterodimers (PPAR/RXR, LXR/RXR, FXR/RXR) are "permissive" as they become transcriptionally active in the sole presence of either an RXR-selective ligand ("rexinoid") or a NR partner ligand. In contrast, "non-permissive" heterodimers (including RAR/RXR, VDR/RXR and TR/RXR) are unresponsive to rexinoids alone but these agonists superactivate transcription by synergizing with partner agonists. Despite their promiscuity in heterodimer formation and activation of multiple pathways, RXR is a target for drug discovery. Indeed, a rexinoid is used in the clinic for the treatment of cutaneous T-cell lymphoma. In addition to cancer RXR modulators hold therapeutical potential for the treatment of metabolic diseases. The modulation potential of the rexinoid (as agonist or antagonist ligand) is dictated by the precise conformation of the ligand-receptor complexes and the nature and extent of their interaction with co-regulators, which determine the specific physiological responses through transcription modulation of cognate gene networks. Notwithstanding the advances in this field, it is not yet possible to predict the correlation between ligand structure and physiological response. We will focus on this review on the modulation of PPARγ/RXR and LXR/RXR heterodimer activities by rexinoids. The genetic and pharmacological data from animal models of insulin resistance, diabetes and obesity demonstrate that RXR agonists and antagonists have promise as anti-obesity agents. However, the treatment with rexinoids raises triglycerides levels, suppresses the thyroid hormone axis, and induces hepatomegaly, which has complicated the development of these compounds as therapeutic agents for the treatment of type 2 diabetes and insulin resistance. The discovery of PPARγ/RXR and LXR/RXR heterodimer-selective rexinoids, which act differently than PPARγ or LXR agonists, might overcome some of these limitations.
Collapse
|
31
|
Bich C, Bovet C, Rochel N, Peluso-Iltis C, Panagiotidis A, Nazabal A, Moras D, Zenobi R. Detection of nucleic acid-nuclear hormone receptor complexes with mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:635-645. [PMID: 20097575 DOI: 10.1016/j.jasms.2009.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 12/09/2009] [Accepted: 12/12/2009] [Indexed: 05/28/2023]
Abstract
Nuclear receptors, such as the retinoic acid receptor (RAR) or the 9-cis retinoic acid receptor (RXR), interact not only with their ligands but also with other types of receptors and with DNA. Here, two complementary mass spectrometry (MS) methods were used to study the interactions between retinoic receptors (RXR/RAR) and DNA: non-denaturing nano-electrospray (nanoESI MS), and high-mass matrix-assisted laser desorption ionization (MALDI MS) combined with chemical cross-linking. The RAR x RXR heterodimer was studied in the presence of a specific DNA sequence (DR5), and a specific RAR x RXR x DNA complex was detected with both MS techniques. RAR by itself showed no significant homodimerization. A complex between RAR and the double stranded DR5 was detected with nanoESI. After cross-linking, high-mass MALDI mass spectra showed that the RAR binds the single stranded DR5, and the RAR dimer binds both single and double stranded DR5. Moreover, the MALDI mass spectrum shows a larger RAR dimer signal in the presence of DNA. These results suggest that a gene-regulatory site on DNA can induce quaternary structural changes in a transcription factor such as RAR.
Collapse
Affiliation(s)
- Claudia Bich
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Barnard JH, Collings JC, Whiting A, Przyborski SA, Marder TB. Synthetic retinoids: structure-activity relationships. Chemistry 2010; 15:11430-42. [PMID: 19821467 DOI: 10.1002/chem.200901952] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Retinoid signalling pathways are involved in numerous processes in cells, particularly those mediating differentiation and apoptosis. The endogenous ligands that bind to the retinoid receptors, namely all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid, are prone to double-bond isomerisation and to oxidation by metabolic enzymes, which can have significant and deleterious effects on their activities and selectivities. Many of these problems can be overcome through the use of synthetic retinoids, which are often much more stable, as well as being more active. Modification of their molecular structures can result in retinoids that act as antagonists, rather than agonists, or exhibit a large degree of selectivity for particular retinoid-receptor isotypes. Several such selective retinoids are likely to be of value as pharmaceutical agents with reduced toxicities, particularly in cancer therapy, as reagents for controlling cell differentiation, and as tools for elucidating the precise roles that specific retinoid signalling pathways play within cells.
Collapse
Affiliation(s)
- Jonathan H Barnard
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | | | | | | | | |
Collapse
|
33
|
Abstract
Chronic inflammation is associated with many neurodegenerative diseases, including multiple sclerosis, Parkinson's disease, and Alzheimer's disease. Increasing evidence that neuroinflammation contributes to disease severity has generated considerable interest in determining whether inhibition of inflammation pathways might be of therapeutic benefit. One potential avenue of intervention is provided by members of the nuclear receptor superfamily of ligand-dependent transcription factors that exert anti-inflammatory effects in many cell types. Here, we review recent studies providing insights into the distinct mechanisms that enable nuclear receptors to modulate immune responses, describe inflammatory components of neurodegenerative diseases, and discuss recent literature relevant to roles of nuclear receptors in influencing these processes.
Collapse
|
34
|
Alvarez S, Khanwalkar H, Alvarez R, Erb C, Martínez C, Rodríguez-Barrios F, Germain P, Gronemeyer H, de Lera AR. C3 halogen and c8'' substituents on stilbene arotinoids modulate retinoic Acid receptor subtype function. ChemMedChem 2009; 4:1630-40. [PMID: 19670208 DOI: 10.1002/cmdc.200900214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The synthesis and biological evaluation of the entire series of C3-halogenated derivatives and bulkier substituents at the C8'' position of the parent stilbene-based RARbeta-selective agonist BMS641 4 c was undertaken. The synthesis uses an E-selective Horner-Wadsworth-Emmons (HWE) condensation of C8-substituted C5-dimethyl dihydronaphthaldehyde and the benzylic phosphonates derived from the C3-halogenated benzoates to construct the stilbene skeleton. Transactivation studies revealed the synergistic effect of small halogen atoms at C3 (F, Cl) and the moderately bulky phenyl group at C8'' (in 4 b and 4 c) to achieve RARbeta selectivity. Our results, supported by computational studies, provide a structural rationale for the mixed agonist-antagonist activities of these arotinoids, which are potent agonists of the RARbeta subtype and antagonists of the RARalpha paralogue. Moreover, transitions from partial agonists to inverse agonists and antagonists can be accomplished with the incorporation of the same halogen atoms into the structures of known modulators BMS701 (5 a) and BMS493 (6 a), which have bulkier substituents than phenyl (p-tolyl and phenylethynyl, respectively) at C8''. Conversely, incorporation of halogen atoms in 6 a converted the ligand from an RARbeta inverse agonist (6 b) to an antagonist (6 c) or an agonist (6 d). Amazingly, 6 a-c commonly acted as inverse agonists for RARalpha, while 6 d and 6 e acted as regular RARalpha antagonists, not affecting co-repressor interaction. In the case of the mixed agonist/antagonist 5 a, C3-halogenation yields inverse RARalpha and RARbeta agonists (5 b-d) with the exception of iodinated 5 e, which is a regular antagonist for both these receptors. Because RARbeta gene expression is frequently deleted or epigenetically silenced in several tumor cells, the novel repertoire of receptor and function-selective RAR agonists, mixed agonist/antagonists, regular antagonists, and inverse agonists will be useful in the elucidation of the mechanism of tumor suppression by retinoids.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Facultade de Química, Universidade de Vigo, 36310 Vigo (Spain)
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
García J, Khanwalkar H, Pereira R, Erb C, Voegel JJ, Collette P, Mauvais P, Bourguet W, Gronemeyer H, de Lera AR. Pyrazine arotinoids with inverse agonist activities on the retinoid and rexinoid receptors. Chembiochem 2009; 10:1252-9. [PMID: 19343742 DOI: 10.1002/cbic.200900030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
RAR and RXR agonists: A collection of pyrazine-based RAR/RXR ligands were prepared by a series of palladium catalyzed cross-coupling reactions and characterized. Structure-activity relationships were elucidated. Retinoic acid receptor (RAR) alpha/beta-subtype-selective and retinoid X receptor (RXR) inverse agonist activities are described for pyrazine acrylic acid arotinoid, 14 d. Heterocyclic arotinoids derived from central-region dihalogenated pyrazine scaffolds have been synthesized by consecutive halogen and/or position-selective palladium-catalyzed cross-coupling reactions. Pyrazines were further functionalized as alkyl ethers or methylamines prior to the last Pd-catalyzed reactions. Transient transactivation studies with the retinoic acid receptor (RAR) alpha, beta, and gamma subtypes and with retinoid X receptor (RXR) alpha revealed distinct agonist, antagonist, and inverse agonist activities for these compounds. Of interest are the RARalpha,beta-selective inverse agonists with pyrazine acrylic acid structures, in particular 14 c, which is RARbeta-selective, and 14 d, a pan-RAR/RXR inverse agonist with more affinity for the RAR subtypes that enhance the interaction of RAR with cognate corepressors.
Collapse
Affiliation(s)
- José García
- Departamento de Química Orgánica, Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alvarez S, Alvarez R, Khanwalkar H, Germain P, Lemaire G, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Retinoid receptor subtype-selective modulators through synthetic modifications of RARgamma agonists. Bioorg Med Chem 2009; 17:4345-59. [PMID: 19482478 DOI: 10.1016/j.bmc.2009.05.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 12/31/2022]
Abstract
A series of retinoids designed to interfere with the repositioning of H12 have been synthesized to identify novel RARgamma antagonists based on the structure of known RARgamma agonists. The transcriptional activities of the novel ligands were revealed by cell-based reporting assays, using engineered cells containg RAR subtype-selective fusions of the RAR ligand-binding domains with the yeast GAL4 activator DNA-binding domain and the cognate luciferase reporter gene. Whereas none of the ligands exhibited features of a selective RARgamma antagonist, some of them are endowed with interesting activities. In particular 24a acts as a pan-RAR agonist that induces at high concentration a higher transactivation potential on RARalpha than TTNPB and synergizes at low concentration with TTNPB-bound RARalpha but not RARbeta or RARgamma. Similarly, 24c synergizes with TTNPB-bound RARgamma and exhibits RARalpha,beta antagonist activity. Compounds 24b and 25b are strong RARalpha,beta-selective antagonists without agonist or antagonist activities for RARgamma. Compounds 24b and 24c display weak RXR antagonist activity. In addition several pan-antagonists and partial agonist/antagonists have been defined.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Rochette-Egly C, Germain P. Dynamic and combinatorial control of gene expression by nuclear retinoic acid receptors (RARs). NUCLEAR RECEPTOR SIGNALING 2009; 7:e005. [PMID: 19471584 PMCID: PMC2686084 DOI: 10.1621/nrs.07005] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 04/17/2009] [Indexed: 12/12/2022]
Abstract
Nuclear retinoic acid receptors (RARs) are transcriptional regulators controlling the expression of specific subsets of genes in a ligand-dependent manner. The basic mechanism for switching on transcription of cognate target genes involves RAR binding at specific response elements and a network of interactions with coregulatory protein complexes, the assembly of which is directed by the C-terminal ligand-binding domain of RARs. In addition to this scenario, new roles for the N-terminal domain and the ubiquitin-proteasome system recently emerged. Moreover, the functions of RARs are not limited to the regulation of cognate target genes, as they can transrepress other gene pathways. Finally, RARs are also involved in nongenomic biological activities such as the activation of translation and of kinase cascades. Here we will review these mechanisms, focusing on how kinase signaling and the proteasome pathway cooperate to influence the dynamics of RAR transcriptional activity.
Collapse
Affiliation(s)
- Cécile Rochette-Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Functional Genomics, INSERM U596, CNRS UMR7104, Université Louis Pasteur de Strasbourg, Strasbourg, France.
| | | |
Collapse
|
38
|
Hamza A, Zhan CG. Determination of the Structure of Human Phosphodiesterase-2 in a Bound State and Its Binding with Inhibitors by Molecular Modeling, Docking, and Dynamics Simulation. J Phys Chem B 2009; 113:2896-908. [DOI: 10.1021/jp8082612] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536
| |
Collapse
|
39
|
Álvarez S, Pazos-Randulfe Y, Khanwalkar H, Germain P, Álvarez R, Gronemeyer H, de Lera ÁR. New retinoid chemotypes: 9-cis-Retinoic acid analogs with hydrophobic rings derived from terpenes as selective RAR agonists. Bioorg Med Chem 2008; 16:9719-28. [DOI: 10.1016/j.bmc.2008.09.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/25/2008] [Accepted: 09/30/2008] [Indexed: 10/21/2022]
|
40
|
CONFIRM: connecting fragments found in receptor molecules. J Comput Aided Mol Des 2008; 22:761-72. [DOI: 10.1007/s10822-008-9221-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/17/2008] [Indexed: 10/21/2022]
|
41
|
de Lera AR, Bourguet W, Altucci L, Gronemeyer H. Design of selective nuclear receptor modulators: RAR and RXR as a case study. Nat Rev Drug Discov 2007; 6:811-20. [PMID: 17906643 DOI: 10.1038/nrd2398] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Retinoic acid receptors (RARs) and retinoid X receptors (RXRs) are members of the nuclear receptor superfamily whose effects on cell growth and survival can be modulated therapeutically by small-molecule ligands. Although compounds that target these receptors are powerful anticancer drugs, their use is limited by toxicity. An improved understanding of the structural biology of RXRs and RARs and recent advances in the chemical synthesis of modified retinoid and rexinoid ligands should enable the rational design of more selective agents that might overcome such problems. Here, we review structural data for RXRs and RARs, discuss strategies in the design of selective RXR and RAR modulators, and consider lessons that can be learned for the design of selective nuclear-receptor modulators in general.
Collapse
Affiliation(s)
- Angel R de Lera
- Universidade de Vigo, Departamento de Quimica Orgánica, Facultad de Quimica, 36310 Vigo, Spain
| | | | | | | |
Collapse
|
42
|
Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov 2007; 6:793-810. [PMID: 17906642 DOI: 10.1038/nrd2397] [Citation(s) in RCA: 397] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Retinoic acid receptors (RARs) are ligand-controlled transcription factors that function as heterodimers with retinoid X receptors (RXRs) to regulate cell growth and survival. The success of RAR modulation in the treatment of acute promyelocytic leukaemia (APL) has stimulated considerable interest in the development of RAR and RXR modulators. This has been aided by recent advances in the understanding of the biological role of RARs and RXRs and in the design of selective receptor modulators that might overcome the limitations of current drugs. Here, we discuss the challenges and opportunities for therapeutic strategies based on RXR and RAR modulators, with a focus on cancer and metabolic diseases such as diabetes and obesity.
Collapse
Affiliation(s)
- Lucia Altucci
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico Luigi de Crecchio 7, 80138 Napoli, Italy
| | | | | | | | | |
Collapse
|
43
|
Alvarez S, Germain P, Alvarez R, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. Int J Biochem Cell Biol 2007; 39:1406-15. [PMID: 17433757 DOI: 10.1016/j.biocel.2007.02.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/05/2007] [Accepted: 02/10/2007] [Indexed: 02/01/2023]
Abstract
Only one of the three-retinoic acid receptors, RARbeta, is frequently deleted or epigenetically silenced at early stages in tumor progression and there is compelling evidence that RARbeta corresponds to a tumor suppressor. Recent discoveries may help to reveal the molecular basis of the tumor suppressive action of this retinoic acid receptor subtype and provide new tools for its analysis and, possibly, therapeutic exploitation. The first concerns the recent elucidation of the crystal structure of the ligand-binding domain of the agonist-bound receptor. The second is the discovery of selective agonists, including isoform selective ligands, which are important tools to facilitate the pharmacological analysis of the tumor suppressor function of this protein in vivo. Lastly, its involvement in a retinoic acid-induced tumor-specific apoptosis program mediated by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Herein we describe the structure, function and ligand-dependent transcription mechanism of retinoic acid receptor beta, and use rational drug design to understand the selectivity of these modulators.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Germain P, Chambon P, Eichele G, Evans RM, Lazar MA, Leid M, De Lera AR, Lotan R, Mangelsdorf DJ, Gronemeyer H. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol Rev 2006; 58:760-72. [PMID: 17132853 DOI: 10.1124/pr.58.4.7] [Citation(s) in RCA: 384] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The physiological effects of retinoic acids (RAs) are mediated by members of two families of nuclear receptors, the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs), which are encoded by three distinct human genes, RXRalpha, RXRbeta, and RXRgamma. RARs bind both all-trans- and 9-cis-RA, whereas only the 9-cis-RA stereoisomer binds to RXRs. As RXR/RAR heterodimers, these receptors control the transcription of RA target genes through binding to RA-response elements. This review is focused on the structure, mode of action, ligands, expression, and pharmacology of RXRs. Given their role as common partners to many other members of the nuclear receptor superfamily, these receptors have been the subject of intense scrutiny. Moreover, and despite numerous studies since their initial discovery, RXRs remain enigmatic nuclear receptors, and there is still no consensus regarding their role. Indeed, multiple questions about the actual biological role of RXRs and the existence of an endogenous ligand have still to be answered.
Collapse
Affiliation(s)
- Pierre Germain
- Centre National de la Recherche Scientifique/Institut National de la Santé et de la Recherche Médicale/Université Louis Pasteur, Illkirch, Communauté Urbaine de Strasbourg, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Sussman F, de Lera AR. Ligand recognition by RAR and RXR receptors: binding and selectivity. J Med Chem 2005; 48:6212-9. [PMID: 16190748 DOI: 10.1021/jm050285w] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fundamental biological functions, most notably embriogenesis, cell growth, cell differentiation, and cell apoptosis, are in part regulated by a complex genomic network that starts with the binding (and activation) of retinoids to their cognate receptors, members of the superfamily of nuclear receptors. We have studied ligand recognition of retinoic receptors (RXRalpha and RARgamma) using a molecular-mechanics-based docking method. The protocol used in this work is able to rank the affinity of pairs of ligands for a single retinoid receptor, the highest values corresponding to those that adapt better to the shape of the binding site and generate the optimal set of electrostatic and apolar interactions with the receptor. Moreover, our studies shed light onto some of the energetic contributions to retinoid receptor ligand selectivity. In this regard we show that there is a difference in polarity between the binding site regions that anchor the carboxylate in RAR and RXR, which translates itself into large differences in the energy of interaction of both receptors with the same ligand. We observe that the latter energy change is canceled off by the solvation energy penalty upon binding. This energy compensation is borne out as well by experiments that address the effect of site-directed mutagenesis on ligand binding to RARgamma. The hypothesis that the difference in binding site polarity might be exploited to build RXR-selective ligands is tested with some compounds having a thiazolidinedione anchoring group.
Collapse
Affiliation(s)
- Fredy Sussman
- Departamento de Química Orgánica, Facultad de Química, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | | |
Collapse
|
46
|
Piu F, Gauthier NK, Wang F. β-arrestin 2 modulates the activity of nuclear receptor RAR β2 through activation of ERK2 kinase. Oncogene 2005; 25:218-29. [PMID: 16170358 DOI: 10.1038/sj.onc.1209024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activity of retinoid receptors activity can be regulated by various extracellular stimuli. In an effort to understand the molecular basis for this phenomenon, the role of beta-arrestins was investigated. Beta-Arrestins constitute a class of proteins involved in the internalization of agonist-activated receptors. They have also been linked to MAPK activation suggesting a direct involvement in signaling cascades. Here, we report that beta-arrestin 2 stimulates the transcriptional activation of the retinoid RAR and RXR receptors. Of all the retinoid receptors, the RAR beta2 subtype showed the strongest sensitivity to beta-arrestin 2 action. Interestingly, this event requires the presence of the MAP kinase ERK2, but not that of JNK or P38. Site-directed mutagenesis showed that Ser 22 and Leu 217 are critical residues of the RAR beta2 receptor through which beta-arrestin 2 effects are mediated. More importantly, we demonstrate that the induction of PC12 growth inhibition by Nerve Growth Factor is indeed dependent upon RAR beta2 transcriptional activation in a beta-arrestin 2- and ERK2-dependent manner.
Collapse
Affiliation(s)
- F Piu
- ACADIA Pharmaceuticals Inc., San Diego, CA 92121, USA.
| | | | | |
Collapse
|
47
|
Kagechika H, Shudo K. Synthetic Retinoids: Recent Developments Concerning Structure and Clinical Utility. J Med Chem 2005; 48:5875-83. [PMID: 16161990 DOI: 10.1021/jm0581821] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Kagechika
- School of Biomedical Science, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | |
Collapse
|
48
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
49
|
Manas ES, Xu ZB, Unwalla RJ, Somers WS. Understanding the selectivity of genistein for human estrogen receptor-beta using X-ray crystallography and computational methods. Structure 2005; 12:2197-207. [PMID: 15576033 DOI: 10.1016/j.str.2004.09.015] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/18/2004] [Accepted: 09/13/2004] [Indexed: 10/26/2022]
Abstract
We present X-ray crystallographic and molecular modeling studies of estrogen receptors-alpha and -beta complexed with the estrogen receptor-beta-selective phytoestrogen genistein, and coactivator-derived NR box peptides containing an LXXLL motif. We demonstrate that the ligand binding mode is essentially identical when genistein is bound to both isoforms, despite the considerably weaker affinity of this ligand for estrogen receptor-alpha. In addition, we examine subtle differences between binding site residues, providing an explanation for why genistein is modestly selective for the beta isoform. To this end, we also present the results of quantum chemical studies and thermodynamic arguments that yield insight to the nature of the interactions leading to estrogen receptor-beta selectivity. The importance of our analysis to structure-based drug design is discussed.
Collapse
Affiliation(s)
- Eric S Manas
- Department of Chemical and Screening Sciences, Wyeth Research, 500 Arcola Road, Collegeville, PA 19426, USA.
| | | | | | | |
Collapse
|
50
|
Alvarez R, Vega MJ, Kammerer S, Rossin A, Germain P, Gronemeyer H, de Lera AR. 9-cis-retinoic acid analogues with bulky hydrophobic rings: new RXR-selective agonists. Bioorg Med Chem Lett 2005; 14:6117-22. [PMID: 15546741 DOI: 10.1016/j.bmcl.2004.08.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Stille cross-coupling of aryltriflates 10 and dienylstannane 11, oxidation and Horner-Wadsworth-Emmons reaction afforded stereoselectively retinoates 15. Saponification provided the carboxylic acids 8a and 8b, retinoids that incorporate a bulky hydrophobic ring while preserving the 9-cis-geometry of the parent system. In contrast to the pan-RAR/RXR agonistic profile of the lower homologue of 8a, compound 7 (LG100567), retinoids 8 showed selective binding and transactivation of RXR, devoid of significant RAR activation. In PLB985 leukemia cells that require RXR agonists for differentiation compounds 8 induced maturation in the presence of the RAR-selective pan-agonist TTNPB; this effect was blocked by an RXR-selective antagonist.
Collapse
Affiliation(s)
- Rosana Alvarez
- Departamento de Química Orgánica, Facultad de Química, Universidade de Vigo, 36200 Vigo, Spain
| | | | | | | | | | | | | |
Collapse
|