1
|
Tasneem M, Gupta SD, Ahmed Jony MJ, Minkara M, Dey RK, Ferdoush J. Identification of key biomarker genes in liver hepatocellular carcinoma and kidney renal clear cell carcinoma progression: A shared high-throughput screening and molecular docking method with potentials for targeted therapeutic interventions. J Genet Eng Biotechnol 2025; 23:100497. [PMID: 40390492 PMCID: PMC12049835 DOI: 10.1016/j.jgeb.2025.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/14/2025] [Indexed: 05/21/2025]
Abstract
BACKGROUND AND OBJECTIVES Liver Hepatocellular Carcinoma (LIHC) and Kidney Renal Clear Cell Carcinoma (KIRC) are leading causes of cancer death worldwide, but their early detections remain hindered by a lack of genetic markers. Our study aims to find prospective biomarkers that could serve as prognostic indicators for efficient drug candidates for KIRC and LIHC treatment. METHODS To detect differentially expressed genes (DEGs), four datasets were used: GSE66271 and GSE213324 for KIRC, and GSE135631 and GSE202853 for LIHC. Visualization of DEGs was done using heatmaps, volcano plots, and Venn diagrams. Hub genes were identified via PPI analysis and the cytoHubba plugin in Cytoscape. Their expression was evaluated using box plots, stage plots, and survival plots for prognostic assessment via GEPIA2. Molecular docking with PyRx's AutoDock Vina identified optimal binding interactions between compounds and proteins. Pharmacokinetic and toxicity analyses reinforced the drug-likeness and safety of these compounds. RESULTS In this study, 47 DEGs were identified, with the top 10 hub genes being TOP2A, BUB1, PTTG1, CCNB2, NUSAP1, KIF20A, BIRC5, RRM2, NDC80 and CDC45, chosen for their high MCC scores. Data mining revealed a correlation between TOP2A expression and clinical survival outcomes in KIRC and LIHC patients. Docking studies of the TOP2A structure identified a promising compound from Andrographis paniculata with high binding energy and interactions with TOP2A. Pharmacokinetic and toxicity assessments support its potential as a drug candidate. CONCLUSION Our study emphasizes TOP2A's prognostic significance in KIRC and LIHC and recognizes Andrographis paniculata compound as potential therapeutics, offering prospective for enhanced treatment and patient outcomes in these cancers.
Collapse
Affiliation(s)
- Maisha Tasneem
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Shipan Das Gupta
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Jubair Ahmed Jony
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Maya Minkara
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA
| | | | - Jannatul Ferdoush
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, 615 McCallie Ave, Chattanooga, TN 37403, USA.
| |
Collapse
|
2
|
Tien SC, Shih M, Hu CM. RRM1 O-GlcNAcylation inhibition suppresses pancreatic cancer via TK1-mediated replication stress. Cancer Gene Ther 2025; 32:550-562. [PMID: 40155654 PMCID: PMC12086086 DOI: 10.1038/s41417-025-00895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
O-GlcNAcylation of ribonucleotide reductase large subunit M1 (RRM1) at position 734 influences high glucose-induced genomic instability and cell transformation in normal pancreatic cells. By disrupting the ribonucleotide reductase complex, it reduces dNTPs. Although the impact of RRM1 O-GlcNAcylation on pancreatic cancer progression remains unexplored, our CRISPR knock-in technology created the RRM1-T734A mutation to minimize RRM1 O-GlcNAcylation. In pancreatic cancer PANC-1 cells with this mutation, we observed heightened replication stress-induced DNA damage, S-phase delays, and diminished in vitro tumor cell growth. Mechanistically, RRM1-T734A enhanced its interaction with RRM2 while impairing binding to RRM2B, leading to decreased NTPs and disrupted dNTP equilibrium. Notably, it doubled dTTP levels via TK1 stabilization mediated by thymidine, resulting in S-phase delay. TK1 silencing restored RRM1-T734A-induced effects on S-phase retardation and decreased colony formation. Our findings highlight the pivotal role of O-GlcNAcylation of RRM1 at T734 in maintaining genomic stability and promoting pancreatic cancer malignancy. Furthermore, reducing RRM1 O-GlcNAcylation increased pancreatic cancer cell sensitivity to gemcitabine, proposing a potential therapeutic strategy.
Collapse
Affiliation(s)
- Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Mei Shih
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei, 115201, Taiwan.
| |
Collapse
|
3
|
Amereh M, Seyfoori A, Shojaei S, Lane S, Zhao T, Shokrollahi Barough M, Lum JJ, Walter P, Akbari M. Tumoroid Model Reveals Synergistic Impairment of Metabolism by Iron Chelators and Temozolomide in Chemo-Resistant Patient-derived Glioblastoma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412505. [PMID: 40285641 PMCID: PMC12120723 DOI: 10.1002/advs.202412505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Chemoresistance poses a significant clinical challenge in managing glioblastoma (GBM), limiting the long-term success of traditional treatments. Here, a 3D tumoroid model is used to investigate the metabolic sensitivity of temozolomide (TMZ)-resistant GBM cells to iron chelation by deferoxamine (DFO) and deferiprone (DFP). This work shows that TMZ-resistant GBM cells acquire stem-like characteristics, higher intracellular iron levels, higher expression of aconitase, and elevated reliance on oxidative phosphorylation and proteins associated with iron metabolism. Using a microphysiological model of GBM-on-a-chip consisting of extracellular matrix (ECM)-incorporated tumoroids, this work demonstrates that the combination of iron chelators with TMZ induces a synergistic effect on an in vitro tumoroid model of newly diagnosed and recurrent chemo-resistant patient-derived GBM and reduced their size and invasion. Investigating downstream metabolic variations reveal reduced intracellular iron, increased reactive oxygen species (ROS), upregulated hypoxia-inducible factor-1α, reduced viability, increased autophagy, upregulated ribonucleotide reductase (RRM2), arrested proliferation, and induced cell death in normoxic TMZ-resistant cells. Hypoxic cells, while showing similar results, display reduced responses to iron deficiency, less blebbing, and an induced autophagic flux, suggesting an adaptive mechanism associated with hypoxia. These findings show that co-treatment with iron chelators and TMZ induces a synergistic effect, making this combination a promising GBM therapy.
Collapse
Affiliation(s)
- Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell ScienceMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBR3T 2N2Canada
| | - Sarah Lane
- Department of BiologyUniversity of VictoriaBCCanada
| | - Tian Zhao
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Julian J. Lum
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCV8W 2Y2Canada
| | | | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Terasaki Institute for Biomedical InnovationsLos AngelesCA91367USA
| |
Collapse
|
4
|
Chu Y, Nie Q, Zhou X, Yang J, Fang J, Zhang J. Berberrubine as a novel TrxR inhibitor enhances cisplatin sensitivity in the treatment of non-small cell lung cancer. Bioorg Chem 2025; 158:108329. [PMID: 40056602 DOI: 10.1016/j.bioorg.2025.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
Thioredoxin reductase (TrxR, TXNRD) is an essential enzyme implicated in the processes of cancer development and progression, positioning it as a promising target for cancer therapeutics. In this study, we employed target-based structural screening to identify berberrubine (BRB), a natural product characterized by an unprecedented isoquinoline scaffold that differs from known TrxR inhibitors. Our findings demonstrate that BRB serves as an effective inhibitor of TrxR, both in the context of the purified enzyme and within cancer cells. Since TrxR is highly expressed in non-small cell lung cancer (NSCLC) and is linked to patient prognosis and drug resistance, our results demonstrate, for the first time, that BRB can enhance the sensitivity of cisplatin to impede the proliferation of A549 cells, which was further confirmed in a xenograft model. The primary reason for cisplatin resistance in NSCLC is the DNA repair mechanism of apoptotic tumor cells. Our subsequent mechanistic investigation discovered that BRB selectively inhibits TrxR and impairs the biologically functional thioredoxin, which ultimately inhibits DNA synthesis and repair in cancer cells. Inhibition of TrxR by BRB led to a significant ROS accumulation in A549 cells, which contributed to oxidative stress-mediated apoptosis when used in combination with cisplatin. Our results conclude that BRB is a novel chemical entity of TrxR inhibitor that can increase the effectiveness of cisplatin in slowing down the growth of NSCLC both in vitro and in vivo. This provides a new perspective on the potential application of the combination of the two in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yajun Chu
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xiedong Zhou
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Junwei Yang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China..
| | - Junmin Zhang
- School of Pharmacy, and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China..
| |
Collapse
|
5
|
Zhang X, Li E, Kuang Y, Gai Y, Feng Y, Huang Y, Wei Z, Niu J, Yu S, Yang Z, Zhang Q, Sai B, Zhu Y. MTCH2 regulates NRF2-mediated RRM1 expression to promote melanoma proliferation and dacarbazine insensitivity. Cell Death Dis 2025; 16:268. [PMID: 40204724 PMCID: PMC11982210 DOI: 10.1038/s41419-025-07618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/09/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Melanoma is among the 10 most prevalent malignant tumors, posing a significant threat to human health. A detailed understanding of the molecular mechanisms driving its progression is crucial for advancing treatment strategies and outcomes. Based on bioinformatic analysis and experimental validation, this study identified mitochondrial carrier homolog 2 (MTCH2) as a key regulator of melanoma proliferation. Mechanistically, MTCH2 enhanced the expression and nuclear translocation of nuclear factor (erythroid-derived-2)-like 2 (NRF2), which up-regulated ribonucleotide reductase subunit M1 (RRM1) expression, thereby promoting melanoma cell proliferation. Targeting RRM1 in combination with dacarbazine significantly inhibited tumor growth in nude mouse xenograft models. These findings elucidate a mechanistic link between MTCH2 and the NRF2-RRM1 axis in melanoma proliferation and highlight potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Xuedan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Enjiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yingmin Kuang
- Department of Organ Transplantation, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yanlong Gai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yu Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhenyan Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Junzi Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Song Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Yang
- Department of Pathology, First Affiliated Hospital of Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Okita G, Suenaga K, Sakaguchi M, Murakami T. A novel oncolytic vaccinia virus with multiple gene modifications involved in viral replication and maturation increases safety for intravenous administration while maintaining proliferative potential in cancer cells. PLoS One 2025; 20:e0312205. [PMID: 40048445 PMCID: PMC11884718 DOI: 10.1371/journal.pone.0312205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/06/2024] [Indexed: 03/09/2025] Open
Abstract
To generate a novel oncolytic vaccinia virus with improved safety and productivity, the genome of smallpox vaccine strain LC16m8 was modified by a bacterial artificial chromosome system. By using LC16m8, a replicating virus homologous to the target virus, as a helper virus for the bacterial artificial chromosome system, we successfully recovered genome-edited infectious viruses. Oncolytic viruses with limited growth in normal cells were obtained by deleting the genes for vaccinia virus growth factor (VGF), extracellular signal-regulated kinase-activating protein (O1L), and ribonucleotide reductase (RNR) present in the viral genome. Furthermore, the amino acid residues of seven proteins involved in extracellular enveloped virus virion formation were replaced to the IHD-J strain sequence, which is known to highly express extracellular enveloped virus. In cultured cancer cells (HeLa), these modified viruses showed cytotoxicity and increased productivity, but it was confirmed that the cytotoxicity was suppressed in normal cells (normal human dermal fibroblasts). For in vivo safety evaluation, a modified virus (MD-RVV-ΔRR-EEV6) in which the VGF, O1L, and RNR genes of LC16m8 were deleted and the genes of six extracellular enveloped virus-associated proteins were replaced with sequences derived from IHD-J strain, and another modified virus (MD-RVV) lacking only the VGF and O1L were administered intravenously to severe combined immunodeficiency mice. In the MD-RVV administration, animals in all dose groups died by 40 days after virus administration. On the other hand, after MD-RVV-ΔRR-EEV6 administration, 3 out of 5 animals in the high and medium dose groups and all animals in the low dose group were still alive by day 71, the end of the observation period. These results demonstrate that genome editing of oncolytic vaccinia virus can delete genes involved in viral replication to improve safety in normal cells, while replacing genes involved in maturation improves proliferative potential in cancer cells.
Collapse
Affiliation(s)
- Go Okita
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Kiyotaka Suenaga
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Masashi Sakaguchi
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Toshio Murakami
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| |
Collapse
|
7
|
Sainz AG, Rojas GR, Moyzis AG, Donnelly MP, Mangalhara KC, Johnson MA, Esparza-Moltó PB, Grae KJ, Shaw RJ, Shadel GS. FAM43A coordinates mtDNA replication and mitochondrial biogenesis in response to mtDNA depletion. J Cell Biol 2025; 224:e202311082. [PMID: 39868925 PMCID: PMC11770945 DOI: 10.1083/jcb.202311082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 10/04/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
Mitochondrial retrograde signaling (MRS) pathways relay the functional status of mitochondria to elicit homeostatic or adaptive changes in nuclear gene expression. Budding yeast have "intergenomic signaling" pathways that sense the amount of mitochondrial DNA (mtDNA) independently of oxidative phosphorylation (OXPHOS), the primary function of genes encoded by mtDNA. However, MRS pathways that sense the amount of mtDNA in mammalian cells remain poorly understood. We found that mtDNA-depleted IMR90 cells can sustain OXPHOS for a significant amount of time, providing a robust model system to interrogate human intergenomic signaling. We identified FAM43A, a largely uncharacterized protein, as a CHK2-dependent early responder to mtDNA depletion. Depletion of FAM43A activates a mitochondrial biogenesis program, resulting in an increase in mitochondrial mass and mtDNA copy number via CHK2-mediated upregulation of the p53R2 form of ribonucleotide reductase. We propose that FAM43A performs a checkpoint-like function to limit mitochondrial biogenesis and turnover under conditions of mtDNA depletion or replication stress.
Collapse
Affiliation(s)
- Alva G. Sainz
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Gladys R. Rojas
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Matthew P. Donnelly
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Melissa A. Johnson
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | | | - Kym J. Grae
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Reuben J. Shaw
- The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
8
|
Ziener J, Henao-Restrepo JA, Leonhardi J, Sturm MJ, Becker S, Morales-Prieto DM, Milde T, Beck JF, Sonnemann J. Combined inhibition of ribonucleotide reductase and WEE1 induces synergistic anticancer activity in Ewing's sarcoma cells. BMC Cancer 2025; 25:277. [PMID: 39962391 PMCID: PMC11831844 DOI: 10.1186/s12885-025-13691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Ewing's sarcoma is a childhood bone and soft tissue cancer with poor prognosis. Treatment outcomes for Ewing's sarcoma patients have improved only modestly over the past decades, making the development of new treatment strategies paramount. In this study, the combined targeting of ribonucleotide reductase (RNR) and WEE1 was explored for its effectiveness against Ewing's sarcoma cells. METHODS The RNR inhibitor triapine and the WEE1 inhibitors adavosertib and ZN-c3 were tested in p53 wild-type and p53 mutant Ewing's sarcoma cells. The combination of adavosertib with the PARP inhibitors olaparib and veliparib was tested for comparison. Combinatorial effects were determined by flow cytometric analyses of cell death, loss of mitochondrial membrane potential and DNA fragmentation as well as by caspase 3/7 activity assay, immunoblotting and real-time RT-PCR. The drug interactions were assessed using combination index analysis. RESULTS RNR and WEE1 inhibitors were weakly to moderately effective on their own, but highly effective in combination. The combination treatments were similarly effective in p53 wild-type and p53 mutant cells. They synergistically induced cell death and cooperated to elicit mitochondrial membrane potential decay, to activate caspase 3/7 and to trigger DNA fragmentation, evidencing the induction of the apoptotic cell death cascade. They also cooperated to boost CHK1 phosphorylation, indicating augmented replication stress after combination treatment. In comparison, the combination of adavosertib with PARP inhibitors produced weaker synergistic effects. CONCLUSION Our findings show that combined inhibition of RNR and WEE1 was effective against Ewing's sarcoma in vitro. They thus provide a rationale for the evaluation of the potential of combined targeting of RNR and WEE1 in Ewing's sarcoma in vivo.
Collapse
Affiliation(s)
- Judy Ziener
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | | | - Johanna Leonhardi
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Max-Johann Sturm
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Becker
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Comprehensive Cancer Centre Central Germany (CCCG), Jena, Germany
| | | | - Till Milde
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Comprehensive Cancer Centre Central Germany (CCCG), Jena, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - James F Beck
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Jürgen Sonnemann
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
- Comprehensive Cancer Centre Central Germany (CCCG), Jena, Germany.
- Klinik für Kinder- und Jugendmedizin, Friedrich-Schiller-Universität Jena, Am Klinikum 1, D-07747, Jena, Germany.
| |
Collapse
|
9
|
Zhong J, Zhu Q, Soudackov AV, Hammes-Schiffer S. Hydrogen Tunneling and Conformational Motions in Nonadiabatic Proton-Coupled Electron Transfer between Interfacial Tyrosines in Ribonucleotide Reductase. J Am Chem Soc 2025; 147:4459-4468. [PMID: 39841588 PMCID: PMC11829447 DOI: 10.1021/jacs.4c15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Ribonucleotide reductase (RNR) is essential for DNA synthesis and repair in all living organisms. The mechanism of E. coli RNR requires long-range radical transport through a proton-coupled electron transfer (PCET) pathway spanning two different protein subunits. Herein, the direct PCET reaction between the interfacial tyrosine residues, Y356 and Y731, is investigated with a vibronically nonadiabatic theory that treats the transferring proton and all electrons quantum mechanically. The input quantities to the PCET rate constant expression are computed with a combination of density functional theory and molecular dynamics simulations. The calculations highlight the importance of hydrogen tunneling in this PCET reaction. Compression of the distance between the proton donor and acceptor oxygen atoms of the interfacial tyrosine residues is essential to facilitate hydrogen tunneling by increasing the overlap between the reactant and product proton vibrational wave functions. This compression occurs by thermal conformational fluctuations of these interfacial tyrosine residues. N733 and R411 are identified as key residues that can hydrogen bond to Y731 and Y356, respectively, and thereby compete with the hydrogen-bonding interaction between Y731 and Y356 required for direct PCET. Understanding the roles of hydrogen tunneling and conformational motions in this interfacial PCET reaction, as well as identifying other residues that may impact the kinetics, is important for targeted protein engineering efforts to modulate RNR activity.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Qiwen Zhu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
10
|
Suspène R, Raymond KA, Guardado-Calvo P, Dairou J, Bonhomme F, Bonenfant C, Guyetant S, Lecomte T, Pagès JC, Vartanian JP. Disruption of deoxyribonucleotide triphosphate biosynthesis leads to RAS proto-oncogene activation and perturbation of mitochondrial metabolism. J Biol Chem 2025; 301:108117. [PMID: 39722416 PMCID: PMC11791277 DOI: 10.1016/j.jbc.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Perturbation of the deoxyribonucleotide triphosphate (dNTP) pool is recognized for contributing to the mutagenic processes involved in oncogenesis. The RAS gene family encodes well-characterized oncoproteins whose structure and function are among the most frequently altered in several cancers. In this work, we show that fluctuation of the dNTP pool induces CG → TA mutations across the whole genome, including RAS gene at codons for glycine 12 and 13, known hotspots in cancers. Cell culture addition of the ribonucleotide reductase inhibitor thymidine increases the mutation frequency in nuclear DNA and leads to disruption of mitochondrial metabolism. Interestingly, this effect is counteracted by the addition of deoxycytidine. Finally, screening for the loss of hydrogen bonds detecting CG → TA transition in RAS gene of 135 patients with colorectal cancer confirmed the clinical relevance of this process. All together, these data demonstrate that fluctuation of intracellular dNTP pool alters the nuclear DNA and mitochondrial metabolism.
Collapse
Affiliation(s)
- Rodolphe Suspène
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France
| | - Kyle A Raymond
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France; Sorbonne Université, Complexité du Vivant ED515, Paris, France
| | - Pablo Guardado-Calvo
- Structural Biology of Infectious Diseases, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France
| | - Julien Dairou
- Université Paris Cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Paris, France
| | - Frédéric Bonhomme
- Epigenetic Chemical Biology Unit, UMR CNRS 3523, Université Paris Cité, Institut Pasteur, Paris, France
| | - Christine Bonenfant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Serge Guyetant
- Pathology Department and Cancer Molecular Genetics Platform, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Thierry Lecomte
- Inserm UMR 1069, N2COx "Niche, Nutrition, Cancer and Oxidative Metabolism", Université de Tours, Tours, France; Service de gastroentérologie, CHRU de Tours Hôpital Trousseau, Tours, France
| | - Jean-Christophe Pagès
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, INSERM U1301, UMR CNRS 5070, Toulouse, France; CHU de Toulouse, IFB, Hôpital Purpan, Toulouse, France
| | - Jean-Pierre Vartanian
- Virus and Cellular Stress Unit, Department of Virology, Université Paris Cité, Institut Pasteur, Paris, France.
| |
Collapse
|
11
|
Yang S, Wang R, Liu L, Xu F, Zhao X, Yao Z, Zhang J, Cheng X, Xu A, Wu L, Zhao G. RRM1 promotes homologous recombination and radio/chemo-sensitivity via enhancing USP11 and E2F1-mediated RAD51AP1 transcription. Cell Death Discov 2024; 10:496. [PMID: 39695160 DOI: 10.1038/s41420-024-02267-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Ribonucleotide reductase M1 (RRM1), the catalytic subunit of ribonucleotide reductase, plays a pivotal role in converting ribonucleotides (NTP) into deoxyribonucleotides (dNTP), essential for DNA replication and repair. Elevated RRM1 expression is associated with various human cancers, correlating with poorer prognosis and reduced overall survival rates. Our previous study found that RRM1 will enter the nucleus to promote DNA damage repair. However, the underlying mechanism remains elusive. Here, we unveil a novel role of RRM1 in promoting homologous recombination (HR) by upregulating the expression of RAD51AP1, a critical HR factor, in an E2F1-dependent manner. We demonstrate that RRM1 interacts with USP11 in the cytoplasm, and the recruitment of RRM1 to LaminB1 induced by ionizing radiation (IR) facilitates the binding of USP11 to the nuclear pore complex (NPC), promoting USP11 entry into the nucleus. Upon nuclear translocation, USP11 binds to E2F1 and inhibits the ubiquitin-mediated degradation of E2F1, thereby enhancing the transcriptional expression of RAD51AP1. Moreover, a specific RRM1 mutant lacking amino acids 731-793, crucial for its interaction with USP11 and recruitment to LaminB1, exhibits a dominant-negative effect on RAD51AP1 expression and HR. Truncations of RRM1 fail to inhibit the ubiquitin-mediated degradation of E2F1 and cannot promote the E2F1-mediated transactivation of RAD51AP1. Lastly, the full length of RRM1, not truncations, enhances tumor cells' sensitivity to IR, underscoring its importance in radiotherapy resistance. Collectively, our results suggest a novel function of RRM1 in promoting HR-mediated DSB repair through positive regulation of RAD51AP1 transcription by direct interaction with USP11 and promoting subsequent USP11-mediated deubiquitination of E2F1. Our findings elucidate a previously unknown mechanism whereby RRM1 promotes HR-mediated DNA repair, presenting a potential therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Shuai Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ruru Wang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lingling Liu
- University of Science and Technology of China, Hefei, Anhui, China
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - Feng Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Xipeng Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Zhicheng Yao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Jie Zhang
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
- University of Science and Technology of China, Hefei, Anhui, China
| | - Xu Cheng
- University of Science and Technology of China, Hefei, Anhui, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China
| | - An Xu
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Guoping Zhao
- High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China.
| |
Collapse
|
12
|
Giang LH, Wu KS, Lee WC, Chu SS, Do AD, Huang MH, Lin YL, Hsieh CL, Sung SY, Yen Y, Wong TT, Chang CC. RRM2 inhibition alters cell cycle through ATM/Rb/E2F1 pathway in atypical teratoid rhabdoid tumor. Neoplasia 2024; 58:101075. [PMID: 39437704 PMCID: PMC11536058 DOI: 10.1016/j.neo.2024.101075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/28/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Atypical teratoid rhabdoid tumor (ATRT) is an aggressive brain tumor that mainly affects young children. Our recent study reported a promising therapeutic strategy to trigger DNA damage, impede homologous recombination repair, and induce apoptosis in ATRT cells by targeting ribonucleotide reductase regulatory subunit M2 (RRM2). COH29, an inhibitor of RRM2, effectively reduced tumor growth and prolonged survival in vivo. Herein, we explored the underlying mechanisms controlling these functions to improve the clinical applicability of COH29 in ATRT. METHODS Molecular profiling of ATRT patients and COH29-treated cells was analyzed to identify the specific signaling pathways, followed by validation using a knockdown system, flow cytometry, q-PCR, and western blot. RESULTS Elevated E2F1 and its signaling pathway were correlated with poor prognosis. RRM2 inhibition induced DNA damage and activated ATM, which reduced Rb phosphorylation to promote Rb-E2F1 interaction and hindered E2F1 functions. E2F1 activity suppression led to decreased E2F1-dependent target expressions, causing cell cycle arrest in the G1 phase, decreased S phase cells, and blocked DNA damage repair. CONCLUSION Our study highlights the role of ATM/Rb/E2F1 pathway in controlling cell cycle arrest and apoptosis in response to RRM2 inhibition-induced DNA damage. This provides insight into the therapeutic benefits of COH29 and suggests targeting this pathway as a potential treatment for ATRT.
Collapse
Affiliation(s)
- Le Hien Giang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Biology and Genetics, Hai Phong University of Medicine and Pharmacy, Hai Phong 180000, Vietnam
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Shing-Shung Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Man-Hsu Huang
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; General Clinical Research Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yun Yen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei 110, Taiwan; Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei 110, Taiwan; Neuroscience Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Che-Chang Chang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Neuroscience Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan; TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan; Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan; Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei 11031, Taiwan.
| |
Collapse
|
13
|
Rahman MO, Das A, Naeem N, Jabeen-E-Tahnim, Hossain MA, Alam MN, Azad AKM, Alyami SA, Alotaibi N, Al-Moisheer AS, Moni MA. An Integrated Framework to Identify Prognostic Biomarkers and Novel Therapeutic Targets in Hepatocellular Carcinoma-Based Disabilities. BIOLOGY 2024; 13:966. [PMID: 39765633 PMCID: PMC11673266 DOI: 10.3390/biology13120966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/11/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors globally, significantly affecting liver functions, thus necessitating the identification of biomarkers and effective therapeutics to improve HCC-based disabilities. This study aimed to identify prognostic biomarkers, signaling cascades, and candidate drugs for the treatment of HCC through integrated bioinformatics approaches such as functional enrichment analysis, survival analysis, molecular docking, and simulation. Differential expression and functional enrichment analyses revealed 176 common differentially expressed genes from two microarray datasets, GSE29721 and GSE49515, significantly involved in HCC development and progression. Topological analyses revealed 12 hub genes exhibiting elevated expression in patients with higher tumor stages and grades. Survival analyses indicated that 11 hub genes (CCNB1, AURKA, RACGAP1, CEP55, SMC4, RRM2, PRC1, CKAP2, SMC2, UHRF1, and FANCI) and three transcription factors (E2F1, CREB1, and NFYA) are strongly linked to poor patient survival. Finally, molecular docking and simulation identified seven candidate drugs with stable complexes to their target proteins: tozasertib (-9.8 kcal/mol), tamatinib (-9.6 kcal/mol), ilorasertib (-9.5 kcal/mol), hesperidin (-9.5 kcal/mol), PF-562271 (-9.3 kcal/mol), coumestrol (-8.4 kcal/mol), and clofarabine (-7.7 kcal/mol). These findings suggest that the identified hub genes and TFs could serve as valuable prognostic biomarkers and therapeutic targets for HCC-based disabilities.
Collapse
Affiliation(s)
- Md. Okibur Rahman
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Asim Das
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Nazratun Naeem
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Jabeen-E-Tahnim
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md. Ali Hossain
- Department of Computer Science & Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
- Department of Computer Science & Engineering, Daffodil International University, Dhaka 1216, Bangladesh
| | - Md. Nur Alam
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - AKM Azad
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Salem A. Alyami
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Naif Alotaibi
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - A. S. Al-Moisheer
- Department of Mathematics & Statistics, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 13318, Saudi Arabia
| | - Mohammod Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| |
Collapse
|
14
|
López-Gil CI, Téllez-Jurado A, Velasco-Velázquez MA, Anducho-Reyes MA. Identification and Analysis of Anticancer Therapeutic Targets from the Polysaccharide Krestin (PSK) and Polysaccharopeptide (PSP) Using Inverse Docking. Molecules 2024; 29:5390. [PMID: 39598781 PMCID: PMC11596896 DOI: 10.3390/molecules29225390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
The natural compounds PSK and PSP have antitumor and immunostimulant properties. These pharmacological benefits have been documented in vitro and in vivo, although there is no information in silico which describes the action mechanisms at the molecular level. In this study, the inverse docking method was used to identify the interactions of PSK and PSP with two local databases: BPAT with 66 antitumor proteins, and BPSIC with 138 surfaces and intracellular proteins. This led to the identification interactions and similarities of PSK and the AB680 inhibitor in the active site of CD73. It was also found that PSK binds to CD59, interacting with the amino acids APS22 and PHE23, which coincide with the rlLYd4 internalization inhibitor. With the isoform of the K-RAS protein, PSK bonded to the TYR32 amino acid at switch 1, while with BAK it bonded to the region of the α1 helix, while PSP bonded to the activation site and the C-terminal and N-terminal ends of that helix. In Bcl-2, PSK interacted at the binding site of the Venetoclax inhibitor, showing similarities with the amino acids ASP111, VAL133, LEU137, MET115, PHE112, and TYR108, while PSP had similarities with THR132, VAL133, LEU137, GLN118, MET115, APS111, PHE112, and PHE104.
Collapse
Affiliation(s)
- Carlos Iván López-Gil
- Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico; (C.I.L.-G.); (A.T.-J.)
| | - Alejandro Téllez-Jurado
- Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico; (C.I.L.-G.); (A.T.-J.)
| | | | - Miguel Angel Anducho-Reyes
- Department of Biotechnology, Universidad Politécnica de Pachuca, Zempoala 43830, Mexico; (C.I.L.-G.); (A.T.-J.)
| |
Collapse
|
15
|
Li X, Yang C, Zhang X, Wang F, Sun L, Zhang W, Xu X. R-loop formation contributes to mTORC1 activation-dependent DNA replication stress induced by p53 deficiency. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1875-1885. [PMID: 39592262 PMCID: PMC11693875 DOI: 10.3724/abbs.2024188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/30/2024] [Indexed: 11/28/2024] Open
Abstract
DNA replication stress is a significant contributor to spontaneous DNA damage and genome instability. While the impact of p53 deficiency on increasing DNA replication stress is known, the specific molecular mechanism underlying this phenomenon remains poorly understood. This study explores how p53 deficiency induces DNA replication stress by activating mTORC1 through R-loop formation, which is facilitated by the upregulation of RNR. Research has shown that p53 deficiency results in increased γH2AX expression and a higher mutation rate in the HPRT gene. Interestingly, these effects can be alleviated by rapamycin, an mTORC1 inhibitor. Additionally, rapamycin reduces the abundance of R-loop structures in p53KO cells, which is linked to mTORC1's regulation of ribonucleotide reductase (RNR) level. These findings suggest that p53 deficiency-induced DNA replication stress relies on mTORC1 activation, with the upregulation of RNR expression and R-loop formation. Overall, this study underscores the importance of R-loops in mTORC1 activation-dependent DNA replication stress triggered by p53 deficiency.
Collapse
Affiliation(s)
- Xiaolei Li
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| | - Cheng Yang
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Jiangxi Medical CollegeFirst Clinical Medical CollegeNanchang UniversityNanchang330006China
| | - Xiaohui Zhang
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- Department of Respiratory and Critical Care MedicineRenmin Hospital of ShangraoShangrao334000China
| | - Feiyang Wang
- Jiangxi Medical CollegeFirst Clinical Medical CollegeNanchang UniversityNanchang330006China
| | - Longhua Sun
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| | - Wei Zhang
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| | - Xinping Xu
- Jiangxi Provincial Key Laboratory of Respiratory DiseasesJiangxi Institute of Respiratory DiseaseDepartment of Respiratory and Critical Care Medicinethe First Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchang330006China
- China-Japan Friendship Jiangxi HospitalNational Regional Center for Respiratory MedicineNanchang330200China
| |
Collapse
|
16
|
Zhao J, Ahn B, Lin H. Loss of Diphthamide Increases DNA Replication Stress in Mammalian Cells by Modulating the Translation of RRM1. ACS CENTRAL SCIENCE 2024; 10:1835-1847. [PMID: 39463834 PMCID: PMC11503486 DOI: 10.1021/acscentsci.4c00967] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Diphthamide (DPH) is a highly conserved post-translational modification exclusively present in eukaryotic translation elongation factor 2 (eEF2), with its loss leading to embryonic lethality in mice and developmental disorders in humans. In this study, we unveil the role of diphthamide in mammalian cell DNA damage stress, with a particular emphasis on DNA replication stress. We developed a systematic strategy to identify human proteins affected by diphthamide with a combination of computational profiling and quantitative proteomics. Through this approach, we determine that the translation of RRM1 is modulated by diphthamide via -1 frameshifting. Importantly, our results reveal that the dysregulation of RRM1 translation in DPH-deficient cells is causally linked to elevated DNA replication stress. These findings provide a potential explanation for how diphthamide deficiency leads to cancer and developmental defects in humans.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Byunghyun Ahn
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Molecular Biology and Genetics, Cornell
University, Ithaca, New York 14853, United States
| | - Hening Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
- Department
of Molecular Biology and Genetics, Cornell
University, Ithaca, New York 14853, United States
- Howard Hughes
Medical Institute, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Gřešková A, Petřivalský M. Thioredoxin System in Insects: Uncovering the Roles of Thioredoxins and Thioredoxin Reductase beyond the Antioxidant Defences. INSECTS 2024; 15:797. [PMID: 39452373 PMCID: PMC11508645 DOI: 10.3390/insects15100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/03/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Increased levels of reactive oxygen species (ROS) produced during aerobic metabolism in animals can negatively affect the intracellular redox status, cause oxidative stress and interfere with physiological processes in the cells. The antioxidant defence regulates ROS levels by interplaying diverse enzymes and non-enzymatic metabolites. The thioredoxin system, consisting of the enzyme thioredoxin reductase (TrxR), the redox-active protein thioredoxin (Trx) and NADPH, represent a crucial component of antioxidant defence. It is involved in the signalling and regulation of multiple developmental processes, such as cell proliferation or apoptotic death. Insects have evolved unique variations of TrxR, which resemble mammalian enzymes in overall structure and catalytic mechanisms, but the selenocysteine-cysteine pair in the active site is replaced by a cysteine-cysteine pair typical of bacteria. Moreover, the role of the thioredoxin system in insects is indispensable due to the absence of glutathione reductase, an essential enzyme of the glutathione system. However, the functions of the Trx system in insects are still poorly characterised. In the present review, we provide a critical overview of the current knowledge on the insect Trx system, focusing mainly on TrxR's role in the antioxidant and immune system of model insect species.
Collapse
Affiliation(s)
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 77900 Olomouc, Czech Republic
| |
Collapse
|
18
|
Manning BD, Dibble CC. Growth Signaling Networks Orchestrate Cancer Metabolic Networks. Cold Spring Harb Perspect Med 2024; 14:a041543. [PMID: 38438221 PMCID: PMC11444256 DOI: 10.1101/cshperspect.a041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Normal cells grow and divide only when instructed to by signaling pathways stimulated by exogenous growth factors. A nearly ubiquitous feature of cancer cells is their capacity to grow independent of such signals, in an uncontrolled, cell-intrinsic manner. This property arises due to the frequent oncogenic activation of core growth factor signaling pathway components, including receptor tyrosine kinases, PI3K-AKT, RAS-RAF, mTORC1, and MYC, leading to the aberrant propagation of pro-growth signals independent of exogenous growth factors. The growth of both normal and cancer cells requires the acquisition of nutrients and their anabolic conversion to the primary macromolecules underlying biomass production (protein, nucleic acids, and lipids). The core growth factor signaling pathways exert tight regulation of these metabolic processes and the oncogenic activation of these pathways drive the key metabolic properties of cancer cells and tumors. Here, we review the molecular mechanisms through which these growth signaling pathways control and coordinate cancer metabolism.
Collapse
Affiliation(s)
- Brendan D Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christian C Dibble
- Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
19
|
Ketharnathan S, Pokharel S, Prykhozhij SV, Cordeiro-Santanach A, Ban K, Dogan S, Hoang HD, Liebman MF, Leung E, Alain T, Alecu I, Bennett SAL, Čuperlović-Culf M, Dror Y, Berman JN. Loss of Dnajc21 leads to cytopenia and altered nucleotide metabolism in zebrafish. Leukemia 2024; 38:2115-2126. [PMID: 39138265 PMCID: PMC11436362 DOI: 10.1038/s41375-024-02367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024]
Abstract
Mutations in the DNAJC21 gene were recently described in Shwachman-Diamond syndrome (SDS), a bone marrow failure syndrome with high predisposition for myeloid malignancies. To study the underlying biology in hematopoiesis regulation and disease, we generated the first in vivo model of Dnajc21 deficiency using the zebrafish. Zebrafish dnajc21 mutants phenocopy key SDS patient phenotypes such as cytopenia, reduced growth, and defective protein synthesis. We show that cytopenia results from impaired hematopoietic differentiation, accumulation of DNA damage, and reduced cell proliferation. The introduction of a biallelic tp53 mutation in the dnajc21 mutants leads to the development of myelodysplastic neoplasia-like features defined by abnormal erythroid morphology and expansion of hematopoietic progenitors. Using transcriptomic and metabolomic analyses, we uncover a novel role for Dnajc21 in nucleotide metabolism. Exogenous nucleoside supplementation restores neutrophil counts, revealing an association between nucleotide imbalance and neutrophil differentiation, suggesting a novel mechanism in dnajc21-mutant SDS biology.
Collapse
Affiliation(s)
| | | | | | | | - Kevin Ban
- CHEO Research Institute, Ottawa, ON, Canada
| | | | - Huy-Dung Hoang
- CHEO Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Mira F Liebman
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Elaine Leung
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Tommy Alain
- CHEO Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A L Bennett
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miroslava Čuperlović-Culf
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Digital Technologies Research Centre, National Research Council of Canada, Ottawa, ON, Canada
| | - Yigal Dror
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Marrow Failure and Myelodysplasia Program, Division of Hematology/Oncology, Department of Pediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Jason N Berman
- CHEO Research Institute, Ottawa, ON, Canada.
- Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
20
|
Funk M, Zimanyi CM, Andree GA, Hamilos AE, Drennan CL. How ATP and dATP Act as Molecular Switches to Regulate Enzymatic Activity in the Prototypical Bacterial Class Ia Ribonucleotide Reductase. Biochemistry 2024; 63:2517-2531. [PMID: 39164005 PMCID: PMC11447812 DOI: 10.1021/acs.biochem.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Class Ia ribonucleotide reductases (RNRs) are allosterically regulated by ATP and dATP to maintain the appropriate deoxyribonucleotide levels inside the cell for DNA biosynthesis and repair. RNR activity requires precise positioning of the β2 and α2 subunits for the transfer of a catalytically essential radical species. Excess dATP inhibits RNR through the creation of an α-β interface that restricts the ability of β2 to obtain a position that is capable of radical transfer. ATP breaks the α-β interface, freeing β2 and restoring enzyme activity. Here, we investigate the molecular basis for allosteric activity regulation in the well-studied Escherichia coli class Ia RNR through the determination of six crystal structures and accompanying biochemical and mutagenesis studies. We find that when dATP is bound to the N-terminal regulatory cone domain in α, a helix unwinds, creating a binding surface for β. When ATP displaces dATP, the helix rewinds, dismantling the α-β interface. This reversal of enzyme inhibition requires that two ATP molecules are bound in the cone domain: one in the canonical nucleotide-binding site (site 1) and one in a site (site 2) that is blocked by phenylalanine-87 and tryptophan-28 unless ATP is bound in site 1. When ATP binds to site 1, histidine-59 rearranges, prompting the movement of phenylalanine-87 and trytophan-28, and creating site 2. dATP hydrogen bonds to histidine-59, preventing its movement. The importance of site 2 in the restoration of RNR activity by ATP is confirmed by mutagenesis. These findings have implications for the design of bacterial RNR inhibitors.
Collapse
Affiliation(s)
- Michael
A. Funk
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Christina M. Zimanyi
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Gisele A. Andree
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Allison E. Hamilos
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Catherine L. Drennan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
21
|
Zhang J, Wu Q, Xie Y, Li F, Wei H, Jiang Y, Qiao Y, Li Y, Sun Y, Huang H, Ge M, Zhao D, Dong Z, Liu K. Ribonucleotide reductase small subunit M2 promotes the proliferation of esophageal squamous cell carcinoma cells via HuR-mediated mRNA stabilization. Acta Pharm Sin B 2024; 14:4329-4344. [PMID: 39525580 PMCID: PMC11544187 DOI: 10.1016/j.apsb.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 11/16/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), a malignancy of the digestive system, is highly prevalent and the primary cause of cancer-related deaths worldwide due to the lack of early diagnostic biomarkers and effective therapeutic targets. Dysregulated ribonucleotide reductase (RNR) expression has been confirmed to be causally linked to tumorigenesis. This study demonstrated that ribonucleotide reductase small subunit M2 (RRM2) is significantly upregulated in ESCC tissue and that its expression is negatively correlated with clinical outcomes. Mechanistically, HuR promotes RRM2 mRNA stabilization by binding to the adenine/uridine (AU)-rich elements (AREs) within the 3'UTR, resulting in persistent overexpression of RRM2. Furthermore, bifonazole is identified as an inhibitor of HuR via computational screening and molecular docking analysis. Bifonazole disrupts HuR-ARE interactions by competitively binding to HuR at F65, R97, I103, and R153 residues, resulting in reduced RRM2 expression. Furthermore, bifonazole exhibited antitumor effects on ESCC patient-derived xenograft (PDX) models by decreasing RRM2 expression and the dNTP pool. In summary, this study reveals the interaction network among HuR, RRM2, and bifonazole and demonstrated that bifonazole is a potential therapeutic compound for ESCC through inhibition of the HuR/RRM2 axis.
Collapse
Affiliation(s)
- Jing Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Qiong Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yifei Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
| | - Feng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Wei
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yan Qiao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanan Sun
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Han Huang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Mengmeng Ge
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Dengyun Zhao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Zigang Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China
| |
Collapse
|
22
|
Hong G, Chen W, Gong M, Wu Y, Shu G, Xiao Y, Zhang T, ShuXiong X. KAT7 suppresses tumorigenesis in clear cell renal cell carcinoma (ccRCC) by regulating cell cycle and ferroptosis sensitivity. Exp Cell Res 2024; 441:114149. [PMID: 38960363 DOI: 10.1016/j.yexcr.2024.114149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in the urological system, known for its high immunogenicity. However, its pathogenesis remains unclear. This study utilized bioinformatics algorithms and in vitro experiments to investigate the role of KAT7 in ccRCC. The results indicate that KAT7 is significantly downregulated in ccRCC tissues and cell lines, which is linked to distant metastasis and unfavorable outcomes in ccRCC patients. Overexpression of KAT7 in vitro notably decreased the proliferation, migration, and invasion of renal cancer cells and inhibited Epithelial-Mesenchymal Transition (EMT). Additionally, Gene Set Enrichment Analysis (GSEA) demonstrated that KAT7-related gene functions are associated with cell cycle and ferroptosis transcription factors. Treatment with a KAT7 acetylation inhibitor in ccRCC cell lines reversed the S phase arrest caused by KAT7 overexpression. Similarly, ferroptosis inhibitors alleviated ferroptosis induced by overexpressed KAT7. In conclusion, the findings suggest that KAT7 acts as a tumor suppressor in ccRCC by modulating the cell cycle and ferroptosis sensitivity, underscoring its potential as a therapeutic target and prognostic biomarker for renal cell carcinoma patients.
Collapse
Affiliation(s)
- GuangYi Hong
- Guizhou University Medicine College, Guiyang, 550025, Guizhou Province, China
| | - Wei Chen
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - MaoDi Gong
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - YiKun Wu
- Guizhou University Medicine College, Guiyang, 550025, Guizhou Province, China
| | - GuoFeng Shu
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Yu Xiao
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China
| | - Tao Zhang
- Guizhou University Medicine College, Guiyang, 550025, Guizhou Province, China
| | - Xu ShuXiong
- Department of Urology, Guizhou Provincial People's Hospital, No.83, East Zhongshan Road, Guiyang, Guizhou, China.
| |
Collapse
|
23
|
Croushore EE, Stipp CS, Gordon DJ. EWS-FLI1 and Activator Protein-1 (AP-1) Reciprocally Regulate Extracellular-Matrix Proteins in Ewing sarcoma Cells. Int J Mol Sci 2024; 25:8595. [PMID: 39201282 PMCID: PMC11354993 DOI: 10.3390/ijms25168595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 09/02/2024] Open
Abstract
Ribonucleotide reductase (RNR) is the rate-limiting enzyme in the synthesis of deoxyribonucleotides and the target of multiple chemotherapy drugs, including gemcitabine. We previously identified that inhibition of RNR in Ewing sarcoma tumors upregulates the expression levels of multiple members of the activator protein-1 (AP-1) transcription factor family, including c-Jun and c-Fos, and downregulates the expression of c-Myc. However, the broader functions and downstream targets of AP-1, which are highly context- and cell-dependent, are unknown in Ewing sarcoma tumors. Consequently, in this work, we used genetically defined models, transcriptome profiling, and gene-set -enrichment analysis to identify that AP-1 and EWS-FLI1, the driver oncogene in most Ewing sarcoma tumors, reciprocally regulate the expression of multiple extracellular-matrix proteins, including fibronectins, integrins, and collagens. AP-1 expression in Ewing sarcoma cells also drives, concurrent with these perturbations in gene and protein expression, changes in cell morphology and phenotype. We also identified that EWS-FLI1 dysregulates the expression of multiple AP-1 proteins, aligning with previous reports demonstrating genetic and physical interactions between EWS-FLI1 and AP-1. Overall, these results provide novel insights into the distinct, EWS-FLI1-dependent features of Ewing sarcoma tumors and identify a novel, reciprocal regulation of extracellular-matrix components by EWS-FLI1 and AP-1.
Collapse
Affiliation(s)
- Emma E. Croushore
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA 52242, USA;
| | - Christopher S. Stipp
- Department of Biology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA;
| | - David J. Gordon
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Iowa, Iowa City, IA 52242, USA;
| |
Collapse
|
24
|
Chow Z, Johnson J, Chauhan A, Jeong JC, Castle JT, Izumi T, Weiss H, Townsend CM, Schrader J, Anthony L, Yang ES, Evers BM, Rychahou P. Inhibition of ribonucleotide reductase subunit M2 enhances the radiosensitivity of metastatic pancreatic neuroendocrine tumor. Cancer Lett 2024; 596:216993. [PMID: 38801884 PMCID: PMC11299177 DOI: 10.1016/j.canlet.2024.216993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/18/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Ribonucleotide Reductase (RNR) is a rate-limiting enzyme in the production of deoxyribonucleoside triphosphates (dNTPs), which are essential substrates for DNA repair after radiation damage. We explored the radiosensitization property of RNR and investigated a selective RRM2 inhibitor, 3-AP, as a radiosensitizer in the treatment of metastatic pNETs. We investigated the role of RNR subunit, RRM2, in pancreatic neuroendocrine (pNET) cells and responses to radiation in vitro. We also evaluated the selective RRM2 subunit inhibitor, 3-AP, as a radiosensitizer to treat pNET metastases in vivo. Knockdown of RNR subunits demonstrated that RRM1 and RRM2 subunits, but not p53R3, play significant roles in cell proliferation. RRM2 inhibition activated DDR pathways through phosphorylation of ATM and DNA-PK protein kinases but not ATR. RRM2 inhibition also induced Chk1 and Chk2 phosphorylation, resulting in G1/S phase cell cycle arrest. RRM2 inhibition sensitized pNET cells to radiotherapy and induced apoptosis in vitro. In vivo, we utilized pNET subcutaneous and lung metastasis models to examine the rationale for RNR-targeted therapy and 3-AP as a radiosensitizer in treating pNETs. Combination treatment significantly increased apoptosis of BON (human pNET) xenografts and significantly reduced the burden of lung metastases. Together, our results demonstrate that selective RRM2 inhibition induced radiosensitivity of metastatic pNETs both in vitro and in vivo. Therefore, treatment with the selective RRM2 inhibitor, 3-AP, is a promising radiosensitizer in the therapeutic armamentarium for metastatic pNETs.
Collapse
Affiliation(s)
- Zeta Chow
- Markey Cancer Center, Lexington, KY, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Aman Chauhan
- Division of Medical Oncology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Jong Cheol Jeong
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Biomedical Informatics, University of Kentucky, Lexington, KY, USA
| | - Jennifer T Castle
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Tadahide Izumi
- Markey Cancer Center, Lexington, KY, USA; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Heidi Weiss
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Cancer Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Courtney M Townsend
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Jörg Schrader
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lowell Anthony
- Markey Cancer Center, Lexington, KY, USA; Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Lexington, KY, USA
| | - Eddy S Yang
- Markey Cancer Center, Lexington, KY, USA; Department of Radiation Medicine, University of Kentucky, Lexington, KY, USA
| | - B Mark Evers
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA
| | - Piotr Rychahou
- Markey Cancer Center, Lexington, KY, USA; Department of Surgery, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
25
|
Yagüe-Capilla M, Rudd SG. Understanding the interplay between dNTP metabolism and genome stability in cancer. Dis Model Mech 2024; 17:dmm050775. [PMID: 39206868 PMCID: PMC11381932 DOI: 10.1242/dmm.050775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The size and composition of the intracellular DNA precursor pool is integral to the maintenance of genome stability, and this relationship is fundamental to our understanding of cancer. Key aspects of carcinogenesis, including elevated mutation rates and induction of certain types of DNA damage in cancer cells, can be linked to disturbances in deoxynucleoside triphosphate (dNTP) pools. Furthermore, our approaches to treat cancer heavily exploit the metabolic interplay between the DNA and the dNTP pool, with a long-standing example being the use of antimetabolite-based cancer therapies, and this strategy continues to show promise with the development of new targeted therapies. In this Review, we compile the current knowledge on both the causes and consequences of dNTP pool perturbations in cancer cells, together with their impact on genome stability. We outline several outstanding questions remaining in the field, such as the role of dNTP catabolism in genome stability and the consequences of dNTP pool expansion. Importantly, we detail how our mechanistic understanding of these processes can be utilised with the aim of providing better informed treatment options to patients with cancer.
Collapse
Affiliation(s)
- Miriam Yagüe-Capilla
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Sean G Rudd
- Science For Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, 171 65 Stockholm, Sweden
| |
Collapse
|
26
|
van Harten AM, Shah R, de Boer DV, Buijze M, Kreft M, Song JY, Zürcher LM, Jacobs H, Brakenhoff RH. Gemcitabine as chemotherapy of head and neck cancer in Fanconi anemia patients. Oncogenesis 2024; 13:26. [PMID: 38992100 PMCID: PMC11239817 DOI: 10.1038/s41389-024-00525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Fanconi anemia (FA) is a rare hereditary disease resulting from an inactivating mutation in the FA/BRCA pathway, critical for the effective repair of DNA interstrand crosslinks (ICLs). The disease is characterized by congenital abnormalities, progressing bone marrow failure, and an increased risk of developing malignancies early in life, in particular head and neck squamous cell carcinoma (HNSCC). While ICL-inducing cisplatin combined with radiotherapy is a mainstay of HNSCC treatment, cisplatin is contra-indicated for FA-HNSCC patients. This dilemma necessitates the identification of novel treatment modalities tolerated by FA-HNSCC patients. To identify druggable targets, an siRNA-based genetic screen was previously performed in HNSCC-derived cell lines from FA and non-FA tumor origin. Here, we report that the Ribonucleotide Reductase (RNR) complex, consisting of the RRM1 and RRM2 subunits, was identified as a therapeutic target for both, FA and non-FA HNSCC. While non-FA HNSCC cells responded differentially to RNR depletion, FA-HNSCC cells were consistently found hypersensitive. This insight was confirmed pharmacologically using 2', 2'-difluoro 2'deoxycytidine (dFdC), also known as gemcitabine, a clinically used nucleotide analog that is a potent inhibitor of the RNR complex. Importantly, while cisplatin exposure displayed severe, long-lasting toxicity on the hematopoietic stem and progenitor compartments in Fancg-/- mice, gemcitabine was well tolerated and had only a mild, transient impact. Taken together, our data implicate that gemcitabine-based chemoradiotherapy could serve as an alternative HNSCC treatment in Fanconi patients, and deserves clinical testing.
Collapse
Affiliation(s)
- Anne M van Harten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Ronak Shah
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D Vicky de Boer
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Marijke Buijze
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - Maaike Kreft
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ruud H Brakenhoff
- Amsterdam UMC location Vrije Universiteit Amsterdam, Otolaryngology-Head and Neck Surgery, Head and Neck Cancer Biology & Immunology Section, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Xiao Y, Ni M, Zheng Z, Liu Y, Yin M, Mao S, Zhao Y, Tian B, Wang L, Xu H, Hua Y. POLM variant G312R promotes ovarian tumorigenesis through genomic instability and COL11A1-NF-κB axis. Am J Physiol Cell Physiol 2024; 327:C168-C183. [PMID: 38826139 DOI: 10.1152/ajpcell.00025.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
In ovarian cancer (OC), identifying key molecular players in disease escalation and chemoresistance remains critical. Our investigation elucidates the role of the DNA polymerase mu (POLM), especially G312R mutation, in propelling oncogenesis through dual pathways. POLMG312R markedly augments the ribonucleotide insertion capability of POLM, precipitating genomic instability. In addition, our research reveals that POLMG312R perturbs collagen alpha-1 (XI) chain (COL11A1) expression-a gene that plays a key role in oncogenesis-and modulates the NF-κB signaling pathway, alters the secretion of downstream inflammatory cytokines, and promotes tumor-macrophage interactions. We illustrate a bidirectional regulatory interaction between POLM, particularly its G312R variant, and COL11A1. This interaction regulates NF-κB signaling, culminating in heightened malignancy and resistance to chemotherapy in OC cells. These insights position the POLM as a potential molecular target for OC therapy, shedding light on the intricate pathways underpinning POLM variant disease progression.NEW & NOTEWORTHY Our research reveals that POLM plays an important role in ovarian cancer development, especially the mutation G312R. We uncover the POLMG312R mutation as a driver of genomic instability in ovarian cancer via aberrant ribonucleotide incorporation. We reveal that POLMG312R upregulates COL11A1 and activates NF-κB signaling, contributing to tumor progression and chemoresistance. This study identifies the POLM-COL11A1-NF-κB axis as a novel oncogenic pathway.
Collapse
Affiliation(s)
- Yue Xiao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Maowei Ni
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Zhiguo Zheng
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Yufeng Liu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Mingyu Yin
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
| | - Shuyu Mao
- Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Ye Zhao
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Liangyan Wang
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Xu
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuejin Hua
- Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Hangzhou, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
28
|
Prasad CB, Oo A, Liu Y, Qiu Z, Zhong Y, Li N, Singh D, Xin X, Cho YJ, Li Z, Zhang X, Yan C, Zheng Q, Wang QE, Guo D, Kim B, Zhang J. The thioredoxin system determines CHK1 inhibitor sensitivity via redox-mediated regulation of ribonucleotide reductase activity. Nat Commun 2024; 15:4667. [PMID: 38821952 PMCID: PMC11143221 DOI: 10.1038/s41467-024-48076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/19/2024] [Indexed: 06/02/2024] Open
Abstract
Checkpoint kinase 1 (CHK1) is critical for cell survival under replication stress (RS). CHK1 inhibitors (CHK1i's) in combination with chemotherapy have shown promising results in preclinical studies but have displayed minimal efficacy with substantial toxicity in clinical trials. To explore combinatorial strategies that can overcome these limitations, we perform an unbiased high-throughput screen in a non-small cell lung cancer (NSCLC) cell line and identify thioredoxin1 (Trx1), a major component of the mammalian antioxidant-system, as a determinant of CHK1i sensitivity. We establish a role for redox recycling of RRM1, the larger subunit of ribonucleotide reductase (RNR), and a depletion of the deoxynucleotide pool in this Trx1-mediated CHK1i sensitivity. Further, the TrxR inhibitor auranofin, an approved anti-rheumatoid arthritis drug, shows a synergistic interaction with CHK1i via interruption of the deoxynucleotide pool. Together, we show a pharmacological combination to treat NSCLC that relies on a redox regulatory link between the Trx system and mammalian RNR activity.
Collapse
Affiliation(s)
- Chandra Bhushan Prasad
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Adrian Oo
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Yujie Liu
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhaojun Qiu
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Yaogang Zhong
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Na Li
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Deepika Singh
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiwen Xin
- The Ohio State University, Columbus, OH, 43210, USA
| | - Young-Jae Cho
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, Wexner Medical Center, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, 30912, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Qi-En Wang
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Deliang Guo
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA
| | - Baek Kim
- Center for ViroScience and Cure, Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Junran Zhang
- Department of Radiation Oncology, James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH, 43210, USA.
- The Comprehensive Cancer Center, Center for Cancer Metabolism, The Ohio State University, Columbus, OH, 43210, USA.
- The Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
29
|
Terzi EM, Possemato R. Iron, Copper, and Selenium: Cancer's Thing for Redox Bling. Cold Spring Harb Perspect Med 2024; 14:a041545. [PMID: 37932129 PMCID: PMC10982729 DOI: 10.1101/cshperspect.a041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Cells require micronutrients for numerous basic functions. Among these, iron, copper, and selenium are particularly critical for redox metabolism, and their importance is heightened during oncogene-driven perturbations in cancer. In this review, which particularly focuses on iron, we describe how these micronutrients are carefully chaperoned about the body and made available to tissues, a process that is designed to limit the toxicity of free iron and copper or by-products of selenium metabolism. We delineate perturbations in iron metabolism and iron-dependent proteins that are observed in cancer, and describe the current approaches being used to target iron metabolism and iron-dependent processes.
Collapse
Affiliation(s)
- Erdem M Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| | - Richard Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, New York 10016, USA
- Laura and Isaac Perlmutter Cancer Center, New York, New York 10016, USA
| |
Collapse
|
30
|
Zhong J, Soudackov AV, Hammes-Schiffer S. Probing Nonadiabaticity of Proton-Coupled Electron Transfer in Ribonucleotide Reductase. J Phys Chem Lett 2024; 15:1686-1693. [PMID: 38315651 PMCID: PMC11586673 DOI: 10.1021/acs.jpclett.3c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The enzyme ribonucleotide reductase, which is essential for DNA synthesis, initiates the conversion of ribonucleotides to deoxyribonucleotides via radical transfer over a 32 Å pathway composed of proton-coupled electron transfer (PCET) reactions. Previously, the first three PCET reactions in the α subunit were investigated with hybrid quantum mechanical/molecular mechanical (QM/MM) free energy simulations. Herein, the fourth PCET reaction in this subunit between C439 and guanosine diphosphate (GDP) is simulated and found to be slightly exoergic with a relatively high free energy barrier. To further elucidate the mechanisms of all four PCET reactions, we analyzed the vibronic and electron-proton nonadiabaticities. This analysis suggests that interfacial PCET between Y356 and Y731 is vibronically and electronically nonadiabatic, whereas PCET between Y731 and Y730 and between C439 and GDP is fully adiabatic and PCET between Y730 and C439 is in the intermediate regime. These insights provide guidance for selecting suitable rate constant expressions for these PCET reactions.
Collapse
Affiliation(s)
- Jiayun Zhong
- Department of Chemistry, Yale University, New Haven, CT 06520
| | | | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, New Haven, CT 06520
- Department of Chemistry, Princeton University, Princeton, NJ 08544
| |
Collapse
|
31
|
Tsotridou E, Georgiou E, Tragiannidis A, Avgeros C, Tzimagiorgis G, Lambrou M, Papakonstantinou E, Galli-Tsinopoulou A, Hatzipantelis E. miRNAs as predictive biomarkers of response to treatment in pediatric patients with acute lymphoblastic leukemia. Oncol Lett 2024; 27:71. [PMID: 38192661 PMCID: PMC10773203 DOI: 10.3892/ol.2023.14204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
MicroRNAs (miRNAs/miRs) are promising prognostic biomarkers in pediatric acute lymphoblastic leukemia (ALL). The present study aimed to identify miRNAs that could serve as prognostic biomarkers or as novel therapeutic targets in ALL. The expression levels of 84 miRNAs were assessed in the bone marrow aspirates of 10 pediatric patients with newly diagnosed ALL at diagnosis and on day 33 of induction of the ALL Intercontinental Berlin-Frankfurt-Münster 2009 protocol, and associations with established prognostic factors were evaluated. The levels at diagnosis of 25 miRNAs were associated with ≥2 prognostic factors. Higher expression levels of let-7c-5p, miR-106b-5p, miR-26a-5p, miR-155-5p, miR-191-5p, miR-30b-5p and miR-31-5p were significantly associated with a good prednisone response. The expression levels of miR-125b-5p, miR-150-5p and miR-99a-5p were significantly higher in standard- or intermediate-risk patients compared with those in high-risk patients (P=0.017, P=0.033 and P=0.017, respectively), as well as in those with a complete response at the end of induction (P=0.044 for all three miRNAs). The change in expression levels between diagnosis and the end of induction differed significantly between risk groups for three miRNAs: miR-206, miR-210 and miR-99a (P=0.033, P=0.047 and P=0.008, respectively), with the post induction levels of miR-206 increased in high-risk patients, whilst miR-210 and miR-99a levels were increased in intermediate/standard risk patients. Therefore, miRNAs that could be integrated into the risk stratification of pediatric ALL after further evaluation in larger patient cohorts were identified.
Collapse
Affiliation(s)
- Eleni Tsotridou
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| | - Elisavet Georgiou
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Athanasios Tragiannidis
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| | - Chrysostomos Avgeros
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece
| | - Maria Lambrou
- Department of Pediatric Hematology and Oncology, Hippokration General Hospital, Thessaloniki 546 42, Greece
| | - Eugenia Papakonstantinou
- Department of Pediatric Hematology and Oncology, Hippokration General Hospital, Thessaloniki 546 42, Greece
| | - Assimina Galli-Tsinopoulou
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| | - Emmanouel Hatzipantelis
- Children and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki AHEPA University Hospital, Thessaloniki 546 36, Greece
| |
Collapse
|
32
|
Doyle L, Magherusan A, Xu S, Murphy K, Farquhar ER, Molton F, Duboc C, Que L, McDonald AR. Class Ib Ribonucleotide Reductases: Activation of a Peroxido-Mn IIMn III to Generate a Reactive Oxo-Mn IIIMn IV Oxidant. Inorg Chem 2024; 63:2194-2203. [PMID: 38231137 PMCID: PMC10828993 DOI: 10.1021/acs.inorgchem.3c04163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
In the postulated catalytic cycle of class Ib Mn2 ribonucleotide reductases (RNRs), a MnII2 core is suggested to react with superoxide (O2·-) to generate peroxido-MnIIMnIII and oxo-MnIIIMnIV entities prior to proton-coupled electron transfer (PCET) oxidation of tyrosine. There is limited experimental support for this mechanism. We demonstrate that [MnII2(BPMP)(OAc)2](ClO4) (1, HBPMP = 2,6-bis[(bis(2 pyridylmethyl)amino)methyl]-4-methylphenol) was converted to peroxido-MnIIMnIII (2) in the presence of superoxide anion that converted to (μ-O)(μ-OH)MnIIIMnIV (3) via the addition of an H+-donor (p-TsOH) or (μ-O)2MnIIIMnIV (4) upon warming to room temperature. The physical properties of 3 and 4 were probed using UV-vis, EPR, X-ray absorption, and IR spectroscopies and mass spectrometry. Compounds 3 and 4 were capable of phenol oxidation to yield a phenoxyl radical via a concerted PCET oxidation, supporting the proposed mechanism of tyrosyl radical cofactor generation in RNRs. The synthetic models demonstrate that the postulated O2/Mn2/tyrosine activation mechanism in class Ib Mn2 RNRs is plausible and provides spectral insights into intermediates currently elusive in the native enzyme.
Collapse
Affiliation(s)
- Lorna Doyle
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Adriana Magherusan
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Shuangning Xu
- Department
of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Kayleigh Murphy
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R. Farquhar
- Case
Western Reserve University Center for Synchrotron Biosciences, National
Synchrotron Light Source II, Brookhaven
National Laboratory Upton, New
York 11973, United States
| | - Florian Molton
- CNRS
UMR 5250, DCM, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Carole Duboc
- CNRS
UMR 5250, DCM, Univ. Grenoble Alpes, Grenoble F-38000, France
| | - Lawrence Que
- Department
of Chemistry and Centre for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Aidan R. McDonald
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
33
|
Xu L, Sun H, Lemoine NR, Xuan Y, Wang P. Oncolytic vaccinia virus and cancer immunotherapy. Front Immunol 2024; 14:1324744. [PMID: 38283361 PMCID: PMC10811104 DOI: 10.3389/fimmu.2023.1324744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
Oncolytic virotherapy (OVT) is a promising form of cancer treatment that uses genetically engineered viruses to replicate within cancer cells and trigger anti-tumor immune response. In addition to killing cancer cells, oncolytic viruses can also remodel the tumor microenvironment and stimulate a long-term anti-tumor immune response. Despite achieving positive results in cellular and organismal studies, there are currently only a few approved oncolytic viruses for clinical use. Vaccinia virus (VACV) has emerged as a potential candidate due to its ability to infect a wide range of cancer cells. This review discusses the mechanisms, benefits, and clinical trials of oncolytic VACVs. The safety and efficacy of different viral backbones are explored, as well as the effects of oncolytic VACVs on the tumor microenvironment. The potential combination of oncolytic VACVs with immunotherapy or traditional therapies is also highlighted. The review concludes by addressing prospects and challenges in the field of oncolytic VACVs, with the aim of promoting further research and application in cancer therapy.
Collapse
Affiliation(s)
- Lihua Xu
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huihui Sun
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Nicholas R. Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Yujing Xuan
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pengju Wang
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, State Key Laboratory of Esophageal Cancer Prevention & Treatment, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
34
|
Cao Y, Wu C, Ma L. Lysine demethylase 5B (KDM5B): A key regulator of cancer drug resistance. J Biochem Mol Toxicol 2024; 38:e23587. [PMID: 38014925 DOI: 10.1002/jbt.23587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
Chemoresistance, a roadblock in the chemotherapy process, has been impeding its effective treatment. KDM5B, a member of the histone demethylase family, has been crucial in the emergence and growth of malignancies. More significantly, KDM5B has recently been linked closely to cancer's resistance to chemotherapy. In this review, we explain the biological properties of KDM5B, its function in the emergence and evolution of cancer treatment resistance, and our hopes for future drug resistance-busting combinations involving KDM5B and related targets or medications.
Collapse
Affiliation(s)
- Yaquan Cao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chunli Wu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Liying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian, China
| |
Collapse
|
35
|
Arnhold J. Inflammation-Associated Cytotoxic Agents in Tumorigenesis. Cancers (Basel) 2023; 16:81. [PMID: 38201509 PMCID: PMC10778456 DOI: 10.3390/cancers16010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic inflammatory processes are related to all stages of tumorigenesis. As inflammation is closely associated with the activation and release of different cytotoxic agents, the interplay between cytotoxic agents and antagonizing principles is highlighted in this review to address the question of how tumor cells overcome the enhanced values of cytotoxic agents in tumors. In tumor cells, the enhanced formation of mitochondrial-derived reactive species and elevated values of iron ions and free heme are antagonized by an overexpression of enzymes and proteins, contributing to the antioxidative defense and maintenance of redox homeostasis. Through these mechanisms, tumor cells can even survive additional stress caused by radio- and chemotherapy. Through the secretion of active agents from tumor cells, immune cells are suppressed in the tumor microenvironment and an enhanced formation of extracellular matrix components is induced. Different oxidant- and protease-based cytotoxic agents are involved in tumor-mediated immunosuppression, tumor growth, tumor cell invasion, and metastasis. Considering the special metabolic conditions in tumors, the main focus here was directed on the disturbed balance between the cytotoxic agents and protective mechanisms in late-stage tumors. This knowledge is mandatory for the implementation of novel anti-cancerous therapeutic approaches.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
36
|
Giang LH, Wu KS, Lee WC, Chu SS, Do AD, Changou CA, Tran HM, Hsieh TH, Chen HH, Hsieh CL, Sung SY, Yu AL, Yen Y, Wong TT, Chang CC. Targeting of RRM2 suppresses DNA damage response and activates apoptosis in atypical teratoid rhabdoid tumor. J Exp Clin Cancer Res 2023; 42:346. [PMID: 38124207 PMCID: PMC10731702 DOI: 10.1186/s13046-023-02911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/19/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.
Collapse
Affiliation(s)
- Le Hien Giang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Biology and Genetics, Hai Phong University of Medicine and Pharmacy, Hai Phong, 180000, Vietnam
| | - Kuo-Sheng Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wei-Chung Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Shing-Shung Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Anh Duy Do
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- Department of Physiology, Pathophysiology and Immunology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700000, Vietnam
| | - Chun A Changou
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Huy Minh Tran
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, 700000, Vietnam
| | - Tsung-Han Hsieh
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, 110, Taiwan
| | - Hsin-Hung Chen
- Division of Pediatric Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, 112, Taiwan
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
- Laboratory of Translational Medicine, Development Center for Biotechnology, Taipei, 115, Taiwan
| | - Shian-Ying Sung
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Alice L Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, 333, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Yun Yen
- The Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tai-Tong Wong
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Pediatric Brain Tumor Program, Taipei Cancer Center, Taipei Medical University, Taipei, 110, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Taipei Medical University Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, 110, Taiwan
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
- TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Che-Chang Chang
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan.
- Neuroscience Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.
- TMU Research Center for Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, 6F., Education & Research Building, Shuang-Ho Campus, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 23564, Taiwan.
| |
Collapse
|
37
|
Davi K, Yurtsever I, Xu YJ. A missense mutation in the suc22 gene encoding the small subunit of ribonucleotide reductase significantly sensitizes fission yeast to chronic treatment with hydroxyurea. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001041. [PMID: 38188419 PMCID: PMC10765247 DOI: 10.17912/micropub.biology.001041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024]
Abstract
Ribonucleotide reductase (RNR) is essential for the biosynthesis of dNTPs and a therapeutic target. We have identified a missense mutation in suc22 , which encodes the small subunit of RNR in fission yeast. The suc22-S239F mutation significantly sensitizes the cells to chronic but not acute treatment with the RNR inhibitor hydroxyurea. Preliminary data indicate that the drug sensitivity is likely due to decreased RNR activity. Since S239F is the first missense mutation reported for suc22 and the mutated residue is highly conserved, the results will be useful for future yeast genetic studies and potentially, the development of new therapeutics targeting RNR.
Collapse
Affiliation(s)
- Kajal Davi
- Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| | - Ilknur Yurtsever
- Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| | - Yong-jie Xu
- Pharmacology and Toxicology, Wright State University, Dayton, Ohio, United States
| |
Collapse
|
38
|
Huffman BM, Feng H, Parmar K, Wang J, Kapner KS, Kochupurakkal B, Martignetti DB, Sadatrezaei G, Abrams TA, Biller LH, Giannakis M, Ng K, Patel AK, Perez KJ, Singh H, Rubinson DA, Schlechter BL, Andrews E, Hannigan AM, Dunwell S, Getchell Z, Raghavan S, Wolpin BM, Fortier C, D’Andrea AD, Aguirre AJ, Shapiro GI, Cleary JM. A Phase I Expansion Cohort Study Evaluating the Safety and Efficacy of the CHK1 Inhibitor LY2880070 with Low-dose Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. Clin Cancer Res 2023; 29:5047-5056. [PMID: 37819936 PMCID: PMC10842136 DOI: 10.1158/1078-0432.ccr-23-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.
Collapse
Affiliation(s)
- Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Hanrong Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Anuj K. Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Alison M. Hannigan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Stanley Dunwell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Zoe Getchell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | | | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
39
|
Lin X, Ma Q, Chen L, Guo W, Huang Z, Huang T, Cai YD. Identifying genes associated with resistance to KRAS G12C inhibitors via machine learning methods. Biochim Biophys Acta Gen Subj 2023; 1867:130484. [PMID: 37805078 DOI: 10.1016/j.bbagen.2023.130484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Targeted therapy has revolutionized cancer treatment, greatly improving patient outcomes and quality of life. Lung cancer, specifically non-small cell lung cancer, is frequently driven by the G12C mutation at the KRAS locus. The development of KRAS inhibitors has been a breakthrough in the field of cancer research, given the crucial role of KRAS mutations in driving tumor growth and progression. However, over half of patients with cancer bypass inhibition show limited response to treatment. The mechanisms underlying tumor cell resistance to this treatment remain poorly understood. METHODS To address above gap in knowledge, we conducted a study aimed to elucidate the differences between tumor cells that respond positively to KRAS (G12C) inhibitor therapy and those that do not. Specifically, we analyzed single-cell gene expression profiles from KRAS G12C-mutant tumor cell models (H358, H2122, and SW1573) treated with KRAS G12C (ARS-1620) inhibitor, which contained 4297 cells that continued to proliferate under treatment and 3315 cells that became quiescent. Each cell was represented by the expression levels on 8687 genes. We then designed an innovative machine learning based framework, incorporating seven feature ranking algorithms and four classification algorithms to identify essential genes and establish quantitative rules. RESULTS Our analysis identified some top-ranked genes, including H2AFZ, CKS1B, TUBA1B, RRM2, and BIRC5, that are known to be associated with the progression of multiple cancers. CONCLUSION Above genes were relevant to tumor cell resistance to targeted therapy. This study provides important insights into the molecular mechanisms underlying tumor cell resistance to KRAS inhibitor treatment.
Collapse
Affiliation(s)
- Xiandong Lin
- Laboratory of Radiation Oncology and Radiobiology, Clinical Oncology School of Fujian Medical University and Fujian Cancer Hospital, Fuzhou 350014, China.
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200030, China
| | - Zhiyi Huang
- College of Chemistry, Fuzhou University, Fuzhou 350000, China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
40
|
Liu K, Wang L, Lou Z, Guo L, Xu Y, Qi H, Fang Z, Mei L, Chen X, Zhang X, Shao J, Xiang X. E2F8 exerts cancer-promoting effects by transcriptionally activating RRM2 and E2F8 knockdown synergizes with WEE1 inhibition in suppressing lung adenocarcinoma. Biochem Pharmacol 2023; 218:115854. [PMID: 37863324 DOI: 10.1016/j.bcp.2023.115854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023]
Abstract
Ribonucleotide reductase (RR) is a rate-limiting enzyme that facilitates DNA replication and repair by reducing nucleotide diphosphates (NDPs) to deoxyribonucleotide diphosphates (dNDPs) and is thereby crucial for cell proliferation and cancer development. The E2F family of transcription factors includes key regulators of gene expression involved in cell cycle control. In this study, E2F8 expression was significantly increased in most cancer tissues of lung adenocarcinoma (LUAD) patients and was correlated with the expression of RRM2 through database and clinical samples analysis. The protein expression of E2F8 and RRM2 were positively correlated with tumor-node-metastasis (TNM) pathological stage, and high expression of E2F8 and RRM2 predicted a low 5-year overall survival rate in LUAD patients. Overexpression and knockdown experiments showed that E2F8 was essential for LUAD cell proliferation, DNA synthesis, and cell cycle progression, which were RRM2-dependent. Reporter gene, ChIP-qPCR, and DNA pulldown-Western blot assays indicated that E2F8 activated the transcription of the RRM2 gene by directly binding with the RRM2 promoter in LUAD cells. Previous studies indicated that inhibition of WEE1 kinase can suppress the phosphorylation of CDK1/2 and promote the degradation of RRM2. We further showed here that the combination of E2F8 knockdown with MK-1775, an inhibitor of WEE1 being evaluated in clinical trials, synergistically suppressed proliferation and promoted apoptosis of LUAD cells in vitro and in vivo. Thus, this study reveals a novel role of E2F8 as a proto-oncogenic transcription activator by activating RRM2 expression in LUAD, and targeting both the transcription and degradation mechanisms of RRM2 could produce a synergistic inhibitory effect for LUAD treatment in addition to conventional inhibition of RR enzyme activity.
Collapse
Affiliation(s)
- Kaiping Liu
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, China
| | - Ling Wang
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiyuan Lou
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijuan Guo
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanling Xu
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Qi
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zejun Fang
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, China
| | - Lingming Mei
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, China
| | - Xiang Chen
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, China
| | - Xiaomin Zhang
- Department of Pharmacy, Sanmen People's Hospital of Zhejiang, Sanmen, Zhejiang, China.
| | - Jimin Shao
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Hangzhou, China.
| | - Xueping Xiang
- Department of Pathology and Pathophysiology, and Cancer Institute of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Disease Proteomics of Zhejiang Province, Key Laboratory of Cancer Prevention and Intervention of China National Ministry of Education, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Panesso MP, Cancela M, Corá RK, Paes JA, Paludo GP, Ferreira HB. Ribonucleotide reductase as a therapeutic target for drug repurposing as anthelmintics. Exp Parasitol 2023; 255:108641. [PMID: 37949425 DOI: 10.1016/j.exppara.2023.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Visceral cestodiases, like echinococcoses and cysticercoses, are zoonoses of worldwide distribution and are responsible for public health problems in many countries, especially in underdeveloped regions. Current treatments have low efficiency and there are few drugs currently in use for chemotherapy, making the development of new anthelmintics an urgent matter. The nucleotide salvage pathways are the only ones available for nucleotide synthesis in cestodes and other parasitic helminths, and, here, we used in silico approaches to assess the potential of the enzymes in these pathways as targets for drug repurposing as anthelminthics. First, a genomic survey allowed to identify a repertoire of 28 enzymes of the purine and pyrimidine salvage pathways from the cestode Echinococcus granulosus sensu stricto. Regarding purines, the parasite relies on salvaging free bases rather than salvaging nucleosides. Pyrimidines, on the other hand, can be salvaged from both bases and nucleosides. Druggability of the parasite enzymes was assessed, as well as the availability of commercial inhibitors for them. Druggable enzymes were then ranked according to their potential for drug repurposing and the 17 most promising enzymes were selected for evolutionary analyses. The constructed phylogenetic trees allowed to assess the degree of conservation among ortholog enzymes from parasitic helminths and their mammalian hosts. Positive selection is absent in all assessed flatworm enzymes. A potential target enzyme for drug repurposing, ribonucleotide reductase (RNR), was selected for further assessment. RNR 3D-modelling showed structural similarities between the E. granulosus and the human orthologs suggesting that inhibitors of the human RNR should be effective against the E. granulosus enzyme. In line with that, E. granulosus protoscolices treated in vitro with the inhibitor hydroxyurea had their viability and DNA synthesis reduced. These results are consistent with nucleotide synthesis inhibition and confirm the potential of a nucleotide salvage inhibitors for repurposing as an anthelmintic.
Collapse
Affiliation(s)
- Marcelo Pasa Panesso
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Martin Cancela
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Renato Kulakowski Corá
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Jéssica Andrade Paes
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Gabriela Prado Paludo
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Programa de Pós-Graduação Em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Henrique Bunselmeyer Ferreira
- Laboratôrio de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil; Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
42
|
Patyal M, Kaur K, Bala N, Gupta N, Malik AK. Innovative lanthanide complexes: Shaping the future of cancer/ tumor chemotherapy. J Trace Elem Med Biol 2023; 80:127277. [PMID: 37572546 DOI: 10.1016/j.jtemb.2023.127277] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Developing new therapeutic and diagnostic metals and metal complexes is a stunning example of how inorganic chemistry is rapidly becoming an essential part of modern medicine. More study of bio-coordination chemistry is needed to improve the design of compounds with fewer harmful side effects. Metal-containing drugs are widely utilized in the treatment of cancer. Platinum complexes are effective against some cancers, but new coordination compounds are being created with improved pharmacological properties and a broader spectrum of anticancer action. The coordination complexes of the 15 lanthanides or rare earth elements in the periodic table are crucial for diagnosing and treating cancer. Understanding and treating cancer requires the detection of binding lanthanide (III) ions or complexes to DNA and breaking DNA by these complexes. Current advances in lanthanide-based coordination complexes as anticancer treatments over the past five years are discussed in this study.
Collapse
Affiliation(s)
- Meenakshi Patyal
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Kirandeep Kaur
- Department of Chemistry, Punjabi University, Patiala, Punjab, India
| | - Neeraj Bala
- Department of Chemistry, Patel Memorial National College, Punjab, India
| | - Nidhi Gupta
- Department of Chemistry, Punjabi University, Patiala, Punjab, India.
| | | |
Collapse
|
43
|
Chung MH, Aimaier R, Yu Q, Li H, Li Y, Wei C, Gu Y, Wang W, Guo Z, Long M, Li Q, Wang Z. RRM2 as a novel prognostic and therapeutic target of NF1-associated MPNST. Cell Oncol (Dordr) 2023; 46:1399-1413. [PMID: 37086345 DOI: 10.1007/s13402-023-00819-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that typically develop in the setting of neurofibromatosis type 1 (NF1) and cause significant morbidity. Conventional therapies are often ineffective for MPNSTs. Ribonucleotide reductase subunit M2 (RRM2) is involved in DNA synthesis and repair, and is overexpressed in multiple cancers. However, its role in NF1-associated MPNSTs remains unknown. Our objective was to determine the therapeutic and prognostic potential of RRM2 in NF1-associated MPNSTs. METHODS Identification of hub genes was performed by using NF1-associated MPNST microarray datasets. We detected RRM2 expression by immunochemical staining in an MPNST tissue microarray, and assessed the clinical and prognostic significance of RRM2 in an MPNST cohort. RRM2 knockdown and the RRM2 inhibitor Triapine were used to assess cell proliferation and apoptosis in NF1-associated MPNST cells in vitro and in vivo. The underlying mechanism of RRM2 in NF1-associated MPNST was revealed by transcriptome analysis. RESULTS RRM2 is a key hub gene and its expression is significantly elevated in NF1-associated MPNST. We revealed that high RRM2 expression accounted for a larger proportion of NF1-associated MPNSTs and confirmed the correlation of high RRM2 expression with poor overall survival. Knockdown of RRM2 inhibited NF1-associated MPNST cell proliferation and promoted apoptosis and S-phase arrest. The RRM2 inhibitor Triapine displayed dose-dependent inhibitory effects in vitro and induced significant tumor growth reduction in vivo in NF1-associated MPNST. Analysis of transcriptomic changes induced by RRM2 knockdown revealed suppression of the AKT-mTOR signaling pathway. Overexpression of RRM2 activates the AKT pathway to promote NF1-associated MPNST cell proliferation. CONCLUSIONS RRM2 expression is significantly elevated in NF1-associated MPNST and that high RRM2 expression correlates with poorer outcomes. RRM2 acts as an integral part in the promotion of NF1-associated MPNST cell proliferation via the AKT-mTOR signaling pathway. Inhibition of RRM2 may be a promising therapeutic strategy for NF1-associated MPNST.
Collapse
Affiliation(s)
- Man-Hon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haibo Li
- Department of Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuehua Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chengjiang Wei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yihui Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zizhen Guo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Manmei Long
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhichao Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
44
|
Chen C, Xue N, Liu K, He Q, Wang C, Guo Y, Tian J, Liu X, Pan Y, Chen G. USP12 promotes nonsmall cell lung cancer progression through deubiquitinating and stabilizing RRM2. Mol Carcinog 2023; 62:1518-1530. [PMID: 37341611 DOI: 10.1002/mc.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
RRM2 is the catalytic subunit of ribonucleotide reductase (RNR), which catalyzes de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) and plays critical roles in cancer cell proliferation. RRM2 protein level is controlled by ubiquitination mediated protein degradation system; however, its deubiquitinase has not been identified yet. Here we showed that ubiquitin-specific peptidase 12 (USP12) directly interacts with and deubiquitinates RRM2 in non-small cell lung cancer (NSCLC) cells. Knockdown of USP12 causes DNA replication stress and retards tumor growth in vivo and in vitro. Meanwhile, USP12 protein levels were positively correlated to RRM2 protein levels in human NSCLC tissues. In addition, high expression of USP12 was associated with poor prognosis in NSCLC patients. Therefore, our study reveals that USP12 is a RRM2 regulator and targeting USP12 could be considered as a potential therapeutical strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Congcong Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Ning Xue
- Department of Acupuncture, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, P.R. China
| | - Kangshou Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Qiang He
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yanguan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Jiaxin Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Technique of National Health Commission of China, Nanjing Medical University, Nanjing, P.R. China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
45
|
Zhan Y, Tao Q, Lang Z, Lin L, Li X, Yu S, Yu Z, Zhou G, Wu K, Zhou Z, Yu Z, Zheng J. Serum ribonucleotide reductase M2 is a potential biomarker for diagnosing and monitoring liver fibrosis in chronic hepatitis B patients. J Med Virol 2023; 95:e29157. [PMID: 37814947 DOI: 10.1002/jmv.29157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
It is known that ribonucleotide reductase M2 (RRM2) could be induced by hepatitis B virus (HBV) via DNA damage response. However, whether RRM2 is a potential biomarker for diagnosing and monitoring liver fibrosis in chronic hepatitis B (CHB) patients is still unclear. In this study, CHB patients from GSE84044 (a transcriptome data from GEO data set) were downloaded and RRM2 was selected as a hub gene. Interestingly, a positive correlation was found between serum RRM2 and liver fibrosis stage. The similar results were found in CHB patients with normal alanine aminotransferase (ALT). Notably, RRM2 could effectively differentiate preliminary fibrosis from advanced fibrosis in CHB patients with/without normal ALT. In addition, RRM2 had a better performance in diagnosing liver fibrosis than two commonly used noninvasive methods (aspartate aminotransferase-to-platelet ratio index and fibrosis index based on the four factors), two classic fibrotic biomarkers (hyaluronic acid and type IV collagen) as well as Mac-2 binding protein glycosylation isomer, a known serum fibrosis marker. Moreover, CHB patients with high RRM2, who were associated with advanced fibrosis, had higher expressions of immune checkpoints. Overall, serum RRM2 may be a promising biomarker for diagnosing and monitoring liver fibrosis in CHB patients.
Collapse
Affiliation(s)
- Yating Zhan
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Tao
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichao Lang
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifan Lin
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Suhui Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyao Zhou
- Department of Infectious Diseases, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, The First People's Hospital of Zunyi, Zunyi, China
| | - Zhenxu Zhou
- Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Yin J, Wang X, Ge X, Ding F, Shi Z, Ge Z, Huang G, Zhao N, Chen D, Zhang J, Agnihotri S, Cao Y, Ji J, Lin F, Wang Q, Zhou Q, Wang X, You Y, Lu Z, Qian X. Hypoxanthine phosphoribosyl transferase 1 metabolizes temozolomide to activate AMPK for driving chemoresistance of glioblastomas. Nat Commun 2023; 14:5913. [PMID: 37737247 PMCID: PMC10516874 DOI: 10.1038/s41467-023-41663-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 09/13/2023] [Indexed: 09/23/2023] Open
Abstract
Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment.
Collapse
Affiliation(s)
- Jianxing Yin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Gusu School, Nanjing Medical University, 215006, Suzhou, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
| | - Xin Ge
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 210029, Nanjing, China
| | - Fangshu Ding
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 210029, Nanjing, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
| | - Zehe Ge
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 210029, Nanjing, China
| | - Guang Huang
- Department of Health Inspection and Quarantine, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Ningwei Zhao
- China Exposomics Institute, 200120, Shanghai, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, 210029, Nanjing, China
| | - Dongyin Chen
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Yuandong Cao
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
| | - Fan Lin
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
| | - Qianghu Wang
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Department of Bioinformatics, Nanjing Medical University, 211166, Nanjing, China
| | - Qigang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, 211166, Nanjing, China
| | - Xiuxing Wang
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 211166, Nanjing, China
- National Health Commission Key Laboratory of Antibody Technologies, Nanjing Medical University, 211166, Nanjing, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, 310029, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University Cancer Center, Zhejiang University, 310029, Hangzhou, China.
| | - Xu Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China.
- Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, 211166, Nanjing, China.
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, 210029, Nanjing, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| |
Collapse
|
47
|
Ahmed S, Mahendiran D, Bhat AR, Rahiman AK. Theoretical, in Vitro Antiproliferative, and in Silico Molecular Docking and Pharmacokinetics Studies of Heteroleptic Nickel(II) and Copper(II) Complexes of Thiosemicarbazone-Based Ligands and Pefloxacin. Chem Biodivers 2023; 20:e202300702. [PMID: 37528701 DOI: 10.1002/cbdv.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/03/2023]
Abstract
Twelve new heteroleptic nickel(II) and copper(II) complexes of the type [M(L1-6 )(Pfx)2 ] (1-12), where L1-6 =2-benzylidenehydrazinecarbothioamide (L1 ), 2-benzylidene-N-methylhydrazinecarbothioamide (L2 ), 2-benzylidene-N-phenylhydrazinecarbothioamide (L3 ), 2-(4-methylbenzylidene)hydrazinecarbothioamide (L4 ), 2-(4-methylbenzylidene)-N-methylhydrazinecarbothioamide (L5 ) and 2-(4-methylbenzylidene)-N-phenylhydrazinecarbothioamide (L6 ), Pfx=pefloxacin and M=Ni(II) or Cu(II) have been synthesised, and their structures were confirmed by different spectral techniques. The spectral data and density functional theory (DFT) calculations supported the bonding of pefloxacin drug molecule via one of the carboxylate oxygen atoms and the pyridone oxygen atom, and the thiosemicarbazone ligand via the imine nitrogen and the thione sulfur atoms with the metal(II) ion, forming distorted octahedral geometry. In vitro antiproliferative activity of the synthesized complexes was evaluated against three human breast cancer (T47D, estrogen negative (MDA-MB-231) and estrogen positive (MCF-7)) as well as non-tumorigenic human breast epithelial (MCF-10a) cell lines, which showed the higher activity for the copper(II) complexes. The interaction of the synthesized complexes with an oncogenic protein H-ras (121 p) was explored by in silico molecular docking studies. Further, in silico pharmacokinetics and ADMET parameters were also analysed to predict the drug-likeness as well as non-toxic and non-carcinogenic behavior, and safe oral administration of the complexes.
Collapse
Affiliation(s)
- Sumeer Ahmed
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| | - Dharmasivam Mahendiran
- Center for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, 4111, Australia
| | - Ajmal Rashid Bhat
- Department of Chemistry, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440 033, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), University of Madras, Chennai, 600 014, India
| |
Collapse
|
48
|
Mucke HA. Patent highlights February-March 2023. Pharm Pat Anal 2023; 12:205-212. [PMID: 37982661 DOI: 10.4155/ppa-2023-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|
49
|
Sturm MJ, Henao-Restrepo JA, Becker S, Proquitté H, Beck JF, Sonnemann J. Synergistic anticancer activity of combined ATR and ribonucleotide reductase inhibition in Ewing's sarcoma cells. J Cancer Res Clin Oncol 2023; 149:8605-8617. [PMID: 37097390 PMCID: PMC10374484 DOI: 10.1007/s00432-023-04804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE Ewing's sarcoma is a highly malignant childhood tumour whose outcome has hardly changed over the past two decades despite numerous attempts at chemotherapy intensification. It is therefore essential to identify new treatment options. The present study was conducted to explore the effectiveness of combined inhibition of two promising targets, ATR and ribonucleotide reductase (RNR), in Ewing's sarcoma cells. METHODS Effects of the ATR inhibitor VE821 in combination with the RNR inhibitors triapine and didox were assessed in three Ewing's sarcoma cell lines with different TP53 status (WE-68, SK-ES-1, A673) by flow cytometric analysis of cell death, mitochondrial depolarisation and cell cycle distribution as well as by caspase 3/7 activity determination, by immunoblotting and by real-time RT-PCR. Interactions between inhibitors were evaluated by combination index analysis. RESULTS Single ATR or RNR inhibitor treatment produced small to moderate effects, while their combined treatment produced strong synergistic ones. ATR and RNR inhibitors elicited synergistic cell death and cooperated in inducing mitochondrial depolarisation, caspase 3/7 activity and DNA fragmentation, evidencing an apoptotic form of cell death. All effects were independent of functional p53. In addition, VE821 in combination with triapine increased p53 level and induced p53 target gene expression (CDKN1A, BBC3) in p53 wild-type Ewing's sarcoma cells. CONCLUSION Our study reveals that combined targeting of ATR and RNR was effective against Ewing's sarcoma in vitro and thus rationalises an in vivo exploration into the potential of combining ATR and RNR inhibitors as a new strategy for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Max-Johann Sturm
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Julián Andrés Henao-Restrepo
- Placenta Laboratory, Department of Obstetrics, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Sabine Becker
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Hans Proquitté
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - James F Beck
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Jürgen Sonnemann
- Department of Paediatric and Adolescent Medicine, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
- Research Centre Lobeda, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
50
|
Corrales-Guerrero S, Cui T, Castro-Aceituno V, Yang L, Nair S, Feng H, Venere M, Yoon S, DeWees T, Shen C, Williams TM. Inhibition of RRM2 radiosensitizes glioblastoma and uncovers synthetic lethality in combination with targeting CHK1. Cancer Lett 2023; 570:216308. [PMID: 37482342 DOI: 10.1016/j.canlet.2023.216308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Glioblastoma (GBM) is an aggressive malignant primary brain tumor. Radioresistance largely contributes to poor clinical outcomes in GBM patients. We targeted ribonucleotide reductase subunit 2 (RRM2) with triapine to radiosensitize GBM. We found RRM2 is associated with increasing tumor grade, is overexpressed in GBM over lower grade gliomas and normal tissue, and is associated with worse survival. We found silencing or inhibition of RRM2 by siRNA or triapine sensitized GBM cells to ionizing radiation (IR) and delayed resolution of IR-induced γ-H2AX nuclear foci. In vivo, triapine and IR reduced tumor growth and increased mouse survival. Intriguingly, triapine led to RRM2 upregulation and CHK1 activation, suggesting a CHK1-dependent RRM2 upregulation following RRM2 inhibition. Consistently, silencing or inhibition of CHK1 with rabusertib abolished the triapine-induced RRM2 upregulation. Accordingly, combining rabusertib and triapine resulted in synthetic lethality in GBM cells. Collectively, our results suggest RRM2 is a promising therapeutic target for GBM, and targeting RRM2 with triapine sensitizes GBM cells to radiation and independently induces synthetic lethality of GBM cells with CHK1 inhibition. Our findings suggest combining triapine with radiation or rabusertib may improve therapeutic outcomes in GBM.
Collapse
Affiliation(s)
- Sergio Corrales-Guerrero
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tiantian Cui
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | | - Linlin Yang
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Sindhu Nair
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Haihua Feng
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Monica Venere
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH, USA
| | - Stephanie Yoon
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | - Todd DeWees
- Division of Biostatistics, City of Hope, Duarte, CA, USA
| | - Changxian Shen
- Department of Radiation Oncology, City of Hope, Duarte, CA, USA
| | | |
Collapse
|