1
|
Yeh YS, Evans TD, Iwase M, Jeong SJ, Zhang X, Liu Z, Park A, Ghasemian A, Dianati B, Javaheri A, Kratky D, Kawarasaki S, Goto T, Zhang H, Dutta P, Schopfer FJ, Straub AC, Cho J, Lodhi IJ, Razani B. Identification of lysosomal lipolysis as an essential noncanonical mediator of adipocyte fasting and cold-induced lipolysis. J Clin Invest 2025; 135:e185340. [PMID: 40091840 PMCID: PMC11910232 DOI: 10.1172/jci185340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/16/2025] [Indexed: 03/19/2025] Open
Abstract
Adipose tissue lipolysis is the process by which triglycerides in lipid stores are hydrolyzed into free fatty acids (FFAs), serving as fuel during fasting or cold-induced thermogenesis. Although cytosolic lipases are considered the predominant mechanism of liberating FFAs, lipolysis also occurs in lysosomes via lysosomal acid lipase (LIPA), albeit with unclear roles in lipid storage and whole-body metabolism. We found that adipocyte LIPA expression increased in adipose tissue of mice when lipolysis was stimulated during fasting, cold exposure, or β-adrenergic agonism. This was functionally important, as inhibition of LIPA genetically or pharmacologically resulted in lower plasma FFAs under lipolytic conditions. Furthermore, adipocyte LIPA deficiency impaired thermogenesis and oxygen consumption and rendered mice susceptible to diet-induced obesity. Importantly, lysosomal lipolysis was independent of adipose triglyceride lipase, the rate-limiting enzyme of cytosolic lipolysis. Our data suggest a significant role for LIPA and lysosomal lipolysis in adipocyte lipid metabolism beyond classical cytosolic lipolysis.
Collapse
Affiliation(s)
- Yu-Sheng Yeh
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Trent D. Evans
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mari Iwase
- Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Se-Jin Jeong
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiangyu Zhang
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ziyang Liu
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Arick Park
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Ghasemian
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Borna Dianati
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ali Javaheri
- Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri, USA
- John Cochran VA Medical Center, St. Louis, Missouri, USA
| | - Dagmar Kratky
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Satoko Kawarasaki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
- Research Unit for Physiological Chemistry, Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Hanrui Zhang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Partha Dutta
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| | - Francisco J. Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, Pennsylvania, USA
| | - Jaehyung Cho
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irfan J. Lodhi
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Babak Razani
- Department of Medicine and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
- Pittsburgh VA Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Chang YH, Tseng YH, Wang JM, Tsai YS, Huang HS. TG-interacting factor 1 regulates mitotic clonal expansion during adipocyte differentiation. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159492. [PMID: 38575107 DOI: 10.1016/j.bbalip.2024.159492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/01/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Obesity is one of the significant health challenges in the world and is highly associated with abnormal adipogenesis. TG-interacting factor 1 (TGIF1) is essential for differentiating murine adipocytes and human adipose tissue-derived stem cells. However, the mode of action needs to be better elucidated. To investigate the roles of TGIF1 in differentiation in-depth, CRISPR/Cas9 knockout technology was performed to generate TGIF1-silenced preadipocytes. The absence of TGIF1 in 3 T3-F442A preadipocytes abolished lipid accumulation throughout the differentiation using Oil Red O staining. Conversely, we established 3 T3-F442A preadipocytes stably expressing TGIF1 and doxycycline-inducible TGIF1 in TGIF1-silenced 3 T3-F442A preadipocytes. Remarkably, the induction of TGIF1 by doxycycline during the initial differentiation phase successfully promoted lipid accumulation in TGIF1-silenced 3 T3-F442A cells. We further explored the mechanisms of TGIF1 in early differentiation. We demonstrated that TGIF1 promoted the mitotic clonal expansion via upregulation of CCAAT/enhancer-binding proteins β expression, interruption with peroxisome proliferators activated receptor γ downstream regulation, and inhibition of p27kip1 expression. In conclusion, we strengthen the pivotal roles of TGIF1 in early differentiation, which might contribute to resolving obesity-associated metabolic syndromes.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
3
|
Chang YH, Tseng YH, Wang JM, Tsai YS, Liu XL, Huang HS. Phosphorylation of TG-interacting factor 1 at carboxyl-terminal sites in response to insulin regulates adipocyte differentiation. FEBS Lett 2024; 598:945-955. [PMID: 38472156 DOI: 10.1002/1873-3468.14849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 03/14/2024]
Abstract
TG-interacting factor 1 (TGIF1) contributes to the differentiation of murine white preadipocyte and human adipose tissue-derived stem cells; however, its regulation is not well elucidated. Insulin is a component of the adipogenic cocktail that induces ERK signaling. TGIF1 phosphorylation and sustained stability in response to insulin were reduced through the use of specific MEK inhibitor U0126. Mutagenesis at T235 or T239 residue of TGIF1 in preadipocytes led to dephosphorylation of TGIF1. The reduced TGIF1 stability resulted in an increase in p27kip1 expression, a decrease in phosphorylated Rb expression and cellular proliferation, and a reduced accumulation of lipids compared to the TGIF1-overexpressed cells. These findings highlight that insulin/ERK-driven phosphorylation of the T235 or T239 residue at TGIF1 is crucial for adipocyte differentiation.
Collapse
Affiliation(s)
- Yu-Hao Chang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ju-Ming Wang
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yau-Sheng Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Xin-Lei Liu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huei-Sheng Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Baković P, Kesić M, Kolarić D, Štefulj J, Čičin-Šain L. Metabolic and Molecular Response to High-Fat Diet Differs between Rats with Constitutionally High and Low Serotonin Tone. Int J Mol Sci 2023; 24:ijms24032169. [PMID: 36768493 PMCID: PMC9916796 DOI: 10.3390/ijms24032169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Maintaining energy balance is a complex physiological function whose dysregulation can lead to obesity and associated metabolic disorders. The bioamine serotonin (5HT) is an important regulator of energy homeostasis, with its central and peripheral pools influencing energy status in opposing ways. Using sublines of rats with constitutionally increased (high-5HT) or decreased (low-5HT) whole-body 5HT tone, we have previously shown that under standard diet constitutionally higher 5HT activity is associated with increased body weight, adiposity, and impaired glucose homeostasis. Here, we investigated the response of 5HT sublines to an obesogenic diet. Consistent with previous findings, high-5HT animals fed a standard diet had poorer metabolic health. However, in response to a high-fat diet, only low-5HT animals increased body weight and insulin resistance. They also showed more pronounced changes in blood metabolic parameters and the expression of various metabolic genes in hypothalamus and adipose tissue. On the other hand, high-5HT animals appeared to be protected from major metabolic disturbances of the obesogenic diet. The results suggest that constitutionally low 5HT activity is associated with higher susceptibility to harmful effects of a high-energy diet. High-5HT subline, which developed less adverse metabolic outcomes on hypercaloric diets, may prove useful in understanding metabolically healthy obesity in humans.
Collapse
Affiliation(s)
- Petra Baković
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Maja Kesić
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Darko Kolarić
- Centre for Informatics and Computing, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Jasminka Štefulj
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Lipa Čičin-Šain
- Department of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
5
|
Bolam SM, Park YE, Konar S, Callon KE, Workman J, Monk AP, Coleman B, Cornish J, Vickers MH, Munro JT, Musson DS. Obesity Impairs Enthesis Healing After Rotator Cuff Repair in a Rat Model. Am J Sports Med 2021; 49:3959-3969. [PMID: 34694156 DOI: 10.1177/03635465211049219] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Being overweight or obese is associated with poor outcomes and an increased risk of failure after rotator cuff (RC) surgery. However, the effect of obesity on enthesis healing has not been well characterized. HYPOTHESES Diet-induced obesity (DIO) would result in inferior enthesis healing in a rat model of RC repair, and a dietary intervention in the perioperative period would improve enthesis healing. STUDY DESIGN Controlled laboratory study. METHODS Male Sprague-Dawley rats were divided into 3 weight-matched groups (n = 26 per group): control diet (CD), high-fat diet (HFD), or HFD until surgery and then CD thereafter (HF-CD). After 12 weeks, the left supraspinatus tendon was detached, followed by immediate repair. Animals were sacrificed, and RCs were harvested at 2 and 12 weeks after surgery for biomechanical and histological evaluations. Metabolic end points were assessed using dual-energy X-ray absorptiometry and plasma analyses. RESULTS DIO was established in the HFD and HF-CD groups before surgery and subsequently reversed in the HF-CD group after surgery. At 12 weeks after surgery, the body fat percentage (P = .0021) and plasma leptin concentration (P = .0025) were higher in the HFD group compared with the CD group. Histologically, the appearance of the repaired entheses was poorer in both the HFD and HF-CD groups compared with the CD group at 12 weeks after surgery, with semiquantitative scores of 6.20 (P = .0078), 4.98 (P = .0003), and 8.68 of 15, respectively. The repaired entheses in the HF-CD group had a significantly lower load to failure (P = .0278) at 12 weeks after surgery compared with the CD group, while the load to failure in the HFD group was low but not significantly different (P = .0960). There were no differences in the biomechanical and histological results between the groups at 2 weeks after surgery. Body mass at the time of surgery, plasma leptin concentration, and body fat percentage were negatively correlated with histology scores and plasma leptin concentration was correlated with load to failure at 12 weeks after surgery. CONCLUSION DIO impaired enthesis healing in this rat RC repair model, with inferior biomechanical and histological outcomes. Restoring a normal weight with dietary changes after surgery did not improve healing outcomes. CLINICAL RELEVANCE Obesity is a potentially modifiable factor that impairs RC healing and increases the risk of failure after surgery. Exploring interventions that improve the metabolic state of obese patients and counseling patients appropriately about their modest expectations after repair should be considered.
Collapse
Affiliation(s)
- Scott M Bolam
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Young-Eun Park
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Karen E Callon
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Josh Workman
- Department of Chemical and Materials Engineering, University of Auckland, Auckland, New Zealand
| | - A Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand.,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Mark H Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - David S Musson
- Bone and Joint Research Laboratory, Department of Medicine, University of Auckland, Auckland, New Zealand.,Department of Nutrition and Dietetics, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Nurmasitoh T, Khoiriyah U, Fidianingsih I, Arjana AZ, Devita N. Impact of Obesity on Physical Activity. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Obesity occurs due to an imbalance between the calories and the energy released. On the animal model, obesity is considered as the ground for low physical activity. This is caused by low dopamine D2 receptor in the striatum. However, this suggestion is still unproven in the human condition.
AIM: The aim of this study was to find out difference in dopamine expression in obese subjects compared to non-obese subjects when triggered by the stimuli of physical activity.
METHODS: This is a quasi-experimental study. The sample was obese and non-obese (control) female who met inclusion and exclusion criteria. Before treatment was given, subjects were asked to fill out a depression, anxiety, and exercise motivation questionnaire. All subjects were tested for vital signs, anthropometrics, and neurological examinations to determine the initial condition. Then, the subjects saw video about physical activity and were taken for blood to measure blood dopamine levels using enzyme-linked immunosorbent assay. Differences in dopamine levels between the obese and control groups were analyzed using independent t-test. The relationship between dopamine levels and exercise motivation was analyzed using Pearson.
RESULTS: The obese group’s dopamine level was 71.19 ±3.02ng/ml and the control group was 81.15 ± 3.17ng/ml (independent t-test, p = 0.032). The obese group’s motivation score was 58.46 ± 1.59 and the control group score was 62.38 ± 1.54 (independent t-test, p = 0.09). Furthermore, there was no correlation between dopamine levels and motivation scores (Pearson test, p = 0.09).
CONCLUSION: There are significant differences in dopamine levels between the obese group and the control group but no correlation between dopamine levels and exercise motivation scores.
Collapse
|
7
|
Bolam SM, Satokar VV, Konar S, Coleman B, Monk AP, Cornish J, Munro JT, Vickers MH, Albert BB, Musson DS. A Maternal High Fat Diet Leads to Sex-Specific Programming of Mechanical Properties in Supraspinatus Tendons of Adult Rat Offspring. Front Nutr 2021; 8:729427. [PMID: 34589513 PMCID: PMC8473632 DOI: 10.3389/fnut.2021.729427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Over half of women of reproductive age are now overweight or obese. The impact of maternal high-fat diet (HFD) is emerging as an important factor in the development and health of musculoskeletal tissues in offspring, however there is a paucity of evidence examining its effects on tendon. Alterations in the early life environment during critical periods of tendon growth therefore have the potential to influence tendon health that cross the lifespan. We hypothesised that a maternal HFD would alter biomechanical, morphological and gene expression profiles of adult offspring rotator cuff tendon. Materials and Methods: Female Sprague-Dawley rats were randomly assigned to either: control diet (CD; 10% kcal or 43 mg/g from fat) or HFD (45% kcal or 235 mg/g from fat) 14 days prior to mating and throughout pregnancy and lactation. Eight female and male offspring from each maternal diet group were weaned onto a standard chow diet and then culled at postnatal day 100 for tissue collection. Supraspinatus tendons were used for mechanical testing and histological assessment (cellularity, fibre organisation, nuclei shape) and tail tendons were collected for gene expression analysis. Results: A maternal HFD increased the elasticity (Young's Modulus) in the supraspinatus tendon of male offspring. Female offspring tendon biomechanical properties were not affected by maternal HFD. Gene expression of SCX and COL1A1 were reduced in male and female offspring of maternal HFD, respectively. Despite this, tendon histological organisation were similar between maternal diet groups in both sexes. Conclusion: An obesogenic diet during pregnancy increased tendon elasticity in male, but not female, offspring. This is the first study to demonstrate that maternal diet can modulate the biomechanical properties of offspring tendon. A maternal HFD may be an important factor in regulating adult offspring tendon homeostasis that may predispose offspring to developing tendinopathies and adverse tendon outcomes in later life.
Collapse
Affiliation(s)
- Scott M. Bolam
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Vidit V. Satokar
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Subhajit Konar
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Brendan Coleman
- Department of Orthopaedic Surgery, Middlemore Hospital, Auckland, New Zealand
| | - Andrew Paul Monk
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Jillian Cornish
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
| | - Jacob T. Munro
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - David S. Musson
- Bone and Joint Laboratory, University of Auckland, Auckland, New Zealand
- Department of Nutrition, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Elevated Levels of CTRP1 in Obesity Contribute to Tumor Progression in a p53-Dependent Manner. Cancers (Basel) 2021; 13:cancers13143619. [PMID: 34298831 PMCID: PMC8306638 DOI: 10.3390/cancers13143619] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Obesity is regarded as a risk factor for various cancers. However, the molecular mechanisms linking obesity with cancer remain primarily uncharacterized. In this study, we demonstrate that CTRP1, an adiponectin paralogue, promotes tumor growth in a p53-dependent manner. Obese mice on a high-fat diet showed a higher level of CTRP1 protein in serum. It is also known that CTRP1 treatment contributes to tumor growth and cell migration. These results indicate that an elevated level of CTRP1 in obesity promotes tumor progression. Abstract Mounting evidence supports the relationship between obesity and cancer. However, the molecular mechanisms linking obesity with cancer remain largely uninvestigated. In this study, we demonstrate that the expression of C1q/TNF-related protein 1 (CTRP1), an adiponectin paralogue, contributes to tumor growth by regulating the tumor suppressor p53. In our study, obese mice on a high-fat diet showed higher serum CTRP1 levels. Through in vitro experiments, we showed that the secreted form of CTRP1 in the culture medium decreased p53 expression and p53-dependent transcription in the cells. Moreover, CTRP1 treatment enhanced colony formation and cell migration. These results collectively suggest that elevated levels of CTRP1 in obesity significantly contribute to tumor progression.
Collapse
|
9
|
Gaur A, Pal G, Pal P. Role of Ventromedial Hypothalamus in Sucrose-Induced Obesity on Metabolic Parameters. Ann Neurosci 2021; 28:39-46. [PMID: 34733053 PMCID: PMC8558980 DOI: 10.1177/09727531211005738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/11/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Obesity is because of excessive fat accumulation that affects health adversely in the form of various diseases such as diabetes, hypertension, cardiovascular diseases, and many other disorders. Our Indian diet is rich in carbohydrates, and hence the sucrose-induced obesity is an apt model to mimic this. Ventromedial hypothalamus (VMH) is linked to the regulation of food intake in animals as well as humans. PURPOSE To understand the role of VMHin sucrose-induced obesity on metabolic parameters. METHODS A total of 24 adult rats were made obese by feeding them on a 32% sucrose solution for 10 weeks. The VMH nucleus was ablated in the experimental group and sham lesions were made in the control group. Food intake, body weight, and biochemical parameters were compared before and after the lesion. RESULTS Male rats had a significant weight gain along with hyperphagia, whereas female rats did not have a significant weight gain inspite of hyperphagia. Insulin resistance and dyslipidemia were seen in both the experimental and control groups. CONCLUSION A sucrose diet produces obesity which is similar to the metabolic syndrome with insulin resistance and dyslipidemia, and a VMH lesion further exaggerates it. Males are more prone to this exaggeration.
Collapse
Affiliation(s)
- Archana Gaur
- Department of Physiology, All India
Institute of Medical Sciences (AIIMS)Jodhpur, Jodhpur, Rajasthan, India
| | - G.K. Pal
- Department of Physiology, Jawaharlal
Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry,
Pondicherry, India
| | - Pravati Pal
- Department of Physiology, Jawaharlal
Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry,
Pondicherry, India
| |
Collapse
|
10
|
You W, Xu Z, Sun Y, Valencak TG, Wang Y, Shan T. GADD45α drives brown adipose tissue formation through upregulating PPARγ in mice. Cell Death Dis 2020; 11:585. [PMID: 32719383 PMCID: PMC7385159 DOI: 10.1038/s41419-020-02802-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
Stress can lead to obesity and metabolic dysfunction, but the underlying mechanisms are unclear. Here we identify GADD45α, a stress-inducible histone folding protein, as a potential regulator for brown adipose tissue biogenesis. Unbiased transcriptomics data indicate a positive correlation between adipose Gadd45a mRNA level and obesity. At the cellular level, Gadd45a knockdown promoted proliferation and lipolysis of brown adipocytes, while Gadd45a overexpression had the opposite effects. Consistently, using a knockout (Gadd45a−/−) mouse line, we found that GADD45α deficiency inhibited lipid accumulation and promoted expression of thermogenic genes in brown adipocytes, leading to improvements in insulin sensitivity, glucose uptake, energy expenditure. At the molecular level, GADD45α deficiency increased proliferation through upregulating expression of cell cycle related genes. GADD45α promoted brown adipogenesis via interacting with PPARγ and upregulating its transcriptional activity. Our new data suggest that GADD45α may be targeted to promote non-shivering thermogenesis and metabolism while counteracting obesity.
Collapse
Affiliation(s)
- Wenjing You
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ye Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | | | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China. .,The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China. .,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
11
|
Mickelson B, Herfel TM, Booth J, Wilson RP. Nutrition. THE LABORATORY RAT 2020:243-347. [DOI: 10.1016/b978-0-12-814338-4.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Williams MB, Watts SA. Current basis and future directions of zebrafish nutrigenomics. GENES AND NUTRITION 2019; 14:34. [PMID: 31890052 PMCID: PMC6935144 DOI: 10.1186/s12263-019-0658-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
This review investigates the current state of nutrigenomics in the zebrafish animal models. The zebrafish animal model has been used extensively in the study of disease onset and progression and associated molecular changes. In this review, we provide a synopsis of nutrigenomics using the zebrafish animal model. Obesity and dyslipidemia studies describe the genomics of dietary-induced obesity in relation to high-fat/high-calorie diets. Inflammation and cardiovascular studies describe dietary effects on the expression of acute inflammatory markers and resulting chronic inflammatory issues including atherosclerosis. We also evaluated the genomic response to bioactive dietary compounds associated with metabolic disorders. Carbohydrate metabolism and β-cell function studies describe the impacts of high-carbohydrate dietary challenges on nutritional programming. We also report tumorigenesis in relation to dietary carcinogen exposure studies that can result in permanent genomic changes. Vitamin and mineral deficiency studies demonstrate transgenerational genomic impacts of micronutrients in the diet and temporal expression changes. Circadian rhythm studies describe the relation between metabolism and natural temporal cycles of gene expression that impacts health. Bone formation studies describe the role of dietary composition that influences bone reabsorption regulation. Finally, this review provides future directions in the use of the zebrafish model for nutrigenomic and nutrigenetic research.
Collapse
Affiliation(s)
- Michael B Williams
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Stephen A Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|
13
|
Laurentius T, Raffetseder U, Fellner C, Kob R, Nourbakhsh M, Floege J, Bertsch T, Bollheimer LC, Ostendorf T. High-fat diet-induced obesity causes an inflammatory microenvironment in the kidneys of aging Long-Evans rats. JOURNAL OF INFLAMMATION-LONDON 2019; 16:14. [PMID: 31289451 PMCID: PMC6593534 DOI: 10.1186/s12950-019-0219-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/13/2019] [Indexed: 12/12/2022]
Abstract
Background Obesity is a risk factor for chronic kidney disease (CKD). While the exact mechanisms remain unclear, inflammation may be a consequence of obesity that directly impacts the kidneys. The aim of this study was to examine the inflammatory status of the kidneys and potential ongoing renal damage, i.e., tubular damage and fibrosis after long-term obesity maintained through persistent consumption of a high-fat diet (HFD). Results Twenty-four-week-old male Long-Evans (LEV) rats were continuously fed a control diet (CD) or HFD for 51 weeks. The mean body weight was higher in HFD-fed rats than in control diet-fed rats and markedly elevated during the last 24 weeks. Blood analyses revealed no substantial alterations in renal functional parameters by HFD consumption but a substantial increase in creatine kinase, a muscle loss marker. Magnetic resonance imaging (MRI) was utilized to quantify rat quadriceps muscle mass. The data showed that HFD-induced obesity in LEV rats was accompanied by minor decreases in muscle mass and strength at 75 weeks of age. Rat kidney inflammatory status was evaluated using histological and immunohistological techniques. The number of foci with immune cell infiltrates and infiltrating monocytes/macrophages was significantly increased in HFD-fed rat kidneys at week 75. Renal fibrosis parameters, including glomerulosclerosis and tubular damage, were also markedly increased in renal tissues from HFD-fed rats compared to the controls. The significant increase in tubular protein casts in HFD-fed rat tissues indicated that renal function was already disturbed. Rat kidney inflammatory status was further evaluated using the simultaneous profiling of twenty-two inflammatory markers in kidney tissue extracts. Consistently, MCP-1 and eotaxin (CCL11) levels were elevated in obese LEV rat kidneys. Conclusions Compared to CD-fed rats, HFD-fed obese LEV rats show significant damage of renal structures with aging. These subtle changes may sensitize the kidneys to the development of progressive CKD. Electronic supplementary material The online version of this article (10.1186/s12950-019-0219-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thea Laurentius
- 1Department of Geriatric Medicine, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Ute Raffetseder
- 2Department of Nephrology and Clinical Immunology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Claudia Fellner
- 3Institute of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Robert Kob
- 4Institute for Biomedicine of Aging, Friedrich-Alexander-Universität Erlangen-Nürnberg, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Mahtab Nourbakhsh
- 1Department of Geriatric Medicine, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany.,6Department of Geriatric Medicine, RWTH University Hospital, Pauwelsstrasse 30, 52057 Aachen, Germany
| | - Jürgen Floege
- 2Department of Nephrology and Clinical Immunology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Thomas Bertsch
- Institute of Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Leo Cornelius Bollheimer
- 1Department of Geriatric Medicine, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Tammo Ostendorf
- 2Department of Nephrology and Clinical Immunology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
14
|
Rios JL, Ko L, Joumaa V, Liu S, Diefenthaeler F, Sawatsky A, Hart DA, Reimer RA, Herzog W. The mechanical and biochemical properties of tail tendon in a rat model of obesity: Effect of moderate exercise and prebiotic fibre supplementation. J Biomech 2019; 88:148-154. [PMID: 30954249 DOI: 10.1016/j.jbiomech.2019.03.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/15/2022]
Abstract
The worldwide trajectory of increasing obesity rates is a major health problem precipitating a rise in the prevalence of a variety of co-morbidities and chronic diseases. Tendinopathy, in weight and non-weight bearing tendons, in individuals with overweight or obesity has been linked to metabolic dysfunction resulting from obesity. Exercise and dietary fibre supplementation (DFS) are common countermeasures to combat obesity and therefore it seems reasonable to assume that they might protect tendons from structural and mechanical damage in a diet-induced obesity (DIO) model. The purpose of this study was to determine the effects of a DIO, DIO combined with moderate exercise, DIO combined with DFS (prebiotic oligofructose), and DIO combined with moderate exercise and DFS on the mechanical and biochemical properties of the rat tail tendon. Twenty-four male Sprague-Dawley rats, fed a high-fat/high-sucrose diet were randomized into a sedentary, a moderate exercise, a DFS, or a moderate exercise combined with DFS group for 12 weeks. Additionally, six lean age-matched animals were included as a sedentary control group. DIO in combination with exercise alone and with exercise and DFS reduced the Young's Modulus but not the collagen content of the rat tail tendons compared to lean control animals. However, no differences in the mechanical and biochemical properties of the rat tail tendon were detected between the DIO and the lean control group, suggesting that DIO by itself did not impact the tail tendon. It seems that longer DIO exposure periods may be needed to develop overt differences in our DIO model.
Collapse
Affiliation(s)
- Jaqueline L Rios
- Human Performance Laboratory, University of Calgary, AB, Canada; CAPES Foundation, DF, Brazil; McCaig Institute for Bone and Joint Health, University of Calgary, AB, Canada.
| | - Loretta Ko
- Human Performance Laboratory, University of Calgary, AB, Canada.
| | - Venus Joumaa
- Human Performance Laboratory, University of Calgary, AB, Canada.
| | - Shuyue Liu
- Human Performance Laboratory, University of Calgary, AB, Canada.
| | - Fernando Diefenthaeler
- Human Performance Laboratory, University of Calgary, AB, Canada; CAPES Foundation, DF, Brazil; Biomechanics Laboratory, Centre of Sports, Federal University of Santa Catarina, SC, Brazil.
| | - Andrew Sawatsky
- Human Performance Laboratory, University of Calgary, AB, Canada.
| | - David A Hart
- Human Performance Laboratory, University of Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB, Canada; Centre for Hip Health and Mobility, University of British Columbia, BC, Canada.
| | - Raylene A Reimer
- Human Performance Laboratory, University of Calgary, AB, Canada; Department of Biochemistry & Molecular Biology, University of Calgary, AB, Canada.
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, AB, Canada.
| |
Collapse
|
15
|
Hussain M, Bonilla-Rosso G, Kwong Chung CKC, Bäriswyl L, Rodriguez MP, Kim BS, Engel P, Noti M. High dietary fat intake induces a microbiota signature that promotes food allergy. J Allergy Clin Immunol 2019; 144:157-170.e8. [PMID: 30768991 DOI: 10.1016/j.jaci.2019.01.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/17/2018] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
BACKGROUND Diet-induced obesity and food allergies increase in tandem, but a potential cause-and-effect relationship between these diseases of affluence remains to be tested. OBJECTIVE We sought to test the role of high dietary fat intake, diet-induced obesity, and associated changes in gut microbial community structure on food allergy pathogenesis. METHODS Mice were fed a high-fat diet (HFD) for 12 weeks before food allergen sensitization on an atopic dermatitis-like skin lesion, followed by intragastric allergen challenge to induce experimental food allergy. Germ-free animals were colonized with a signature HFD or lean microbiota for 8 weeks before induction of food allergy. Food-induced allergic responses were quantified by using a clinical allergy score, serum IgE levels, serum mouse mast cell protease 1 concentrations, and type 2 cytokine responses. Accumulation of intestinal mast cells was examined by using flow cytometry and chloroacetate esterase tissue staining. Changes in the gut microbial community structure were assessed by using high-throughput 16S ribosomal DNA gene sequencing. RESULTS HFD-induced obesity potentiates food-induced allergic responses associated with dysregulated intestinal effector mast cell responses, increased intestinal permeability, and gut dysbiosis. An HFD-associated microbiome was transmissible to germ-free mice, with the gut microbial community structure of recipients segregating according to the microbiota input source. Independent of an obese state, an HFD-associated gut microbiome was sufficient to confer enhanced susceptibility to food allergy. CONCLUSION These findings identify HFD-induced microbial alterations as risk factors for experimental food allergy and uncouple a pathogenic role of an HFD-associated microbiome from obesity. Postdieting microbiome alterations caused by overindulgence of dietary fat might increase susceptibility to food allergy.
Collapse
Affiliation(s)
- Maryam Hussain
- Institute of Pathology, Department of Experimental Pathology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Germán Bonilla-Rosso
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Cheong K C Kwong Chung
- Institute of Pathology, Department of Experimental Pathology, University of Bern, Bern, Switzerland
| | - Lukas Bäriswyl
- Institute of Pathology, Department of Experimental Pathology, University of Bern, Bern, Switzerland
| | - Maria Pena Rodriguez
- Institute of Pathology, Department of Experimental Pathology, University of Bern, Bern, Switzerland
| | - Brian S Kim
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St Louis, Mo
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Mario Noti
- Institute of Pathology, Department of Experimental Pathology, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Mariné-Casadó R, Domenech-Coca C, Del Bas JM, Bladé C, Arola L, Caimari A. Intake of an Obesogenic Cafeteria Diet Affects Body Weight, Feeding Behavior, and Glucose and Lipid Metabolism in a Photoperiod-Dependent Manner in F344 Rats. Front Physiol 2018; 9:1639. [PMID: 30534077 PMCID: PMC6275206 DOI: 10.3389/fphys.2018.01639] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that chronic exposure to different photoperiods induced marked variations in several glucose and lipid metabolism-related parameters in normoweight Fischer 344 (F344) rats. Here, we examined the effects of the combination of an obesogenic cafeteria diet (CAF) and the chronic exposure to three different day lengths (L12, 12 h light/day; L18, 18 h light/day; and L6, 6 h light/day) in this rat strain. Although no changes were observed during the first 4 weeks of adaptation to the different photoperiods in which animals were fed a standard diet, the addition of the CAF for the subsequent 7 weeks triggered profound physiologic and metabolic alterations in a photoperiod-dependent manner. Compared with L12 rats, both L6 and L18 animals displayed lower body weight gain and cumulative food intake in addition to decreased energy expenditure and locomotor activity. These changes were accompanied by differences in food preferences and by a sharp upregulation of the orexigenic genes Npy and Ghsr in the hypothalamus, which could be understood as a homeostatic mechanism for increasing food consumption to restore body weight control. L18 rats also exhibited higher glycemia than the L6 group, which could be partly attributed to the decreased pAkt2 levels in the soleus muscle and the downregulation of Irs1 mRNA levels in the gastrocnemius muscle. Furthermore, L6 animals displayed lower whole-body lipid utilization than the L18 group, which could be related to the lower lipid intake and to the decreased mRNA levels of the fatty acid transporter gene Fatp1 observed in the soleus muscle. The profound differences observed between L6 and L18 rats could be related with hepatic and muscular changes in the expression of circadian rhythm-related genes Cry1, Bmal1, Per2, and Nr1d1. Although further research is needed to elucidate the pathophysiologic relevance of these findings, our study could contribute to emphasize the impact of the consumption of highly palatable and energy dense foods regularly consumed by humans on the physiological and metabolic adaptations that occur in response to seasonal variations of day length, especially in diseases associated with changes in food intake and preference such as obesity and seasonal affective disorder.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cristina Domenech-Coca
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| | - Cinta Bladé
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Lluís Arola
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain.,Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, Spain
| |
Collapse
|
17
|
Nagy CT, Koncsos G, Varga ZV, Baranyai T, Tuza S, Kassai F, Ernyey AJ, Gyertyán I, Király K, Oláh A, Radovits T, Merkely B, Bukosza N, Szénási G, Hamar P, Mathé D, Szigeti K, Pelyhe C, Jelemenský M, Onódi Z, Helyes Z, Schulz R, Giricz Z, Ferdinandy P. Selegiline reduces adiposity induced by high-fat, high-sucrose diet in male rats. Br J Pharmacol 2018; 175:3713-3726. [PMID: 29971762 DOI: 10.1111/bph.14437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Incidence and severity of obesity are increasing worldwide, however, efficient and safe pharmacological treatments are not yet available. Certain MAO inhibitors reduce body weight, although their effects on metabolic parameters have not been investigated. Here, we have assessed effects of a widely used, selective MAO-B inhibitor, selegiline, on metabolic parameters in a rat model of diet-induced obesity. EXPERIMENTAL APPROACH Male Long-Evans rats were given control (CON) or a high-fat (20%), high-sucrose (15%) diet (HFS) for 25 weeks. From week 16, animals were injected s.c. with 0.25 mg·kg-1 selegiline (CON + S and HFS + S) or vehicle (CON, HFS) once daily. Whole body, subcutaneous and visceral fat was measured by CT, and glucose and insulin tolerance were tested. Expression of glucose transporters and chemokines was assessed by quantitative RT-PCR. KEY RESULTS Selegiline decreased whole body fat, subcutaneous- and visceral adiposity, measured by CT and epididymal fat weight in the HFS group, compared with HFS placebo animals, without influencing body weight. Oral glucose tolerance and insulin tolerance tests showed impaired glucose homeostasis in HFS and HFS + S groups, although insulin levels in plasma and pancreas were unchanged. HFS induced expression of Srebp-1c, Glut1 and Ccl3 in adipose tissue, which were alleviated by selegiline. CONCLUSIONS AND IMPLICATIONS Selegiline reduced adiposity, changes in adipose tissue energy metabolism and adipose inflammation induced by HFS diet without affecting the increased body weight, impairment of glucose homeostasis, or behaviour. These results suggest that selegiline could mitigate harmful effects of visceral adiposity.
Collapse
Affiliation(s)
- Csilla Terézia Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Koncsos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Sebestyén Tuza
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ferenc Kassai
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Aliz Judit Ernyey
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Gyertyán
- MTA-SE NAP B Cognitive Translational Behavioural Pharmacology Group, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Oláh
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Nóra Bukosza
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Szénási
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Péter Hamar
- Institute of Pathophysiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Clinical Experimental Research Institute, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Translational Medicine Institute, Faculty of Medicine, Pécs University, Pécs, Hungary
| | - Domokos Mathé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Csilla Pelyhe
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Marek Jelemenský
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zsófia Onódi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University Giessen, Germany
| | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
18
|
Liu Y, Xu D, Yin C, Wang S, Wang M, Xiao Y. IL-10/STAT3 is reduced in childhood obesity with hypertriglyceridemia and is related to triglyceride level in diet-induced obese rats. BMC Endocr Disord 2018; 18:39. [PMID: 29895283 PMCID: PMC5998569 DOI: 10.1186/s12902-018-0265-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/01/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The prevalence of childhood obesity and obesity-related metabolic disorder such as dyslipidemia has sharply increased in the past few decades. Chronic low-grade inflammation is associated with the development of comorbidities and poor prognosis in obesity. This study aims to evaluate interleukin-10 (IL-10) in childhood obesity with hypertriglyceridemia. METHOD We evaluated IL-10 and signal transducer and activator of transcription 3 (STAT3) mRNA expression in adipose tissue (AT) as well as serum IL-10 in 62 children of 3 groups and in high-fat diet (HFD) induced obese rat. Expression of IL-10 and STAT3 protein in AT of diet-induced obese rats were examined over feed period. RESULTS Adipose IL-10 and STAT3 mRNA expression and serum IL-10 reduced in obese children with hypertriglyceridemia and in HFD obese rats. The protein expression of IL-10 and STAT3 decreased in AT of obese rats compared with the control rats at end time. Expression of IL-10 mRNA was negatively correlated to TG and LDL-C levels, and positively correlated to HDL-C, adiponectin and serum IL-10 levels. CONCLUSIONS IL-10 expression and its downstream JAK-STAT pathway are down-regulated in obese children with hypertriglyceridemia and in HFD obese rats.
Collapse
Affiliation(s)
- Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, Shaanxi, 710061 People’s Republic of China
| | - Dong Xu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030 People’s Republic of China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, Shaanxi, 710061 People’s Republic of China
| | - Sisi Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, Shaanxi, 710061 People’s Republic of China
| | - Min Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, Shaanxi, 710061 People’s Republic of China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, 157 Xiwu Road, Xi’an, Shaanxi, 710061 People’s Republic of China
| |
Collapse
|
19
|
Ahangarpour A, Alboghobeish S, Oroojan AA, Zeidooni L, Samimi A, Afshari G. Effects of Combined Exposure to Chronic High-Fat Diet and Arsenic on Thyroid Function and Lipid Profile in Male Mouse. Biol Trace Elem Res 2018; 182:37-48. [PMID: 28593471 DOI: 10.1007/s12011-017-1068-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/30/2017] [Indexed: 12/21/2022]
Abstract
The thyroid is one of the major endocrine glands that contribute to body and fat metabolism. The present study evaluated the effects of combined exposure to chronic high-fat diet (HFD) and arsenic on thyroid function and lipid profile. In this experimental study, 72 male Naval Medical Research Institute mice were divided into six groups and fed HFD or low-fat diet (LFD) while being exposed to 25 or 50 ppm of arsenic in drinking water for 20 weeks. After 24 h of the last experimental day, blood samples were collected for hormonal and biochemical measurements. The data indicated that exposure to HFD alone increased the levels of triiodothyronine (T3), thyroid-stimulating hormone (TSH), leptin, lipid profile, reactive oxygen species (ROS), and malondialdehyde (MDA) and decreased the levels of high-density lipoprotein, albumin, adiponectin, and glutathione sulfhydryl reductase (GSH), whereas exposure to arsenic alone decreased the levels of T3 and GSH and increased the levels of TSH, leptin, ROS, MDA, and T4/T3 ratio compared to those in the control LFD group. Furthermore, concomitant administration of HFD and arsenic decreased the lipid profile and levels of T4, albumin, total protein, T3, and GSH and increased the levels of TSH, adiponectin, leptin, ROS, MDA, and T4/T3 ratio compared to those in the control LFD or HFD group. In conclusion, combined exposure to HFD and arsenic induced hypothyroidism via reduction of thyroid hormones and enhancement of plasma TSH and T3 uptake levels concomitant with hypolipidemia, hyperleptinemia, hyperadiponectinemia, induction of oxidative stress, and reduction of GSH levels.
Collapse
Affiliation(s)
- Akram Ahangarpour
- Health Research Institute, Diabetes Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Alboghobeish
- Department of Pharmacology, School of Medicine, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Ali Akbar Oroojan
- Department of Physiology, Student Research Committee of Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Leila Zeidooni
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Azin Samimi
- Department of Toxicology, School of Pharmacy, Student Research Committee of Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Golshan Afshari
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Depot-specific inflammation with decreased expression of ATM2 in white adipose tissues induced by high-margarine/lard intake. PLoS One 2017; 12:e0188007. [PMID: 29141038 PMCID: PMC5687764 DOI: 10.1371/journal.pone.0188007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 10/30/2017] [Indexed: 01/21/2023] Open
Abstract
A high-fat diet has been recognized as an important risk factor of obesity, with variable impacts of different fatty acid compositions on the physiological process. To understand the effects of a high-margarine/lard diet, which is a major source of trans fatty acids (TFAs)/ saturated fatty acids (SFAs), elaidic acid as a biomarker of margarine intake was used to screen affected adipokines on mature human adipocytes in vitro. Weaned male Wistar rats were fed a high-fat diet enriched with margarine/lard to generate obesity-prone (OP) and obesity-resistant (OR) models, which were then used to explore the inflammatory responses of depot-specific white adipose tissue. Adiposity, glucose and lipid metabolism parameters and macrophage cell markers were also compared in vivo. In the subcutaneous depot, a high-margarine diet induced elevated IL-6, MCP-1 and XCL1 expression levels in both M-OP and M-OR groups. High-lard diet-fed rats displayed higher protein expression levels of MCP-1 and XCL1 compared with the control group. In the epididymal depot, significantly elevated IL-6 production was observed in M-OP rats, and high-lard diet-fed rats displayed elevated IL-6 and decreased XCL1 expression. In the retroperitoneal depot, a high-margarine diet caused higher IL-6 and MCP-1 expression levels, a high-lard diet caused elevated IL-6 expression in L-OP/L-OR rats, and elevated XCL1 expression was observed only in L-OP rats. In general, CD206 mRNA levels were notably down-regulated by high-fat diet feeding in the above-mentioned depots. CD11c mRNA levels were slightly upregulated in the subcutaneous depot of OP rats fed a high-margarine/lard diet. In the epidydimal depot, higher expression levels of F4/80 and CD206 mRNA were observed only in high-margarine diet-fed OP rats. These results suggest that depot-specific inflammation with decreased expression of adipose tissue anti-inflammatory M2-type (ATM2) macrophages could be induced by high-margarine/lard intake.
Collapse
|
21
|
Estridge TB, Dey AB, Reidy C, Yu X, Zhang Y, Hartley M, Milligan PL, Jin N, Kowala MC, Leohr JK, Fretland AJ, Mabry TE, Luffer-Atlas D, Luo MJ. Identification of 4-Aminopyrazolopyrimidine Metabolite That May Contribute to the Hypolipidemic Effects of LY2584702 in Long Evans Diet-Induced Obese Rats. J Pharmacol Exp Ther 2017; 362:108-118. [PMID: 28465372 DOI: 10.1124/jpet.117.240242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/26/2017] [Indexed: 12/28/2022] Open
Abstract
LY2584702 is an inhibitor of p70 S6 kinase-1 previously developed for the treatment of cancer. In two phase 1 trials in oncology patients, significant reductions of total cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride were observed. In the current study, we sought to understand the potential mechanism of action of this compound in regulating lipid metabolism. In Long Evans diet-induced obese (DIO) rats, oral administration of LY2584702 for 3-4 weeks led to robust reduction of LDL-C up to 60%. An unexpected finding of liver triglyceride (TG) increase implicated a metabolite of LY2584702, 4-aminopyrazolo[3,4-day]pyrimidine (4-APP), in modulation of lipid metabolism in these rats. We showed that low-dose 4-APP, when administered orally for 3-4 weeks to Long Evans DIO rats, produced lipoprotein profile changes that were strikingly similar to LY2584702. Kinetic studies suggested that both LY2584702 and 4-APP had no effect on chylomicron-TG secretion and only exerted a modest effect on hepatic very low-density lipoprotein (VLDL)-TG secretion. In human hepatoma HepG2 cells, 4-APP, but not LY2584702, increased LDL uptake. We hypothesize that generation of the 4-APP metabolite may contribute to the efficacy of LY2584702 in lowering LDL-C in rats and potentially in humans as well. This mechanism of LDL-C lowering may include inhibition of VLDL production and increase in LDL clearance.
Collapse
Affiliation(s)
- Thomas B Estridge
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Asim B Dey
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Charles Reidy
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Xiaohong Yu
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Yuke Zhang
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Maryalice Hartley
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Paul L Milligan
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Najia Jin
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Mark C Kowala
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Jennifer K Leohr
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Adrian J Fretland
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Thomas E Mabry
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - Debra Luffer-Atlas
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| | - M Jane Luo
- CardioMet Disease/Diabetic Complications (T.B.E., A.B.D., C.R., X.Y., Y.Z., N.J., M.H., M.C.K, M.J.L.), Discovery Chemistry and Research Technologies (P.L.M., T.E.M.), Global PK/PD & Pharmacometrics (J.K.L.), Drug Disposition (A.J.F., D.L.-A.), Eli Lilly & Co., Indianapolis, Indiana
| |
Collapse
|
22
|
Patel DP, Krausz KW, Xie C, Beyoğlu D, Gonzalez FJ, Idle JR. Metabolic profiling by gas chromatography-mass spectrometry of energy metabolism in high-fat diet-fed obese mice. PLoS One 2017; 12:e0177953. [PMID: 28520815 PMCID: PMC5433781 DOI: 10.1371/journal.pone.0177953] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 01/12/2023] Open
Abstract
A novel, selective and sensitive single-ion monitoring (SIM) gas chromatography-mass spectrometry (GCMS) method was developed and validated for the determination of energy metabolites related to glycolysis, the tricarboxylic acid (TCA) cycle, glutaminolysis, and fatty acid β-oxidation. This assay used N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide (MTBSTFA) containing 1% tert-butyldimethylchlorosilane (TBDMCS) as derivatizing reagent and was highly reproducible, sensitive, specific and robust. The assay was used to analyze liver tissue and serum from C57BL/6N obese mice fed a high-fat diet (HFD) and C57BL/6N mice fed normal chow for 8 weeks. HFD-fed mice serum displayed statistically significantly reduced concentrations of pyruvate, citrate, succinate, fumarate, and 2-oxoglutarate, with an elevated concentration of pantothenic acid. In liver tissue, HFD-fed mice exhibited depressed levels of glycolysis end-products pyruvate and lactate, glutamate, and the TCA cycle intermediates citrate, succinate, fumarate, malate, and oxaloacetate. Pantothenate levels were 3-fold elevated accompanied by a modest increased gene expression of Scl5a6 that encodes the pantothenate transporter SLC5A6. Since both glucose and fatty acids inhibit coenzyme A synthesis from pantothenate, it was concluded that these data were consistent with downregulated fatty acid β-oxidation, glutaminolysis, glycolysis, and TCA cycle activity, due to impaired anaplerosis. The novel SIM GCMS assay provided new insights into metabolic effects of HFD in mice.
Collapse
Affiliation(s)
- Daxesh P. Patel
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Kristopher W. Krausz
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Cen Xie
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Diren Beyoğlu
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jeffrey R. Idle
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States of America
- Hepatology Research Group, Department of Clinical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
23
|
Prevention and treatment effect of evogliptin on hepatic steatosis in high-fat-fed animal models. Arch Pharm Res 2016; 40:268-281. [PMID: 27885461 DOI: 10.1007/s12272-016-0864-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023]
Abstract
Dipeptidyl peptidase 4 (DPP4) is an adipokine that interrupts insulin signaling. The resulting insulin resistance exacerbates hepatic steatosis. We previously reported that the novel DPP4 inhibitor evogliptin improves insulin resistance. This study aimed to verify the therapeutic potential of evogliptin for fatty liver. Evogliptin treatment was initiated simultaneously with a high-fat diet (HFD) feeding in normal mice and in a post-24 week HFD-fed rats. In a prevention study, insulin sensitivity was preserved in evogliptin-treated mice after a 16-week treatment. Overall plasma lipid levels stayed lower and hepatic lipid accumulation was drastically suppressed by evogliptin treatment. Evogliptin reduced hepatic expression of Srebf1, a key transcriptional factor for lipogenesis. Additionally, DPP4 inhibitor-treated mice showed less weight gain. In a treatment study, after evogliptin treatment for 14 weeks in pre-established HFD-fed obese rats, weight loss was marginal, while hepatic lipid accumulation and liver damage assessed by measuring plasma aminotransferase levels were completely resolved, suggesting weight loss-independent beneficial effects on fatty liver. Moreover, reduction in plasma non-esterified fatty acids supported the improvement of insulin resistance by evogliptin treatment. Conclusively, our findings suggest that evogliptin treatment ameliorates fatty liver by increasing insulin sensitivity and suppressing lipogenesis.
Collapse
|
24
|
Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, Tardif S. Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus). Aging (Albany NY) 2016; 7:964-73. [PMID: 26568298 PMCID: PMC4694066 DOI: 10.18632/aging.100843] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapamycin has been shown to extend lifespan in rodent models, but the effects on metabolic health and function have been widely debated in both clinical and translational trials. Prior to rapamycin being used as a treatment to extend both lifespan and healthspan in the human population, it is vital to assess the side effects of the treatment on metabolic pathways in animal model systems, including a closely related non-human primate model. In this study, we found that long-term treatment of marmoset monkeys with orally-administered encapsulated rapamycin resulted in no overall effects on body weight and only a small decrease in fat mass over the first few months of treatment. Rapamycin treated subjects showed no overall changes in daily activity counts, blood lipids, or significant changes in glucose metabolism including oral glucose tolerance. Adipose tissue displayed no differences in gene expression of metabolic markers following treatment, while liver tissue exhibited suppressed G6Pase activity with increased PCK and GPI activity. Overall, the marmosets revealed only minor metabolic consequences of chronic treatment with rapamycin and this adds to the growing body of literature that suggests that chronic and/or intermittent rapamycin treatment results in improved health span and metabolic functioning. The marmosets offer an interesting alternative animal model for future intervention testing and translational modeling.
Collapse
Affiliation(s)
- Corinna Ross
- Department of Arts & Sciences, Texas A&M University San Antonio, San Antonio, TX 78224, USA.,Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA
| | - Adam Salmon
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Randy Strong
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Marty Javors
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Geriatric Research, Education & Clinical Center, South Texas Veteran's Health Care System, San Antonio, TX 78224, USA
| | - Arlan Richardson
- University of Oklahoma Health Sciences Center and the Oklahoma City VA Medical Center, Oklahoma City, OK 73104, USA
| | - Suzette Tardif
- Barshop Institute for Longevity & Aging Studies, University of Texas Health Science Center San Antonio, San Antonio, TX 78224, USA.,Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78224, USA
| |
Collapse
|
25
|
Liaw JJT, Peplow PV. Differential Effect of Electroacupuncture on Inflammatory Adipokines in Two Rat Models of Obesity. J Acupunct Meridian Stud 2016; 9:183-90. [PMID: 27555223 DOI: 10.1016/j.jams.2016.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 01/21/2023] Open
Abstract
Chronic inflammation is known to be associated with visceral obesity and insulin resistance which are characterized by altered levels of production of pro- and anti-inflammatory adipokines. The dysregulation of the production of inflammatory adipokines and their functions in obese individuals leads to a state of chronic low-grade inflammation and may promote obesity-linked metabolic disorders and cardiovascular diseases such as insulin resistance, metabolic syndrome, and atherosclerosis. Electroacupuncture (EA) was tested to see if there was a difference in its effect on pro- and anti-inflammatory adipokine levels in the blood serum and the white adipose tissue of obese Zucker fatty rats and high-fat diet-induced obese Long Evans rats. In the two rat models of obesity, on Day 12 of treatment, repeated applications of EA were seen to have had a significant differential effect for serum tumor necrosis factor-α, adiponectin, the adiponectin:leptin ratio, and blood glucose. For the adipose tissue, there was a differential effect for adiponectin that was on the borderline of significance. To explore these changes further and how they might affect insulin resistance would require a modification to the research design to use larger group sizes for the two models or to give a greater number of EA treatments.
Collapse
Affiliation(s)
| | - Philip V Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
26
|
Liaw JJ, Peplow PV. Effects of Electroacupuncture on Pro-/Anti-inflammatory Adipokines in Serum and Adipose Tissue in Lean and Diet-induced Obese Rats. J Acupunct Meridian Stud 2016; 9:65-72. [DOI: 10.1016/j.jams.2015.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/11/2015] [Accepted: 06/19/2015] [Indexed: 01/20/2023] Open
|
27
|
Fat Quality Influences the Obesogenic Effect of High Fat Diets. Nutrients 2015; 7:9475-91. [PMID: 26580650 PMCID: PMC4663608 DOI: 10.3390/nu7115480] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/22/2022] Open
Abstract
High fat and/or carbohydrate intake are associated with an elevated risk for obesity and chronic diseases such as diabetes and cardiovascular diseases. The harmful effects of a high fat diet could be different, depending on dietary fat quality. In fact, high fat diets rich in unsaturated fatty acids are considered less deleterious for human health than those rich in saturated fat. In our previous studies, we have shown that rats fed a high fat diet developed obesity and exhibited a decrease in oxidative capacity and an increase in oxidative stress in liver mitochondria. To investigate whether polyunsaturated fats could attenuate the above deleterious effects of high fat diets, energy balance and body composition were assessed after two weeks in rats fed isocaloric amounts of a high-fat diet (58.2% by energy) rich either in lard or safflower/linseed oil. Hepatic functionality, plasma parameters, and oxidative status were also measured. The results show that feeding on safflower/linseed oil diet attenuates the obesogenic effect of high fat diets and ameliorates the blood lipid profile. Conversely, hepatic steatosis and mitochondrial oxidative stress appear to be negatively affected by a diet rich in unsaturated fatty acids.
Collapse
|
28
|
Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear Magnetic Resonance-Based Blood Metabolic Profiles of Rats Exposed to Short-Term Caloric Restriction. ANAL LETT 2015. [DOI: 10.1080/00032719.2015.1041028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Brown L, Poudyal H, Panchal SK. Functional foods as potential therapeutic options for metabolic syndrome. Obes Rev 2015; 16:914-41. [PMID: 26345360 DOI: 10.1111/obr.12313] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/31/2015] [Accepted: 08/03/2015] [Indexed: 12/16/2022]
Abstract
Obesity as part of metabolic syndrome is a major lifestyle disorder throughout the world. Current drug treatments for obesity produce small and usually unsustainable decreases in body weight with the risk of major adverse effects. Surgery has been the only treatment producing successful long-term weight loss. As a different but complementary approach, lifestyle modification including the use of functional foods could produce a reliable decrease in obesity with decreased comorbidities. Functional foods may include fruits such as berries, vegetables, fibre-enriched grains and beverages such as tea and coffee. Although health improvements continue to be reported for these functional foods in rodent studies, further evidence showing the translation of these results into humans is required. Thus, the concept that these fruits and vegetables will act as functional foods in humans to reduce obesity and thereby improve health remains intuitive and possible rather than proven.
Collapse
Affiliation(s)
- L Brown
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia.,School of Health and Wellbeing, University of Southern Queensland, Toowoomba, QLD, Australia
| | - H Poudyal
- Department of Diabetes, Endocrinology and Nutrition, The Hakubi Centre for Advanced Research, Kyoto University, Kyoto, Japan
| | - S K Panchal
- Institute for Agriculture and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
| |
Collapse
|
30
|
Rodent models of impulsive–compulsive behaviors in Parkinson's disease: How far have we reached? Neurobiol Dis 2015; 82:561-573. [DOI: 10.1016/j.nbd.2015.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/22/2015] [Accepted: 08/25/2015] [Indexed: 01/26/2023] Open
|
31
|
Di Luccia B, Crescenzo R, Mazzoli A, Cigliano L, Venditti P, Walser JC, Widmer A, Baccigalupi L, Ricca E, Iossa S. Rescue of Fructose-Induced Metabolic Syndrome by Antibiotics or Faecal Transplantation in a Rat Model of Obesity. PLoS One 2015; 10:e0134893. [PMID: 26244577 PMCID: PMC4526532 DOI: 10.1371/journal.pone.0134893] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/15/2015] [Indexed: 02/01/2023] Open
Abstract
A fructose-rich diet can induce metabolic syndrome, a combination of health disorders that increases the risk of diabetes and cardiovascular diseases. Diet is also known to alter the microbial composition of the gut, although it is not clear whether such alteration contributes to the development of metabolic syndrome. The aim of this work was to assess the possible link between the gut microbiota and the development of diet-induced metabolic syndrome in a rat model of obesity. Rats were fed either a standard or high-fructose diet. Groups of fructose-fed rats were treated with either antibiotics or faecal samples from control rats by oral gavage. Body composition, plasma metabolic parameters and markers of tissue oxidative stress were measured in all groups. A 16S DNA-sequencing approach was used to evaluate the bacterial composition of the gut of animals under different diets. The fructose-rich diet induced markers of metabolic syndrome, inflammation and oxidative stress, that were all significantly reduced when the animals were treated with antibiotic or faecal samples. The number of members of two bacterial genera, Coprococcus and Ruminococcus, was increased by the fructose-rich diet and reduced by both antibiotic and faecal treatments, pointing to a correlation between their abundance and the development of the metabolic syndrome. Our data indicate that in rats fed a fructose-rich diet the development of metabolic syndrome is directly correlated with variations of the gut content of specific bacterial taxa.
Collapse
Affiliation(s)
- Blanda Di Luccia
- Department of Biology, University “Federico II” of Naples, Naples, Italy
| | | | - Arianna Mazzoli
- Department of Biology, University “Federico II” of Naples, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University “Federico II” of Naples, Naples, Italy
| | - Paola Venditti
- Department of Biology, University “Federico II” of Naples, Naples, Italy
| | | | - Alex Widmer
- Institute of Integrative Biology (IBZ), ETH Zurich, Zurich, Switzerland
| | | | - Ezio Ricca
- Department of Biology, University “Federico II” of Naples, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University “Federico II” of Naples, Naples, Italy
- * E-mail:
| |
Collapse
|
32
|
Forn-Cuní G, Varela M, Fernández-Rodríguez CM, Figueras A, Novoa B. Liver immune responses to inflammatory stimuli in a diet-induced obesity model of zebrafish. J Endocrinol 2015; 224:159-170. [PMID: 25371540 DOI: 10.1530/joe-14-0398] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Obesity- and metabolic syndrome-related diseases are becoming important medical challenges for the western world. Non-alcoholic fatty liver disease (NAFLD) is a manifestation of these altered conditions in the liver, and inflammation appears to be a factor that is tightly connected to its evolution. In this study, we used a diet-induced obesity approach in zebrafish (Danio rerio) based on overfeeding to analyze liver transcriptomic modulation in the disease and to determine how obesity affects the immune response against an acute inflammatory stimulus such as lipopolysaccharide (LPS). Overfed zebrafish developed an obese phenotype, showed signs of liver steatosis, and its modulation profile resembled that observed in humans, with overexpression of tac4, col4a3, col4a5, lysyl oxidases, and genes involved in retinoid metabolism. In response to LPS, healthy fish exhibited a typical host defense reaction comparable to that which occurs in mammals, whereas there was no significant gene modulation when comparing expression in the liver of LPS-stimulated and non-stimulated obese zebrafish at the same statistical level. The stimulation of obese fish represents a double-hit to the already damaged liver and can help understand the evolution of the disease. Finally, a comparison of the differential gene activation between stimulated healthy and obese zebrafish revealed the expected difference in the metabolic state between healthy and diseased liver. The differentially modulated genes are currently being studied as putative new pathological markers in NAFLD-stimulated liver in humans.
Collapse
Affiliation(s)
- Gabriel Forn-Cuní
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Monica Varela
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Conrado M Fernández-Rodríguez
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Antonio Figueras
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones MarinasCSIC, Eduardo Cabello 6, 36208 Vigo, SpainHospital Universitario Fundación AlcorcónMadrid, Spain
| |
Collapse
|
33
|
Kelder T, Summer G, Caspers M, van Schothorst EM, Keijer J, Duivenvoorde L, Klaus S, Voigt A, Bohnert L, Pico C, Palou A, Bonet ML, Dembinska-Kiec A, Malczewska-Malec M, Kieć-Wilk B, del Bas JM, Caimari A, Arola L, van Erk M, van Ommen B, Radonjic M. White adipose tissue reference network: a knowledge resource for exploring health-relevant relations. GENES & NUTRITION 2015; 10:439. [PMID: 25466819 PMCID: PMC4252261 DOI: 10.1007/s12263-014-0439-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/24/2014] [Indexed: 12/13/2022]
Abstract
Optimal health is maintained by interaction of multiple intrinsic and environmental factors at different levels of complexity-from molecular, to physiological, to social. Understanding and quantification of these interactions will aid design of successful health interventions. We introduce the reference network concept as a platform for multi-level exploration of biological relations relevant for metabolic health, by integration and mining of biological interactions derived from public resources and context-specific experimental data. A White Adipose Tissue Health Reference Network (WATRefNet) was constructed as a resource for discovery and prioritization of mechanism-based biomarkers for white adipose tissue (WAT) health status and the effect of food and drug compounds on WAT health status. The WATRefNet (6,797 nodes and 32,171 edges) is based on (1) experimental data obtained from 10 studies addressing different adiposity states, (2) seven public knowledge bases of molecular interactions, (3) expert's definitions of five physiologically relevant processes key to WAT health, namely WAT expandability, Oxidative capacity, Metabolic state, Oxidative stress and Tissue inflammation, and (4) a collection of relevant biomarkers of these processes identified by BIOCLAIMS ( http://bioclaims.uib.es ). The WATRefNet comprehends multiple layers of biological complexity as it contains various types of nodes and edges that represent different biological levels and interactions. We have validated the reference network by showing overrepresentation with anti-obesity drug targets, pathology-associated genes and differentially expressed genes from an external disease model dataset. The resulting network has been used to extract subnetworks specific to the above-mentioned expert-defined physiological processes. Each of these process-specific signatures represents a mechanistically supported composite biomarker for assessing and quantifying the effect of interventions on a physiological aspect that determines WAT health status. Following this principle, five anti-diabetic drug interventions and one diet intervention were scored for the match of their expression signature to the five biomarker signatures derived from the WATRefNet. This confirmed previous observations of successful intervention by dietary lifestyle and revealed WAT-specific effects of drug interventions. The WATRefNet represents a sustainable knowledge resource for extraction of relevant relationships such as mechanisms of action, nutrient intervention targets and biomarkers and for assessment of health effects for support of health claims made on food products.
Collapse
Affiliation(s)
- Thomas Kelder
- Microbiology & Systems Biology, TNO, Zeist, The Netherlands
- Present Address: EdgeLeap B.V., Hooghiemstraplein 15, 3514 AX Utrecht, The Netherlands
| | - Georg Summer
- Microbiology & Systems Biology, TNO, Zeist, The Netherlands
- CARIM, Maastricht University, Maastricht, The Netherlands
| | | | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Loes Duivenvoorde
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Susanne Klaus
- Group of Energy Metabolism, German Institute of Human Nutrition in Potsdam, Nuthetal, Germany
| | - Anja Voigt
- Group of Energy Metabolism, German Institute of Human Nutrition in Potsdam, Nuthetal, Germany
| | - Laura Bohnert
- Group of Energy Metabolism, German Institute of Human Nutrition in Potsdam, Nuthetal, Germany
| | - Catalina Pico
- Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Andreu Palou
- Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - M. Luisa Bonet
- Molecular Biology, Nutrition and Biotechnology (Nutrigenomics), University of the Balearic Islands (UIB), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain
| | - Aldona Dembinska-Kiec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | | | - Beata Kieć-Wilk
- Department of Metabolic Disorders, Jagiellonian University Medical College, Krakow, Poland
| | - Josep M. del Bas
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, Reus, Spain
| | - Antoni Caimari
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, Reus, Spain
| | - Lluis Arola
- Centre Tecnològic de Nutrició i Salut (CTNS), TECNIO, Reus, Spain
- Rovira i Virgili University, Tarragona, Spain
| | - Marjan van Erk
- Microbiology & Systems Biology, TNO, Zeist, The Netherlands
| | - Ben van Ommen
- Microbiology & Systems Biology, TNO, Zeist, The Netherlands
| | - Marijana Radonjic
- Microbiology & Systems Biology, TNO, Zeist, The Netherlands
- Present Address: EdgeLeap B.V., Hooghiemstraplein 15, 3514 AX Utrecht, The Netherlands
| |
Collapse
|
34
|
Role of Ventromedial hypothalamus in high fat diet induced obesity in male rats: association with lipid profile, thyroid profile and insulin resistance. Ann Neurosci 2014; 21:104-7. [PMID: 25206074 PMCID: PMC4158776 DOI: 10.5214/ans.0972.7531.210306] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/05/2014] [Accepted: 06/30/2014] [Indexed: 12/03/2022] Open
Abstract
Background Ventromedial hypothalamus (VMH) plays a major role in food intake, obesity and energy homeostasis. There is a report of gender difference in energy balance with increased vulnerability of males to cardiac disease. Purpose Body metabolism is greatly influenced by the diet we eat and some of the blood parameters like plasma glucose, insulin, lipid profile and thyroid profile depict a picture of energy homeostasis of the body. Objective The present study was conducted to assess the effect of VMH in high fat diet (HFD) induced obesity and its link with insulin, glucose, thyroid and lipid profile of male Wistar rats. Methods The male rats (n = 12) were given HFD for a period of 10 weeks to induce obesity. After obtaining a basal recording of food intake, body weight, glucose, insulin, thyroid and lipid profile, animals were divided into control and experimental group (n = 6 male in each). Experimental rats underwent electrolytic ablation of VMH whereas control rats underwent sham lesion. A post-lesion recording was taken at the end of four weeks. Results The rats had a greater food intake and more body weight gain after HFD schedule in both the groups. After VMH lesion, food intake increased further, only in experimental group. Plasma glucose, Insulin, HOMA - IR, total cholesterol (TC) and triglycerides (TG) were significantly increased compared to the pre-lesion values in experimental group (P<0.001). Conclusions Ten week of HFD resulted in obesity. VMH appears to prevent the development of insulin resistance and hypercholesterolemia which influences the energy homeostasis in male rats after high fat diet.
Collapse
|
35
|
Lai M, Chandrasekera PC, Barnard ND. You are what you eat, or are you? The challenges of translating high-fat-fed rodents to human obesity and diabetes. Nutr Diabetes 2014; 4:e135. [PMID: 25198237 PMCID: PMC4183971 DOI: 10.1038/nutd.2014.30] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/18/2014] [Accepted: 06/25/2014] [Indexed: 12/16/2022] Open
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are rapidly growing worldwide epidemics with major health consequences. Various human-based studies have confirmed that both genetic and environmental factors (particularly high-caloric diets and sedentary lifestyle) greatly contribute to human T2DM. Interactions between obesity, insulin resistance and β-cell dysfunction result in human T2DM, but the mechanisms regulating the interplay among these impairments remain unclear. Rodent models of high-fat diet (HFD)-induced obesity have been used widely to study human obesity and T2DM. With >9000 publications on PubMed over the past decade alone, many aspects of rodent T2DM have been elucidated; however, correlation to human obesity/diabetes remains poor. This review investigates the reasons for this translational discrepancy by critically evaluating rodent HFD models. Dietary modification in rodents appears to have limited translatable benefit for understanding and treating human obesity and diabetes due—at least in part—to divergent dietary compositions, species/strain and gender variability, inconsistent disease penetrance, severity and duration and lack of resemblance to human obesogenic pathophysiology. Therefore future research efforts dedicated to acquiring translationally relevant data—specifically human data, rather than findings based on rodent studies—would accelerate our understanding of disease mechanisms and development of therapeutics for human obesity/T2DM.
Collapse
Affiliation(s)
- M Lai
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | - N D Barnard
- 1] Physicians Committee for Responsible Medicine, Washington, DC, USA [2] Department of Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
36
|
Caligiuri SPB, Blydt-Hansen T, Love K, Grégoire M, Taylor CG, Zahradka P, Aukema HM. Evidence for the use of glomerulomegaly as a surrogate marker of glomerular damage and for alpha-linolenic acid-rich oils in the treatment of early obesity-related glomerulopathy in a diet-induced rodent model of obesity. Appl Physiol Nutr Metab 2014; 39:951-959. [PMID: 24927777 DOI: 10.1139/apnm-2013-0476] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Obesity-related glomerulopathy (ORG) is a unique and emerging condition that can lead to renal failure. Early detection, aided by an earlier diagnostic marker, would improve patient outcomes; this could be facilitated by an accurate model. Such a model would be useful to examine interventions like dietary fatty acids, which are known to influence renal diseases in later stages. In this study, obese-prone rats were provided high-fat (55% of energy) diets for 12 weeks to generate a model of diet-induced obesity. The rats were subsequently provided dietary oils with various levels of alpha-linolenic acid (ALA) and linoleic acid (LA) for 8 weeks, as follows: (g ALA:LA per 100 g oil): canola/flax (20:18), canola (8:18), soy (9:53), high-oleic canola/canola (5:16), high-oleic canola (2:15), lard/soy (1:8), and safflower (0.2:73). The model developed obesity, glomerulomegaly, proteinuria, and scarce glomerular damage with an indolent course. Morphometry and histology revealed glomerulomegaly as the first renal structural alteration. The utility of this marker as a predictor for the presence of ORG and renal injury was evidenced by its correlation to visceral adiposity (p < 0.0001, r = 0.44), proteinuria (p < 0.0001, ρ = 0.55), change in proteinuria (p = 0.0092, ρ = 0.42), and glomerular damage (p < 0.0001, ρ = 0.48). Renal triglyceride ALA:LA was strongly correlated with dietary ALA:LA (p < 0.0005, ρ = 0.96), and inversely associated with mean glomerular volume (p = 0.02, ρ = -0.82). The diet-induced obese model accurately represents early ORG, and implicates glomerulomegaly as an early surrogate diagnostic marker. Early intervention with ALA-rich dietary oils slowed glomerular enlargement; these findings warrant further clinical investigation to promote optimal patient outcomes.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- a Department of Human Nutritional Sciences, University of Manitoba, W383 Duff Roblin Building, Winnipeg, MB R3T 2N2, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Bays HE. Lorcaserin: drug profile and illustrative model of the regulatory challenges of weight-loss drug development. Expert Rev Cardiovasc Ther 2014; 9:265-77. [DOI: 10.1586/erc.10.22] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Zhang J, Sha W, Zhu H, Chen JDZ. Blunted Peripheral and Central Responses to Gastric Mechanical and Electrical Stimulations in Diet-induced Obese Rats. J Neurogastroenterol Motil 2013; 19:454-66. [PMID: 24199005 PMCID: PMC3816179 DOI: 10.5056/jnm.2013.19.4.454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 07/28/2013] [Accepted: 08/09/2013] [Indexed: 01/26/2023] Open
Abstract
Background/Aims The increase in the prevalence of obesity is attributed to increased food intake and decreased physical activity in addition to genetic factors. Altered gut functions have been reported in obese subjects, whereas, little is known on the possible alterations in brain-gut interactions in obesity. The aim of the study was to explore possible alterations in gastric myoelectrical activity, gastric emptying, autonomic functions and central neuronal responses to gastric stimulations in diet-induced obese rats. Methods Gastric myoelectrical activity, gastric emptying and heart rate variability were recorded in lean and obese rats; extracellular neuronal activity in the ventromedial hypothalamus and its responses to gastric stimulations were also assessed. Results (1) Gastric emptying was significantly accelerated but gastric myoelectrical activity was not altered in obese rats; (2) the normal autonomic responses to feeding were absent in obese rats, suggesting an impairment of postprandial modulation of autonomic functions; and (3) central neuronal responses to gastric stimulations (both balloon distention and electrical stimulation) were blunted in obese rats, suggesting impairment in the brain-gut interaction. Conclusions In diet-induced obese rats, gastric emptying is accelerated, postprandial modulations of autonomic functions is altered and central neuronal responses to gastric stimulations are attenuated. These alterations in peripheral, autonomic and brain-gut interactions may help better understand pathogenesis of obesity and develop novel therapeutic approaches for obesity.
Collapse
Affiliation(s)
- Jing Zhang
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Obesity is a leading cause of morbidity and mortality worldwide. There is still a wide disparity between the necessity and availability of safe and effective antiobesity pharmacotherapies. Current drugs are associated with adverse effects and are limited in their efficacy. There is thus an urgent need for new antiobesity agents. Animal models are critical to the study of the biological mechanisms underpinning energy homeostasis and obesity and provide useful tools for the development of novel antiobesity agents. Our understanding of the complex neuronal and hormonal systems that regulate appetite and body weight has largely been based on studies in animals. This review describes the physiological basis of appetite, rodent models used in the development of antiobesity drugs, and potential future targets for novel antiobesity agents.
Collapse
Affiliation(s)
- A. Agahi
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - K. G. Murphy
- Section of Investigative Medicine, Imperial College London, Hammersmith Hospital Campus, London, UK
| |
Collapse
|
40
|
An Y, Xu W, Li H, Lei H, Zhang L, Hao F, Duan Y, Yan X, Zhao Y, Wu J, Wang Y, Tang H. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res 2013; 12:3755-68. [PMID: 23746045 DOI: 10.1021/pr400398b] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a condition resulting from the interactions of individual biology and environmental factors causing multiple complications. To understand the system's metabolic changes associated with the obesity development and progression, we systematically analyzed the dynamic metabonomic changes induced by a high-fat diet (HFD) in multiple biological matrices of rats using NMR and GC-FID/MS techniques. Clinical chemistry and histopathological data were obtained as complementary information. We found that HFD intakes caused systematic metabolic changes in blood plasma, liver, and urine samples involving multiple metabolic pathways including glycolysis, TCA cycle, and gut microbiota functions together with the metabolisms of fatty acids, amino acids, choline, B-vitamins, purines, and pyrimidines. The HFD-induced metabolic variations were detectable in rat urine a week after HFD intake and showed clear dependence on the intake duration. B-vitamins and gut microbiota played important roles in the obesity development and progression together with changes in TCA cycle intermediates (citrate, α-ketoglutarate, succinate, and fumarate). 83-day HFD intakes caused significant metabolic alterations in rat liver highlighted with the enhancements in lipogenesis, lipid accumulation and lipid oxidation, suppression of glycolysis, up-regulation of gluconeogenesis and glycogenesis together with altered metabolisms of choline, amino acids and nucleotides. HFD intakes reduced the PUFA-to-MUFA ratio in both plasma and liver, indicating the HFD-induced oxidative stress. These findings provided essential biochemistry information about the dynamic metabolic responses to the development and progression of HFD-induced obesity. This study also demonstrated the combined metabonomic analysis of multiple biological matrices as a powerful approach for understanding the molecular basis of pathogenesis and disease progression.
Collapse
Affiliation(s)
- Yanpeng An
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Fyn is a tyrosine kinase with multiple roles in a variety of cellular processes. Here we report that Fyn is a new kinase involved in adipocyte differentiation. Elevated Fyn protein is detected specifically in the adipocytes of obese mice. Moreover, Fyn expression increases progressively in 3T3-L1 cells during in vitro adipogenesis, which correlates with its kinase activity. Inhibition of Fyn by either genetic or pharmacological manipulation restrains the 3T3-L1 preadipocytes from fully differentiating into mature adipocytes. Mechanistically, Fyn regulates the activity of the adipogenic transcription factor signal transducer and activator of transcription 5a (STAT5a) through enhancing its interaction with the GTPase phosphoinositide 3-kinase enhancer A (PIKE-A). The STAT5a activity is therefore reduced in Fyn- or PIKE-ablated adipose tissues, leading to diminished expression of adipogenic markers and adipocyte differentiation. Our data thus demonstrate a novel functional interaction between Fyn, PIKE-A, and STAT5a in mediating adipogenesis.
Collapse
|
42
|
Ji B, Hu J, Ma S. Effects of electroacupuncture Zusanli (ST36) on food intake and expression of POMC and TRPV1 through afferents-medulla pathway in obese prone rats. Peptides 2013; 40:188-94. [PMID: 23116614 PMCID: PMC3646998 DOI: 10.1016/j.peptides.2012.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effects of electroacupuncture (EA) ST36 on food intake and body weight in obese prone (OP) rats compared to obese resistant (OR) strain on a high fat diet. The influences of EA on mRNA levels of pro-opiomelanocortin (POMC), transient receptor potential vanilloid type-1 (TRPV1), and neuronal nitric oxide synthase (nNOS) were also examined in the medulla regions and ST36 skin tissue. METHODS Advanced EA ST36 was conducted in two sessions of 20 min separated by an 80 min interval for 7 days. Food intake and body weight were recorded in conscious rats every day. Real time PCR was conducted in the micropunches of the medulla regions and skin tissues at the end of the treatment. RESULTS Food intake and body weight were significantly reduced by advanced EA ST36 in OP rats, but slightly decreased in OR strain and sham-EA rats. Advanced EA ST36 produced a marked increase in POMC mRNA level in the nucleus tractus solitarius (NTS) and hypoglossal nucleus (HN) regions. TRPV1 and nNOS mRNAs were simultaneously increased in the NTS/gracile nucleus regions and in the ST36 skin regions by the EA treatment in OP rats. CONCLUSIONS We conclude that advanced EA ST36 produces an up-regulation of anorexigenic factor POMC production in the NTS/HN, which inhibits food intake and reduces body weight. EA-induced expression of TRPV1-nNOS in the ST36 and the NTS/gracile nucleus is involved in the signal transduction of EA stimuli via somatosensory afferents-medulla pathways.
Collapse
Affiliation(s)
| | | | - Shengxing Ma
- Corresponding Author: Send Correspondence and Reprint Requests to: Sheng-Xing Ma, M.D., Ph.D., Professor, Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, and Harbor-UCLA Medical Center, 1124 W. Carson Street (RB-1), Torrance, CA 90502, Phone - 310 222-1964, FAX - 310 222-4143,
| |
Collapse
|
43
|
Wang X, Cheng M, Zhao M, Ge A, Guo F, Zhang M, Yang Y, Liu L, Yang N. Differential effects of high-fat-diet rich in lard oil or soybean oil on osteopontin expression and inflammation of adipose tissue in diet-induced obese rats. Eur J Nutr 2012; 52:1181-9. [PMID: 22847642 DOI: 10.1007/s00394-012-0428-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023]
Abstract
PURPOSE To examine the effect of different dietary fat types on osteopontin (OPN) expressions and inflammation of adipose tissues in diet-induced obese rats. METHODS Male Sprague-Dawley rats were randomly assigned to one control group fed standard diet (LF, n = 10) and two high-fat diet groups fed isoenergy diet rich in lard or soybean oil (HL or HS, n = 45 each). Diet-induced obese rats in HL and HS group were then subdivided into two groups either continuously fed high-fat diet or switched to low-fat diet for 8 more weeks. Fasting serum glucose, insulin, and OPN concentrations were assayed and QUICKI was calculated; the expression of OPN, IL-6, IL-10, TNF-α, NF-κB, and F4/80 in adipose tissue was determined. RESULTS Both high-fat diets lead to comparable development of obesity characterized by insulin resistance and adipose tissue inflammation. Obese rats continuously fed high-fat diet rich in lard oil exhibited the highest fasting serum insulin level and adipose tissue OPN, F4/80, TNF-α, and NF-κB expression level. In both high-fat diet groups, switching to low-fat diet resulted in less intra-abdominal fat mass, decreased expression of F4/80, TNF-α, and NF-κB, while decreased OPN expression was only observed in lard oil fed rats after switching to low-fat diet. CONCLUSIONS Reducing diet fat or replacing lard oil with soybean oil in high-fat diet alleviates obesity-related inflammation and insulin resistance by attenuating the upregulation of OPN and macrophage infiltration into adipose tissue induced by high-fat diet.
Collapse
Affiliation(s)
- Xiaoke Wang
- Department of Nutrition and Food Hygiene, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, Hubei Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr Res 2012; 32:218-28. [PMID: 22464809 DOI: 10.1016/j.nutres.2012.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/31/2022]
Abstract
Chitooligosaccharide (CO) has been reported to have potential antiobestic effects in a few studies, but the antiobesity properties of CO and its related mechanisms in models of dietary obesity remain unclear. We investigated the effect of CO on body weight gain, size of adipocytes, adipokines, and lipid profiles in high-fat (HF) diet-induced obese mice and on the gene expression in adipose tissue using a complementary DNA microarray approach to test the hypothesis that CO supplementation would alleviate HF diet-induced obesity by the alteration of adipose tissue-specific gene expression. Male C57BL/6N mice were fed a normal diet (control), HF diet, or CO-supplemented HF diet (1% or 3%) for 5 months. Compared with the HF diet mice, mice fed the 3% CO-supplemented diet gained 15% less weight but did not display any change in food and energy intake. Chitooligosaccharide supplementation markedly improved serum and hepatic lipid profiles. Histologic examination showed that epididymal adipocyte size was smaller in mice fed the HF + 3% CO. Microarray analysis showed that dietary CO supplementation modulated adipogenesis-related genes such as matrix metallopeptidases 3, 12, 13, and 14; tissue inhibitor of metalloproteinase 1; and cathepsin k in the adipose tissues. Twenty-five percent of the CO-responsive genes identified are involved in immune responses including the inflammatory response and cytokine production. These results suggest that CO supplementation may help ameliorate HF diet-induced weight gain and improve serum and liver lipid profile abnormalities, which are associated, at least in part, with altered adipose tissue gene expression involved in adipogenesis and inflammation.
Collapse
|
45
|
Blædel M, Raun K, Boonen HCM, Sheykhzade M, Sams A. Early onset inflammation in pre-insulin-resistant diet-induced obese rats does not affect the vasoreactivity of isolated small mesenteric arteries. Pharmacology 2012; 90:125-32. [PMID: 22832366 DOI: 10.1159/000340054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 06/13/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Obesity is an increasing burden affecting developed and emerging societies since it is associated with an increased risk of diabetes and consequent cardiovascular complications. Increasing evidence points towards a pivotal role of inflammation in the etiology of vascular dysfunction. Our study aimed to investigate signs of inflammation and their relation to vascular dysfunction in rats receiving a high fat diet. METHODS Diet-induced obese (DIO) rats were used as a model since these rats exhibit a human pre-diabetic pathology. Oral glucose and insulin tolerance tests were conducted on DIO rats and their controls prior to the development of insulin resistance. Furthermore, the plasma contents of selected cytokines [macrophage chemoattractant protein (MCP-1), interleukin-6 (IL-6), and interleukin-1 (IL-1)] and the concentration of adiponectin were measured. Using wire myography, we tested the vascular function of isolated small mesenteric arteries. RESULTS DIO animals had significantly (p < 0.05) increased body weight (721.2 ± 6.3 g) compared to age- and sex-matched controls (643.4 ± 14.6 g), as well as a significant increase (p < 0.01) in body fat percentage (29.7 ± 1.7% and 22.7 ± 0.97%, respectively). No significant difference in fasting plasma insulin levels could be detected between the two groups (chow-fed group 141.5 ± 15.1 pmol/l; high fat-fed group 125.9 ± 18.8 pmol/l). However, the levels of MCP-1 (89.7 ± 4.2 pg/ml vs. 60.8 ± 7.7 pg/ml) and IL-6 (61.6 ± 3.1 pg/ml vs. 41.6 ± 7.4 pg/ml) were significantly elevated in DIO animals (p < 0.05) as compared to controls. Adiponectin levels were also significantly increased (p < 0.01) in DIO rats (10.8 ± 0.7 ng/ml) versus controls (6.9 ± 0.5 ng/ml). No difference in vascular or endothelial function was evident as determined by responses to acetylcholine, sodium nitroprusside, endothelin-1, and calcitonin gene-related peptide. CONCLUSION In DIO rats, which have not yet developed hyperinsulinaemia or glucose intolerance, the levels of inflammatory mediators MCP-1 and Il-6 are significantly increased without concomitant vascular dysfunction. The results show that inflammation and obesity are tightly associated, and that inflammation is manifested prior to significant insulin resistance and vascular dysfunction.
Collapse
Affiliation(s)
- Martin Blædel
- Hagedorn Research Institute, Novo Nordisk, Gentofte, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Vickers SP, Jackson HC, Cheetham SC. The utility of animal models to evaluate novel anti-obesity agents. Br J Pharmacol 2012; 164:1248-62. [PMID: 21265828 DOI: 10.1111/j.1476-5381.2011.01245.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The global incidence of obesity continues to rise and is a major driver of morbidity and mortality through cardiovascular and cerebrovascular diseases. Animal models used in the discovery of novel treatments for obesity range from straightforward measures of food intake in lean rodents to long-term studies in animals exhibiting obesity due to the continuous access to diets high in fat. The utility of these animal models can be extended to determine, for example, that weight loss is due to fat loss and/or assess whether beneficial changes in key plasma parameters (e.g. insulin) are evident. In addition, behavioural models such as the behavioural satiety sequence can be used to confirm that a drug treatment has a selective effect on food intake. Typically, animal models have excellent predictive validity whereby drug-induced weight loss in rodents subsequently translates to weight loss in man. However, despite this, at the time of writing orlistat (Europe; USA) remains the only drug currently marketed for the treatment of obesity, with sibutramine having recently been withdrawn from sale globally due to the increased incidence of serious, non-fatal cardiovascular events. While the utility of rodent models in predicting clinical weight loss is detailed, the review also discusses whether animals can be used to predict adverse events such as those seen with recent anti-obesity drugs in the clinic.
Collapse
|
47
|
Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research? Animal 2012; 6:118-36. [DOI: 10.1017/s1751731111001315] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
48
|
Hu J, Choo HJ, Ma SX. Infrared heat treatment reduces food intake and modifies expressions of TRPV3-POMC in the dorsal medulla of obesity prone rats. Int J Hyperthermia 2011; 27:708-16. [PMID: 21967110 DOI: 10.3109/02656736.2011.601283] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Infrared heat, a transient receptor potential vanilloid type-3 (TRPV3) sensitive stimulus, may have potential physiological effects beneficial to treating metabolic syndrome. MATERIALS AND METHODS Obesity prone (OP) and obesity resistant (OR) rats were fed for seven days on a high-fat diet. Heat treated OP rats were exposed twice daily to infrared light for 20 min each, separated by 80 min of rest. Food intake, blood pressure, blood glucose, and body weight measurements were taken daily and compared between treated OP rats, untreated OP rats, and OR controls. The animals were perfused with 4% paraformaldehyde, and immunohistochemistry was performed on the coronal brainstem sections with polyclonal antibodies against TRPV3 and pro-opiomelanocortin (POMC). The positive-staining cells in the medulla nuclei were quantified using a microscope with reticule grid. RESULTS Food intake, body weight, and mean arterial blood pressure (MAP) were higher in OP rats, a diet-induced metabolic syndrome model, accompanied by a reduced expression of POMC, an anorectic agent, in the hypoglossal nucleus (HN) and medial nucleus tractus solitarius (mNTS). Food intake in heat-treated OP rats was significantly decreased. POMC positive neuron count was increased in the HN and mNTS of OP rats following treatment. TRPV3 positive staining neurons were increased in the HN and mNTS of OP control rats and decreased following the heat treatments. CONCLUSION Lowered POMC and heightened TRPV3 expressions in the HN and mNTS are involved in development of hyperphagia and obesity in OP rats. Exposure to infrared heat modifies TRPV3 and POMC expression in the brainstem, reducing food intake.
Collapse
Affiliation(s)
- Jay Hu
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | | | | |
Collapse
|
49
|
Ha SK, Kim J, Chae C. Role of AMP-activated protein kinase and adiponectin during development of hepatic steatosis in high-fat diet-induced obesity in rats. J Comp Pathol 2011; 145:88-94. [PMID: 21255792 DOI: 10.1016/j.jcpa.2010.11.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/27/2010] [Accepted: 11/19/2010] [Indexed: 01/13/2023]
Abstract
Obesity, an abnormal condition of adipose tissue, has recently been recognized as a major cause of metabolic syndromes, especially non-alcoholic fatty liver disease (NAFLD). The aim of the present study was to examine the possible involvement of adipokines in the development of fatty liver. Sprague-Dawley (SD) rats fed a high-fat (HF) diet for 15 weeks developed increased hepatocellular vacuolation, hepatic triglyceride (TG) content and serum TG, total cholesterol and free fatty acid levels, with increases in adipose tissue mass. The serum concentration of adiponectin decreased slightly in these animals. Western blotting analysis demonstrated a decrease in the levels of AMP-activated protein kinase (AMPK) and phosphorylated-AMPK in the livers of these rats. These results indicate similarities between the diet-induced obesity rat model of NAFLD and human NAFLD, thus making the rat a useful model for the further study of NAFLD, including the interactions between adipokines and hepatic fat metabolism.
Collapse
Affiliation(s)
- S-K Ha
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, San 56-1, Shillim-Dong, Gwanak-Gu, Seoul 151-742, Republic of Korea
| | | | | |
Collapse
|
50
|
Posekany A, Felsenstein K, Sykacek P. Biological assessment of robust noise models in microarray data analysis. Bioinformatics 2011; 27:807-14. [PMID: 21252077 PMCID: PMC3051324 DOI: 10.1093/bioinformatics/btr018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Motivation: Although several recently proposed analysis packages for microarray data can cope with heavy-tailed noise, many applications rely on Gaussian assumptions. Gaussian noise models foster computational efficiency. This comes, however, at the expense of increased sensitivity to outlying observations. Assessing potential insufficiencies of Gaussian noise in microarray data analysis is thus important and of general interest. Results: We propose to this end assessing different noise models on a large number of microarray experiments. The goodness of fit of noise models is quantified by a hierarchical Bayesian analysis of variance model, which predicts normalized expression values as a mixture of a Gaussian density and t-distributions with adjustable degrees of freedom. Inference of differentially expressed genes is taken into consideration at a second mixing level. For attaining far reaching validity, our investigations cover a wide range of analysis platforms and experimental settings. As the most striking result, we find irrespective of the chosen preprocessing and normalization method in all experiments that a heavy-tailed noise model is a better fit than a simple Gaussian. Further investigations revealed that an appropriate choice of noise model has a considerable influence on biological interpretations drawn at the level of inferred genes and gene ontology terms. We conclude from our investigation that neglecting the over dispersed noise in microarray data can mislead scientific discovery and suggest that the convenience of Gaussian-based modelling should be replaced by non-parametric approaches or other methods that account for heavy-tailed noise. Contact:peter.sykacek@boku.ac.at Availability:http://bioinf.boku.ac.at/alexp/robmca.html.
Collapse
Affiliation(s)
- A Posekany
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|