1
|
Wei F, Gu Y, He L, Kapoor A, Lin X, Dong Y, Su Y, Neira SV, Tang D. HSD17B6 delays type 2 diabetes development via inhibiting SREBP activation. Metabolism 2023:155631. [PMID: 37330135 DOI: 10.1016/j.metabol.2023.155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The SREBP/SCAP/INSIG complex plays an essential role in SREBP activation and de novo lipogenesis. Whether the activation process is affected by hydroxysteroid 17-beta dehydrogenase 6 (HSD17B6) remains unknown. METHODS SREBP's transcriptional activities were analyzed using an SRE-luciferase (SRE-luc) reporter in 293T cells, Huh7 hepatoma cells, and primary human hepatocytes following a variety of conditions, including ectopic expression of HSD17B6, HSD17B6 mutants defective in its enzymatic activities, knockdown of HSD17B6, and cholesterol starvation. The interaction between HSD17B6 and SREBP/SCAP/INSIG complex was analyzed in 293T cells, Huh7 cells and mouse liver upon ectopic expression of HSD17B6 and its mutants; the interaction was also analyzed using endogenous proteins. The impacts of HSD17B6 on SREBP target expression, glucose tolerance, diet-induced obesity, and type 2 diabetes (T2D) were examined using Huh7 cells in vitro, and with C57BL/6 and NONcNZO10/LtJ T2D mice in vivo. RESULTS HSD17B6 binds to the SREBP/SCAP/INSIG complex and inhibits SREBP signaling in cultured hepatocytes and mouse liver. Although HSD17B6 plays a role in maintaining the equilibrium of 5α-dihydrotestosterone (DHT) in the prostate, a mutant defective in androgen metabolism was as effective as HSD17B6 in inhibiting SREBP signaling. Hepatic expression of both HSD17B6 and the defective mutant improved glucose intolerance and reduced hepatic triglyceride content in diet-induced obese C57BL/6 mice, while hepatic knockdown of HSD17B6 exacerbated glucose intolerance. Consistent with these results, liver-specific expression of HSD17B6 in a polygenic NONcNZO10/LtJ T2D mice reduced T2D development. CONCLUSIONS Our study unveils a novel role of HSD17B6 in inhibiting SREBP maturation via binding to the SREBP/SCAP/INSIG complex; this activity is independent of HSD17B6's sterol oxidase activity. Through this action, HSD17B6 improves glucose tolerance and attenuates the development of obesity-induced T2D. These findings position HSD17B6 as a potential therapeutic target for T2D therapy.
Collapse
Affiliation(s)
- Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital of Shenzhen City, Longgang District, Shenzhen, Guangdong, China; Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Yan Gu
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Lizhi He
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Anil Kapoor
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Xiaozeng Lin
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Ying Dong
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Yingying Su
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Sandra Vega Neira
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; The Research Institute of St Joe's Hamilton, St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada; Department of Surgery, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
Nutritional Sensor REDD1 in Cancer and Inflammation: Friend or Foe? Int J Mol Sci 2022; 23:ijms23179686. [PMID: 36077083 PMCID: PMC9456073 DOI: 10.3390/ijms23179686] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Regulated in Development and DNA Damage Response 1 (REDD1)/DNA Damage-Induced Transcript 4 (DDIT4) is an immediate early response gene activated by different stress conditions, including growth factor depletion, hypoxia, DNA damage, and stress hormones, i.e., glucocorticoids. The most known functions of REDD1 are the inhibition of proliferative signaling and the regulation of metabolism via the repression of the central regulator of these processes, the mammalian target of rapamycin (mTOR). The involvement of REDD1 in cell growth, apoptosis, metabolism, and oxidative stress implies its role in various pathological conditions, including cancer and inflammatory diseases. Recently, REDD1 was identified as one of the central genes mechanistically involved in undesirable atrophic effects induced by chronic topical and systemic glucocorticoids widely used for the treatment of blood cancer and inflammatory diseases. In this review, we discuss the role of REDD1 in the regulation of cell signaling and processes in normal and cancer cells, its involvement in the pathogenesis of different diseases, and the approach to safer glucocorticoid receptor (GR)-targeted therapies via a combination of glucocorticoids and REDD1 inhibitors to decrease the adverse atrophogenic effects of these steroids.
Collapse
|
3
|
Lee S, Lee M. MEK6 Overexpression Exacerbates Fat Accumulation and Inflammatory Cytokines in High-Fat Diet-Induced Obesity. Int J Mol Sci 2021; 22:13559. [PMID: 34948353 PMCID: PMC8709004 DOI: 10.3390/ijms222413559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023] Open
Abstract
Obesity is a state of abnormal fat accumulation caused by an energy imbalance potentially caused by changes in multiple factors. MEK6 engages in cell growth, such as inflammation and apoptosis, as one of the MAPK signaling pathways. The MEK6 gene was found to be related to RMR, a gene associated with obesity. Because only a few studies have investigated the correlation between MEK6 and obesity or the relevant mechanisms, we conducted an experiment using a TgMEK6 model with MEK6 overexpression with non-Tg and chow diet as the control to determine changes in lipid metabolism in plasma, liver, and adipose tissue after a 15-week high-fat diet (HFD). MEK6 overexpression in the TgMEK6 model significantly increased body weight and plasma triglyceride and total cholesterol levels. p38 activity declined in the liver and adipose tissues and lowered lipolysis, oxidation, and thermogenesis levels, contributing to decreased energy consumption. In the liver, lipid formation and accumulation increased, and in adipose, adipogenesis and hypertrophy increased. The adiponectin/leptin ratio significantly declined in plasma and adipose tissue of the TgMEK6 group following MEK6 expression and the HFD, indicating the role of MEK6 expression in adipokine regulation. Plasma and bone-marrow-derived macrophages (BMDM) of the TgMEK6 group increased MEK6 expression-dependent secretion of pro-inflammatory cytokines but decreased levels of anti-inflammatory cytokines, further exacerbating the results exhibited by the diet-induced obesity group. In conclusion, this study demonstrated the synergistic effect of MEK6 with HFD in fat accumulation by significantly inhibiting the mechanisms of lipolysis in the adipose and M2 associated cytokines secretion in the BMDM.
Collapse
Affiliation(s)
- Suyeon Lee
- Department of Food & Nutrition, Sungshin Women’s University, Seoul 01133, Korea;
| | - Myoungsook Lee
- Department of Food & Nutrition, Sungshin Women’s University, Seoul 01133, Korea;
- Research Institute of Obesity Sciences, Sungshin Women’s University, Seoul 01133, Korea
| |
Collapse
|
4
|
Wen W, Wu P, Zhang Y, Chen Z, Sun J, Chen H. Comprehensive Analysis of NAFLD and the Therapeutic Target Identified. Front Cell Dev Biol 2021; 9:704704. [PMID: 34616724 PMCID: PMC8488166 DOI: 10.3389/fcell.2021.704704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/12/2021] [Indexed: 12/21/2022] Open
Abstract
Objective: Non-alcoholic fatty liver disease (NAFLD) is a serious health threat worldwide. The aim of this study was to comprehensively describe the metabolic and immunologic characteristics of NAFLD, and to explore potential therapeutic drug targets for NAFLD. Methods: Six NAFLD datasets were downloaded from the Gene Expression Omnibus (GEO) database, including GSE48452, GSE63067, GSE66676, GSE89632, GSE24807, and GSE37031. The datasets we then used to identify and analyze genes that were differentially expressed in samples from patients with NAFLD and normal subjects, followed by analysis of the metabolic and immunologic characteristics of patients with NAFLD. We also identified potential therapeutic drugs for NAFLD using the Connectivity Map (CMAP) database. Moreover, we constructed a prediction model using minimum depth random forest analysis and screened for potential therapeutic targets. Finally, therapeutic targets were verified in a fatty liver model stimulated by palmitic acid (PA). Results: A total of 1,358 differentially expressed genes (DEGs) were obtained, which were mainly enriched in carbohydrate metabolism, lipid metabolism, and other metabolic pathways. Immune infiltration analysis showed that memory B cells, regulatory T cells and M1 macrophage were significantly up-regulated, while T cells follicular helper were down regulated in NAFLD. These may provide a reference for the immune-metabolism interaction in the pathogenesis of NAFLD. Digoxin and helveticoside were identified as potential therapeutic drugs for NAFLD via the CMAP database. In addition, a five-gene prediction model based on minimum depth random forest analysis was constructed, and the receiver operating characteristic (ROC) curves of both training and validation set reached 1. The five candidate therapeutic targets were ENO3, CXCL10, INHBE, LRRC31, and OPTN. Moreover, the efficiency of hepatocyte adipogenesis decreased after OPTN knockout, confirming the potential use of OPTN as a new therapeutic target for NAFLD. Conclusion: This study provides a deeper insight into the molecular pathogenesis of NAFLD. We used five key genes to construct a diagnostic model with a strong predictive effect. Therefore, these five key genes may play an important role in the diagnosis and treatment of NAFLD, particularly those with increased OPTN expression.
Collapse
Affiliation(s)
- Weiheng Wen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peili Wu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yugang Zhang
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zijian Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jia Sun
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Swartz TH, Moallem U, Kamer H, Kra G, Levin Y, Mamedova LK, Bradford BJ, Zachut M. Characterization of the liver proteome in dairy cows experiencing negative energy balance at early lactation. J Proteomics 2021; 246:104308. [PMID: 34153542 DOI: 10.1016/j.jprot.2021.104308] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 12/11/2022]
Abstract
Negative energy balance (NEB) is associated with metabolic disorders in early lactation dairy cows. Therefore, our objective was to characterize the liver proteome in cows experiencing either NEB or positive energy balance (PEB). Forty-two multiparous Holstein dairy cows were milked either 2 or 3 times daily for the first 30 days in milk (DIM) to alter EB, and were classified retrospectively as NEB (n = 18) or PEB (n = 22). Liver biopsies were collected from 10 cows (n = 5 from each milking frequency) at 17 ± 3 DIM (NEB, n = 6; PEB, n = 4). The liver proteome was characterized using label-free quantitative shotgun proteomics and Ingenuity Pathway Analysis used to identify key affected canonical pathways. Overall, 2741 proteins were identified, and 68 of those were differentially abundant (P ≤ 0.05 and FC ± 1.5). ENO3 (FC = 10.3, P < 0.01) and FABP5 (FC = -12.5, P = 0.045) were the most dramatically upregulated and downregulated proteins, respectively, in NEB cows. Numerous mitochondrial proteins (NDUFA5, NDUFS3, NDUFA6, COX7A2L, COX6C, and COA5) were differentially abundant. Canonical pathways associated with NEB were LPS/IL-1 mediated inhibition of RXR function, oxidative phosphorylation, and mitochondrial dysfunction. Additionally, cows experiencing NEB had less hepatic IL10 transcript abundance than PEB. Together, NEB was associated with altered hepatic inflammatory status, likely due to oxidative stress from mitochondrial dysfunction. SIGNIFICANCE: Our manuscript describes the associations of negative energy balance with the liver proteome in early lactation dairy cows, when metabolic stress and the incidence of diseases is increased. Specifically, we found associations of negative energy balance with shifts in hepatic protein abundance involved in fatty acid uptake, impaired anti-inflammatory responses, and mitochondrial dysfunction. Moving forward, differentially abundant proteins found in this study may be useful as either biological markers for disease or therapeutic targets to improve metabolic adaptations to lactation in postpartum dairy cattle.
Collapse
Affiliation(s)
- Turner H Swartz
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Uzi Moallem
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel
| | - Hadar Kamer
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Gitit Kra
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yishai Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Laman K Mamedova
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Barry J Bradford
- Department of Animal Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Maya Zachut
- Department of Ruminant Sciences, Institute of Animal Science, ARO Volcani Center, Rishon Lezion 7505101, Israel.
| |
Collapse
|
6
|
Batai K, Phung M, Bell R, Lwin A, Hynes KA, Price E, Meiklejohn KM, Bracamonte ER, Funk JT. Correlation between body mass index and prostate volume in benign prostatic hyperplasia patients undergoing holmium enucleation of the prostate surgery. BMC Urol 2021; 21:88. [PMID: 34112139 PMCID: PMC8191122 DOI: 10.1186/s12894-020-00753-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022] Open
Abstract
Background Benign prostatic obstruction (BPO) due to benign prostatic hyperplasia (BPH) is a leading cause of morbidity in men over the age of 40. This study examined whether there was an association between body mass index (BMI) and pre-operative prostate volume and whether expression of two genes, alpha-2-macroglobulin (A2M) and transforming growth factor beta 3 (TGFB3), was correlated with BMI, pre-operative prostate volume, and age at surgery. Methods Medical records of patients who underwent holmium enucleation of the prostate surgery for treatment of BPO were retrospectively reviewed. Surgical specimens were obtained from formalin-fixed paraffin-embedded blocks, and expression of the targeted genes was quantified using a real time PCR approach. Linear regression analysis was performed to assess association between BMI and prostate volume adjusting for demographic characteristics and co-morbidity. Spearman’s correlation was used to examine whether gene expression was correlated with BMI, prostate volume, and age at surgery. Results A total of 278 patients were identified, including 62.9% European Americans (n = 175) and 27.7% Hispanic Americans (n = 77). BMI was significantly correlated with prostate volume (Spearman’s rho = 0.123, P = 0.045). In linear regression analysis, BMI was positively associated with prostate volume (β = 0.01, P = 0.004), while hyperlipidemia was negatively associated with prostate volume (β = −0.08, P = 0.02). A trend for a positive association was also observed for diabetes (β = 0.07, P = 0.099). In the race/ethnicity stratified analysis, age at surgery showed a trend for significantly positive association with prostate volume in European Americans (β = 0.005, P = 0.08), but not in Hispanic Americans. Expression of the A2M gene in the stroma was negatively correlated with age at surgery (P = 0.006). A2M expression in the gland was positively correlated with prostate volume among older men (Age ≥ 70, P = 0.01) and overweight men (BMI 25–30, P = 0.04). TGFB3 expression in the gland was positively correlated with BMI (P = 0.007) among older men. Conclusions This study demonstrated the positive correlation between BMI and prostate volume. Expression of TGFB3 and A2M was correlated with BMI, prostate volume, and age at surgery. Supplementary information Supplementary information accompanies this paper at 10.1186/s12894-020-00753-9.
Collapse
Affiliation(s)
- Ken Batai
- Department of Urology, The University of Arizona, 1501 N Campbell Ave, PO Box 245077, Tucson, AZ, 85724-5077, USA
| | - Michael Phung
- Department of Urology, University of California Los Angeles, 10833 Le Conte Avenue, Box 951738, Los Angeles, CA, 90095-1738, USA
| | - Robert Bell
- Department of Pathology and Immunology, Washington University in St. Louis, 660 S Euclid Ave, Campus, Box 8118, St. Louis, MO, 63110, USA
| | - Aye Lwin
- Department of Urology, The University of Arizona, 1501 N Campbell Ave, PO Box 245077, Tucson, AZ, 85724-5077, USA
| | - Kieran A Hynes
- Department of Surgery, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Elinora Price
- Department of Surgery, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Karleen M Meiklejohn
- Department of Pathology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Erika R Bracamonte
- Department of Pathology, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Joel T Funk
- Department of Urology, The University of Arizona, 1501 N Campbell Ave, PO Box 245077, Tucson, AZ, 85724-5077, USA.
| |
Collapse
|
7
|
Lu D, Xia Q, Yang Z, Gao S, Sun S, Luo X, Li Z, Zhang X, Han S, Li X, Cao M. ENO3 promoted the progression of NASH by negatively regulating ferroptosis via elevation of GPX4 expression and lipid accumulation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:661. [PMID: 33987359 PMCID: PMC8106050 DOI: 10.21037/atm-21-471] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background ENO3 expression is upregulated in Non-alcoholic fatty liver disease (NAFLD) patient tissues, demonstrated that ENO3 might play crucial roles in NAFLD. However, the mechanism of ENO3 in NAFLD remains unclear. Therefore, this study aimed to investigate the regulatory mechanism of ENO3 in the progression of non-alcoholic steatohepatitis (NASH) in vivo and vitro NASH model. Methods In vivo and vitro NASH model were established by methionine-choline deficient (MCD)-diet feeding and high free fatty acid (HFFA) induction in L02 cells. Loss and gain function of ENO3 and GPX4 was performed to study the mechanism in NASH. Western blot was used to detect the expression of ENO3 and GPX4. Hematoxylin and eosin (H&E), picrosirius Red and Oil Red O staining was used to evaluate histopathology of liver in NASH model. Ferroptosis indicators were measured by assay kits according to the manufacturer's instructions. Results NASH mouse model was successfully established induced by MCD diet with steatosis, inflammatory infiltration, ballooning and fibrosis observed in the liver tissue. The expression of ENO3 and GPX4 was significantly elevated while ferroptosis was inhibited in NASH mice and cell model. Upregulation of both ENO3 and GPX4 could promote the lipid accumulation in L02 cells. In addition, overexpressed ENO3 attenuated the status of ferroptosis. Conclusions In the present study, we demonstrate that ENO3 promoted the progression of NASH by negatively regulating ferroptosis via elevating GPX4 expression and lipid accumulation. These findings provided solid foundation for the mechanism of ferroptosis on the progression of NASH regulated by ENO3, suggesting that ENO3 may be a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Di Lu
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Qiaoyun Xia
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhiyu Yang
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Shanjun Gao
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Suofeng Sun
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xiaoying Luo
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Zhen Li
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiulei Zhang
- Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuangyin Han
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Xiuling Li
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Mingbo Cao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
8
|
RMR-Related MAP2K6 Gene Variation on the Risk of Overweight/Obesity in Children: A 3-Year Panel Study. J Pers Med 2021; 11:jpm11020091. [PMID: 33540643 PMCID: PMC7913067 DOI: 10.3390/jpm11020091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022] Open
Abstract
From a pilot GWAS, seven MAP2K6 (MEK6) SNPs were significantly associated with resting metabolic rate (RMR) in obese children aged 8-9 years. The aim of this study was to investigate how RMR-linked MEK6 variation affected obesity in Korean children. With the follow-up students (77.9%) in the 3-year panel study, the changes of the variables associated with obesity (such as anthropometrics, blood biochemistry, and dietary intake) were collected. After the MEK6 SNPs were screened by Affymetrix Genome-Wide Human SNP array 6.0, the genotyping of the seven MEK6 SNPs was performed via SNaPshot assay. As the prevalence of obesity (≥85th percentile) increased from 19.4% to 25.5%, the rates of change of the variables RMR, body mass index (BMI), waist circumference (WC), systolic blood pressure (SBP), and dietary intake (energy and carbohydrate intakes) increased. The rate of overweight/obesity was higher in all mutant alleles of the seven MEK6 SNPs than it was in the matched children without mutant alleles. However, over the 3-year study period, RMRs were only significantly increased by the mutants of two single nucleotide polymorphisms (SNPs), rs996229 and rs756942, mainly related to male overweight/obesity as both WC and SBP levels increased. In the mutants of two of the SNPs, the odds ratio of overweight/obesity risk was six times higher in the highest tercile of fat intake and SBP than those of the lowest tercile. For personalized medicine to prevent pediatric obesity, SBP, WC, and dietary fat intake should be observed, particularly if boys have mutants of MEK6 SNPs, rs9916229, or rs756942.
Collapse
|
9
|
Chaudhari SN, Luo JN, Harris DA, Aliakbarian H, Yao L, Paik D, Subramaniam R, Adhikari AA, Vernon AH, Kiliç A, Weiss ST, Huh JR, Sheu EG, Devlin AS. A microbial metabolite remodels the gut-liver axis following bariatric surgery. Cell Host Microbe 2021; 29:408-424.e7. [PMID: 33434516 DOI: 10.1016/j.chom.2020.12.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Bariatric surgery is the most effective treatment for type 2 diabetes and is associated with changes in gut metabolites. Previous work uncovered a gut-restricted TGR5 agonist with anti-diabetic properties-cholic acid-7-sulfate (CA7S)-that is elevated following sleeve gastrectomy (SG). Here, we elucidate a microbiome-dependent pathway by which SG increases CA7S production. We show that a microbial metabolite, lithocholic acid (LCA), is increased in murine portal veins post-SG and by activating the vitamin D receptor, induces hepatic mSult2A1/hSULT2A expression to drive CA7S production. An SG-induced shift in the microbiome increases gut expression of the bile acid transporters Asbt and Ostα, which in turn facilitate selective transport of LCA across the gut epithelium. Cecal microbiota transplant from SG animals is sufficient to recreate the pathway in germ-free (GF) animals. Activation of this gut-liver pathway leads to CA7S synthesis and GLP-1 secretion, causally connecting a microbial metabolite with the improvement of diabetic phenotypes.
Collapse
Affiliation(s)
- Snehal N Chaudhari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James N Luo
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A Harris
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hassan Aliakbarian
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Donggi Paik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Renuka Subramaniam
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arijit A Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ashley H Vernon
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ayse Kiliç
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Program in Molecular Integrative Physiological Sciences, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eric G Sheu
- Laboratory for Surgical and Metabolic Research, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Rivera-Gonzalez GC, Klopot A, Sabin K, Baida G, Horsley V, Budunova I. Regulated in Development and DNA Damage Responses 1 Prevents Dermal Adipocyte Differentiation and Is Required for Hair Cycle-Dependent Dermal Adipose Expansion. J Invest Dermatol 2020; 140:1698-1705.e1. [PMID: 32032578 PMCID: PMC7398827 DOI: 10.1016/j.jid.2019.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/14/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023]
Abstract
Dermal white adipose tissue (dWAT) expansion is associated with important homeostatic and pathologic processes in skin. Even though mTOR/protein kinase B signaling is important for adipogenesis, the role of regulated development of DNA damage responses 1 (REDD1), a negative regulator of mTOR/protein kinase B, is poorly understood. Loss of REDD1 in mice resulted in reduction of body mass, total fat, size of gonadal white adipose tissue, and interscapular brown adipose tissue. Inguinal subcutaneous white adipose tissue and dWAT in REDD1 knockouts were expanded compared with wild type mice. Size and number of mature adipocytes in dWAT were also increased in adult REDD1 knockouts. This dWAT phenotype was established around postnatal day 18 and did not depend on the hair growth cycle. Numbers of adipocyte precursor cells were lower in REDD1 knockout skin. In vitro analysis revealed increased differentiation of skin-derived REDD1 knockout adipocyte precursor cells as indicated by higher lipid accumulation and increased adipogenic marker expression. 3T3L1 cells overexpressing REDD1 had decreased sensitivity to differentiation. Overall, our findings indicate that REDD1 silencing induced expansion of dWAT through hypertrophy and hyperplasia. This REDD1-dependent mechanism of adipogenesis could be used to preferentially target skin-associated adipose tissue for therapeutic purposes.
Collapse
Affiliation(s)
- Guillermo C. Rivera-Gonzalez
- Department of Molecular, Cellular and Developmental Biology and Department of Dermatology, Yale University, New Haven, CT 06520
- Current address: Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110
| | - Anna Klopot
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Kaitlyn Sabin
- Department of Molecular, Cellular and Developmental Biology and Department of Dermatology, Yale University, New Haven, CT 06520
| | - Gleb Baida
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| | - Valerie Horsley
- Department of Molecular, Cellular and Developmental Biology and Department of Dermatology, Yale University, New Haven, CT 06520
| | - Irina Budunova
- Department of Dermatology, Northwestern University, Chicago, IL 60611
| |
Collapse
|
11
|
Little R, Houghton MJ, Carr IM, Wabitsch M, Kerimi A, Williamson G. The Ability of Quercetin and Ferulic Acid to Lower Stored Fat is Dependent on the Metabolic Background of Human Adipocytes. Mol Nutr Food Res 2020; 64:e2000034. [PMID: 32350998 DOI: 10.1002/mnfr.202000034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/12/2020] [Indexed: 12/15/2022]
Abstract
SCOPE Dietary flavonoids and phenolic acids can modulate lipid metabolism, but effects on mature human adipocytes are not well characterized. MATERIALS AND METHODS Human adipocytes are differentiated, and contain accumulated lipids, mimicking white adipocytes. They are then cultured either under conditions of actively synthesizing and accumulating additional lipids through lipogenesis ("ongoing lipogenic state") or under conditions of maintaining but not increasing stored lipids ("lipid storage state"). Total lipid, lipidomic and transcriptomics analyses are employed to assess changes after treatment with quercetin and/or ferulic acid. RESULTS In the "lipid storage state," a longer-term treatment (3 doses over 72 h) with low concentrations of quercetin and ferulic acid together significantly lowered stored lipid content, modified lipid composition, and modulated genes related to lipid metabolism with a strong implication of peroxisome proliferator-activated receptor (PPARα)/retinoid X receptor (RXRα) involvement. In the "ongoing lipogenic state," the effect of quercetin and ferulic acid is markedly different, with fewer changes in gene expression and lipid composition, and no detectable involvement of PPARα/RXRα, with a tenfold higher concentration required to attenuate stored lipid content. CONCLUSIONS Multiple low-dose treatment of quercetin and ferulic acid modulates lipid metabolism in adipocytes, but the effect is dramatically dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Robert Little
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Michael J Houghton
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Ian M Carr
- Saint James' University Hospital, Granville Road, Leeds, LS9 7TF, UK
| | - Martin Wabitsch
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine University Medical Centre, University of Ulm, Ulm, 89075, Germany
| | - Asimina Kerimi
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| | - Gary Williamson
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.,Department of Nutrition, Dietetics and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, BASE Facility, 264 Ferntree Gully Road, Notting Hill, VIC, 3168, Australia
| |
Collapse
|
12
|
Dumas K, Ayachi C, Gilleron J, Lacas‐Gervais S, Pastor F, Favier FB, Peraldi P, Vaillant N, Yvan‐Charvet L, Bonnafous S, Patouraux S, Anty R, Tran A, Gual P, Cormont M, Tanti J, Giorgetti‐Peraldi S. REDD1 deficiency protects against nonalcoholic hepatic steatosis induced by high‐fat diet. FASEB J 2020; 34:5046-5060. [DOI: 10.1096/fj.201901799rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Karine Dumas
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Chaima Ayachi
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Jerome Gilleron
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | | | - Faustine Pastor
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | | | - Pascal Peraldi
- Université Côte d’Azur, Inserm, CNRS, iBV, Team “Stem Cells and Differentiation” France
| | - Nathalie Vaillant
- Université Côte d’Azur, Inserm, C3M, Team “Haematometabolism in Diseases” France
| | - Laurent Yvan‐Charvet
- Université Côte d’Azur, Inserm, C3M, Team “Haematometabolism in Diseases” France
| | - Stéphanie Bonnafous
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Stéphanie Patouraux
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Rodolphe Anty
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Albert Tran
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
- Université Côte d’Azur, CHU, Inserm, C3M,Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Philippe Gual
- Université Côte d’Azur, Inserm, C3M, Team “Chronic Liver Diseases Associated with Steatosis and Alcohol” France
| | - Mireille Cormont
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Jean‐François Tanti
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| | - Sophie Giorgetti‐Peraldi
- Université Côte d’Azur, Inserm, C3M, Team “Cellular and Molecular Physiopathology of Obesity” France
| |
Collapse
|
13
|
Dietary-Induced Obesity, Hepatic Cytochrome P450, and Lidocaine Metabolism: Comparative Effects of High-Fat Diets in Mice and Rats and Reversibility of Effects With Normalization of Diet. J Pharm Sci 2019; 109:1199-1210. [PMID: 31733268 DOI: 10.1016/j.xphs.2019.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 12/22/2022]
Abstract
The effects of a high-fat diet on mRNA and protein of cytochrome P450 (CYP) enzymes in rats and mice and its impact on lidocaine deethylation to its main active metabolite, monoethylglycinexylidide (MEGX), in rats were investigated. The effect of a change in diet from high-fat to standard diet was also evaluated. Plasma biochemistry, mRNA, protein expression for selected CYP, and the activity of lidocaine deethylation were determined. The high-fat diet curtailed the activity and the expression of the majority of CYPs (CYP1A2, CYP3A1, CYP2C11, CYP2C12, and CYP2D1), mRNA levels (Cyp1a2 and Cyp3a2), and MEGX maximal formation rate (Vmax). Mice showed complementary results in their protein expressions of cyp3a and 1a2. Switching the diet back to standard chow in rats for 4 weeks reverted the expression levels of mRNA and protein back to normal levels as well as the maximum formation rates of MEGX. Female and male rodents showed similar patterns in CYP expression and lidocaine metabolism in response to the diets, although MEGX formation was faster in male rats. In conclusion, diet-induced obesity caused general decreases in CYP isoforms not only in rats but also in mice. The effects were shown to be reversible in rats by normalizing the diet.
Collapse
|
14
|
Wang X, Yu J, Shao F, Zhang Y, Li Y, Lu X, Gong D, Gu Z. microRNA-122 targets the P4HA1 mRNA and regulates its expression in chicken hepatocytes. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Xingguo Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
- Jiangsu Institute of Poultry Science, Yangzhou, China
| | - Jianfeng Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Fang Shao
- Department of Oncology, the Affiliated Changzhou No.2 People’s Hospital, Nanjing Medical University, Changzhou, China
| | - Yanping Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yanyan Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Xiangyun Lu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhiliang Gu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
15
|
Jia X, Zhai T. Integrated Analysis of Multiple Microarray Studies to Identify Novel Gene Signatures in Non-alcoholic Fatty Liver Disease. Front Endocrinol (Lausanne) 2019; 10:599. [PMID: 31551930 PMCID: PMC6736562 DOI: 10.3389/fendo.2019.00599] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a well-known cause of liver dysfunction and has become a common chronic liver disease in many countries. However, the intrinsic molecular mechanisms underlying the pathogenesis of NAFLD have not yet been fully elucidated. Methods: We obtained the gene expression datasets of NAFLD through the Gene Expression Omnibus (GEO) database. Subsequently, robust rank aggregation (RRA) method was used to identify differentially expressed genes (DEGs) between NAFLD patients and controls. Gene functional annotation and PPI network analysis were performed to explore the potential function of the DEGs. Finally, we used a sequencing dataset GSE126848 to validate our results. Results: In this study, GSE48452, GSE66676, GSE72756, GSE63067, GSE89632, and GSE107231 were included, including 125 NAFLD patients and 116 control patients. The RRA integrated analysis determined 96 significant DEGs (50 up-regulated and 46 down-regulated) and the most significant gene aberrantly expressed in NAFLD was ENO3 (P-value = 7.17E-05), followed by CYP7A1 (P-value = 9.04E-05), and P4HA1 (P-value = 1.67E-04). Carboxylic acid metabolic process (GO:0019752; P-value = 1.39E-03) was the most significantly enriched for biological process in GO (gene ontology) analysis. KEGG pathway enrichment analysis showed that steroid hormone biosynthesis (hsa00140; P-value = 6.68E-03) and PPAR signaling pathway (hsa03320; P-value = 9.95E-03) were significantly enriched. Based on the results of the PPI and the results of the RRA, we finally defined the four most critical genes as the hub genes, including ENO3, CYP7A1, P4HA1, and CYP1A1. Conclusions: Our integrated analysis identified novel gene signatures and will contribute to the understanding of comprehensive molecular changes in NAFLD.
Collapse
Affiliation(s)
- Xi Jia
- Department of Endocrinology, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Xi Jia
| | - Tianyu Zhai
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
Yoshida T, Matsuzaki T, Miyado M, Saito K, Iwasa T, Matsubara Y, Ogata T, Irahara M, Fukami M. 11-oxygenated C19 steroids as circulating androgens in women with polycystic ovary syndrome. Endocr J 2018; 65:979-990. [PMID: 30012903 DOI: 10.1507/endocrj.ej18-0212] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
11-oxygenated C19 steroids (11oxC19s) are newly specified human androgens. Although median serum levels of 11oxC19 were reported to be higher in patients with polycystic ovary syndrome (PCOS) than in unaffected women, inter-individual variations in androgen levels among PCOS patients have poorly been investigated. Here, we quantified four 11oxC19s, i.e., 11-ketotestosterone (11KT), 11β-hydroxytestosterone (11OHT), 11β-hydroxyandrostenedione (11OHΔ4A), and 11-ketoandrostenedione (11KΔ4A), in blood samples of 28 PCOS patients and 31 eumenorrheic women using liquid chromatography-tandem mass spectrometry. We referred to our previous data of classic androgens in these individuals. We found that 11OHT levels were higher in the PCOS group than in the eumenorrheic group. Moreover, although the median values of 11KT, 11KΔ4A, and 11OHΔ4A were comparable between the two groups, these steroids were markedly increased in some patients. Of the 28 patients, 8 had high levels of both 11oxC19s and classic androgens, whereas 4 had an increase only in 11oxC19 levels, and 12 had an increase only in classic androgen levels. Intragroup variations in androgen levels were relatively large in the PCOS group. Levels of 11OHT and 11KT were significantly higher in overweight/obese patients than in normal weight patients and correlated with body mass indexes. These results highlight the clinical significance of 11oxC19s as circulating androgens in PCOS patients and indicate that the accumulation of 11oxC19s and/or classic androgens is an essential feature of PCOS. The profiles of circulating androgens appear to vary among patients. In particular, overweight/obesity likely enhances the 11oxC19s accumulation in PCOS, although this notion awaits further validation.
Collapse
Affiliation(s)
- Tomoko Yoshida
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo 157-8535, Japan
| | - Toshiya Matsuzaki
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Kazuki Saito
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
- Department of Pediatrics, Perinatal and Maternal Medicine (Ibaraki), Graduate School, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takeshi Iwasa
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yoichi Matsubara
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Tokyo 157-8535, Japan
- Institute director, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Minoru Irahara
- Department of Obstetrics and Gynecology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| |
Collapse
|
17
|
Elam MB, Majumdar G, Mozhui K, Gerling IC, Vera SR, Fish-Trotter H, Williams RW, Childress RD, Raghow R. Patients experiencing statin-induced myalgia exhibit a unique program of skeletal muscle gene expression following statin re-challenge. PLoS One 2017; 12:e0181308. [PMID: 28771594 PMCID: PMC5542661 DOI: 10.1371/journal.pone.0181308] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/29/2017] [Indexed: 01/21/2023] Open
Abstract
Statins, the 3-hydroxy-3-methyl-glutaryl (HMG)-CoA reductase inhibitors, are widely prescribed for treatment of hypercholesterolemia. Although statins are generally well tolerated, up to ten percent of statin-treated patients experience myalgia symptoms, defined as muscle pain without elevated creatinine phosphokinase (CPK) levels. Myalgia is the most frequent reason for discontinuation of statin therapy. The mechanisms underlying statin myalgia are not clearly understood. To elucidate changes in gene expression associated with statin myalgia, we compared profiles of gene expression in skeletal muscle biopsies from patients with statin myalgia who were undergoing statin re-challenge (cases) versus those of statin-tolerant controls. A robust separation of case and control cohorts was revealed by Principal Component Analysis of differentially expressed genes (DEGs). To identify putative gene expression and metabolic pathways that may be perturbed in skeletal muscles of patients with statin myalgia, we subjected DEGs to Ingenuity Pathways (IPA) and DAVID (Database for Annotation, Visualization and Integrated Discovery) analyses. The most prominent pathways altered by statins included cellular stress, apoptosis, cell senescence and DNA repair (TP53, BARD1, Mre11 and RAD51); activation of pro-inflammatory immune response (CXCL12, CST5, POU2F1); protein catabolism, cholesterol biosynthesis, protein prenylation and RAS-GTPase activation (FDFT1, LSS, TP53, UBD, ATF2, H-ras). Based on these data we tentatively conclude that persistent myalgia in response to statins may emanate from cellular stress underpinned by mechanisms of post-inflammatory repair and regeneration. We also posit that this subset of individuals is genetically predisposed to eliciting altered statin metabolism and/or increased end-organ susceptibility that lead to a range of statin-induced myopathies. This mechanistic scenario is further bolstered by the discovery that a number of single nucleotide polymorphisms (e.g., SLCO1B1, SLCO2B1 and RYR2) associated with statin myalgia and myositis were observed with increased frequency among patients with statin myalgia.
Collapse
Affiliation(s)
- Marshall B. Elam
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- * E-mail: (MBE); (RR)
| | - Gipsy Majumdar
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Ivan C. Gerling
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Santiago R. Vera
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
| | - Hannah Fish-Trotter
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard D. Childress
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Medicine, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
| | - Rajendra Raghow
- Department of Veterans Affairs Medical Center-Memphis, Memphis, Tennessee, United States of America
- Department of Pharmacology, University of Tennessee Health Sciences Center, Memphis, Tennessee, United States of America
- * E-mail: (MBE); (RR)
| |
Collapse
|
18
|
Mulligan C, Kondakala S, Yang EJ, Stokes JV, Stewart JA, Kaplan BLF, Howell GE. Exposure to an environmentally relevant mixture of organochlorine compounds and polychlorinated biphenyls Promotes hepatic steatosis in male Ob/Ob mice. ENVIRONMENTAL TOXICOLOGY 2017; 32:1399-1411. [PMID: 27533883 DOI: 10.1002/tox.22334] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/25/2016] [Accepted: 07/30/2016] [Indexed: 05/19/2023]
Abstract
Hepatic steatosis is recognized as an independent risk factor for the development of cardiovascular disease. While obesity and type 2 diabetes are well-established risk factors in the development of hepatic steatosis, recent studies have revealed exposure to mixtures of persistent organic pollutants (POPs), which are environmental contaminants in various fatty foods, can promote steatosis. Thus, the present study was designed to determine if exposure to a defined mixture of prevalent polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides or their metabolites promote hepatic steatosis in a genetically induced model of type 2 diabetes, the leptin-deficient ob/ob mouse. Male C57BL/6J wild type (WT) or ob/ob mice were administered an environmentally relevant mixture of PCBs and OCs for 7 weeks via oral gavage. Exposure to POPs did not significantly alter fasting serum glucose or insulin levels. However, POPs exposure significantly increased hepatic triglyceride content in ob/ob animals, while decreasing serum triglyceride levels. This POPs-mediated increase in hepatic triglyceride content did not appear to be associated with significantly increased inflammation in either the liver or adipose. Exposure to POPs significantly induced the expression of cytochrome P450 3a11 in WT animals, yet the expression of this cytochrome was significantly downregulated in ob/ob animals regardless of POPs exposure. Taken together, the present data indicate exposure to an environmentally relevant mixture of both PCBs and OC pesticides in ob/ob mice promotes hepatic steatosis while decreasing hypertriglyceridemia, which demonstrates exposure to a defined mixture of POPs alters systemic lipid metabolism in a genetically induced model of obesity and type 2 diabetes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1399-1411, 2017.
Collapse
Affiliation(s)
- Charlee Mulligan
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Sandeep Kondakala
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Eun-Ju Yang
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - John V Stokes
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - James A Stewart
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - Barbara L F Kaplan
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| | - George E Howell
- Department of Basic Sciences, Mississippi State University, College of Veterinary Medicine, Mississippi State, Mississippi, 39762
| |
Collapse
|
19
|
Goetz TG, Mamillapalli R, Taylor HS. Low Body Mass Index in Endometriosis Is Promoted by Hepatic Metabolic Gene Dysregulation in Mice. Biol Reprod 2016; 95:115. [PMID: 27628219 PMCID: PMC5315422 DOI: 10.1095/biolreprod.116.142877] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/26/2016] [Accepted: 09/12/2016] [Indexed: 12/18/2022] Open
Abstract
The gynecological disease endometriosis is characterized by the deposition and proliferation of endometrial cells outside the uterus and clinically is linked to low body mass index (BMI). Gene expression in the liver of these women has not been reported. We hypothesized that endometriosis may impact hepatic gene expression, promoting a low BMI. To determine the effect of endometriosis on liver gene expression, we induced endometriosis in female mice by suturing donor mouse endometrium into the peritoneal cavity and measuring the weight of these mice. Dual-energy X-ray absorptiometry (DEXA) scanning of these mice showed lower body weight and lower total body fat than controls. Microarray analysis identified 26 genes differentially regulated in the livers of mice with endometriosis. Six of 26 genes were involved in metabolism. Four of six genes were upregulated and were related to weight loss, whereas two genes were downregulated and linked to obesity. Expression levels of Cyp2r1, Fabp4, Mrc1, and Rock2 were increased, whereas Igfbp1 and Mmd2 expression levels were decreased. Lep and Pparg, key metabolic genes in the pathways of the six genes identified from the microarray, were also upregulated. This dysregulation was specific to metabolic pathways. Here we demonstrate that endometriosis causes reduced body weight and body fat and disrupts expression of liver genes. We suggest that altered metabolism mediated by the liver contributes to the clinically observed low BMI that is characteristic of women with endometriosis. These findings reveal the systemic and multiorgan nature of endometriosis.
Collapse
Affiliation(s)
- Teddy G Goetz
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Ramanaiah Mamillapalli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
20
|
Yan H, Fei N, Wu G, Zhang C, Zhao L, Zhang M. Regulated Inflammation and Lipid Metabolism in Colon mRNA Expressions of Obese Germfree Mice Responding to Enterobacter cloacae B29 Combined with the High Fat Diet. Front Microbiol 2016; 7:1786. [PMID: 27877172 PMCID: PMC5099522 DOI: 10.3389/fmicb.2016.01786] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/24/2016] [Indexed: 01/07/2023] Open
Abstract
Increased evidences have demonstrated that gut microbiota targeted diet intervention can alleviate obesity and related metabolic disorders. The underlying mechanism of interactions among diet, microbiota, and host still remains unclear. Enterobacter cloacae B29, an endotoxin-producing strain dominated in the gut of a morbidly obese volunteer (weight 174.8 kg, BMI 58.8 kg m-2) was isolated and transplanted to germfree mice (inoculated 1010 cells of B29 per day for 1 week). Using deep mRNA sequencing technology, we compared different gene expression profiles in the colon samples of the germfree mice treated with/without B29 and/or high fat diet (HFD) for 16 weeks and identified 279 differential expressed genes in total, including up-regulated genes Apoa4 (fold change, 2.77), Ido1 (2.66), Cyp4a10 (7.01), and down-regulated genes Cyp2e1 (0.11), Cyp26b1 (0.34), Akr1b7 (0.42), Adipoq (0.36), Cyp1a1 (0.11), Apoa1 (0.44), Npc1l1 (0.37), Tff2 (0.13), Apoc1 (0.30), Ctla2a (0.34), Mttp (0.49), Lpl (0.48). Fifty-nine GO biological processes and five KEGG pathways, particularly the peroxisome proliferator-activated receptors signaling pathway, were significantly enriched in response to HFD+B29, which were mainly relevant to inflammation and the metabolism of lipid, lipoprotein, and sterols. These functional changes were consistent with the developed obesity, insulin-resistance, and aggravated inflammatory conditions of the HFD+B29 mice. This work provides insight into the gene expression changes in response to HFD+B29, helping to understand the mechanism of the interactions among HFD, B29 and the germfree mice.
Collapse
Affiliation(s)
- Huiying Yan
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Na Fei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Guojun Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
21
|
Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis. Transl Res 2016; 177:41-69. [PMID: 27376874 DOI: 10.1016/j.trsl.2016.06.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/13/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common disorder hallmarked by excessive lipid deposits. Based on our recent research on lipid droplet (LD) formation in hepatocytes, we investigated LD-associated gene regulations in NAFLD of different grades, that is, steatosis vs steatohepatitis by comparing liver biopsies from healthy controls (N = 13) and NAFLD patients (N = 102). On average, more than 700 differentially expressed genes (DEGs) were identified of which 146 are mechanistically linked to LD formation. We identified 51 LD-associated DEGs frequently regulated in patient samples (range ≥5 to ≤102) with the liver-receptor homolog-1(NR5A2), that is, a key regulator of cholesterol metabolism being commonly repressed among 100 patients examined. With bland steatosis, notable regulations involved hypoxia-inducible lipid droplet-associated-protein and diacylglycerol-O-acyltransferase-2 renowned for their role in LD-growth. Conversely, nonalcoholic steatohepatitis-associated DEGs coded for epidermal growth factor receptor and TLR4 signaling with decreased expression of the GTPase Rab5 and the lipid phosphohydrolase PPAP2B thus highlighting adaptive responses to inflammation, LDL-mediated endocytosis and lipogenesis, respectively. Studies with steatotic primary human hepatocyte cultures demonstrated induction of LD-associated PLIN2, CIDEC, DNAAF1, whereas repressed expression of CPT1A, ANGPTL4, and PKLR informed on burdened mitochondrial metabolism. Equally, repressed expression of the B-lymphocyte chemoattractant CXCL13 and STAT4 as well as induced FGF21 evidenced amelioration of steatosis-related inflammation. In-vitro/in-vivo patient sample comparisons confirmed C-reactive protein, SOCS3, NR5A2, and SOD2 as commonly regulated. Lastly, STRING network analysis highlighted potential "druggable" targets with PLIN2, CIDEC, and hypoxia-inducible lipid droplet-associated-protein being confirmed by immunofluorescence microscopy. In conclusion, steatosis and steatohepatitis specific gene regulations informed on the pathogenesis of NAFLD to broaden the perspective of targeted therapies.
Collapse
|
22
|
Apigenin Ameliorates Dyslipidemia, Hepatic Steatosis and Insulin Resistance by Modulating Metabolic and Transcriptional Profiles in the Liver of High-Fat Diet-Induced Obese Mice. Nutrients 2016; 8:nu8050305. [PMID: 27213439 PMCID: PMC4882717 DOI: 10.3390/nu8050305] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 01/24/2023] Open
Abstract
Several in vitro and in vivo studies have reported the anti-inflammatory, anti-diabetic and anti-obesity effects of the flavonoid apigenin. However, the long-term supplementary effects of low-dose apigenin on obesity are unclear. Therefore, we investigated the protective effects of apigenin against obesity and related metabolic disturbances by exploring the metabolic and transcriptional responses in high-fat diet (HFD)-induced obese mice. C57BL/6J mice were fed an HFD or apigenin (0.005%, w/w)-supplemented HFD for 16 weeks. In HFD-fed mice, apigenin lowered plasma levels of free fatty acid, total cholesterol, apolipoprotein B and hepatic dysfunction markers and ameliorated hepatic steatosis and hepatomegaly, without altering food intake and adiposity. These effects were partly attributed to upregulated expression of genes regulating fatty acid oxidation, tricarboxylic acid cycle, oxidative phosphorylation, electron transport chain and cholesterol homeostasis, downregulated expression of lipolytic and lipogenic genes and decreased activities of enzymes responsible for triglyceride and cholesterol ester synthesis in the liver. Moreover, apigenin lowered plasma levels of pro-inflammatory mediators and fasting blood glucose. The anti-hyperglycemic effect of apigenin appeared to be related to decreased insulin resistance, hyperinsulinemia and hepatic gluconeogenic enzymes activities. Thus, apigenin can ameliorate HFD-induced comorbidities via metabolic and transcriptional modulations in the liver.
Collapse
|
23
|
Mayoral Monibas R, Johnson AMF, Osborn O, Traves PG, Mahata SK. Distinct Hepatic Macrophage Populations in Lean and Obese Mice. Front Endocrinol (Lausanne) 2016; 7:152. [PMID: 27999564 PMCID: PMC5138231 DOI: 10.3389/fendo.2016.00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity.
Collapse
Affiliation(s)
- Rafael Mayoral Monibas
- Merck Research Laboratories, Kenilworth, NJ, USA
- CIBERehd – Networked Biomedical Research Center, Hepatic and Digestive Diseases, Madrid, Spain
- *Correspondence: Rafael Mayoral Monibas, ; Sushil K. Mahata,
| | - Andrew M. F. Johnson
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Olivia Osborn
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, USA
| | - Paqui G. Traves
- Molecular Neurobiology Laboratory, The Salk Institute, La Jolla, CA, USA
| | - Sushil K. Mahata
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- *Correspondence: Rafael Mayoral Monibas, ; Sushil K. Mahata,
| |
Collapse
|
24
|
Williamson DL, Dungan CM, Mahmoud AM, Mey JT, Blackburn BK, Haus JM. Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R855-63. [PMID: 26269521 PMCID: PMC4666944 DOI: 10.1152/ajpregu.00285.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
Abstract
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
25
|
DiStefano JK, Kingsley C, Wood GC, Chu X, Argyropoulos G, Still CD, Doné SC, Legendre C, Tembe W, Gerhard GS. Genome-wide analysis of hepatic lipid content in extreme obesity. Acta Diabetol 2015; 52:373-82. [PMID: 25246029 PMCID: PMC4370808 DOI: 10.1007/s00592-014-0654-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
AIMS Individuals with type 2 diabetes have an increased risk of developing non-alcoholic fatty liver disease (NAFLD), and NAFLD patients are also at greater risk for developing type 2 diabetes. Although the relationship between type 2 diabetes and NAFLD is highly interconnected, the pathogenic mechanisms linking the two diseases are poorly understood. The goal of this study was to identify genetic determinants of hepatic lipid accumulation through association analysis using histological phenotypes in obese individuals. METHODS Using the Illumina HumanOmniExpress BeadChip assay, we genotyped 2,300 individuals on whom liver biopsy data were available. RESULTS We analyzed total bilirubin levels, which are linked to fatty liver in severe obesity, and observed the strongest evidence for association with rs4148325 in UGT1A (P < 5.0 × 10(-93)), replicating previous findings. We assessed hepatic fat level and found strong evidence for association with rs4823173, rs2896019, and rs2281135, all located in PNPLA3 and rs10401969 in SUGP1. Analysis of liver transcript levels of 20 genes residing at the SUGP1/NCAN locus identified a 1.6-fold change in the expression of the LPAR2 gene in fatty liver. We also observed suggestive evidence for association between low-grade fat accumulation and rs10859525 and rs1294908, located upstream from SOCS2 and RAMP3, respectively. SOCS2 was differentially expressed between fatty and normal liver. CONCLUSIONS These results replicate findings for several hepatic phenotypes in the setting of extreme obesity and implicate new loci that may play a role in the pathophysiology of hepatic lipid accumulation.
Collapse
Affiliation(s)
- Johanna K. DiStefano
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
- Corresponding author: Please send all correspondence to: Johanna K. DiStefano, Ph.D., Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, AZ 85004, Tel: 602.343.8812, FAX: 602.343.8844,
| | - Christopher Kingsley
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - G. Craig Wood
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - Xin Chu
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - George Argyropoulos
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - Christopher D. Still
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
| | - Stefania Cotta Doné
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - Christophe Legendre
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - Waibhav Tembe
- Diabetes, Cardiovascular and Metabolic Diseases Division, Translational Genomics Research Institute, 445 Fifth Street, Phoenix, AZ 85004
| | - Glenn S. Gerhard
- Geisinger Obesity Institute, Geisinger Clinic, 100 N. Academy Ave., Danville, PA 17822
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Room C5750, 500 University Drive, MC - H171, Hershey, PA 17033
| |
Collapse
|
26
|
Keyhani-Nejad F, Irmler M, Isken F, Wirth EK, Beckers J, Birkenfeld AL, Pfeiffer AFH. Nutritional strategy to prevent fatty liver and insulin resistance independent of obesity by reducing glucose-dependent insulinotropic polypeptide responses in mice. Diabetologia 2015; 58:374-83. [PMID: 25348610 DOI: 10.1007/s00125-014-3423-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/24/2014] [Indexed: 01/23/2023]
Abstract
AIMS/HYPOTHESIS High intake of carbohydrates, particularly sucrose, in western societies is associated with the development of non-alcoholic fatty liver (NAFL) and diabetes mellitus. It is unclear whether this is related primarily to the carbohydrate quantity or to the hormonal responses, particularly glucose-dependent insulinotropic polypeptide (GIP), which is released in the proximal intestine. Therefore, we investigated the role of GIP by comparing two glucose-fructose dimers, sucrose and Palatinose (isomaltulose), resorbed proximally or distally. METHODS The glycaemic and incretin responses to sucrose and Palatinose were studied by oral gavage and meal tests. We then analysed phenotypic and metabolic diet-induced changes in C57Bl/6J mice exposed to isoenergetic diets differing in carbohydrate type. Studies were repeated in GIP receptor knockout (Gipr(-/-)) mice and their wild-type littermates. RESULTS Compared with sucrose, Palatinose intake resulted in slower glucose absorption and reduced postprandial insulin and GIP levels. After 22 weeks, Palatinose feeding prevented hepatic steatosis (48.5%) compared with sucrose and improved glucose tolerance, without differences in body composition and food intake. Ablation of GIP signalling in Gipr(-/-) mice completely prevented the deleterious metabolic effects of sucrose feeding. Furthermore, our microarray analysis indicated that sucrose increased 2.3-fold the hepatic expression of Socs2, which is involved in the growth hormone signalling pathway and participates in the development of NAFL. CONCLUSIONS/INTERPRETATION Our results suggest that the site of glucose absorption and the GIP response determine liver fat accumulation and insulin resistance. GIP may play a role in sucrose induced fatty liver by regulating the expression of Socs2.
Collapse
Affiliation(s)
- Farnaz Keyhani-Nejad
- Department of Clinical Nutrition, German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
Howell GE, Mulligan C, Meek E, Chambers JE. Effect of chronic p,p'-dichlorodiphenyldichloroethylene (DDE) exposure on high fat diet-induced alterations in glucose and lipid metabolism in male C57BL/6H mice. Toxicology 2014; 328:112-22. [PMID: 25541407 DOI: 10.1016/j.tox.2014.12.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is a highly prevalent metabolic disease affecting 29.1 million people or 9.3% of the population of the United States. The most prevalent form of diabetes is type 2 diabetes (T2D) which comprises 90-95% of all reported cases of diabetes. While the exact cause of T2D remains an enigma, known risk factors include age, weight, sedentary lifestyle, poor dietary habits, and genetic predisposition. However, these risk factors can not sufficiently explain the increasing prevalence of T2D. Recently, environmental exposures have been explored as potential risk factors. Indeed, epidemiological and limited empirical studies have revealed elevated serum concentrations of certain persistent organic pollutants (POPs), including the bioaccumulative metabolite of p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), are positively correlated with increased T2D prevalence. The goal of the present study is to determine if chronic exposure to DDE promotes T2D in a widely used in vivo model, the high saturated fat-fed mouse. Male C57BL/6H mice were exposed to DDE (2.0mg/kg) or vehicle (corn oil; 1ml/kg) via gavage for 5 consecutive days, then every 7 days for the duration of the study. One week following the 5 day consecutive DDE dosing, animals were placed on either a low fat (10%kcal from lard) or high fat (45%kcal from lard) diet (HFD) for 13 weeks. Chronic exposure to DDE promoted fasting hyperglycemia after 4 and 8 weeks on the HFD diet and normalized fasting blood glucose levels at week 13. This DDE-mediated decrease in fasting hyperglycemia was preceded by improved glucose tolerance at week 12. In addition to normalizing fasting hyperglycemia at the end of high fat feeding, DDE exposure decreased HFD-induced fasting hyperinsulinemia, homeostasis model assessment of insulin resistance (HOMA-IR) values, and hepatic steatosis. Therefore, based on the current data, chronic DDE exposure appears to have a biphasic effect on HFD-induced hyperglycemia in the male C57BL/6H mouse characterized by elevated fasting blood glucose at weeks 4 and 8 of HFD intake followed by normoglycemia upon sacrifice. In addition, chronic DDE exposure reduced HFD-induced hepatic steatosis upon sacrifice. These results indicate chronic exposure to DDE can directly affect systemic glucose and hepatic lipid metabolism and that these effects can be diet dependent.
Collapse
MESH Headings
- Adipokines/blood
- Adipose Tissue/drug effects
- Adipose Tissue/metabolism
- Animals
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/prevention & control
- Dichlorodiphenyl Dichloroethylene/pharmacology
- Dichlorodiphenyl Dichloroethylene/toxicity
- Diet, Fat-Restricted
- Diet, High-Fat
- Disease Models, Animal
- Dyslipidemias/blood
- Dyslipidemias/etiology
- Dyslipidemias/prevention & control
- Environmental Pollutants/pharmacology
- Environmental Pollutants/toxicity
- Fatty Liver/blood
- Fatty Liver/etiology
- Fatty Liver/prevention & control
- Food-Drug Interactions
- Glucose Intolerance/blood
- Glucose Intolerance/etiology
- Glucose Intolerance/prevention & control
- Glucose Transporter Type 4/genetics
- Glucose Transporter Type 4/metabolism
- Hyperinsulinism/blood
- Hyperinsulinism/etiology
- Hyperinsulinism/prevention & control
- Insecticides/pharmacology
- Insecticides/toxicity
- Insulin/blood
- Insulin Resistance
- Lipids/blood
- Liver/drug effects
- Liver/metabolism
- Male
- Mice, Inbred C57BL
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- RNA, Messenger/metabolism
- Time Factors
Collapse
Affiliation(s)
- George E Howell
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA.
| | - Charlee Mulligan
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA
| | - Edward Meek
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA
| | - Janice E Chambers
- Center for Environmental Health Sciences, Department of Basic Sciences, Mississippi State University College of Veterinary Medicine, MS 39762, USA
| |
Collapse
|
28
|
Yoshino S, Satoh T, Yamada M, Hashimoto K, Tomaru T, Katano-Toki A, Kakizaki S, Okada S, Shimizu H, Ozawa A, Tuchiya T, Ikota H, Nakazato Y, Mori M, Matozaki T, Sasaki T, Kitamura T, Mori M. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor. Endocrinology 2014; 155:3459-3472. [PMID: 25004093 DOI: 10.1210/en.2013-2160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for the treatment of obesity with hepatosteatosis.
Collapse
Affiliation(s)
- Satoshi Yoshino
- Departments of Medicine and Molecular Science (S.Y., T.Sat., M.Y., K.H., T.To., A.K.-T., S.K., S.O., H.S., A.O., T.Tu., Ma.Mori) and Human Pathology (H.I., Y.N.), Gunma University Graduate School of Medicine, Maebashi, 371-8511 Japan; Laboratory of Biosignal Sciences (Mu.Mori, T.Ma.) and Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation (T.Sas., T.K.), Gunma University, Maebashi, 371-8512 Japan; and Kitakanto Molecular Novel Research Institute for Obesity and Metabolism (Ma.Mori), Midori, 379-2311 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zekri ARN, Hassan ZK, Bahnassy AA, Sherif GM, ELdahshan D, Abouelhoda M, Ali A, Hafez MM. Molecular prognostic profile of Egyptian HCC cases infected with hepatitis C virus. Asian Pac J Cancer Prev 2013; 13:5433-8. [PMID: 23317196 DOI: 10.7314/apjcp.2012.13.11.5433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common and aggressive malignancy. Despite of the improvements in its treatment, HCC prognosis remains poor due to its recurrence after resection. This study provides complete genetic profile for Egyptian HCC. Genome-wide analyses were performed to identify the predictive signatures. PATIENTS AND METHODS Liver tissue was collected from 31 patients with diagnosis of HCC and gene expression levels in the tumours and their adjacent non-neoplastic tissues samples were studied by analyzing changes by microarray then correlate these with the clinico-pathological parameters. Genes were validated in an independent set by qPCR. The genomic profile was associated with genetic disorders and cancer focused on gene expression, cell cycle and cell death. Molecular profile analysis revealed cell cycle progression and arrest at G2/M, but progression to mitosis; unregulated DNA damage check-points, and apoptosis. RESULT Nine hundred fifty eight transcripts out of the 25,000 studied cDNAs were differentially expressed; 503 were up-regulated and 455 were down-regulated. A total of 19 pathways were up-regulated through 27 genes and 13 pathways were down-regulated through 19 genes. Thirty-seven genes showed significant differences in their expression between HCC cases with high and low Alpha Feto Protein (AFP≥600 IU/ml). The validation for the microarray was done by real time PCR assay in which PPP3CA, ATG-5, BACE genes showed down-regulation and ABCG2, RXRA, ELOVL2, CXR3 genes showed up-regulation. cDNA microarrays showed that among the major upregulated genes in HCC are sets. CONCLUSION The identified genes could provide a panel of new diagnostic and prognostic aids for HCC.
Collapse
Affiliation(s)
- Abdel-Rahman N Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo, Egypt
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zadjali F, Santana-Farre R, Vesterlund M, Carow B, Mirecki-Garrido M, Hernandez-Hernandez I, Flodström-Tullberg M, Parini P, Rottenberg M, Norstedt G, Fernandez-Perez L, Flores-Morales A. SOCS2 deletion protects against hepatic steatosis but worsens insulin resistance in high-fat-diet-fed mice. FASEB J 2012; 26:3282-91. [PMID: 22562833 DOI: 10.1096/fj.12-205583] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hepatic steatosis is a prominent feature in patients with growth hormone (GH) deficiency. The ubiquitin ligase SOCS2 attenuates hepatic GH signaling by inhibiting the Janus kinase 2 (JAK2)-signal transducer and activator of transcription 5b (STAT5b) axis. Here, we investigated the role of SOCS2 in the development of diet-induced hepatic steatosis and insulin resistance. SOCS2-knockout (SOCS2(-/-)) mice and wild-type littermates were fed for 4 mo with control or high-fat diet, followed by assessment of insulin sensitivity, hepatic lipid content, and expression of inflammatory cytokines. SOCS2(-/-) mice exhibited increased hepatic TG secretion by 77.6% (P<0.001) as compared with wild-type control mice and were protected from high-fat-diet (HFD)-induced hepatic steatosis, showing 49.3% (P<0.01) reduction in liver TG levels compared to HFD-fed wild-type littermates. In contrast, we found that HFD-triggered attenuation of systemic insulin sensitivity was more marked in SOCS2(-/-) mice. Livers from the HFD-fed SOCS2(-/-) mice showed increased NF-κB activity as well as elevated expression of genes for the inflammatory cytokines IFN-γ and IL-6. An inhibitory role of SOCS2 on Toll-like receptor 4 signaling was demonstrated in macrophages obtained from the SOCS2(-/-) and wild-type mice. This study identified SOCS2 as an important regulator of hepatic homeostasis under conditions of high-fat dietary stress.
Collapse
Affiliation(s)
- Fahad Zadjali
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Varma V, Wise C, Kaput J. Carbohydrate metabolic pathway genes associated with quantitative trait loci (QTL) for obesity and type 2 diabetes: identification by data mining. Biotechnol J 2010; 5:942-9. [PMID: 20845384 DOI: 10.1002/biot.201000067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Increasing consumption of refined carbohydrates is now being recognized as a primary contributor to the development of nutritionally related chronic diseases such as obesity and type 2 diabetes mellitus (T2DM). A data mining approach was used to evaluate the role of carbohydrate metabolic pathway genes in the development of obesity and T2DM. Data from public databases were used to map the position of the carbohydrate metabolic pathway genes to known quantitative trait loci (QTL) for obesity and T2DM and for examining the pathway genes for the presence of sequence and structural genetic variants such as single nucleotide polymorphisms (SNPs) and copy number variants (CNS), respectively. The results demonstrated that a majority of the genes of the carbohydrate metabolic pathways are associated with QTL for obesity and many for T2DM. In addition, some key genes of the pathways also encode non-synonymous SNPs that exhibit significant differences in population frequencies. This study emphasizes the significance of the metabolic pathways genes in the development of disease phenotypes, its differential occurrence across populations and between individuals, and a strategy for interpreting an individuals' risk for disease.
Collapse
Affiliation(s)
- Vijayalakshmi Varma
- Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | | | |
Collapse
|
32
|
Gawrieh S, Baye TM, Carless M, Wallace J, Komorowski R, Kleiner DE, Andris D, Makladi B, Cole R, Charlton M, Curran J, Dyer TD, Charlesworth J, Wilke R, Blangero J, Kissebah AH, Olivier M. Hepatic gene networks in morbidly obese patients with nonalcoholic fatty liver disease. Obes Surg 2010; 20:1698-709. [PMID: 20473581 PMCID: PMC8375563 DOI: 10.1007/s11695-010-0171-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Genetic factors alter the risk for nonalcoholic fatty liver disease (NAFLD). We sought to identify NAFLD-associated genes and elucidate gene networks and pathways involved in the pathogenesis of NAFLD. METHODS Quantitative global hepatic gene expression analysis was performed on 53 morbidly obese Caucasian subjects undergoing bariatric surgery (27 with NAFLD and 26 controls). After standardization of data, gene expression profiles were compared between patients with NAFLD and controls. The set of genes that significantly correlated with NAFLD was further analyzed by hierarchical clustering and ingenuity pathways analyses. RESULTS There were 25,643 quantitative transcripts, of which 108 were significantly associated with NAFLD (p < 0.001). Canonical pathway analysis in the NAFLD-associated gene clusters showed that the hepatic fibrosis signaling was the most significant pathway in the up-regulated NAFLD gene cluster containing three (COL1A1, IL10, IGFBP3) significantly altered genes, whereas the endoplasmic reticulum stress and protein ubiquitination pathways were the most significant pathways in the down-regulated NAFLD gene cluster, with the first pathway containing one (HSPA5) and the second containing two (HSPA5, USP25) significantly altered genes. The four primary gene networks associated with NAFLD were involved in cell death, immunological disease, cellular movement, and lipid metabolism with several significantly altered "hub" genes in these networks. CONCLUSIONS This study reveals the canonical pathways and gene networks associated with NAFLD in morbidly obese Caucasians. The application of gene network analysis highlights the transcriptional relationships among NAFLD-associated genes and allows identification of hub genes that may represent high-priority candidates for NAFLD.
Collapse
Affiliation(s)
- Samer Gawrieh
- Department of Medicine, Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI 53212, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sharma A, Bartell SM, Baile CA, Chen B, Podolsky RH, McIndoe RA, She JX. Hepatic gene expression profiling reveals key pathways involved in leptin-mediated weight loss in ob/ob mice. PLoS One 2010; 5:e12147. [PMID: 20808936 PMCID: PMC2922341 DOI: 10.1371/journal.pone.0012147] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 07/08/2010] [Indexed: 01/05/2023] Open
Abstract
Background Leptin, a cytokine-like protein, plays an important role in the regulation of body weight through inhibition of food intake and stimulation of energy expenditure. Leptin circulates in blood and acts on the brain, which sends downstream signals to regulate body weight. Leptin therapy has been successful in treating leptin deficient obese patients. However, high levels of leptin have been observed in more common forms of obesity indicating a state of leptin resistance which limits the application of leptin in the treatment of obesity. If the central effect of leptin could be by-passed and genes which respond to leptin treatment could be regulated directly, new therapeutic targets for the treatment of obesity may be possible. The purpose of this study was to identify genes and subsequent pathways correlated with leptin-mediated weight loss. Methodology/Principal Findings We utilized microarray technology to compare hepatic gene expression changes after two types of leptin administration: one involving a direct stimulatory effect when administered peripherally (subcutaneous: SQ) and another that is indirect, involving a hypothalamic relay that suppresses food intake when leptin is administered centrally (intracerebroventricular: ICV). We identified 214 genes that correlate with leptin mediated weight loss. Several biological processes such as mitochondrial metabolic pathways, lipid metabolic and catabolic processes, lipid biosynthetic processes, carboxylic acid metabolic processes, iron ion binding and glutathione S-transferases were downregulated after leptin administration. In contrast, genes involved in the immune system inflammatory response and lysosomal activity were found to be upregulated. Among the cellular compartments mitochondrion (32 genes), endoplasmic reticulum (22 genes) and vacuole (8 genes) were significantly over represented. Conclusions/Significance In this study we have identified key molecular pathways and downstream genes which respond to leptin treatment and are involved in leptin-mediated weight loss. Many of these genes have previously been shown to be associated with obesity; however, we have also identified a number of other novel target genes. Further investigation will be required to assess the possible use of these genes and their associated protein products as therapeutic targets for the treatment of obesity.
Collapse
Affiliation(s)
- Ashok Sharma
- Center for Biotechnology and Genomic Medicine, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Shoshana M. Bartell
- Animal & Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Clifton A. Baile
- Animal & Dairy Science, University of Georgia, Athens, Georgia, United States of America
| | - Bo Chen
- Center for Biotechnology and Genomic Medicine, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Robert H. Podolsky
- Center for Biotechnology and Genomic Medicine, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- Department of Medicine, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Richard A. McIndoe
- Center for Biotechnology and Genomic Medicine, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- Department of Pathology, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- Department of Pathology, School of Medicine, Medical College of Georgia, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
34
|
Elam MB, Yellaturu C, Howell GE, Deng X, Cowan GS, Kumar P, Park EA, Hiler ML, Wilcox HG, Hughes TA, Cook GA, Raghow R. Dysregulation of sterol regulatory element binding protein-1c in livers of morbidly obese women is associated with altered suppressor of cytokine signaling-3 and signal transducer and activator of transcription-1 signaling. Metabolism 2010; 59:587-98. [PMID: 19913854 PMCID: PMC2843778 DOI: 10.1016/j.metabol.2009.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 08/20/2009] [Accepted: 09/02/2009] [Indexed: 11/20/2022]
Abstract
We compared hepatic expression of genes that regulate lipid biosynthesis and metabolic signaling in liver biopsy specimens from women who were undergoing gastric bypass surgery (GBP) for morbid obesity with that in women undergoing ventral hernia repair who had experienced massive weight loss (MWL) after prior GBP. Comprehensive metabolic profiles of morbidly obese (MO) (22 subjects) and MWL (9 subjects) were also compared. Analyses of gene expression in liver biopsies from MO and MWL were accomplished by Affymetrix microarray, real-time polymerase chain reaction, and Western blotting techniques. After GBP, MWL subjects had lost on average 102 lb as compared with MO subjects. This was accompanied by effective reversal of the dyslipidemia and insulin resistance that were present in MO. As compared with MWL, livers of MO subjects exhibited increased expression of sterol regulatory element binding protein (SREBP)-1c and its downstream lipogenic targets, fatty acid synthase and acetyl-coenzyme A-carboxylase-1. Livers of MO subjects also exhibited enhanced expression of suppressor of cytokine signaling-3 protein and attenuated Janus kinase signal transducer and activator of transcription (JAK/STAT) signaling. Consistent with these findings, we found that the human SREBP-1c promoter was positively regulated by insulin and negatively regulated by STAT3. These data support the hypothesis that suppressor of cytokine signaling-3-mediated attenuation of the STAT signaling pathway and resulting enhanced expression of SREBP-1c, a key regulator of de novo lipid biosynthesis, are mechanistically related to the development of hepatic insulin resistance and dyslipidemia in MO women.
Collapse
Affiliation(s)
- Marshall B Elam
- Department of Medicine and Research Service, Department of Veterans Affairs Medical Center, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Regazzetti C, Bost F, Le Marchand-Brustel Y, Tanti JF, Giorgetti-Peraldi S. Insulin induces REDD1 expression through hypoxia-inducible factor 1 activation in adipocytes. J Biol Chem 2009; 285:5157-64. [PMID: 19996311 DOI: 10.1074/jbc.m109.047688] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
REDD1 (regulated in development and DNA damage responses) is essential for the inhibition of mTORC1 (mammalian target of rapamycin complex) signaling pathway in response to hypoxia. REDD1 expression is regulated by many stresses such as hypoxia, oxidative stress, and energy depletion. However, the regulation of REDD1 expression in response to insulin remains unknown. In the present study, we demonstrate that in murine and in human adipocytes, insulin stimulates REDD1 expression. Insulin-induced REDD1 expression occurs through phosphoinositide 3-kinase/mTOR-dependent pathways. Moreover, using echinomycin, a hypoxia-inducible factor 1 (HIF-1) inhibitor, and HIF-1alpha small interfering RNA, we demonstrate that insulin stimulates REDD1 expression only through the transcription factor HIF-1. In conclusion, our study shows that insulin stimulates REDD1 expression in adipocytes.
Collapse
Affiliation(s)
- Claire Regazzetti
- Mediterranean Research Centre for Molecular Medicine, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, INSERM U 895, F-06204 Nice, France
| | | | | | | | | |
Collapse
|