1
|
Gojo S, Kami D, Sano A, Teruyama F, Ogata T, Matoba S. Sephin1 suppresses ER stress-induced cell death by inhibiting the formation of PP2A holoenzyme. Cell Death Dis 2025; 16:117. [PMID: 39971896 PMCID: PMC11840111 DOI: 10.1038/s41419-025-07450-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/21/2025]
Abstract
Sephin1 was discovered as a protein phosphatase inhibitor, and its efficacy against neurodegenerative diseases has been confirmed. There are conflicting reports on whether inhibition of eIF2α dephosphorylation by PP1 holoenzyme with the protein phosphatase 1 regulatory subunit 15 A is the mechanism of action of Sephin1. In the present study, we found that Sephin1 significantly suppressed renal tubular cell death in an animal model of ER stress administered with tunicamycin. CHOP, which plays a central role in the ER stress-induced cell death pathway, requires nuclear translocation to act as a transcription factor to increase the expression of cell death-related genes. Sephin1 markedly suppressed this nuclear translocation of CHOP. To elucidate the molecular mechanism underlying the cell death suppressive effect of Sephin1, we used human renal tubular epithelial cells under ER stress with tunicamycin. Sephin1 reduced intracellular CHOP levels by promoting CHOP phosphorylation at Ser30, which led to protein degradation in UPS. Phosphorylated CHOP is generated by Thr172-phosphorylated activated AMPK, and Sephin1 increased phosphorylated AMPK. Phosphorylated AMPK is inactivated by PP2A through dephosphorylation of its Thr172, and Sephin1 inhibits the formation of the PP2A holoenzyme with the PP2A subunit B isoform delta. These results indicate that inhibition of PP2A holoenzyme formation is the molecular target of Sephin1 in this experimental system.
Collapse
Affiliation(s)
- Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Arata Sano
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Fumiya Teruyama
- Department of Regenerative Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Tokyo New Drug Research Laboratories, Kowa Company Ltd., Tokyo, Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Andrysik Z, Espinosa JM. Harnessing p53 for targeted cancer therapy: new advances and future directions. Transcription 2025; 16:3-46. [PMID: 40031988 PMCID: PMC11970777 DOI: 10.1080/21541264.2025.2452711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 03/05/2025] Open
Abstract
The transcription factor p53 is the most frequently impaired tumor suppressor in human cancers. In response to various stress stimuli, p53 activates transcription of genes that mediate its tumor-suppressive functions. Distinctive characteristics of p53 outlined here enable a well-defined program of genes involved in cell cycle arrest, apoptosis, senescence, differentiation, metabolism, autophagy, DNA repair, anti-viral response, and anti-metastatic functions, as well as facilitating autoregulation within the p53 network. This versatile, anti-cancer network governed chiefly by a single protein represents an immense opportunity for targeted cancer treatment, since about half of human tumors retain unmutated p53. During the last two decades, numerous compounds have been developed to block the interaction of p53 with the main negative regulator MDM2. However, small molecule inhibitors of MDM2 only induce a therapeutically desirable apoptotic response in a limited number of cancer types. Moreover, clinical trials of the MDM2 inhibitors as monotherapies have not met expectations and have revealed hematological toxicity as a characteristic adverse effect across this drug class. Currently, combination treatments are the leading strategy for enhancing efficacy and reducing adverse effects of MDM2 inhibitors. This review summarizes efforts to identify and test therapeutics that work synergistically with MDM2 inhibitors. Two main types of drugs have emerged among compounds used in the following combination treatments: first, modulators of the p53-regulated transcriptome (including chromatin modifiers), translatome, and proteome, and second, drugs targeting the downstream pathways such as apoptosis, cell cycle arrest, DNA repair, metabolic stress response, immune response, ferroptosis, and growth factor signaling. Here, we review the current literature in this field, while also highlighting overarching principles that could guide target selection in future combination treatments.
Collapse
Affiliation(s)
- Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Renner DM, Parenti NA, Bracci N, Weiss SR. Betacoronaviruses Differentially Activate the Integrated Stress Response to Optimize Viral Replication in Lung-Derived Cell Lines. Viruses 2025; 17:120. [PMID: 39861909 PMCID: PMC11769277 DOI: 10.3390/v17010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The betacoronavirus genus contains five of the seven human coronaviruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus-HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus), and MERS-CoV (merbecovirus)-, to study betacoronavirus interactions with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize viral replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of growth arrest and DNA damage-inducible protein (GADD34) expression, an inducible protein phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, constitutive repressor of eIF2α phosphorylation (CReP), dramatically reduced HCoV-OC43 replication. Combining GADD34 knockout with CReP knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation.
Collapse
Affiliation(s)
- David M. Renner
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas A. Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Bracci
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R. Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (D.M.R.); (N.A.P.); (N.B.)
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Renner DM, Parenti NA, Weiss SR. BETACORONAVIRUSES DIFFERENTIALLY ACTIVATE THE INTEGRATED STRESS RESPONSE TO OPTIMIZE VIRAL REPLICATION IN LUNG DERIVED CELL LINES. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614975. [PMID: 39386680 PMCID: PMC11463420 DOI: 10.1101/2024.09.25.614975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The betacoronavirus genus contains five of the seven human viruses, making it a particularly critical area of research to prepare for future viral emergence. We utilized three human betacoronaviruses, one from each subgenus- HCoV-OC43 (embecovirus), SARS-CoV-2 (sarbecovirus) and MERS-CoV (merbecovirus)- to study betacoronavirus interaction with the PKR-like ER kinase (PERK) pathway of the integrated stress response (ISR)/unfolded protein response (UPR). The PERK pathway becomes activated by an abundance of unfolded proteins within the endoplasmic reticulum (ER), leading to phosphorylation of eIF2α and translational attenuation in lung derived cell lines. We demonstrate that MERS-CoV, HCoV-OC43, and SARS-CoV-2 all activate PERK and induce responses downstream of p-eIF2α, while only SARS-CoV-2 induces detectable p-eIF2α during infection. Using a small molecule inhibitor of eIF2α dephosphorylation, we provide evidence that MERS-CoV and HCoV-OC43 maximize replication through p-eIF2α dephosphorylation. Interestingly, genetic ablation of GADD34 expression, an inducible phosphatase 1 (PP1)-interacting partner targeting eIF2α for dephosphorylation, did not significantly alter HCoV-OC43 or SARS-CoV-2 replication, while siRNA knockdown of the constitutive PP1 partner, CReP, dramatically reduced HCoV-OC43 replication. Combining growth arrest and DNA damage-inducible protein (GADD34) knockout with peripheral ER membrane-targeted protein (CReP) knockdown had the maximum impact on HCoV-OC43 replication, while SARS-CoV-2 replication was unaffected. Overall, we conclude that eIF2α dephosphorylation is critical for efficient protein production and replication during MERS-CoV and HCoV-OC43 infection. SARS-CoV-2, however, appears to be insensitive to p-eIF2α and, during infection, may even downregulate dephosphorylation to limit host translation. IMPORTANCE Lethal human betacoronaviruses have emerged three times in the last two decades, causing two epidemics and a pandemic. Here, we demonstrate differences in how these viruses interact with cellular translational control mechanisms. Utilizing inhibitory compounds and genetic ablation, we demonstrate that MERS-CoV and HCoV-OC43 benefit from keeping p-eIF2α levels low to maintain high rates of virus translation while SARS-CoV-2 tolerates high levels of p-eIF2α. We utilized a PP1:GADD34/CReP inhibitor, GADD34 KO cells, and CReP-targeting siRNA to investigate the therapeutic potential of these pathways. While ineffective for SARS-CoV-2, we found that HCoV-OC43 seems to primarily utilize CReP to limit p-eIF2a accumulation. This work highlights the need to consider differences amongst these viruses, which may inform the development of host-directed pan-coronavirus therapeutics.
Collapse
Affiliation(s)
- David M. Renner
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| | - Nicholas A. Parenti
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| | - Susan R. Weiss
- Departments of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
- Penn Center for Research on Coronaviruses and Other Emerging Pathogens, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA 19104-6076
| |
Collapse
|
5
|
Liu S, Zhang Q, Zhang X, Du C, Chen J, Si S. Real-time monitoring of dephosphorylation process of phosphopeptide and rapid assay of PTP1B activity based on a 100 MHz QCM biosensing platform. Talanta 2024; 277:126399. [PMID: 38876030 DOI: 10.1016/j.talanta.2024.126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.
Collapse
Affiliation(s)
- Shuping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
6
|
Bouchla A, Sotiropoulou CD, Esteb C, Loupis T, Papageorgiou SG, Deliconstantinos GG, Pagoni M, Hatzimichael E, Dellatola M, Kalomoiri S, Apostolidou E, Kontos CK, Thomopoulos TP, Karantanos T, Pappa V. Silencing of the DNA damage repair regulator PPP1R15A sensitizes acute myeloid leukemia cells to chemotherapy. Ann Hematol 2024; 103:2853-2863. [PMID: 38842564 PMCID: PMC11283411 DOI: 10.1007/s00277-024-05785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Acute Myeloid Leukemia (AML) is a life-threatening disease whose induction treatment consists of combination chemotherapy with Idarubicin and Cytarabine for fit patients. Treatment failures are frequent, urging the need for novel treatments for this disease. The DNA Damage Response Mechanism (DDR) comprises numerous molecules and pathways intended to arrest the cell cycle until DNA damage is repaired or else drive the cell to apoptosis. AML-derived cell lines after treatment with Idarubicin and Cytarabine were used for studying the expression profile of 84 DDR genes, through PCR arrays. Utilizing de novo AML patient and control samples we studied the expression of PPP1R15A, CDKN1A, GADD45A, GADD45G, and EXO1. Next, we performed PPP1R15A silencing in AML cell lines in two separate experiments using siRNA and CRISPR-cas9, respectively. Our findings highlight that DDR regulators demonstrate increased expression in patients with high cytogenetic risk possibly reflecting increased genotoxic stress. Especially, PPP1R15A is mainly involved in the recovery of the cells from stress and it was the only DDR gene upregulated in AML patients. The PPP1R15A silencing resulted in decreased viability of Idarubicin and Cytarabine-treated cell lines, in contrast to untreated cells. These findings shed light on new strategies to enhance chemotherapy efficacy and demonstrate that PPP1R15A is an important DDR regulator in AML and its downregulation might be a safe and effective way to increase sensitivity to chemotherapy in this disease.
Collapse
Affiliation(s)
- Anthi Bouchla
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina D Sotiropoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christopher Esteb
- Hematologic Malignancies Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Theodoros Loupis
- Hematology Research Lab, Clinical, Experimental and Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Sotirios G Papageorgiou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia G Deliconstantinos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Pagoni
- Hematology-Lymphomas Department and BMT Unit, Evangelismos General Hospital, Athens, Greece
| | | | - Maria Dellatola
- Hematology-Lymphomas Department and BMT Unit, Evangelismos General Hospital, Athens, Greece
| | - Smaragdi Kalomoiri
- Hematology-Lymphomas Department and BMT Unit, Evangelismos General Hospital, Athens, Greece
| | | | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Thomas P Thomopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Karantanos
- Hematologic Malignancies Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
7
|
Ambrosini A, Dalla Bella E, Ravasi M, Melazzini M, Lauria G. New clinical insight in amyotrophic lateral sclerosis and innovative clinical development from the non-profit repurposing trial of the old drug guanabenz. Front Med (Lausanne) 2024; 11:1407912. [PMID: 38915767 PMCID: PMC11194437 DOI: 10.3389/fmed.2024.1407912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Drug repurposing is considered a valid approach to accelerate therapeutic solutions for rare diseases. However, it is not as widely applied as it could be, due to several barriers that discourage both industry and academic institutions from pursuing this path. Herein we present the case of an academic multicentre study that considered the repurposing of the old drug guanabenz as a therapeutic strategy in amyotrophic lateral sclerosis. The difficulties encountered are discussed as an example of the barriers that academics involved in this type of study may face. Although further development of the drug for this target population was hampered for several reasons, the study was successful in many ways. Firstly, because the hypothesis tested was confirmed in a sub-population, leading to alternative innovative solutions that are now under clinical investigation. In addition, the study was informative and provided new insights into the disease, which are now giving new impetus to laboratory research. The message from this example is that even a repurposing study with an old product has the potential to generate innovation and interest from industry partners, provided it is based on a sound rationale, the study design is adequate to ensure meaningful results, and the investigators keep the full clinical development picture in mind.
Collapse
Affiliation(s)
- Anna Ambrosini
- Fondazione AriSLA ETS, Milan, Italy
- Fondazione Telethon ETS, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and ALS Centre, IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
| | | | | | - Giuseppe Lauria
- IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Yan Y, Shetty M, Harding HP, George G, Zyryanova A, Labbé K, Mafi A, Hao Q, Sidrauski C, Ron D. Substrate recruitment via eIF2γ enhances catalytic efficiency of a holophosphatase that terminates the integrated stress response. Proc Natl Acad Sci U S A 2024; 121:e2320013121. [PMID: 38547060 PMCID: PMC10998612 DOI: 10.1073/pnas.2320013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024] Open
Abstract
Dephosphorylation of pSer51 of the α subunit of translation initiation factor 2 (eIF2αP) terminates signaling in the integrated stress response (ISR). A trimeric mammalian holophosphatase comprised of a protein phosphatase 1 (PP1) catalytic subunit, the conserved C-terminally located ~70 amino acid core of a substrate-specific regulatory subunit (PPP1R15A/GADD34 or PPP1R15B/CReP) and G-actin (an essential cofactor) efficiently dephosphorylate eIF2αP in vitro. Unlike their viral or invertebrate counterparts, with whom they share the conserved 70 residue core, the mammalian PPP1R15s are large proteins of more than 600 residues. Genetic and cellular observations point to a functional role for regions outside the conserved core of mammalian PPP1R15A in dephosphorylating its natural substrate, the eIF2 trimer. We have combined deep learning technology, all-atom molecular dynamics simulations, X-ray crystallography, and biochemistry to uncover binding of the γ subunit of eIF2 to a short helical peptide repeated four times in the functionally important N terminus of human PPP1R15A that extends past its conserved core. Binding entails insertion of Phe and Trp residues that project from one face of an α-helix formed by the conserved repeats of PPP1R15A into a hydrophobic groove exposed on the surface of eIF2γ in the eIF2 trimer. Replacing these conserved Phe and Trp residues with Ala compromises PPP1R15A function in cells and in vitro. These findings suggest mechanisms by which contacts between a distant subunit of eIF2 and elements of PPP1R15A distant to the holophosphatase active site contribute to dephosphorylation of eIF2αP by the core PPP1R15 holophosphatase and to efficient termination of the ISR in mammals.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Maithili Shetty
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Heather P. Harding
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Ginto George
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Alisa Zyryanova
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | | | | | - Qi Hao
- Calico Life Sciences, South San Francisco, CA94080
| | | | - David Ron
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| |
Collapse
|
9
|
Ding ZB, Chen Y, Zheng YR, Wang YY, Deng WD, Zheng JH, Yang Q, Chen ZY, Li LH, Jiang H, Li XJ. Inhibition of PPP1R15A alleviates osteoporosis via suppressing RANKL-induced osteoclastogenesis. Acta Pharmacol Sin 2024; 45:790-802. [PMID: 38191913 PMCID: PMC10943029 DOI: 10.1038/s41401-023-01209-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis results from overactivation of osteoclasts. There are currently few drug options for treatment of this disease. Since the successful development of allosteric inhibitors, phosphatases have become attractive therapeutic targets. Protein phosphatase 1, regulatory subunit 15 A (PPP1R15A), is a stress-responsive protein, which promotes the UPR (unfolded protein response) and restores protein homeostasis. In this study we investigated the role of PPP1R15A in osteoporosis and osteoclastogenesis. Ovariectomy (OVX)-induced osteoporosis mouse model was established, osteoporosis was evaluated in the left femurs using micro-CT. RANKL-stimulated osteoclastogenesis was used as in vitro models. We showed that PPP1R15A expression was markedly increased in BMMs derived from OVX mice and during RANKL-induced osteoclastogenesis in vitro. Knockdown of PPP1R15A or application of Sephin1 (a PPP1R15A allosteric inhibitor in a phase II clinical trial) significantly inhibited osteoclastogenesis in vitro. Sephin1 (0.78, 3.125 and 12.5 μM) dose-dependently mitigated the changes in NF-κB, MAPK, and c-FOS and the subsequent nuclear factor of activated T cells 1 (NFATc1) translocation in RANKL-stimulated BMMs. Both Sephin1 and PPP1R15A knockdown increased the phosphorylated form of eukaryotic initiation factor 2α (eIF2α); knockdown of eIF2α reduced the inhibitory effects of Sephin1 on NFATc1-luc transcription and osteoclast formation. Furthermore, Sephin1 or PPP1R15A knockdown suppressed osteoclastogenesis in CD14+ monocytes from osteoporosis patients. In OVX mice, injection of Sephin1 (4, 8 mg/kg, i.p.) every two days for 6 weeks significantly inhibited bone loss, and restored bone destruction and decreased TRAP-positive cells. This study has identified PPP1R15A as a novel target for osteoclast differentiation, and genetic inhibition or allosteric inhibitors of PPP1R15A, such as Sephin1, can be used to treat osteoporosis. This study revealed that PPP1R15A expression was increased in osteoporosis in both human and mice. Inhibition of PPP1R15A by specific knockdown or an allosteric inhibitor Sephin1 mitigated murine osteoclast formation in vitro and attenuated ovariectomy-induced osteoporosis in vivo. PPP1R15A inhibition also suppressed pathogenic osteoclastogenesis in CD14+ monocytes from osteoporosis patients. These results identify PPP1R15A as a novel regulator of osteoclastogenesis and a valuable therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Zong-Bao Ding
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yan Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu-Rong Zheng
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi-Yuan Wang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-de Deng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jie-Huang Zheng
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qin Yang
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ye Chen
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li-Hong Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui Jiang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Xiao-Juan Li
- Laboratory of Anti-inflammatory and Immunomodulatory Pharmacology, Innovation Program of Drug Research on Inflammatory and Immune Diseases, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Yu X, Dang L, Zhang R, Yang W. Therapeutic Potential of Targeting the PERK Signaling Pathway in Ischemic Stroke. Pharmaceuticals (Basel) 2024; 17:353. [PMID: 38543139 PMCID: PMC10974972 DOI: 10.3390/ph17030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/15/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
Many pathologic states can lead to the accumulation of unfolded/misfolded proteins in cells. This causes endoplasmic reticulum (ER) stress and triggers the unfolded protein response (UPR), which encompasses three main adaptive branches. One of these UPR branches is mediated by protein kinase RNA-like ER kinase (PERK), an ER stress sensor. The primary consequence of PERK activation is the suppression of global protein synthesis, which reduces ER workload and facilitates the recovery of ER function. Ischemic stroke induces ER stress and activates the UPR. Studies have demonstrated the involvement of the PERK pathway in stroke pathophysiology; however, its role in stroke outcomes requires further clarification. Importantly, considering mounting evidence that supports the therapeutic potential of the PERK pathway in aging-related cognitive decline and neurodegenerative diseases, this pathway may represent a promising therapeutic target in stroke. Therefore, in this review, our aim is to discuss the current understanding of PERK in ischemic stroke, and to summarize pharmacologic tools for translational stroke research that targets PERK and its associated pathways.
Collapse
Affiliation(s)
| | | | | | - Wei Yang
- Multidisciplinary Brain Protection Program, Department of Anesthesiology, Duke University Medical Center, Box 3094, 303 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
11
|
Fatalska A, Hodgson G, Freund SMV, Maslen SL, Morgan T, Thorkelsson SR, van Slegtenhorst M, Lorenz S, Andreeva A, Kaat LD, Bertolotti A. Recruitment of trimeric eIF2 by phosphatase non-catalytic subunit PPP1R15B. Mol Cell 2024; 84:506-521.e11. [PMID: 38159565 PMCID: PMC7615683 DOI: 10.1016/j.molcel.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tomos Morgan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sigurdur R Thorkelsson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
12
|
Kommer DC, Stamatiou K, Vagnarelli P. Cell Cycle-Specific Protein Phosphatase 1 (PP1) Substrates Identification Using Genetically Modified Cell Lines. Methods Mol Biol 2024; 2740:37-61. [PMID: 38393468 DOI: 10.1007/978-1-0716-3557-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The identification of protein phosphatase 1 (PP1) holoenzyme substrates has proven to be a challenging task. PP1 can form different holoenzyme complexes with a variety of regulatory subunits, and many of those are cell cycle regulated. Although several methods have been used to identify PP1 substrates, their cell cycle specificity is still an unmet need. Here, we present a new strategy to investigate PP1 substrates throughout the cell cycle using clustered regularly interspersed short palindromic repeats (CRISPR)-Cas9 genome editing and generate cell lines with endogenously tagged PP1 regulatory subunit (regulatory interactor of protein phosphatase one, RIPPO). RIPPOs are tagged with the auxin-inducible degron (AID) or ascorbate peroxidase 2 (APEX2) modules, and PP1 substrate identification is conducted by SILAC proteomic-based approaches. Proteins in close proximity to RIPPOs are first identified through mass spectrometry (MS) analyses using the APEX2 system; then a list of differentially phosphorylated proteins upon RIPPOs rapid degradation (achieved via the AID system) is compiled via SILAC phospho-mass spectrometry. The "in silico" overlap between the two proteomes will be enriched for PP1 putative substrates. Several methods including fluorescence resonance energy transfer (FRET), proximity ligation assays (PLA), and in vitro assays can be used as substrate validations approaches.
Collapse
Affiliation(s)
- Dorothee C Kommer
- College of Health, Medicine and Life Science, Brunel University London, London, UK
| | | | - Paola Vagnarelli
- College of Health, Medicine and Life Science, Brunel University London, London, UK.
| |
Collapse
|
13
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
14
|
Maiti S, Bhattacharya K, Wider D, Hany D, Panasenko O, Bernasconi L, Hulo N, Picard D. Hsf1 and the molecular chaperone Hsp90 support a 'rewiring stress response' leading to an adaptive cell size increase in chronic stress. eLife 2023; 12:RP88658. [PMID: 38059913 PMCID: PMC10703448 DOI: 10.7554/elife.88658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Cells are exposed to a wide variety of internal and external stresses. Although many studies have focused on cellular responses to acute and severe stresses, little is known about how cellular systems adapt to sublethal chronic stresses. Using mammalian cells in culture, we discovered that they adapt to chronic mild stresses of up to two weeks, notably proteotoxic stresses such as heat, by increasing their size and translation, thereby scaling the amount of total protein. These adaptations render them more resilient to persistent and subsequent stresses. We demonstrate that Hsf1, well known for its role in acute stress responses, is required for the cell size increase, and that the molecular chaperone Hsp90 is essential for coupling the cell size increase to augmented translation. We term this translational reprogramming the 'rewiring stress response', and propose that this protective process of chronic stress adaptation contributes to the increase in size as cells get older, and that its failure promotes aging.
Collapse
Affiliation(s)
- Samarpan Maiti
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Kaushik Bhattacharya
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Diana Wider
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in AlexandriaAlexandriaEgypt
| | - Olesya Panasenko
- BioCode: RNA to Proteins Core Facility, Département de Microbiologie et Médecine Moléculaire, Faculté de Médecine, Université de GenèveGenèveSwitzerland
| | - Lilia Bernasconi
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| | - Nicolas Hulo
- Institute of Genetics and Genomics of Geneva, Université de GenèveGenèveSwitzerland
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de GenèveGenèveSwitzerland
| |
Collapse
|
15
|
Chen Y, Quan S, Patil V, Kunjamma RB, Tokars HM, Leisten ED, Joy G, Wills S, Chan JR, Wong YC, Popko B. Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. Glia 2023; 71:2180-2195. [PMID: 37203250 PMCID: PMC10681276 DOI: 10.1002/glia.24386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/20/2023]
Abstract
central nervous system (CNS) inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation. However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, pharmacological suppression of the ISR blocks stress granule formation in vitro and partially lessens the beneficial effect of Sephin1 on disease progression in a mouse model of MS, experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.
Collapse
Affiliation(s)
- Yanan Chen
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Songhua Quan
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Vaibhav Patil
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rejani B. Kunjamma
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Haley M. Tokars
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eric D. Leisten
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Godwin Joy
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Samantha Wills
- Deptment of Biology, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jonah R. Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San Francisco, CA, 94158, USA
| | - Yvette C. Wong
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Popko
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
16
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
17
|
Martinez-Gonzalez L, Martinez A. Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2023; 32:141-160. [PMID: 36762798 DOI: 10.1080/13543784.2023.2178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by motoneuron death with a median survival time of 3-5 years since disease onset. There are no effective treatments to date. However, a variety of innovative investigational drugs and biological-based therapies are under clinical development. AREAS COVERED This review provides an overview of the clinical investigational small molecules as well as a brief summary of the biological-based therapies that are currently undergoing clinical trials for the treatment of ALS. All the data were obtained from ClinicalTrials.gov (registered through November 1). EXPERT OPINION Drug discovery for ALS is an active and evolving field, where many investigational clinical drugs are in different trials. There are several mechanisms of action supporting all these new therapies, although proteostasis is gaining stage. Probably, small orally bioavailable molecules able to recover functional TDP-43 homeostasis may have solid chances to modify ALS progression.
Collapse
Affiliation(s)
- Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
18
|
Insights into the mechanism of oligodendrocyte protection and remyelination enhancement by the integrated stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.23.525156. [PMID: 36747743 PMCID: PMC9900777 DOI: 10.1101/2023.01.23.525156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
CNS inflammation triggers activation of the integrated stress response (ISR). We previously reported that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation (Chen et al., eLife , 2021). However, the exact mechanisms through which this occurs remain unknown. Here, we investigated whether the ISR modulator Sephin1 in combination with the oligodendrocyte differentiation enhancing reagent bazedoxifene (BZA) is able to accelerate remyelination under inflammation, and the underlying mechanisms mediating this pathway. We find that the combined treatment of Sephin1 and BZA is sufficient to accelerate early-stage remyelination in mice with ectopic IFN-γ expression in the CNS. IFN-γ, which is a critical inflammatory cytokine in multiple sclerosis (MS), inhibits oligodendrocyte precursor cell (OPC) differentiation in culture and triggers a mild ISR. Mechanistically, we further show that BZA promotes OPC differentiation in the presence of IFN-γ, while Sephin1 enhances the IFN-γ-induced ISR by reducing protein synthesis and increasing RNA stress granule formation in differentiating oligodendrocytes. Finally, the ISR suppressor 2BAct is able to partially lessen the beneficial effect of Sephin1 on disease progression, in an MS mouse model of experimental autoimmune encephalitis (EAE). Overall, our findings uncover distinct mechanisms of action of BZA and Sephin1 on oligodendrocyte lineage cells under inflammatory stress, suggesting that a combination therapy may effectively promote restoring neuronal function in MS patients.
Collapse
|
19
|
Márton M, Bánhegyi G, Gyöngyösi N, Kálmán EÉ, Pettkó‐Szandtner A, Káldi K, Kapuy O. A systems biological analysis of the ATF4-GADD34-CHOP regulatory triangle upon endoplasmic reticulum stress. FEBS Open Bio 2022; 12:2065-2082. [PMID: 36097827 PMCID: PMC9623533 DOI: 10.1002/2211-5463.13484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-dependent accumulation of incorrectly folded proteins leads to activation of the unfolded protein response. The role of the unfolded protein response (UPR) is to avoid cell damage and restore the homeostatic state by autophagy; however, excessive ER stress results in apoptosis. Here we investigated the ER stress-dependent feedback loops inside one of the UPR branches by focusing on PERK-induced ATF4 and its two targets, called CHOP and GADD34. Our goal was to qualitatively describe the dynamic behavior of the system by exploring the key regulatory motifs using both molecular and theoretical biological techniques. Using the HEK293T cell line as a model system, we confirmed that the life-or-death decision is strictly regulated. We investigated the dynamic characteristics of the crucial elements of the PERK pathway at both the RNA and protein level upon tolerable and excessive levels of ER stress. Of particular note, inhibition of GADD34 or CHOP resulted in various phenotypes upon high levels of ER stress. Our computer simulations suggest the existence of two new feedback loops inside the UPR. First, GADD34 seems to have a positive effect on ATF4 activity, while CHOP inhibits it. We claim that these newly described feedback loops ensure the fine-tuning of the ATF4-dependent stress response mechanism of the cell.
Collapse
Affiliation(s)
- Margita Márton
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Gábor Bánhegyi
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Norbert Gyöngyösi
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | - Eszter Éva Kálmán
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| | | | - Krisztina Káldi
- Department of PhysiologySemmelweis UniversityBudapestHungary
| | - Orsolya Kapuy
- Department of Molecular Biology at the Institute of Biochemistry and Molecular BiologySemmelweis UniversityBudapestHungary
| |
Collapse
|
20
|
Pitera AP, Szaruga M, Peak‐Chew S, Wingett SW, Bertolotti A. Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 2022; 41:e109985. [PMID: 35466425 PMCID: PMC9156968 DOI: 10.15252/embj.2021109985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Collapse
|
21
|
Krzyzosiak A, Pitera AP, Bertolotti A. An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response. Methods Mol Biol 2022; 2428:3-18. [PMID: 35171470 DOI: 10.1007/978-1-0716-1975-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
Collapse
|
22
|
Hodgson G, Andreeva A, Bertolotti A. Substrate recognition determinants of human eIF2α phosphatases. Open Biol 2021; 11:210205. [PMID: 34847777 PMCID: PMC8633803 DOI: 10.1098/rsob.210205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325-554 and R15B340-639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325-674 and R15B340-713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.
Collapse
Affiliation(s)
- George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
23
|
Pharmacological targeting of endoplasmic reticulum stress in disease. Nat Rev Drug Discov 2021; 21:115-140. [PMID: 34702991 DOI: 10.1038/s41573-021-00320-3] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
The accumulation of misfolded proteins in the endoplasmic reticulum (ER) leads to ER stress, resulting in activation of the unfolded protein response (UPR) that aims to restore protein homeostasis. However, the UPR also plays an important pathological role in many diseases, including metabolic disorders, cancer and neurological disorders. Over the last decade, significant effort has been invested in targeting signalling proteins involved in the UPR and an array of drug-like molecules is now available. However, these molecules have limitations, the understanding of which is crucial for their development into therapies. Here, we critically review the existing ER stress and UPR-directed drug-like molecules, highlighting both their value and their limitations.
Collapse
|
24
|
Xie J, Jiang R, Xie W, Cao B, More SS. LC-MS/MS determination of guanabenz E/Z isomers and its application to in vitro and in vivo DMPK profiling studies. J Pharm Biomed Anal 2021; 205:114331. [PMID: 34455203 DOI: 10.1016/j.jpba.2021.114331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum (ER) stress underlies a variety of disorders involving inflammation, such as diabetes, neurodegenerative diseases. Guanabenz acetate (Wytensin®, GA), a clinically approved antihypertensive drug, efficiently counteracts ER stress. The entirety of clinically used GA is the E-isomer, while the Z-isomer is known to lack significant hypotensive properties. We recently discovered that the Z-isomer retains anti-ER stress activity. Coupled with its lack of sedative effects, (Z)-GA is well positioned as a potential therapeutic for a host of ER stress-related disorders. We set forth to characterize the metabolism and pharmacokinetics (DMPK) of (Z)-GA in vitro and in vivo. Toward this end, a reliable and sensitive LC-MS/MS method for simultaneous determination of the (E)- and (Z)-guanabenz was developed. Chromatographic separation of the isomers was achieved on a C18 reverse phase column with a gradient elution. Tandem mass spectrometric detection was conducted using an AB Sciex 5500 QTrap mass spectrometer with positive electrospray ionization. Full validation of the method was performed in mouse plasma with a simple and low plasma volume protein precipitation procedure. The method demonstrated good linearity, reproducibility, and accuracy over a range of 0.5-1000 nM with minimal matrix effect and excellent extraction efficiency. In addition, the developed method was successfully applied to DMPK studies of the GA isomers in vitro and in vivo. Results of these studies revealed for the first time that the DMPK profile of (Z)-guanabenz is distinct from that of (E)-guanabenz, with higher apparent volume of distribution (Vd) and clearance, presumably due to lower plasma protein binding.
Collapse
Affiliation(s)
- Jiashu Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Rongrong Jiang
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Xie
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bin Cao
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Swati S More
- Center for Drug Design, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
25
|
Yan Y, Harding HP, Ron D. Higher-order phosphatase-substrate contacts terminate the integrated stress response. Nat Struct Mol Biol 2021; 28:835-846. [PMID: 34625748 PMCID: PMC8500838 DOI: 10.1038/s41594-021-00666-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
Many regulatory PPP1R subunits join few catalytic PP1c subunits to mediate phosphoserine and phosphothreonine dephosphorylation in metazoans. Regulatory subunits engage the surface of PP1c, locally affecting flexible access of the phosphopeptide to the active site. However, catalytic efficiency of holophosphatases towards their phosphoprotein substrates remains unexplained. Here we present a cryo-EM structure of the tripartite PP1c-PPP1R15A-G-actin holophosphatase that terminates signaling in the mammalian integrated stress response (ISR) in the pre-dephosphorylation complex with its substrate, translation initiation factor 2α (eIF2α). G-actin, whose essential role in eIF2α dephosphorylation is supported crystallographically, biochemically and genetically, aligns the catalytic and regulatory subunits, creating a composite surface that engages the N-terminal domain of eIF2α to position the distant phosphoserine-51 at the active site. Substrate residues that mediate affinity for the holophosphatase also make critical contacts with eIF2α kinases. Thus, a convergent process of higher-order substrate recognition specifies functionally antagonistic phosphorylation and dephosphorylation in the ISR.
Collapse
Affiliation(s)
- Yahui Yan
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Heather P Harding
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - David Ron
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
ATF4-mediated transcriptional regulation protects against β-cell loss during endoplasmic reticulum stress in a mouse model. Mol Metab 2021; 54:101338. [PMID: 34547510 PMCID: PMC8487982 DOI: 10.1016/j.molmet.2021.101338] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Activating transcription factor 4 (ATF4) is a transcriptional regulator of the unfolded protein response and integrated stress response (ISR) that promote the restoration of normal endoplasmic reticulum (ER) function. Previous reports demonstrated that dysregulation of the ISR led to development of severe diabetes. However, the contribution of ATF4 to pancreatic β-cells remains poorly understood. In this study, we aimed to analyze the effect of ISR enhancer Sephin1 and ATF4-deficient β-cells to clarify the role of ATF4 in β-cells under ER stress conditions. METHODS To examine the role of ATF4 in vivo, ISR enhancer Sephin1 (5 mg/kg body weight, p.o.) was administered daily for 21 days to Akita mice. We also established β-cell-specific Atf4 knockout (βAtf4-KO) mice that were further crossed with Akita mice. These mice were analyzed for characteristics of diabetes, β-cell function, and morphology of the islets. To identify the downstream factors of ATF4 in β-cells, the islets of βAtf4-KO mice were subjected to cDNA microarray analyses. To examine the transcriptional regulation by ATF4, we also performed in situ PCR analysis of pancreatic sections from mice and ChIP-qPCR analysis of CT215 β-cells. RESULTS Administration of the ISR enhancer Sephin1 improved glucose metabolism in Akita mice. Sephin1 also increased the insulin-immunopositive area and ATF4 expression in the pancreatic islets. Akita/βAtf4-KO mice exhibited dramatically exacerbated diabetes, shown by hyperglycemia at an early age, as well as a remarkably short lifespan owing to diabetic ketoacidosis. Moreover, the islets of Akita/βAtf4-KO mice presented increased numbers of cells stained for glucagon, somatostatin, and pancreatic polypeptide and increased expression of aldehyde dehydrogenase 1 family member 3, a marker of dedifferentiation. Using microarray analysis, we identified atonal BHLH transcription factor 8 (ATOH8) as a downstream factor of ATF4. Deletion of ATF4 in β-cells showed reduced Atoh8 expression and increased expression of undifferentiated markers, Nanog and Pou5f1. Atoh8 expression was also abolished in the islets of Akita/βAtf4-KO mice. CONCLUSIONS We conclude that transcriptional regulation by ATF4 maintains β-cell identity via ISR modulation. This mechanism provides a promising target for the treatment of diabetes.
Collapse
|
27
|
Derisbourg MJ, Hartman MD, Denzel MS. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. NATURE AGING 2021; 1:760-768. [PMID: 35146440 PMCID: PMC7612338 DOI: 10.1038/s43587-021-00112-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy aging requires the coordination of numerous stress signaling pathways that converge on the protein homeostasis network. The Integrated Stress Response (ISR) is activated by diverse stimuli, leading to phosphorylation of the eukaryotic translation initiation factor elF2 in its α-subunit. Under replete conditions, elF2 orchestrates 5' cap-dependent mRNA translation and is thus responsible for general protein synthesis. elF2α phosphorylation, the key event of the ISR, reduces global mRNA translation while enhancing the expression of a signature set of stress response genes. Despite the critical role of protein quality control in healthy aging and in numerous longevity pathways, the role of the ISR in longevity remains largely unexplored. ISR activity increases with age, suggesting a potential link with the aging process. Although decreased protein biosynthesis, which occurs during ISR activation, have been linked to lifespan extension, recent data show that lifespan is limited by the ISR as its inhibition extends survival in nematodes and enhances cognitive function in aged mice. Here we survey how aging affects the ISR, the role of the ISR in modulating aging, and pharmacological interventions to tune the ISR. Finally, we will explore the ISR as a plausible target for clinical interventions in aging and age-related disease.
Collapse
Affiliation(s)
| | | | - Martin S Denzel
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- CECAD - Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
28
|
Bella ED, Bersano E, Antonini G, Borghero G, Capasso M, Caponnetto C, Chiò A, Corbo M, Filosto M, Giannini F, Spataro R, Lunetta C, Mandrioli J, Messina S, Monsurrò MR, Mora G, Riva N, Rizzi R, Siciliano G, Silani V, Simone I, Sorarù G, Tugnoli V, Verriello L, Volanti P, Furlan R, Nolan JM, Abgueguen E, Tramacere I, Lauria G. The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain 2021; 144:2635-2647. [PMID: 33905493 PMCID: PMC8557337 DOI: 10.1093/brain/awab167] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/26/2021] [Accepted: 04/16/2021] [Indexed: 11/14/2022] Open
Abstract
Strong evidence suggests that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS) through an altered regulation of proteostasis. Robust preclinical findings demonstrated that guanabenz selectively inhibits ER stress-induced eIF2α-phosphatase allowing misfolded protein clearance, reduces neuronal death and prolongs survival in in vitro and in vivo models. Its efficacy and safety in ALS patients are unknown. To address these issues, we conducted a multicentre, randomised, double-blind trial, with futility design. ALS patients with onset of symptoms within the previous 18 months were randomly assigned to receive in a 1:1:1:1 ratio guanabenz 64 mg, 32 mg, 16 mg or placebo daily for 6 months as add-on therapy to riluzole. The purpose of the placebo group blinding was safety but not efficacy. The primary outcome was the proportion of patients progressing to higher stages of disease in 6 months as measured by the ALS Milano-Torino staging compared to a historical cohort of 200 ALS patients. The secondary outcomes were the rate of decline in ALSFRS-R total score, slow vital capacity change, time to death, tracheotomy or permanent ventilation and serum light neurofilament level at 6 months. The primary analysis of efficacy was performed by intention-to-treat. Guanabenz 64 mg and 32 mg arms, both alone and combined, reached the primary hypothesis of non-futility with proportions of patients who progressed to higher stage of disease at 6 months significantly lower than that expected under the hypothesis of non-futility and significantly lower difference in the median rate of change of the ALSFRS-R total score. This effect was driven by patients with bulbar onset, none of whom (0/18) progressed to a higher stage of disease at 6 months compared with those in guanabenz 16 mg (4/8; 50%), historical cohort alone (21/49; 43%; p = 0.001) or plus placebo (25/60; 42%; p = 0.001). The proportion of patients who experienced at least one adverse event was higher in any guanabenz arm than in the placebo arm, with higher dosing arms having significantly higher proportion of drug-related side effects and the 64 mg arm significantly higher drop-out rate. The number of serious adverse events did not significantly differ between guanabenz arms and placebo. Our findings indicate that a larger trial with a molecule targeting the UPR pathway without the alpha-2 adrenergic related side-effect profile of guanabenz is warranted.
Collapse
Affiliation(s)
- Eleonora Dalla Bella
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Enrica Bersano
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giovanni Antonini
- NESMOS Department, Neuromuscolar Disease Unit, Sant'Andrea Hospital and University of Rome "Sapienza", Rome, Italy
| | | | | | | | - Adriano Chiò
- ALS Centre "Rita Levi Montalcini", Department of Neuroscience, University of Turin, Turin, Italy.,Azienda Ospedaliero-Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Massimo Corbo
- Department of Neurorehabilitaton, Casa Cura Policlinico, Milan, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili Brescia and NeMO-Brescia Clinical Centre for Neuromuscular Diseases, Brescia, Italy
| | - Fabio Giannini
- Department of Medical and Surgery Sciences and Neurosciences, University of Siena, Italy
| | | | | | - Jessica Mandrioli
- Department of Neurosciences, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Sonia Messina
- Unit of Neurology and Neuromuscular Disorders, Department of Clinical and Experimental Medicine and University of Messina, AOU Policlinico "G. Martino", Messina, Italy.,NEuroMuscular Omnicentre of Messina, University Hospital "G. Martino", Messina, Italy
| | | | | | - Nilo Riva
- Department of Neurology IRCCS "San Raffaele" Hospital, Milan, Italy
| | - Romana Rizzi
- Neurology Unit, Department of Neuro-Motor Diseases, Azienda Unità Sanitaria Locale, IRCCS of Reggio Emilia, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, Italy
| | - Vincenzo Silani
- Department of Neurology-Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano IRCCS, Milan, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Centre and Centre for Neurotechnology and Brain Therapeutics, University of Milan, Milan, Italy
| | - Isabella Simone
- Department of Neurology and Psychiatry, University of Bari, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Italy
| | - Valeria Tugnoli
- Department of Neuroscience and Rehabilitation, Division of Neurology, University Hospital of Ferrara, Ferrara, Italy
| | - Lorenzo Verriello
- Neurology Unit, S. Maria della Misericordia University Hospital, Udine, Italy
| | - Paolo Volanti
- Intensive Neurorehabilitation Unit, ICS Maugeri IRCCS, Mistretta, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - John M Nolan
- Drew University, Caspersen School of Graduate Studies, Madison, NJ, USA
| | | | - Irene Tramacere
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy.,Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, Milan, Italy
| |
Collapse
|
29
|
Regulation of Synaptic Transmission and Plasticity by Protein Phosphatase 1. J Neurosci 2021; 41:3040-3050. [PMID: 33827970 DOI: 10.1523/jneurosci.2026-20.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Protein phosphatases, by counteracting protein kinases, regulate the reversible phosphorylation of many substrates involved in synaptic plasticity, a cellular model for learning and memory. A prominent phosphatase regulating synaptic plasticity and neurologic disorders is the serine/threonine protein phosphatase 1 (PP1). PP1 has three isoforms (α, β, and γ, encoded by three different genes), which are regulated by a vast number of interacting subunits that define their enzymatic substrate specificity. In this review, we discuss evidence showing that PP1 regulates synaptic transmission and plasticity, as well as presenting novel models of PP1 regulation suggested by recent experimental evidence. We also outline the required targeting of PP1 by neurabin and spinophilin to achieve substrate specificity at the synapse to regulate AMPAR and NMDAR function. We then highlight the role of inhibitor-2 in regulating PP1 function in plasticity, including its positive regulation of PP1 function in vivo in memory formation. We also discuss the distinct function of the three PP1 isoforms in synaptic plasticity and brain function, as well as briefly discuss the role of inhibitory phosphorylation of PP1, which has received recent emphasis in the regulation of PP1 activity in neurons.
Collapse
|
30
|
Chen Y, Kunjamma RB, Weiner M, Chan JR, Popko B. Prolonging the integrated stress response enhances CNS remyelination in an inflammatory environment. eLife 2021; 10:e65469. [PMID: 33752802 PMCID: PMC7987340 DOI: 10.7554/elife.65469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022] Open
Abstract
The inflammatory environment of demyelinated lesions in multiple sclerosis (MS) patients contributes to remyelination failure. Inflammation activates a cytoprotective pathway, the integrated stress response (ISR), but it remains unclear whether enhancing the ISR can improve remyelination in an inflammatory environment. To examine this possibility, the remyelination stage of experimental autoimmune encephalomyelitis (EAE), as well as a mouse model that incorporates cuprizone-induced demyelination along with CNS delivery of the proinflammatory cytokine IFN-γ were used here. We demonstrate that either genetic or pharmacological ISR enhancement significantly increased the number of remyelinating oligodendrocytes and remyelinated axons in the inflammatory lesions. Moreover, the combined treatment of the ISR modulator Sephin1 with the oligodendrocyte differentiation enhancing reagent bazedoxifene increased myelin thickness of remyelinated axons to pre-lesion levels. Taken together, our findings indicate that prolonging the ISR protects remyelinating oligodendrocytes and promotes remyelination in the presence of inflammation, suggesting that ISR enhancement may provide reparative benefit to MS patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Rejani B Kunjamma
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Molly Weiner
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Jonah R Chan
- Weill Institute for Neuroscience, Department of Neurology, University of California, San FranciscoSan FranciscoUnited States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Northwestern University Feinberg School of MedicineChicagoUnited States
| |
Collapse
|
31
|
A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis. J Biol Chem 2021; 296:100518. [PMID: 33684446 PMCID: PMC8080068 DOI: 10.1016/j.jbc.2021.100518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Reversible phosphorylation relies on highly regulated kinases and phosphatases that target specific substrates to control diverse cellular processes. Here, we address how protein phosphatase activity is directed to the correct substrates under the correct conditions. The serine/threonine phosphatase SpoIIE from Bacillus subtilis, a member of the widespread protein phosphatase 2C (PP2C) family of phosphatases, is activated by movement of a conserved α-helical element in the phosphatase domain to create the binding site for the metal cofactor. We hypothesized that this conformational switch could provide a general mechanism for control of diverse members of the PP2C family of phosphatases. The B. subtilis phosphatase RsbU responds to different signals, acts on a different substrates, and produces a more graded response than SpoIIE. Using an unbiased genetic screen, we isolated mutants in the α-helical switch region of RsbU that are constitutively active, indicating conservation of the switch mechanism. Using phosphatase activity assays with phosphoprotein substrates, we found that both phosphatases integrate substrate recognition with activating signals to control metal-cofactor binding and substrate dephosphorylation. This integrated control provides a mechanism for PP2C family of phosphatases to produce specific responses by acting on the correct substrates, under the appropriate conditions.
Collapse
|
32
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
33
|
Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem 2020; 295:15692-15711. [PMID: 32887796 PMCID: PMC7667976 DOI: 10.1074/jbc.rev120.010218] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Indexed: 12/31/2022] Open
Abstract
The unfolded protein response (UPR) plays a central role in regulating endoplasmic reticulum (ER) and global cellular physiology in response to pathologic ER stress. The UPR is comprised of three signaling pathways activated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Once activated, these proteins initiate transcriptional and translational signaling that functions to alleviate ER stress, adapt cellular physiology, and dictate cell fate. Imbalances in UPR signaling are implicated in the pathogenesis of numerous, etiologically-diverse diseases, including many neurodegenerative diseases, protein misfolding diseases, diabetes, ischemic disorders, and cancer. This has led to significant interest in establishing pharmacologic strategies to selectively modulate IRE1, ATF6, or PERK signaling to both ameliorate pathologic imbalances in UPR signaling implicated in these different diseases and define the importance of the UPR in diverse cellular and organismal contexts. Recently, there has been significant progress in the identification and characterization of UPR modulating compounds, providing new opportunities to probe the pathologic and potentially therapeutic implications of UPR signaling in human disease. Here, we describe currently available UPR modulating compounds, specifically highlighting the strategies used for their discovery and specific advantages and disadvantages in their application for probing UPR function. Furthermore, we discuss lessons learned from the application of these compounds in cellular and in vivo models to identify favorable compound properties that can help drive the further translational development of selective UPR modulators for human disease.
Collapse
Affiliation(s)
- Julia M D Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA.
| |
Collapse
|
34
|
Schneider K, Nelson GM, Watson JL, Morf J, Dalglish M, Luh LM, Weber A, Bertolotti A. Protein Stability Buffers the Cost of Translation Attenuation following eIF2α Phosphorylation. Cell Rep 2020; 32:108154. [PMID: 32937139 PMCID: PMC7495045 DOI: 10.1016/j.celrep.2020.108154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital response to many forms of stress, including protein-misfolding stress in the endoplasmic reticulum (ER stress). It is believed to cause a general reduction in protein synthesis while enabling translation of few transcripts. Such a reduction of protein synthesis comes with the threat of depleting essential proteins, a risk thought to be mitigated by its transient nature. Here, we find that translation attenuation is not uniform, with cytosolic and mitochondrial ribosomal subunits being prominently downregulated. Translation attenuation of these targets persists after translation recovery. Surprisingly, this occurs without a measurable decrease in ribosomal proteins. Explaining this conundrum, translation attenuation preferentially targets long-lived proteins, a finding not only demonstrated by ribosomal proteins but also observed at a global level. This shows that protein stability buffers the cost of translational attenuation, establishing an evolutionary principle of cellular robustness.
Collapse
Affiliation(s)
- Kim Schneider
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Geoffrey Michael Nelson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Joseph Luke Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jörg Morf
- Wellcome - MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Maximillian Dalglish
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Martina Luh
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Annika Weber
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
35
|
Ruiz A, Zuazo J, Ortiz-Sanz C, Luchena C, Matute C, Alberdi E. Sephin1 Protects Neurons against Excitotoxicity Independently of the Integrated Stress Response. Int J Mol Sci 2020; 21:E6088. [PMID: 32846985 PMCID: PMC7504470 DOI: 10.3390/ijms21176088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Sephin1 is a derivative of guanabenz that inhibits the dephosphorylation of the eukaryotic initiation factor 2 alpha (eIF2α) and therefore may enhance the integrated stress response (ISR), an adaptive mechanism against different cellular stresses, such as accumulation of misfolded proteins. Unlike guanabenz, Sephin1 provides neuroprotection without adverse effects on the α2-adrenergic system and therefore it is considered a promising pharmacological therapeutic tool. Here, we have studied the effects of Sephin1 on N-methyl-D-aspartic acid (NMDA) receptor signaling which may modulate the ISR and contribute to excitotoxic neuronal loss in several neurodegenerative conditions. Time-course analysis of peIF2α levels after NMDA receptor overactivation showed a delayed dephosphorylation that occurred in the absence of activating transcription factor 4 (ATF4) and therefore independently of the ISR, in contrast to that observed during endoplasmic reticulum (ER) stress induced by tunicamycin and thapsigargin. Similar to guanabenz, Sephin1 completely blocked NMDA-induced neuronal death and was ineffective against AMPA-induced excitotoxicity, whereas it did not protect from experimental ER stress. Interestingly, both guanabenz and Sephin1 partially but significantly reduced NMDA-induced cytosolic Ca2+ increase, leading to a complete inhibition of subsequent calpain activation. We conclude that Sephin1 and guanabenz share common strong anti-excitotoxic properties with therapeutic potential unrelated to the ISR.
Collapse
Affiliation(s)
- Asier Ruiz
- Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU), Achucarro Basque Center for Neuroscience and Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 48940 Leioa, Spain; (J.Z.); (C.O.-S.); (C.L.); (C.M.); (E.A.)
| | | | | | | | | | | |
Collapse
|
36
|
Liu Y, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Liu M, Zhu D, Chen S, Zhang S, Zhao XX, Huang J, Mao S, Ou X, Gao Q, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Rehman MU, Chen X. The role of host eIF2α in viral infection. Virol J 2020; 17:112. [PMID: 32703221 PMCID: PMC7376328 DOI: 10.1186/s12985-020-01362-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Background eIF2α is a regulatory node that controls protein synthesis initiation by its phosphorylation or dephosphorylation. General control nonderepressible-2 (GCN2), protein kinase R-like endoplasmic reticulum kinase (PERK), double-stranded RNA (dsRNA)-dependent protein kinase (PKR) and heme-regulated inhibitor (HRI) are four kinases that regulate eIF2α phosphorylation. Main body In the viral infection process, dsRNA or viral proteins produced by viral proliferation activate different eIF2α kinases, resulting in eIF2α phosphorylation, which hinders ternary tRNAMet-GTP-eIF2 complex formation and inhibits host or viral protein synthesis. The stalled messenger ribonucleoprotein (mRNP) complex aggregates under viral infection stress to form stress granules (SGs), which encapsulate viral RNA and transcription- and translation-related proteins, thereby limiting virus proliferation. However, many viruses have evolved a corresponding escape mechanism to synthesize their own proteins in the event of host protein synthesis shutdown and SG formation caused by eIF2α phosphorylation, and viruses can block the cell replication cycle through the PERK-eIF2α pathway, providing a favorable environment for their own replication. Subsequently, viruses can induce host cell autophagy or apoptosis through the eIF2α-ATF4-CHOP pathway. Conclusions This review summarizes the role of eIF2α in viral infection to provide a reference for studying the interactions between viruses and hosts.
Collapse
Affiliation(s)
- Yuanzhi Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| |
Collapse
|
37
|
Lontay B, Kiss A, Virág L, Tar K. How Do Post-Translational Modifications Influence the Pathomechanistic Landscape of Huntington's Disease? A Comprehensive Review. Int J Mol Sci 2020; 21:ijms21124282. [PMID: 32560122 PMCID: PMC7349273 DOI: 10.3390/ijms21124282] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant inherited neurodegenerative disorder characterized by the loss of motor control and cognitive ability, which eventually leads to death. The mutant huntingtin protein (HTT) exhibits an expansion of a polyglutamine repeat. The mechanism of pathogenesis is still not fully characterized; however, evidence suggests that post-translational modifications (PTMs) of HTT and upstream and downstream proteins of neuronal signaling pathways are involved. The determination and characterization of PTMs are essential to understand the mechanisms at work in HD, to define possible therapeutic targets better, and to challenge the scientific community to develop new approaches and methods. The discovery and characterization of a panoply of PTMs in HTT aggregation and cellular events in HD will bring us closer to understanding how the expression of mutant polyglutamine-containing HTT affects cellular homeostasis that leads to the perturbation of cell functions, neurotoxicity, and finally, cell death. Hence, here we review the current knowledge on recently identified PTMs of HD-related proteins and their pathophysiological relevance in the formation of abnormal protein aggregates, proteolytic dysfunction, and alterations of mitochondrial and metabolic pathways, neuroinflammatory regulation, excitotoxicity, and abnormal regulation of gene expression.
Collapse
Affiliation(s)
- Beata Lontay
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - Andrea Kiss
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.L.); (A.K.); (L.V.)
- Correspondence: ; Tel.: +36-52-412345
| |
Collapse
|
38
|
Köhn M. Turn and Face the Strange: A New View on Phosphatases. ACS CENTRAL SCIENCE 2020; 6:467-477. [PMID: 32341996 PMCID: PMC7181316 DOI: 10.1021/acscentsci.9b00909] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 05/08/2023]
Abstract
Phosphorylation as a post-translational modification is critical for cellular homeostasis. Kinases and phosphatases regulate phosphorylation levels by adding or removing, respectively, a phosphate group from proteins or other biomolecules. Imbalances in phosphorylation levels are involved in a multitude of diseases. Phosphatases are often thought of as the black sheep, the strangers, of phosphorylation-mediated signal transduction, particularly when it comes to drug discovery and development. This is due to past difficulties to study them and unsuccessful attempts to target them; however, phosphatases have regained strong attention and are actively pursued now in clinical trials. By giving examples for current hot topics in phosphatase biology and for new approaches to target them, it is illustrated here how and why phosphatases made their comeback, and what is envisioned to come in the future.
Collapse
Affiliation(s)
- Maja Köhn
- Faculty
of Biology, Institute of Biology III, University
of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Signalling
Research Centres BIOSS and CIBSS, University
of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Cornella-Taracido I, Garcia-Echeverria C. Monovalent protein-degraders - Insights and future perspectives. Bioorg Med Chem Lett 2020; 30:127202. [PMID: 32331933 DOI: 10.1016/j.bmcl.2020.127202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
The therapeutic potential of interfering with dysregulated proteins by inducing its selective degradation has been pursued using different mechanisms. In the present article, we review representative examples of monovalent protein-degraders that, contrary to the proteolysis targeting chimeras, achieve target degradation without displaying recognition motifs for the recruitment of E3 ubiquitin ligases. We also highlight new technologies and assays that may brought to bear on the discovery of common elements that could predict and enable the selective degradation of pathogenic targets by monovalent protein-degraders. The successful application of these methods would pave the way to the advancement of new drugs with unique efficacy and tolerability properties.
Collapse
|
40
|
Luh LM, Bertolotti A. Potential benefit of manipulating protein quality control systems in neurodegenerative diseases. Curr Opin Neurobiol 2020; 61:125-132. [PMID: 32199101 DOI: 10.1016/j.conb.2020.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/19/2022]
Abstract
The deposition of proteins of abnormal conformation is one of the major hallmarks of the common neurodegenerative diseases including Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, frontotemporal dementia, and prion diseases. Protein quality control systems have evolved to protect cells and organisms against the harmful consequences of abnormally folded proteins that are constantly produced in small amounts. Mutations in rare inherited forms of neurodegenerative diseases have provided compelling evidence that failure of protein quality control systems can drive neurodegeneration. With extensive knowledge of these systems, and the notion that protein quality control may decline with age, many laboratories are now focussing on manipulating these evolutionarily optimized defence mechanisms to reduce the protein misfolding burden for therapeutic benefit.
Collapse
Affiliation(s)
- Laura M Luh
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, United Kingdom.
| |
Collapse
|
41
|
Malerba A, Roth F, Harish P, Dhiab J, Lu-Nguyen N, Cappellari O, Jarmin S, Mahoudeau A, Ythier V, Lainé J, Negroni E, Abgueguen E, Simonelig M, Guedat P, Mouly V, Butler-Browne G, Voisset C, Dickson G, Trollet C. Pharmacological modulation of the ER stress response ameliorates oculopharyngeal muscular dystrophy. Hum Mol Genet 2020; 28:1694-1708. [PMID: 30649389 DOI: 10.1093/hmg/ddz007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 12/23/2022] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a rare late onset genetic disease leading to ptosis, dysphagia and proximal limb muscles at later stages. A short abnormal (GCN) triplet expansion in the polyA-binding protein nuclear 1 (PABPN1) gene leads to PABPN1-containing aggregates in the muscles of OPMD patients. Here we demonstrate that treating mice with guanabenz acetate (GA), an FDA-approved antihypertensive drug, reduces the size and number of nuclear aggregates, improves muscle force, protects myofibers from the pathology-derived turnover and decreases fibrosis. GA targets various cell processes, including the unfolded protein response (UPR), which acts to attenuate endoplasmic reticulum (ER) stress. We demonstrate that GA increases both the phosphorylation of the eukaryotic translation initiation factor 2α subunit and the splicing of Xbp1, key components of the UPR. Altogether these data show that modulation of protein folding regulation is beneficial for OPMD and promote the further development of GA or its derivatives for treatment of OPMD in humans. Furthermore, they support the recent evidences that treating ER stress could be therapeutically relevant in other more common proteinopathies.
Collapse
Affiliation(s)
- Alberto Malerba
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Fanny Roth
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Pradeep Harish
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Jamila Dhiab
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Ngoc Lu-Nguyen
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Ornella Cappellari
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Susan Jarmin
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Alexandrine Mahoudeau
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Victor Ythier
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Jeanne Lainé
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Elisa Negroni
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | | | - Martine Simonelig
- Institute of Human Genetics, CNRS UMR9002-University of Montpellier, mRNA Regulation and Development, Montpellier, France
| | | | - Vincent Mouly
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| | - Cécile Voisset
- UMR1078 'Genetic, Functional Genomic and Biotechnologies', INSERM, EFS, Brest University, IBSAM, Brest, France
| | - George Dickson
- School of Biological Sciences, Centers of Gene and Cell Therapy and Biomedical Sciences, Royal Holloway, University of London, TW20 OEX Surrey, UK
| | - Capucine Trollet
- Sorbonne Université, INSERM, Association Institut de Myologie, Centre de Recherche en Myologie, UMRS974, 47 bd de l'Hôpital, Paris, France
| |
Collapse
|
42
|
Onat UI, Yildirim AD, Tufanli Ö, Çimen I, Kocatürk B, Veli Z, Hamid SM, Shimada K, Chen S, Sin J, Shah PK, Gottlieb RA, Arditi M, Erbay E. Intercepting the Lipid-Induced Integrated Stress Response Reduces Atherosclerosis. J Am Coll Cardiol 2020; 73:1149-1169. [PMID: 30871699 PMCID: PMC6424590 DOI: 10.1016/j.jacc.2018.12.055] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
Abstract
Background Eukaryotic cells can respond to diverse stimuli by converging at serine-51 phosphorylation on eukaryotic initiation factor 2 alpha (eIF2α) and activate the integrated stress response (ISR). This is a key step in translational control and must be tightly regulated; however, persistent eIF2α phosphorylation is observed in mouse and human atheroma. Objectives Potent ISR inhibitors that modulate neurodegenerative disorders have been identified. Here, the authors evaluated the potential benefits of intercepting ISR in a chronic metabolic and inflammatory disease, atherosclerosis. Methods The authors investigated ISR’s role in lipid-induced inflammasome activation and atherogenesis by taking advantage of 3 different small molecules and the ATP-analog sensitive kinase allele technology to intercept ISR at multiple molecular nodes. Results The results show lipid-activated eIF2α signaling induces a mitochondrial protease, Lon protease 1 (LONP1), that degrades phosphatase and tensin-induced putative kinase 1 and blocks Parkin-mediated mitophagy, resulting in greater mitochondrial oxidative stress, inflammasome activation, and interleukin-1β secretion in macrophages. Furthermore, ISR inhibitors suppress hyperlipidemia-induced inflammasome activation and inflammation, and reduce atherosclerosis. Conclusions These results reveal endoplasmic reticulum controls mitochondrial clearance by activating eIF2α-LONP1 signaling, contributing to an amplified oxidative stress response that triggers robust inflammasome activation and interleukin-1β secretion by dietary fats. These findings underscore the intricate exchange of information and coordination of both organelles’ responses to lipids is important for metabolic health. Modulation of ISR to alleviate organelle stress can prevent inflammasome activation by dietary fats and may be a strategy to reduce lipid-induced inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Umut I Onat
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Asli D Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Özlem Tufanli
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Ismail Çimen
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Begüm Kocatürk
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey; Department of Pediatrics, Division of Infectious Diseases and Immunology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zehra Veli
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey
| | - Syed M Hamid
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kenichi Shimada
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Division of Cardiology, Oppenheimer Atherosclerosis Research Center and Atherosclerosis Prevention and Treatment Center, Cedars-Sinai Medical Center, Los Angeles, California; Departments of Medicine and Pediatrics, Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shuang Chen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Departments of Medicine and Pediatrics, Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, California
| | - Jon Sin
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Prediman K Shah
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; Division of Cardiology, Oppenheimer Atherosclerosis Research Center and Atherosclerosis Prevention and Treatment Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roberta A Gottlieb
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Moshe Arditi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California; Departments of Medicine and Pediatrics, Division of Pediatric Infectious Diseases, Cedars-Sinai Medical Center, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ebru Erbay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; National Nanotechnology Center, Bilkent University, Ankara, Turkey; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California; Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
43
|
Zhu Y, Gao Y, Sun X, Wang C, Rui X, Si D, Zhu J, Li W, Liu J. Discovery of novel serine/threonine protein phosphatase 1 inhibitors from traditional Chinese medicine through virtual screening and biological assays. J Biomol Struct Dyn 2019; 38:5464-5473. [PMID: 31820681 DOI: 10.1080/07391102.2019.1702588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) is a critical regulator of several processes, such as muscle contraction, neuronal signaling, glycogen synthesis, and cell proliferation. Dysregulation of PP1 has recently been found to be implicated in cardiac dysfunctions, which indicates that PP1 could be an attractive therapeutic target. However, discovery of PP1 inhibitors with satisfied safety and efficiency is still a challenge. Here, in order to discover potential PP1 inhibitors, compounds extracted from traditional Chinese medicine (TCM) were screened by a novel integrated virtual screening protocol including pharmacophore modeling and docking approaches. Combined with protein phosphatase inhibition assay, ZINC43060554 showed strongly inhibitory activity with IC50 values of 26.78 μM. Furthermore, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area binding free-energy analysis were performed to examine the stability of ligand binding modes. These novel scaffolds discovered in the present study can be used for rational design of PP1 inhibitors with high affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Research Institute, Nanjing Tongrentang Pharmaceutical Co. Ltd, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
44
|
Karagöz GE, Aragón T, Acosta-Alvear D. Recent advances in signal integration mechanisms in the unfolded protein response. F1000Res 2019; 8. [PMID: 31723416 PMCID: PMC6833987 DOI: 10.12688/f1000research.19848.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery more than 25 years ago, great progress has been made in our understanding of the unfolded protein response (UPR), a homeostatic mechanism that adjusts endoplasmic reticulum (ER) function to satisfy the physiological demands of the cell. However, if ER homeostasis is unattainable, the UPR switches to drive cell death to remove defective cells in an effort to protect the health of the organism. This functional dichotomy places the UPR at the crossroads of the adaptation versus apoptosis decision. Here, we focus on new developments in UPR signaling mechanisms, in the interconnectivity among the signaling pathways that make up the UPR in higher eukaryotes, and in the coordination between the UPR and other fundamental cellular processes.
Collapse
Affiliation(s)
- G Elif Karagöz
- Max Perutz Labs Vienna, Medical University of Vienna, Vienna, Austria
| | - Tomás Aragón
- Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, Pamplona, Spain
| | - Diego Acosta-Alvear
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
45
|
Chen Y, Podojil JR, Kunjamma RB, Jones J, Weiner M, Lin W, Miller SD, Popko B. Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain 2019; 142:344-361. [PMID: 30657878 DOI: 10.1093/brain/awy322] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis is a chronic autoimmune demyelinating disorder of the CNS. Immune-mediated oligodendrocyte cell loss contributes to multiple sclerosis pathogenesis, such that oligodendrocyte-protective strategies represent a promising therapeutic approach. The integrated stress response, which is an innate cellular protective signalling pathway, reduces the cytotoxic impact of inflammation on oligodendrocytes. This response is initiated by phosphorylation of eIF2α to diminish global protein translation and selectively allow for the synthesis of protective proteins. The integrated stress response is terminated by dephosphorylation of eIF2α. The small molecule Sephin1 inhibits eIF2α dephosphorylation, thereby prolonging the protective response. Herein, we tested the effectiveness of Sephin1 in shielding oligodendrocytes against inflammatory stress. We confirmed that Sephin1 prolonged eIF2α phosphorylation in stressed primary oligodendrocyte cultures. Moreover, by using a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis, we demonstrated that Sephin1 delayed the onset of clinical symptoms, which correlated with a prolonged integrated stress response, reduced oligodendrocyte and axon loss, as well as diminished T cell presence in the CNS. Sephin1 is reportedly a selective inhibitor of GADD34 (PPP1R15A), which is a stress-induced regulatory subunit of protein phosphatase 1 complex that dephosphorylates eIF2α. Consistent with this possibility, GADD34 mutant mice presented with a similar ameliorated experimental autoimmune encephalomyelitis phenotype as Sephin1-treated mice, and Sephin1 did not provide additional therapeutic benefit to the GADD34 mutant animals. Results presented from the adoptive transfer of encephalitogenic T cells between wild-type and GADD34 mutant mice further indicate that the beneficial effects of Sephin1 are mediated through a direct protective effect on the CNS. Of particular therapeutic relevance, Sephin1 provided additive therapeutic benefit when combined with the first line multiple sclerosis drug, interferon β. Together, our results suggest that a neuroprotective treatment based on the enhancement of the integrated stress response would likely have significant therapeutic value for multiple sclerosis patients.
Collapse
Affiliation(s)
- Yanan Chen
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Joseph R Podojil
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rejani B Kunjamma
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Joshua Jones
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Molly Weiner
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| | - Wensheng Lin
- Department of Neuroscience, The Institute of Translational Neuroscience, The University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Popko
- Department of Neurology, The University of Chicago Center for Peripheral Neuropathy, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Xie W, Xie J, Vince R, More SS. Guanabenz Attenuates Acetaminophen-Induced Liver Toxicity and Synergizes Analgesia in Mice. Chem Res Toxicol 2019; 33:162-171. [DOI: 10.1021/acs.chemrestox.9b00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Xie
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jiashu Xie
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert Vince
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Swati S. More
- Center for Drug Design, College of Pharmacy, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
47
|
Claes Z, Jonkhout M, Crespillo-Casado A, Bollen M. The antibiotic robenidine exhibits guanabenz-like cytoprotective properties by a mechanism independent of protein phosphatase PP1:PPP1R15A. J Biol Chem 2019; 294:13478-13486. [PMID: 31337709 DOI: 10.1074/jbc.ra119.008857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/22/2019] [Indexed: 01/11/2023] Open
Abstract
The aminoguanidine compound robenidine is widely used as an antibiotic for the control of coccidiosis, a protozoal infection in poultry and rabbits. Interestingly, robenidine is structurally similar to guanabenz (analogs), which are currently undergoing clinical trials as cytoprotective agents for the management of neurodegenerative diseases. Here we show that robenidine and guanabenz protect cells from a tunicamycin-induced unfolded protein response to a similar degree. Both compounds also reduced the tumor necrosis factor α-induced activation of NF-κB. The cytoprotective effects of guanabenz (analogs) have been explained previously by their ability to maintain eIF2α phosphorylation by allosterically inhibiting protein phosphatase PP1:PPP1R15A. However, using a novel split-luciferase-based protein-protein interaction assay, we demonstrate here that neither robenidine nor guanabenz disrupt the interaction between PPP1R15A and either PP1 or eIF2α in intact cells. Moreover, both drugs also inhibited the unfolded protein response in cells that expressed a nonphosphorylatable mutant (S51A) of eIF2α. Our results identify robenidine as a PP1:PPP1R15A-independent cytoprotective compound that holds potential for the management of protein misfolding-associated diseases.
Collapse
Affiliation(s)
- Zander Claes
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Marloes Jonkhout
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium
| | - Ana Crespillo-Casado
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Mathieu Bollen
- Laboratory of Biosignaling and Therapeutics, KU Leuven Department of Cellular and Molecular Medicine, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
48
|
Hetz C, Axten JM, Patterson JB. Pharmacological targeting of the unfolded protein response for disease intervention. Nat Chem Biol 2019; 15:764-775. [PMID: 31320759 DOI: 10.1038/s41589-019-0326-2] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
Accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a salient attribute of many human diseases including obesity, liver disorders, cancer, diabetes and neurodegeneration. To restore ER proteostasis, cells activate the unfolded protein response (UPR), a signaling pathway that imposes adaptive programs or triggers apoptosis of damaged cells. The UPR is critical to sustain the normal function of specialized secretory cells (i.e., pancreatic β cells and B lymphocytes) and to control the production of lipids and cholesterol in the liver. In the context of disease, adaptive UPR responses have been linked to the growth of solid tumors, whereas chronic ER stress contributes to cell dysfunction in brain diseases, metabolic syndromes, among other conditions. Here we discuss recent developments in the design and optimization of novel compounds to manipulate UPR signaling and their efficacy in various disease models.
Collapse
Affiliation(s)
- Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,FONDAP Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA. .,Department of Immunology and Infectious diseases, Harvard School of Public Health, Boston, MA, USA.
| | - Jeffrey M Axten
- Medicinal Chemistry, Medicine Design, GlaxoSmithKline, Collegeville, PA, USA.
| | | |
Collapse
|
49
|
SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nat Commun 2019; 10:2532. [PMID: 31182717 PMCID: PMC6557854 DOI: 10.1038/s41467-019-10367-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
Targeted inhibition of the ERK-MAPK pathway, upregulated in a majority of human cancers, has been hindered in the clinic by drug resistance and toxicity. The MRAS-SHOC2-PP1 (SHOC2 phosphatase) complex plays a key role in RAF-ERK pathway activation by dephosphorylating a critical inhibitory site on RAF kinases. Here we show that genetic inhibition of SHOC2 suppresses tumorigenic growth in a subset of KRAS-mutant NSCLC cell lines and prominently inhibits tumour development in autochthonous murine KRAS-driven lung cancer models. On the other hand, systemic SHOC2 ablation in adult mice is relatively well tolerated. Furthermore, we show that SHOC2 deletion selectively sensitizes KRAS- and EGFR-mutant NSCLC cells to MEK inhibitors. Mechanistically, SHOC2 deletion prevents MEKi-induced RAF dimerization, leading to more potent and durable ERK pathway suppression that promotes BIM-dependent apoptosis. These results present a rationale for the generation of SHOC2 phosphatase targeted therapies, both as a monotherapy and to widen the therapeutic index of MEK inhibitors. Targeted inhibition of the ERK-MAPK pathway is challenged by the development of resistance and toxicity. Here, the authors show that SHOC2 genetic inhibition impairs lung tumour development and improves MEK inhibitor efficacy in RAS- and EGFR-mutant cells.
Collapse
|
50
|
Cao X, Dang L, Zheng X, Lu Y, Lu Y, Ji R, Zhang T, Ruan X, Zhi J, Hou X, Yi X, Li MJ, Gu T, Gao M, Zhang L, Chen Y. Targeting Super-Enhancer-Driven Oncogenic Transcription by CDK7 Inhibition in Anaplastic Thyroid Carcinoma. Thyroid 2019; 29:809-823. [PMID: 30924726 DOI: 10.1089/thy.2018.0550] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive malignancies, with no effective treatment currently available. The molecular mechanisms of ATC carcinogenesis remain poorly understood. The objective of this study was to investigate the mechanisms and functions of super-enhancer (SE)-driven oncogenic transcriptional addiction in the progression of ATC and identify new drug targets for ATC treatments. Methods: High-throughput chemical screening was performed to identify new drugs inhibiting ATC cell growth. Cell viability assay, colony formation analysis, cell-cycle analysis, and animal study were used to examine the effects of drug treatments on ATC progression. Chromatin immunoprecipitation sequencing was conducted to establish a SE landscape of ATC. Integrative analysis of RNA sequencing, chromatin immunoprecipitation sequencing, and CRISPR/Cas9-mediated gene editing was used to identify THZ1 target genes. Drug combination analysis was performed to assess drug synergy. Patient samples were analyzed to evaluate candidate biomarkers of prognosis in ATC. Results: THZ1, a covalent inhibitor of cyclin-dependent kinase 7 (CDK7), was identified as a potent anti-ATC compound by high-throughput chemical screening. ATC cells, but not papillary thyroid carcinoma cells, are exceptionally sensitive to CDK7 inhibition. An integrative analysis of both gene expression profiles and SE features revealed that the SE-mediated oncogenic transcriptional amplification mediates the vulnerability of ATC cells to THZ1 treatment. Combining this integrative analysis with functional assays led to the discovery of a number of novel cancer genes of ATC, including PPP1R15A, SMG9, and KLF2. Inhibition of PPP1R15A with Guanabenz or Sephin1 greatly suppresses ATC growth. Significantly, the expression level of PPP1R15A is correlated with CDK7 expression in ATC tissue samples. Elevated expression of PPP1R15A and CDK7 are both associated with poor clinical prognosis in ATC patients. Importantly, CDK7 or PPP1R15A inhibition sensitizes ATC cells to conventional chemotherapy. Conclusions: Taken together, these findings demonstrate transcriptional addiction in ATC pathobiology and identify CDK7 and PPP1R15A as potential biomarkers and therapeutic targets for ATC.
Collapse
Affiliation(s)
- Xinyi Cao
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Lin Dang
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Xiangqian Zheng
- 2 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, P.R. China
| | - Yi Lu
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Yumei Lu
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Rongjie Ji
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Tianye Zhang
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Xianhui Ruan
- 2 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, P.R. China
| | - Jingtai Zhi
- 2 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, P.R. China
| | - Xiukun Hou
- 2 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, P.R. China
| | - Xianfu Yi
- 3 School of Biomedical Engineering, Tianjin Medical University, Tianjin, P.R. China
| | - Mulin Jun Li
- 4 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, P.R. China
| | - Tingyu Gu
- 5 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Ming Gao
- 2 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, P.R. China
| | - Lirong Zhang
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
| | - Yupeng Chen
- 1 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences; Tianjin Medical University, Tianjin, P.R. China
- 2 Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Oncology Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin, P.R. China
| |
Collapse
|