1
|
Feng W, Ladewig E, Salsabeel N, Zhao H, Lee YS, Gopalan A, Lange M, Luo H, Kang W, Fan N, Rosiek E, de Stanchina E, Chen Y, Carver BS, Leslie CS, Sawyers CL. ERG activates a stem-like proliferation-differentiation program in prostate epithelial cells with mixed basal-luminal identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540839. [PMID: 38585869 PMCID: PMC10996491 DOI: 10.1101/2023.05.15.540839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
To gain insight into how ERG translocations cause prostate cancer, we performed single cell transcriptional profiling of an autochthonous mouse model at an early stage of disease initiation. Despite broad expression of ERG in all prostate epithelial cells, proliferation was enriched in a small, stem-like population with mixed-luminal basal identity (called intermediate cells). Through a series of lineage tracing and primary prostate tissue transplantation experiments, we find that tumor initiating activity resides in a subpopulation of basal cells that co-express the luminal genes Tmprss2 and Nkx3.1 (called BasalLum) but not in the larger population of classical Krt8+ luminal cells. Upon ERG activation, BasalLum cells give rise to the highly proliferative intermediate state, which subsequently transitions to the larger population of Krt8+ luminal cells characteristic of ERG-positive human cancers. Furthermore, this proliferative population is characterized by an ERG-specific chromatin state enriched for NFkB, AP-1, STAT and NFAT binding, with implications for TF cooperativity. The fact that the proliferative potential of ERG is enriched in a small stem-like population implicates the chromatin context of these cells as a critical variable for unmasking its oncogenic activity.
Collapse
Affiliation(s)
- Weiran Feng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Erik Ladewig
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Nazifa Salsabeel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Huiyong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Young Sun Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Matthew Lange
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Wenfei Kang
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Ning Fan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Eric Rosiek
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Brett S. Carver
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Division of Urology, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center; New York, NY 10065, USA
| |
Collapse
|
2
|
Stumpo S, Formelli MG, Persano I, Parlagreco E, Lauricella E, Rodriquenz MG, Guerrera LP, Zurlo IV, Campana D, Brizzi MP, Cives M, La Salvia A, Lamberti G. Extrapulmonary Neuroendocrine Carcinomas: Current Management and Future Perspectives. J Clin Med 2023; 12:7715. [PMID: 38137784 PMCID: PMC10743506 DOI: 10.3390/jcm12247715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Neuroendocrine carcinomas (NECs) are poorly differentiated and highly aggressive epithelial neuroendocrine neoplasms. The most common primary site is the lung, but they may arise in every organ. Approximately 37% of extrapulmonary NECs (EP-NECs) occur in the gastroenteropancreatic (GEP) tract, followed by the genitourinary (GU) system and gynecological tract. As a result of their rarity, there is scant evidence to guide treatment recommendations, and a multidisciplinary approach is essential for the management of such patients. Platinum-based chemotherapy currently represents the standard of care for EP-NECs of any site, mirroring the management of small-cell lung cancer (SCLC), but further approaches are still under investigation. Indeed, ongoing trials evaluating targeted therapies, immune checkpoint inhibitors (ICIs), and radionuclide therapy could provide potentially breakthrough therapeutic options. Given the relative dearth of evidence-based literature on these orphan diseases, the aim of this review is to provide an overview of the pathology and current treatment options, as well as to shed light on the most pressing unmet needs in the field.
Collapse
Affiliation(s)
- Sara Stumpo
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
| | - Maria Giovanna Formelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
| | - Irene Persano
- Medical Oncology, AO S. Croce e Carle, 12100 Cuneo, Italy; (I.P.); (E.P.)
| | - Elena Parlagreco
- Medical Oncology, AO S. Croce e Carle, 12100 Cuneo, Italy; (I.P.); (E.P.)
| | - Eleonora Lauricella
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (E.L.); (M.C.)
| | - Maria Grazia Rodriquenz
- Oncology Unit, Ospedale IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Luigi Pio Guerrera
- Division of Medical Oncology, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS-Fondazione “G. Pascale”, 80131 Naples, Italy
| | | | - Davide Campana
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via P. Albertoni 15, 40138 Bologna, Italy
| | - Maria Pia Brizzi
- Department of Oncology, A.O.U. San Luigi Gonzaga Hospital, 10043 Orbassano, Italy;
| | - Mauro Cives
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy; (E.L.); (M.C.)
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Anna La Salvia
- National Center for Drug Research and Evaluation, National Institute of Health (ISS), 00161 Rome, Italy
| | - Giuseppe Lamberti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum–University of Bologna, Via Zamboni 33, 40126 Bologna, Italy; (S.S.); (M.G.F.); (D.C.); (G.L.)
- Medical Oncology Unit, Vito Fazzi Hospital, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Greulich BM, Rajendran S, Downing NF, Nicholas TR, Hollenhorst PC. A complex with poly(A)-binding protein and EWS facilitates the transcriptional function of oncogenic ETS transcription factors in prostate cells. J Biol Chem 2023; 299:105453. [PMID: 37956771 PMCID: PMC10704431 DOI: 10.1016/j.jbc.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.
Collapse
Affiliation(s)
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Nicholas F Downing
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Taylor R Nicholas
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA.
| |
Collapse
|
4
|
D'Artista L, Moschopoulou AA, Barozzi I, Craig AJ, Seehawer M, Herrmann L, Minnich M, Kang TW, Rist E, Henning M, Klotz S, Heinzmann F, Harbig J, Sipos B, Longerich T, Eilers M, Dauch D, Zuber J, Wang XW, Zender L. MYC determines lineage commitment in KRAS-driven primary liver cancer development. J Hepatol 2023; 79:141-149. [PMID: 36906109 PMCID: PMC10330789 DOI: 10.1016/j.jhep.2023.02.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND & AIMS Primary liver cancer (PLC) comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their tumour biology and responses to cancer therapies. Liver cells harbour a high degree of cellular plasticity and can give rise to either HCC or iCCA. However, little is known about the cell-intrinsic mechanisms directing an oncogenically transformed liver cell to either HCC or iCCA. The scope of this study was to identify cell-intrinsic factors determining lineage commitment in PLC. METHODS Cross-species transcriptomic and epigenetic profiling was applied to murine HCCs and iCCAs and to two human PLC cohorts. Integrative data analysis comprised epigenetic Landscape In Silico deletion Analysis (LISA) of transcriptomic data and Hypergeometric Optimization of Motif EnRichment (HOMER) analysis of chromatin accessibility data. Identified candidate genes were subjected to functional genetic testing in non-germline genetically engineered PLC mouse models (shRNAmir knockdown or overexpression of full-length cDNAs). RESULTS Integrative bioinformatic analyses of transcriptomic and epigenetic data pinpointed the Forkhead-family transcription factors FOXA1 and FOXA2 as MYC-dependent determination factors of the HCC lineage. Conversely, the ETS family transcription factor ETS1 was identified as a determinant of the iCCA lineage, which was found to be suppressed by MYC during HCC development. Strikingly, shRNA-mediated suppression of FOXA1 and FOXA2 with concomitant ETS1 expression fully switched HCC to iCCA development in PLC mouse models. CONCLUSIONS The herein reported data establish MYC as a key determinant of lineage commitment in PLC and provide a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. IMPACT AND IMPLICATIONS Liver cancer is a major health problem and comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their morphology, tumour biology, and responses to cancer therapies. We identified the transcription factor and oncogenic master regulator MYC as a switch between HCC and iCCA development. When MYC levels are high at the time point when a hepatocyte becomes a tumour cell, an HCC is growing out. Conversely, if MYC levels are low at this time point, the result is the outgrowth of an iCCA. Our study provides a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. Furthermore, our data harbour potential for the development of better PLC therapies.
Collapse
Affiliation(s)
- Luana D'Artista
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Athina Anastasia Moschopoulou
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Iros Barozzi
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Department of Surgery and Cancer, Imperial College London, London, UK
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marco Seehawer
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Lea Herrmann
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Martina Minnich
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tae-Won Kang
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Elke Rist
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Melanie Henning
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Sabrina Klotz
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Florian Heinzmann
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Jule Harbig
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Dauch
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany; German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Fang L, Li D, Yin J, Pan H, Ye H, Bowman J, Capaldo B, Kelly K. TMPRSS2-ERG promotes the initiation of prostate cancer by suppressing oncogene-induced senescence. Cancer Gene Ther 2022; 29:1463-1476. [PMID: 35393570 PMCID: PMC9537368 DOI: 10.1038/s41417-022-00454-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
Abstract
ERG translocations are commonly involved in the initiation of prostate neoplasia, yet previous experimental approaches have not addressed mechanisms of oncogenic inception. Here, in a genetically engineered mouse model, combining TMPRSS2-driven ERG with KrasG12D led to invasive prostate adenocarcinomas, while ERG or KrasG12D alone were non-oncogenic. In primary prostate luminal epithelial cells, following inducible oncogenic Kras expression or Pten depletion, TMPRSS2-ERG suppressed oncogene-induced senescence, independent of TP53 induction and RB1 inhibition. Oncogenic KRAS and TMPRSS2-ERG synergized to promote tumorigenesis and metastasis of primary luminal cells. The presence of TMPRSS2-ERG compared to a wild-type background was associated with a stemness phenotype and with relatively increased RAS-induced differential gene expression for MYC and mTOR-regulated pathways, including protein translation and lipogenesis. In addition, mTOR inhibitors abrogated ERG-dependent senescence resistance. These studies reveal a previously unappreciated function whereby ERG expression primes preneoplastic cells for the accumulation of additional gene mutations by suppression of oncogene-induced senescence.
Collapse
Affiliation(s)
- Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, P. R. China
| | - JuanJuan Yin
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Hong Pan
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, P. R. China
| | - Huihui Ye
- Department of Pathology and Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Brian Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Fusion Genes in Prostate Cancer: A Comparison in Men of African and European Descent. BIOLOGY 2022; 11:biology11050625. [PMID: 35625354 PMCID: PMC9137560 DOI: 10.3390/biology11050625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022]
Abstract
Simple Summary Men of African origin have a 2–3 times greater chance of developing prostate cancer than those of European origin, and of patients that are diagnosed with the disease, men of African descent are 2 times more likely to die compared to white men. Men of African origin are still greatly underrepresented in genetic studies and clinical trials. This, unfortunately, means that new discoveries in cancer treatment are missing key information on the group with a greater chance of mortality. A fusion gene is a hybrid gene formed from two previously independent genes. Fusion genes have been found to be common in all main types of human cancer. The objective of this study was to increase our knowledge of fusion genes in prostate cancer using computational approaches and to compare fusion genes between men of African and European origin. This identified novel gene fusions unique to men of African origin and suggested that this group has a greater number of fusion genes. Abstract Prostate cancer is one of the most prevalent cancers worldwide, particularly affecting men living a western lifestyle and of African descent, suggesting risk factors that are genetic, environmental, and socioeconomic in nature. In the USA, African American (AA) men are disproportionately affected, on average suffering from a higher grade of the disease and at a younger age compared to men of European descent (EA). Fusion genes are chimeric products formed by the merging of two separate genes occurring as a result of chromosomal structural changes, for example, inversion or trans/cis-splicing of neighboring genes. They are known drivers of cancer and have been identified in 20% of cancers. Improvements in genomics technologies such as RNA-sequencing coupled with better algorithms for prediction of fusion genes has added to our knowledge of specific gene fusions in cancers. At present AA are underrepresented in genomic studies of prostate cancer. The primary goal of this study was to examine molecular differences in predicted fusion genes in a cohort of AA and EA men in the context of prostate cancer using computational approaches. RNA was purified from prostate tissue specimens obtained at surgery from subjects enrolled in the study. Fusion gene predictions were performed using four different fusion gene detection programs. This identified novel putative gene fusions unique to AA and suggested that the fusion gene burden was higher in AA compared to EA men.
Collapse
|
7
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
8
|
Beltran H, Demichelis F. Therapy considerations in neuroendocrine prostate cancer: what next? Endocr Relat Cancer 2021; 28:T67-T78. [PMID: 34111024 PMCID: PMC8289743 DOI: 10.1530/erc-21-0140] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 12/21/2022]
Abstract
Lineage plasticity and histologic transformation to small cell neuroendocrine prostate cancer (NEPC) is an increasingly recognized mechanism of treatment resistance in advanced prostate cancer. This is associated with aggressive clinical features and poor prognosis. Recent work has identified genomic, epigenomic, and transcriptome changes that distinguish NEPC from prostate adenocarcinoma, pointing to new mechanisms and therapeutic targets. Treatment-related NEPC arises clonally from prostate adenocarcinoma during the course of disease progression, retaining early genomic events and acquiring new molecular features that lead to tumor proliferation independent of androgen receptor activity, and ultimately demonstrating a lineage switch from a luminal prostate cancer phenotype to a small cell neuroendocrine carcinoma. Identifying the subset of prostate tumors most vulnerable to lineage plasticity and developing strategies for earlier detection and intervention for patients with NEPC may ultimately improve prognosis. Clinical trials focused on drug targeting of the lineage plasticity process and/or NEPC will require careful patient selection. Here, we review emerging targets and discuss biomarker considerations that may be informative for the design of future clinical studies.
Collapse
Affiliation(s)
- Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
9
|
Sigorski D, Gulczyński J, Sejda A, Rogowski W, Iżycka-Świeszewska E. Investigation of Neural Microenvironment in Prostate Cancer in Context of Neural Density, Perineural Invasion, and Neuroendocrine Profile of Tumors. Front Oncol 2021; 11:710899. [PMID: 34277455 PMCID: PMC8281889 DOI: 10.3389/fonc.2021.710899] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Background Cancer stroma contains the neural compartment with specific components and action. Neural microenvironment processing includes among others axonogenesis, perineural invasion (PNI), neurosignaling, and tumor cell neural/neuroendocrine differentiation. Growing data suggest that tumor-neural crosstalk plays an important function in prostate cancer (PCa) biology. However, the mechanisms involved in PNI and axonogenesis, as well as their patho-clinical correlations in this tumor are unclear. Methods The present study was carried out on FFPE samples of 73 PCa and 15 benign prostate (BP) cases. Immunohistochemistry with neural markers PGP9.5, TH, and NFP was performed on constructed TMAs and selected tissue sections. The analyzed parameters of tumor innervation included small nerve density (ND) measured on pan-neural marker (PGP9.5) and TH s4tained slides, as well assessment of PNI presence and morphology. The qualitative and topographic aspects were studied. In addition, the expression of neuroendocrine marker chromogranin and NPY was assessed with dedicated indexes. The correlations of the above parameters with basic patho-clinical data such as patients’ age, tumor stage, grade, angioinvasion, and ERG status were examined. Results The study showed that innervation parameters differed between cancer and BP. The neural network in PCa revealed heterogeneity, and ND PGP9.5 in tumor was significantly lower than in its periphery. The density of sympathetic TH-positive fibers and its proportion to all fibers was lower in cancer than in the periphery and BP samples. Perineural invasion was confirmed in 76% of cases, usually multifocally, occurring more commonly in tumors with a higher grade. NPY expression in PCa cells was common with its intensity often rising towards PNI. ERG+ tumors showed higher ND, more frequent PNI, and a higher stage. Moreover, chromogranin-positive cells were more pronounced in PCa with higher NPY expression. Conclusions The analysis showed an irregular axonal network in prostate cancer with higher neural density (panneural and adrenergic) in the surroundings and the invasive front. ND and PNI interrelated with NPY expression, neuroendocrine differentiation, and ERG status. The above findings support new evidence for the presence of autocrine and paracrine interactions in prostate cancer neural microenvironment.
Collapse
Affiliation(s)
- Dawid Sigorski
- Department of Oncology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland.,Department of Oncology and Immuno-Oncology, Warmian-Masurian Cancer Center of the Ministry of the Interior and Administration Hospital, Olsztyn, Poland
| | - Jacek Gulczyński
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland.,Department of Pathomorphology, Copernicus Hospital, Gdańsk, Poland
| | - Aleksandra Sejda
- Department of Pathomorphology, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech Rogowski
- Department of Health, Pomeranian University in Słupsk, Słupsk, Poland.,Department of Oncology, Chemotherapy, Clinical trials, Regional Hospital, Słupsk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Medical University of Gdańsk, Gdańsk, Poland.,Department of Pathomorphology, Copernicus Hospital, Gdańsk, Poland
| |
Collapse
|
10
|
Inoue Y, Nikolic A, Farnsworth D, Shi R, Johnson FD, Liu A, Ladanyi M, Somwar R, Gallo M, Lockwood WW. Extracellular signal-regulated kinase mediates chromatin rewiring and lineage transformation in lung cancer. eLife 2021; 10:66524. [PMID: 34121659 PMCID: PMC8337080 DOI: 10.7554/elife.66524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Lineage transformation between lung cancer subtypes is a poorly understood phenomenon associated with resistance to treatment and poor patient outcomes. Here, we aimed to model this transition to define underlying biological mechanisms and identify potential avenues for therapeutic intervention. Small cell lung cancer (SCLC) is neuroendocrine in identity and, in contrast to non-SCLC (NSCLC), rarely contains mutations that drive the MAPK pathway. Likewise, NSCLCs that transform to SCLC concomitantly with development of therapy resistance downregulate MAPK signaling, suggesting an inverse relationship between pathway activation and lineage state. To test this, we activated MAPK in SCLC through conditional expression of mutant KRAS or EGFR, which revealed suppression of the neuroendocrine differentiation program via ERK. We found that ERK induces the expression of ETS factors that mediate transformation into a NSCLC-like state. ATAC-seq demonstrated ERK-driven changes in chromatin accessibility at putative regulatory regions and global chromatin rewiring at neuroendocrine and ETS transcriptional targets. Further, ERK-mediated induction of ETS factors as well as suppression of neuroendocrine differentiation were dependent on histone acetyltransferase activities of CBP/p300. Overall, we describe how the ERK-CBP/p300-ETS axis promotes a lineage shift between neuroendocrine and non-neuroendocrine lung cancer phenotypes and provide rationale for the disruption of this program during transformation-driven resistance to targeted therapy.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Ana Nikolic
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Dylan Farnsworth
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Rocky Shi
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Fraser D Johnson
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Alvin Liu
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada
| | - Marc Ladanyi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Romel Somwar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Marco Gallo
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - William W Lockwood
- Department of Integrative Oncology, BC Cancer Agency, Columbia, Canada.,Department of Pathology & Laboratory Medicine, University of British Columbia, Columbia, Canada
| |
Collapse
|
11
|
Cheng WC, Wang HJ. Current advances of targeting epigenetic modifications in neuroendocrine prostate cancer. Tzu Chi Med J 2021; 33:224-232. [PMID: 34386358 PMCID: PMC8323647 DOI: 10.4103/tcmj.tcmj_220_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 11/15/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is the most lethal malignancy of prostate cancer (PCa). Treatment with next-generation androgen receptor (AR) pathway inhibitors (ARPIs) has successfully extended patients' lifespan. However, with the emergence of drug resistance, PCa tumors increasingly adapt to potent ARPI therapies by transitioning to alternative cellular lineage. Such therapy-induced drug resistance is largely driven from the cellular plasticity of PCa cells to alter their phenotypes of AR independence for cell growth and survival. Some of the resistant PCa cells undergo cellular reprogramming to form neuroendocrine phenotypes. Recent evidences suggest that this cellular reprogramming or the lineage plasticity is driven by dysregulation of the epigenome and transcriptional networks. Aberrant DNA methylation and altered expression of epigenetic modifiers, such as enhancer of zeste-homolog 2, transcription factors, histone demethylases, are hallmarks of NEPC. In this review, we discuss the nature of the epigenetic and transcriptional landscapes of PCa cells which lose their AR independence and transition to the neuroendocrine lineage. We also discuss how oncogenic signaling and metabolic reprogramming fuel epigenetic and transcriptional alterations. In addition, the current state of epigenetic therapies for NEPC is addressed.
Collapse
Affiliation(s)
- Wen-Chi Cheng
- SDGs Teaching and Research Headquarters, Tzu Chi University, Hualien, Taiwan
| | - Hung-Jung Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Doctoral Degree Program in Translational Medicine, Tzu Chi University and Academia Sinica, Hualien, Taiwan
| |
Collapse
|
12
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
13
|
Williams SG, Aw Yeang HX, Mitchell C, Caramia F, Byrne DJ, Fox SB, Haupt S, Schittenhelm RB, Neeson PJ, Haupt Y, Keam SP. Immune molecular profiling of a multiresistant primary prostate cancer with a neuroendocrine-like phenotype: a case report. BMC Urol 2020; 20:171. [PMID: 33115461 PMCID: PMC7592533 DOI: 10.1186/s12894-020-00738-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions.
We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence.
Case presentation Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis.
We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only.
The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses—ruling out treatment inefficacy as a factor in relapse.
Conclusions These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.
Collapse
Affiliation(s)
- Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Han Xian Aw Yeang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Catherine Mitchell
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David J Byrne
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Stephen B Fox
- Pathology Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics & Metabolomics Facility, Monash University, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
14
|
Cosi I, Pellecchia A, De Lorenzo E, Torre E, Sica M, Nesi G, Notaro R, De Angioletti M. ETV4 promotes late development of prostatic intraepithelial neoplasia and cell proliferation through direct and p53-mediated downregulation of p21. J Hematol Oncol 2020; 13:112. [PMID: 32791988 PMCID: PMC7427297 DOI: 10.1186/s13045-020-00943-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND ETV4 is one of the ETS proteins overexpressed in prostate cancer (PC) as a result of recurrent chromosomal translocations. In human prostate cell lines, ETV4 promotes migration, invasion, and proliferation; however, its role in PC has been unclear. In this study, we have explored the effects of ETV4 expression in the prostate in a novel transgenic mouse model. METHODS We have created a mouse model with prostate-specific expression of ETV4 (ETV4 mice). By histochemical and molecular analysis, we have investigated in these engineered mice the expression of p21, p27, and p53. The implications of our in vivo findings have been further investigated in human cells lines by chromatin-immunoprecipitation (ChIP) and luciferase assays. RESULTS ETV4 mice, from two independent transgenic lines, have increased cell proliferation in their prostate and two-thirds of them, by the age of 10 months, developed mouse prostatic intraepithelial neoplasia (mPIN). In these mice, cdkn1a and its p21 protein product were reduced compared to controls; p27 protein was also reduced. By ChIP assay in human prostate cell lines, we show that ETV4 binds to a specific site (-704/-696 bp upstream of the transcription start) in the CDKN1A promoter that was proven, by luciferase assay, to be functionally competent. ETV4 further controls CDKN1A expression by downregulating p53 protein: this reduction of p53 was confirmed in vivo in ETV4 mice. CONCLUSIONS ETV4 overexpression results in the development of mPIN but not in progression to cancer. ETV4 increases prostate cell proliferation through multiple mechanisms, including downregulation of CDKN1A and its p21 protein product: this in turn is mediated through direct binding of ETV4 to the CDKN1A promoter and through the ETV4-mediated decrease of p53. This multi-faceted role of ETV4 in prostate cancer makes it a potential target for novel therapeutic approaches that could be explored in this ETV4 transgenic model.
Collapse
Affiliation(s)
- Irene Cosi
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy.,Doctorate School GenOMeC, University of Siena, Siena, Italy
| | - Annamaria Pellecchia
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Emanuele De Lorenzo
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Eugenio Torre
- Department of Experimental and Clinical Biomedical Sciences, Section of Experimental Pathology and Oncology, University of Florence, 50134, Florence, Italy
| | - Michela Sica
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Gabriella Nesi
- Division of Pathology, Department of Health Sciences, University of Florence, 50139, Florence, Italy
| | - Rosario Notaro
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy
| | - Maria De Angioletti
- Laboratory of Cancer Genetics, Core Research Laboratory, Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, 50139, Italy. .,ICCOM-National Council of Research, Sesto Fiorentino, Florence, 50019, Italy.
| |
Collapse
|
15
|
Tiwari R, Manzar N, Ateeq B. Dynamics of Cellular Plasticity in Prostate Cancer Progression. Front Mol Biosci 2020; 7:130. [PMID: 32754615 PMCID: PMC7365877 DOI: 10.3389/fmolb.2020.00130] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the current advances in the treatment for prostate cancer, the patients often develop resistance to the conventional therapeutic interventions. Therapy-induced drug resistance and tumor progression have been associated with cellular plasticity acquired due to reprogramming at the molecular and phenotypic levels. The plasticity of the tumor cells is mainly governed by two factors: cell-intrinsic and cell-extrinsic. The cell-intrinsic factors involve alteration in the genetic or epigenetic regulators, while cell-extrinsic factors include microenvironmental cues and drug-induced selective pressure. Epithelial-mesenchymal transition (EMT) and stemness are two important hallmarks that dictate cellular plasticity in multiple cancer types including prostate. Emerging evidence has also pinpointed the role of tumor cell plasticity in driving anti-androgen induced neuroendocrine prostate cancer (NEPC), a lethal and therapy-resistant subtype. In this review, we discuss the role of cellular plasticity manifested due to genetic, epigenetic alterations and cues from the tumor microenvironment, and their role in driving therapy resistant prostate cancer.
Collapse
Affiliation(s)
| | | | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, India
| |
Collapse
|
16
|
Bery F, Cancel M, Chantôme A, Guibon R, Bruyère F, Rozet F, Mahéo K, Fromont G. The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancers (Basel) 2020; 12:cancers12040860. [PMID: 32252342 PMCID: PMC7226072 DOI: 10.3390/cancers12040860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms underlying neuroendocrine (NE) differentiation in prostate cancer (PCa) remain mostly uncharacterized. Since a deregulated calcium homeostasis has been reported in neuroendocrine prostate cancer (NEPC), we explored herein the link between NE differentiation and the calcium-sensing receptor (CaSR). CaSR expression was evaluated by immunohistochemistry-together with NE markers-on tissue microarrays containing samples of normal prostate, localized PCa, metastatic castration resistant PCa (MCRPC) and NEPC. In prostate tissues, we observed a strong association between CaSR and chromogranin expression. Both markers were strongly expressed in all cases of NEPC and co-expression was confirmed by double immunostaining. In MCRPC, the expression of CaSR was significantly associated with shorter overall survival. The involvement of CaSR in NE differentiation was evaluated in PCa cell lines. Inhibition of CaSR led to decrease the expression of neuronal (NSE, βtubulinIII) and NE (chromogranin, synaptophysin) markers in the NE PCa cell line NCI-H660. A decrease of neuronal and NE markers was also observed in siCaSR-transfected PC3 and 22RV1 cells, respectively, whereas CaSR activation increased both NSE and synaptophysin expression in PC3 cells. These results strongly suggest that CaSR is a marker and a driver of NE differentiation in PCa and emphasize the potential of CaSR directed therapy for NEPC patients.
Collapse
Affiliation(s)
- Fanny Bery
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
| | - Mathilde Cancel
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
- Department of Oncology, CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
| | - Aurélie Chantôme
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
| | - Roseline Guibon
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
- Department of Pathology CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
| | - Franck Bruyère
- Department of Urology, CHRU Bretonneau, CEDEX 9, F-37044 Tours, France;
| | - François Rozet
- Institut Mutualiste Montsouris, Department of Urology, F-75014 Paris, France;
| | - Karine Mahéo
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
| | - Gaëlle Fromont
- Inserm N2C UMR1069 “Nutrition, Croissance et Cancer” Université de Tours, CEDEX 1, F-37032 Tours, France; (F.B.); (M.C.); (A.C.); (R.G.); (K.M.)
- Department of Pathology CHRU Bretonneau, CEDEX 9, F-37044 Tours, France
- Correspondence: ; Tel.: +33-(0)2-47-47-82-72
| |
Collapse
|
17
|
Malik A, Srinivasan S, Batra J. A New Era of Prostate Cancer Precision Medicine. Front Oncol 2019; 9:1263. [PMID: 31850193 PMCID: PMC6901987 DOI: 10.3389/fonc.2019.01263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/31/2019] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer is the second most common male cancer affecting Western society. Despite substantial advances in the exploration of prostate cancer biomarkers and treatment strategies, men are over diagnosed with inert prostate cancer, while there is also a substantial mortality from the invasive disease. Precision medicine is the management of treatment profiles across different cancers predicting therapies for individual cancer patients. With strategies including individual genomic profiling and targeting specific cancer pathways, precision medicine for prostate cancer has the potential to impose changes in clinical practices. Some of the recent advances in prostate cancer precision medicine comprise targeting gene fusions, genome editing tools, non-coding RNA biomarkers, and the promise of liquid tumor profiling. In this review, we will discuss these recent scientific advances to scale up these approaches and endeavors to overcome clinical barriers for prostate cancer precision medicine.
Collapse
Affiliation(s)
- Adil Malik
- School of Biomedical Sciences, Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre–Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre–Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD, Australia
- Australian Prostate Cancer Research Centre–Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
18
|
Patel GK, Chugh N, Tripathi M. Neuroendocrine Differentiation of Prostate Cancer-An Intriguing Example of Tumor Evolution at Play. Cancers (Basel) 2019; 11:E1405. [PMID: 31547070 PMCID: PMC6826557 DOI: 10.3390/cancers11101405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Our understanding of neuroendocrine prostate cancer (NEPC) has assumed a new perspective in light of the recent advances in research. Although classical NEPC is rarely seen in the clinic, focal neuroendocrine trans-differentiation of prostate adenocarcinoma occurs in about 30% of advanced prostate cancer (PCa) cases, and represents a therapeutic challenge. Even though our knowledge of the mechanisms that mediate neuroendocrine differentiation (NED) is still evolving, the role of androgen deprivation therapy (ADT) as a key driver of this phenomenon is increasingly becoming evident. In this review, we discuss the molecular, cellular, and therapeutic mediators of NED, and emphasize the role of the tumor microenvironment (TME) in orchestrating the phenotype. Understanding the role of the TME in mediating NED could provide us with valuable insights into the plasticity associated with the phenotype, and reveal potential therapeutic targets against this aggressive form of PCa.
Collapse
Affiliation(s)
- Girijesh Kumar Patel
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Natasha Chugh
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Manisha Tripathi
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
19
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
20
|
Singla N. ETS Rearrangements, Neuroendocrine Modulators, and Androgen Resistance: What Can the Microenvironment Reveal in Prostate Cancer? Eur Urol Oncol 2019; 2:413-414. [PMID: 31202714 DOI: 10.1016/j.euo.2019.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Nirmish Singla
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Baumann B, Lugli G, Gao S, Zenner M, Nonn L. High levels of PIWI-interacting RNAs are present in the small RNA landscape of prostate epithelium from vitamin D clinical trial specimens. Prostate 2019; 79:840-855. [PMID: 30905091 PMCID: PMC6593815 DOI: 10.1002/pros.23789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 01/31/2019] [Accepted: 02/19/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Vitamin D, a hormone that acts through the nuclear vitamin D receptor (VDR), upregulates antitumorigenic microRNA in prostate epithelium. This may contribute to the lower levels of aggressive prostate cancer (PCa) observed in patients with high serum vitamin D. The small noncoding RNA (ncRNA) landscape includes many other RNA species that remain uncharacterized in prostate epithelium and their potential regulation by vitamin D is unknown. METHODS Laser capture microdissection (LCM) followed by small-RNA sequencing was used to identify ncRNAs in the prostate epithelium of tissues from a vitamin D-supplementation trial. VDR chromatin immunoprecipitation-sequencing was performed to identify vitamin D genomic targets in primary prostate epithelial cells. RESULTS Isolation of epithelium by LCM increased sample homogeneity and captured more diversity in ncRNA species compared with publicly available small-RNA sequencing data from benign whole prostate. An abundance of PIWI-interacting RNAs (piRNAs) was detected in normal prostate epithelium. The obligate binding partners of piRNAs, PIWI-like (PIWIL) proteins, were also detected in prostate epithelium. High prostatic vitamin D levels were associated with increased expression of piRNAs. VDR binding sites were located near several ncRNA biogenesis genes and genes regulating translation and differentiation. CONCLUSIONS Benign prostate epithelium expresses both piRNA and PIWIL proteins, suggesting that these small ncRNA may serve an unknown function in the prostate. Vitamin D may increase the expression of prostatic piRNAs. VDR binding sites in primary prostate epithelial cells are consistent with its reported antitumorigenic functions and a role in ncRNA biogenesis.
Collapse
Affiliation(s)
- Bethany Baumann
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Giovanni Lugli
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Shang Gao
- Department of BioengineeringUniversity of Illinois at ChicagoChicagoIllinois
| | - Morgan Zenner
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| | - Larisa Nonn
- Department of Pathology, College of MedicineUniversity of Illinois at ChicagoChicagoIllinois
| |
Collapse
|
22
|
Blee AM, Huang H. Lineage plasticity-mediated therapy resistance in prostate cancer. Asian J Androl 2019; 21:241-248. [PMID: 29900883 PMCID: PMC6498731 DOI: 10.4103/aja.aja_41_18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/08/2018] [Indexed: 12/21/2022] Open
Abstract
Therapy resistance is a significant challenge for prostate cancer treatment in clinic. Although targeted therapies such as androgen deprivation and androgen receptor (AR) inhibition are effective initially, tumor cells eventually evade these strategies through multiple mechanisms. Lineage reprogramming in response to hormone therapy represents a key mechanism that is increasingly observed. The studies in this area have revealed specific combinations of alterations present in adenocarcinomas that provide cells with the ability to transdifferentiate and perpetuate AR-independent tumor growth after androgen-based therapies. Interestingly, several master regulators have been identified that drive plasticity, some of which also play key roles during development and differentiation of the cell lineages in the normal prostate. Thus, further study of each AR-independent tumor type and understanding underlying mechanisms are warranted to develop combinational therapies that combat lineage plasticity in prostate cancer.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
23
|
Puca L, Vlachostergios PJ, Beltran H. Neuroendocrine Differentiation in Prostate Cancer: Emerging Biology, Models, and Therapies. Cold Spring Harb Perspect Med 2019; 9:a030593. [PMID: 29844220 PMCID: PMC6360865 DOI: 10.1101/cshperspect.a030593] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although a de novo clinical presentation of small cell neuroendocrine carcinoma of the prostate is rare, a subset of patients previously diagnosed with prostate adenocarcinoma may develop neuroendocrine features in later stages of castration-resistant prostate cancer (CRPC) progression as a result of treatment resistance. Despite sharing clinical, histologic, and some molecular features with other neuroendocrine carcinomas, including small cell lung cancer, castration-resistant neuroendocrine prostate cancer (CRPC-NE) is clonally derived from prostate adenocarcinoma. CRPC-NE therefore retains early prostate cancer genomic alterations and acquires new molecular changes making them resistant to traditional CRPC therapies. This review focuses on recent advances in our understanding of CRPC-NE biology, the transdifferentiation/plasticity process, and development and characterization of relevant CRPC-NE preclinical models.
Collapse
Affiliation(s)
- Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| | | | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine and New York-Presbyterian Hospital, New York, New York 10021
- Division of Medical Oncology, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
24
|
Suppression of prostate tumor cell survival by antisense oligonucleotide-mediated inhibition of AR-V7 mRNA synthesis. Oncogene 2019; 38:3696-3709. [PMID: 30664691 PMCID: PMC6756119 DOI: 10.1038/s41388-019-0696-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/12/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022]
Abstract
One of the mechanisms by which advanced prostate cancer develops resistance to androgen deprivation therapy is the elevated expression of C-terminally truncated androgen receptor (AR) variants. These variants, such as AR-V7, originate from aberrant splicing of the AR pre-mRNA and the inclusion of a cryptic exon containing a premature stop codon in the mRNA. The resulting loss of the ligand-binding domain allows AR-V7 to act as a constitutively active transcription factor. Here, we designed two antisense oligonucleotides (AONs) directed against cryptic splicing signals within the AR pre-mRNA. These two AONs, AON-ISE and AON-ESE, demonstrated high efficiency in silencing AR-V7 splicing without affecting full-length AR expression. The subsequent downregulation of AR-V7-target gene UBE2C was accompanied by inhibition of androgen-independent cell proliferation and induction of apoptosis in castration-resistant prostate cancer (CRPC)-derived cell line models 22Rv1, DuCaP, and VCaP. Our results show that splicing-directed AONs can efficiently prevent expression of AR-V7, providing an attractive new therapeutic option for the treatment of CRPC.
Collapse
|
25
|
Nicholas TR, Strittmatter BG, Hollenhorst PC. Oncogenic ETS Factors in Prostate Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:409-436. [PMID: 31900919 DOI: 10.1007/978-3-030-32656-2_18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer is unique among carcinomas in that a fusion gene created by a chromosomal rearrangement is a common driver of the disease. The TMPRSS2/ERG rearrangement drives aberrant expression of the ETS family transcription factor ERG in 50% of prostate tumors. Similar rearrangements promote aberrant expression of the ETS family transcription factors ETV1 and ETV4 in another 10% of cases. Together, these three ETS factors are thought to promote tumorigenesis in the majority of prostate cancers. A goal of precision medicine is to be able to apply targeted therapeutics that are specific to disease subtypes. ETS gene rearrangement positive tumors represent the largest molecular subtype of prostate cancer, but to date there is no treatment specific to this marker. In this chapter we will review the latest findings regarding the molecular mechanisms of ETS factor function in the prostate. These molecular details may provide a path towards new therapeutic targets for this subtype of prostate cancer. Further, we will describe efforts to target the oncogenic functions of ETS family transcription factors directly as well as indirectly.
Collapse
Affiliation(s)
| | - Brady G Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, USA.
| |
Collapse
|
26
|
Linder S, van der Poel HG, Bergman AM, Zwart W, Prekovic S. Enzalutamide therapy for advanced prostate cancer: efficacy, resistance and beyond. Endocr Relat Cancer 2018; 26:R31-R52. [PMID: 30382692 PMCID: PMC6215909 DOI: 10.1530/erc-18-0289] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/20/2022]
Abstract
The androgen receptor drives the growth of metastatic castration-resistant prostate cancer. This has led to the development of multiple novel drugs targeting this hormone-regulated transcription factor, such as enzalutamide – a potent androgen receptor antagonist. Despite the plethora of possible treatment options, the absolute survival benefit of each treatment separately is limited to a few months. Therefore, current research efforts are directed to determine the optimal sequence of therapies, discover novel drugs effective in metastatic castration-resistant prostate cancer and define patient subpopulations that ultimately benefit from these treatments. Molecular studies provide evidence on which pathways mediate treatment resistance and may lead to improved treatment for metastatic castration-resistant prostate cancer. This review provides, firstly a concise overview of the clinical development, use and effectiveness of enzalutamide in the treatment of advanced prostate cancer, secondly it describes translational research addressing enzalutamide response vs resistance and lastly highlights novel potential treatment strategies in the enzalutamide-resistant setting.
Collapse
Affiliation(s)
- Simon Linder
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Henk G van der Poel
- Division of UrologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Andries M Bergman
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular SystemsDepartment of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Stefan Prekovic
- Division of OncogenomicsOncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Correspondence should be addressed to S Prekovic:
| |
Collapse
|
27
|
Blee AM, He Y, Yang Y, Ye Z, Yan Y, Pan Y, Ma T, Dugdale J, Kuehn E, Kohli M, Jimenez R, Chen Y, Xu W, Wang L, Huang H. TMPRSS2-ERG Controls Luminal Epithelial Lineage and Antiandrogen Sensitivity in PTEN and TP53-Mutated Prostate Cancer. Clin Cancer Res 2018; 24:4551-4565. [PMID: 29844131 PMCID: PMC6139075 DOI: 10.1158/1078-0432.ccr-18-0653] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 01/10/2023]
Abstract
Purpose: Deletions or mutations in PTEN and TP53 tumor suppressor genes have been linked to lineage plasticity in therapy-resistant prostate cancer. Fusion-driven overexpression of the oncogenic transcription factor ERG is observed in approximately 50% of all prostate cancers, many of which also harbor PTEN and TP53 alterations. However, the role of ERG in lineage plasticity of PTEN/TP53-altered tumors is unclear. Understanding the collective effect of multiple mutations within one tumor is essential to combat plasticity-driven therapy resistance.Experimental Design: We generated a Pten-negative/Trp53-mutated/ERG-overexpressing mouse model of prostate cancer and integrated RNA-sequencing with ERG chromatin immunoprecipitation-sequencing (ChIP-seq) to identify pathways regulated by ERG in the context of Pten/Trp53 alteration. We investigated ERG-dependent sensitivity to the antiandrogen enzalutamide and cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor palbociclib in human prostate cancer cell lines, xenografts, and allografted mouse tumors. Trends were evaluated in TCGA, SU2C, and Beltran 2016 published patient cohorts and a human tissue microarray.Results: Transgenic ERG expression in mice blocked Pten/Trp53 alteration-induced decrease of AR expression and downstream luminal epithelial genes. ERG directly suppressed expression of cell cycle-related genes, which induced RB hypophosphorylation and repressed E2F1-mediated expression of mesenchymal lineage regulators, thereby restricting adenocarcinoma plasticity and maintaining antiandrogen sensitivity. In ERG-negative tumors, CDK4/6 inhibition delayed tumor growth.Conclusions: Our studies identify a previously undefined function of ERG to restrict lineage plasticity and maintain antiandrogen sensitivity in PTEN/TP53-altered prostate cancer. Our findings suggest ERG fusion as a biomarker to guide treatment of PTEN/TP53-altered, RB1-intact prostate cancer. Clin Cancer Res; 24(18); 4551-65. ©2018 AACR.
Collapse
Affiliation(s)
- Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, Minnesota
| | - Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yinhui Yang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yuqian Yan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Tao Ma
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Joseph Dugdale
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Emily Kuehn
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wanhai Xu
- Department of Urology, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, Minnesota.
- Department of Urology, Mayo Clinic College of Medicine, Rochester, Minnesota
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
28
|
Fry EA, Mallakin A, Inoue K. Translocations involving ETS family proteins in human cancer. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2018; 5:10.15761/ICST.1000281. [PMID: 30542624 PMCID: PMC6287620 DOI: 10.15761/icst.1000281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating certain gene transcriptions. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. Three chimeric genes involving ETS genes have been identified in human cancers, which are EWS-FLI1 in Ewing's sarcoma, TMPRSS2-ERG in prostate cancer, and ETV6-RUNX1 in acute lymphocytic leukemia. Although these fusion transcripts definitely contribute to the pathogenesis of the disease, the impact of these fusion transcripts on patients' prognosis is highly controversial. In the present review, the roles of ETS protein translocations in human carcinogenesis are discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | | | - Kazushi Inoue
- Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
29
|
Sainio M, Visakorpi T, Tolonen T, Ilvesaro J, Bova GS. Expression of neuroendocrine differentiation markers in lethal metastatic castration-resistant prostate cancer. Pathol Res Pract 2018; 214:848-856. [PMID: 29728311 DOI: 10.1016/j.prp.2018.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/31/2022]
Abstract
Neuroendocrine differentiation (NED) is a common phenomenon in prostate cancer, and it has been associated with poor prognosis in some studies of primary prostate cancer. Incidence and patterns of NED in metastatic prostate cancer sites have not been examined widely. In this study, we studied expression of three commonly used markers of NED (chromogranin A, neuron specific enolase and synaptophysin) in 89 metastases from 31 men that died of castration-resistant prostate cancer and underwent rapid autopsy, and in 89 hormone-naïve primary tumors removed by radical prostatectomy. In addition, we examined NED association with androgen receptor, ERG and Ki-67 expression in metastatic tumor sites. Morphologically, 1 of 31 cases was classified as small cell carcinoma, and the remaining 30 were classified as usual prostate adenocarcinoma using a recently proposed classification of prostate cancers with NED. Metastases showed more expression of neuron specific enolase and synaptophysin compared to prostatectomies (6.3% of cells vs. 1.0%, p < 0.001 and 4.0% vs. 0.4%, p < 0.001, respectively). At least focal expression of one of the markers was seen in 78% of metastases. Strong expression was relatively uncommon, seen in 3/89 (chromogranin A), 8/89 (neuron specific enolase), and 5/89 (synaptophysin) metastases. Expression of chromogranin A and synaptophysin correlated with each other (r = 0.64, p < 0.001), but expression of neuron specific enolase did not correlate with the two other markers. Extent of NED varied significantly between different metastatic sites in individual patients. Absent androgen receptor expression was associated with strong expression of chromogranin A (p = .02) and neuron specific enolase (p = .02), but not with focal expression of any marker. No clear association was found between expression of NE markers and ERG or Ki-67. In conclusion, NED is a common and heterogeneous phenomenon in metastatic, castration-resistant prostate cancer. NED is more often present in castration-resistant prostate cancer compared to hormone-naïve disease, and it is associated with androgen receptor negativity. More research is needed to understand significance of NED in the progression of prostate cancer.
Collapse
Affiliation(s)
- Miika Sainio
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, FI-33014, Finland.
| | - Tapio Visakorpi
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, FI-33014, Finland.
| | - Teemu Tolonen
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, FI-33014, Finland; Department of Pathology, Tampere University Hospital, Fimlab Laboratories, Tampere, Finland.
| | - Joanna Ilvesaro
- Department of Pathology, Tampere University Hospital, Fimlab Laboratories, Tampere, Finland.
| | - G Steven Bova
- Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, FI-33014, Finland.
| |
Collapse
|
30
|
Wang S, Kollipara RK, Humphries CG, Ma SH, Hutchinson R, Li R, Siddiqui J, Tomlins SA, Raj GV, Kittler R. The ubiquitin ligase TRIM25 targets ERG for degradation in prostate cancer. Oncotarget 2018; 7:64921-64931. [PMID: 27626314 PMCID: PMC5323126 DOI: 10.18632/oncotarget.11915] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Ets related gene (ERG) is a transcription factor that is overexpressed in 40% of prostate tumors due to a gene fusion between ERG and TMPRSS2. Because ERG functions as a driver of prostate carcinogenesis, understanding the mechanisms that influence its turnover may provide new molecular handles to target the protein. Previously, we found that ERG undergoes ubiquitination and then is deubiquitinated by USP9X in prostate cancer cells to prevent its proteasomal degradation. Here, we identify Tripartite motif-containing protein 25 (TRIM25) as the E3 ubiquitin ligase that ubiquitinates the protein prior to its degradation. TRIM25 binds full-length ERG, and it also binds the N-terminally truncated variants of ERG that are expressed in tumors with TMPRSS2-ERG fusions. We demonstrate that TRIM25 polyubiquitinates ERG in vitro and that inactivation of TRIM25 resulted in reduced polyubiquitination and stabilization of ERG. TRIM25 mRNA and protein expression was increased in ERG rearrangement-positive prostate cancer specimens, and we provide evidence that ERG upregulates TRIM25 expression. Thus, overexpression of ERG in prostate cancer may cause an increase in TRIM25 activity, which is mitigated by the expression of the deubiquitinase USP9X, which is required to stabilize ERG.
Collapse
Affiliation(s)
- Shan Wang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Caroline G Humphries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shi-Hong Ma
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ryan Hutchinson
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Rui Li
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Javed Siddiqui
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott A Tomlins
- Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ganesh V Raj
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
31
|
Constructing Bayesian networks by integrating gene expression and copy number data identifies NLGN4Y as a novel regulator of prostate cancer progression. Oncotarget 2018; 7:68688-68707. [PMID: 27626693 PMCID: PMC5356583 DOI: 10.18632/oncotarget.11925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
To understand the heterogeneity of prostate cancer (PCa) and identify novel underlying drivers, we constructed integrative molecular Bayesian networks (IMBNs) for PCa by integrating gene expression and copy number alteration data from published datasets. After demonstrating such IMBNs with superior network accuracy, we identified multiple sub-networks within IMBNs related to biochemical recurrence (BCR) of PCa and inferred the corresponding key drivers. The key drivers regulated a set of common effectors including genes preferentially expressed in neuronal cells. NLGN4Y—a protein involved in synaptic adhesion in neurons—was ranked as the top gene closely linked to key drivers of myogenesis subnetworks. Lower expression of NLGN4Y was associated with higher grade PCa and an increased risk of BCR. We show that restoration of the protein expression of NLGN4Y in PC-3 cells leads to decreased cell proliferation, migration and inflammatory cytokine expression. Our results suggest that NLGN4Y is an important negative regulator in prostate cancer progression. More importantly, it highlights the value of IMBNs in generating biologically and clinically relevant hypotheses about prostate cancer that can be validated by independent studies.
Collapse
|
32
|
Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, Dai LH, Zhou Z, Wang KJ, Yang J, Cheng YQ, Gao X, Qu M, Wang HR, Zhu F, Tian QQ, Liu D, Cao L, Cui XG, Xu CL, Xu DF, Sun YH. Blocking the Feedback Loop between Neuroendocrine Differentiation and Macrophages Improves the Therapeutic Effects of Enzalutamide (MDV3100) on Prostate Cancer. Clin Cancer Res 2017; 24:708-723. [PMID: 29191973 DOI: 10.1158/1078-0432.ccr-17-2446] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/22/2017] [Accepted: 11/20/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Chao Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Guang Peng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hai Huang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Fei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - De-Pei Kong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ke-Qin Dong
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li-He Dai
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhe Zhou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kai-Jian Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan-Qiong Cheng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hong-Ru Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qin-Qin Tian
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dan Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Li Cao
- Institute of Neuroscience and Key Laboratory of Molecular Neurobiology of the Ministry of Education, Second Military Medical University, Shanghai, China
| | - Xin-Gang Cui
- Department of Urinary Surgery, Third Affiliated Hospital, Second Military Medical University, Shanghai, China
| | - Chuan-Liang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dan-Feng Xu
- Department of Urinary Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Ying-Hao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
33
|
Lu D, Carlsson J, Penney KL, Davidsson S, Andersson SO, Mucci LA, Valdimarsdóttir U, Andrén O, Fang F, Fall K. Expression and Genetic Variation in Neuroendocrine Signaling Pathways in Lethal and Nonlethal Prostate Cancer among Men Diagnosed with Localized Disease. Cancer Epidemiol Biomarkers Prev 2017; 26:1781-1787. [PMID: 28939587 DOI: 10.1158/1055-9965.epi-17-0453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/14/2017] [Accepted: 09/12/2017] [Indexed: 11/16/2022] Open
Abstract
Background: Recent data suggest that neuroendocrine signaling pathways may play a role in the progression of prostate cancer, particularly for early-stage disease. We aimed to explore whether expression of selected genes in the adrenergic, serotoninergic, glucocorticoid, and dopaminergic pathways differs in prostate tumor tissue from men with lethal disease compared with men with nonlethal disease.Methods: On the basis of the Swedish Watchful Waiting Cohort, we included 511 men diagnosed with incidental prostate cancer through transurethral resection of the prostate during 1977-1998 with follow-up up to 30 years. For those with tumor tissue (N = 262), we measured mRNA expression of 223 selected genes included in neuroendocrine pathways. Using DNA from normal prostate tissue (N = 396), we genotyped 36 SNPs from 14 receptor genes. Lethal prostate cancer was the primary outcome in analyses with pathway gene expression and genetic variants.Results: Differential expression of genes in the serotoninergic pathway was associated with risk of lethal prostate cancer (P = 0.007); similar but weaker associations were noted for the adrenergic (P = 0.014) and glucocorticoid (P = 0.020) pathways. Variants of the HTR2A (rs2296972; P = 0.002) and NR3CI (rs33388; P = 0.035) genes (within the serotoninergic and glucocorticoid pathways) were associated with lethal cancer in overdominant models. These genetic variants were correlated with expression of several genes in corresponding pathways (P < 0.05).Conclusions: Our findings lend support to hypothesis that the neuroendocrine pathways, particularly serotoninergic pathway, are associated with lethal outcome in the natural course of localized prostate cancer.Impact: This study provides evidence of the role of neuroendocrine pathways in prostate cancer progression that may have clinical utility. Cancer Epidemiol Biomarkers Prev; 26(12); 1781-7. ©2017 AACR.
Collapse
Affiliation(s)
- Donghao Lu
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jessica Carlsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Sabina Davidsson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Swen-Olof Andersson
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Unnur Valdimarsdóttir
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Faculty of Medicine, Center of Public Health Sciences, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Ove Andrén
- Department of Urology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Fang Fang
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Katja Fall
- Department of Medical Epidemiology & Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
34
|
TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet 2017; 49:1336-1345. [PMID: 28783165 DOI: 10.1038/ng.3930] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022]
Abstract
TMPRSS2-ERG (T2E) structural rearrangements typify ∼50% of prostate tumors and result in overexpression of the ERG transcription factor. Using chromatin, genomic and expression data, we show distinct cis-regulatory landscapes between T2E-positive and non-T2E primary prostate tumors, which include clusters of regulatory elements (COREs). This difference is mediated by ERG co-option of HOXB13 and FOXA1, implementing a T2E-specific transcriptional profile. We also report a T2E-specific CORE on the structurally rearranged ERG locus arising from spreading of the TMPRSS2 locus pre-existing CORE, assisting in its overexpression. Finally, we show that the T2E-specific cis-regulatory landscape underlies a vulnerability against the NOTCH pathway. Indeed, NOTCH pathway inhibition antagonizes the growth and invasion of T2E-positive prostate cancer cells. Taken together, our work shows that overexpressed ERG co-opts master transcription factors to deploy a unique cis-regulatory landscape, inducing a druggable dependency on NOTCH signaling in T2E-positive prostate tumors.
Collapse
|
35
|
ERF mutations reveal a balance of ETS factors controlling prostate oncogenesis. Nature 2017; 546:671-675. [PMID: 28614298 DOI: 10.1038/nature22820] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/04/2017] [Indexed: 01/16/2023]
Abstract
Half of all prostate cancers are caused by the TMPRSS2-ERG gene-fusion, which enables androgens to drive expression of the normally silent E26 transformation-specific (ETS) transcription factor ERG in prostate cells. Recent genomic landscape studies of such cancers have reported recurrent point mutations and focal deletions of another ETS member, the ETS2 repressor factor ERF. Here we show these ERF mutations cause decreased protein stability and mostly occur in tumours without ERG upregulation. ERF loss recapitulates the morphological and phenotypic features of ERG gain in normal mouse prostate cells, including expansion of the androgen receptor transcriptional repertoire, and ERF has tumour suppressor activity in the same genetic background of Pten loss that yields oncogenic activity by ERG. In the more common scenario of ERG upregulation, chromatin immunoprecipitation followed by sequencing indicates that ERG inhibits the ability of ERF to bind DNA at consensus ETS sites both in normal and in cancerous prostate cells. Consistent with a competition model, ERF overexpression blocks ERG-dependent tumour growth, and ERF loss rescues TMPRSS2-ERG-positive prostate cancer cells from ERG dependency. Collectively, these data provide evidence that the oncogenicity of ERG is mediated, in part, by competition with ERF and they raise the larger question of whether other gain-of-function oncogenic transcription factors might also inactivate endogenous tumour suppressors.
Collapse
|
36
|
Sizemore GM, Pitarresi JR, Balakrishnan S, Ostrowski MC. The ETS family of oncogenic transcription factors in solid tumours. Nat Rev Cancer 2017; 17:337-351. [PMID: 28450705 DOI: 10.1038/nrc.2017.20] [Citation(s) in RCA: 240] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Findings over the past decade have identified aberrant activation of the ETS transcription factor family throughout all stages of tumorigenesis. Specifically in solid tumours, gene rearrangement and amplification, feed-forward growth factor signalling loops, formation of gain-of-function co-regulatory complexes and novel cis-acting mutations in ETS target gene promoters can result in increased ETS activity. In turn, pro-oncogenic ETS signalling enhances tumorigenesis through a broad mechanistic toolbox that includes lineage specification and self-renewal, DNA damage and genome instability, epigenetics and metabolism. This Review discusses these different mechanisms of ETS activation and subsequent oncogenic implications, as well as the clinical utility of ETS factors.
Collapse
Affiliation(s)
- Gina M Sizemore
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Jason R Pitarresi
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Subhasree Balakrishnan
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- The Comprehensive Cancer Center, The Ohio State University
- Department of Cancer Biology and Genetics, The Ohio State University, 598 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
37
|
Mancarella C, Casanova-Salas I, Calatrava A, García-Flores M, Garofalo C, Grilli A, Rubio-Briones J, Scotlandi K, López-Guerrero JA. Insulin-like growth factor 1 receptor affects the survival of primary prostate cancer patients depending on TMPRSS2-ERG status. BMC Cancer 2017; 17:367. [PMID: 28545426 PMCID: PMC5445474 DOI: 10.1186/s12885-017-3356-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is characterized by clinical and biological heterogeneity and has differential outcomes and mortality rates. Therefore, it is necessary to identify molecular alterations to define new therapeutic strategies based on the risk of progression. In this study, the prognostic relevance of the insulin-like growth factor (IGF) system was examined in molecular subtypes defined by TMPRSS2-ERG (T2E) gene fusion within a series of patients with primary localized PCa. METHODS A cohort of 270 formalin-fixed and paraffin-embedded (FFPE) primary PCa samples from patients with more than 5 years' follow-up was collected. IGF-1R, IGF-1, IGFBP-3 and INSR expression was analyzed using quantitative RT-PCR. The T2E status and immunohistochemical ERG findings were considered in the analyses. The association with both biochemical and clinical progression-free survival (BPFS and PFS, respectively) was evaluated for the different molecular subtypes using the Kaplan-Meier proportional risk log-rank test and the Cox proportional hazards model. RESULTS An association between IGF-1R overexpression and better BPFS was found in T2E-negative patients (35.3% BPFS, p-value = 0.016). Multivariate analysis demonstrated that IGF-1R expression constitutes an independent variable in T2E-negative patients [HR: 0.41. CI 95% (0.2-0.82), p = 0.013]. These data were confirmed using immunohistochemistry of ERG as subrogate of T2E. High IGF-1 expression correlated with prolonged BPFS and PFS independent of the T2E status. CONCLUSIONS IGF-1R, a reported target of T2E, constitutes an independent factor for good prognosis in T2E-negative PCa. Quantitative evaluation of IGF-1/IGF-1R expression combined with molecular assessment of T2E status or ERG protein expression represents a useful marker for tumor progression in localized PCa.
Collapse
Affiliation(s)
- Caterina Mancarella
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Irene Casanova-Salas
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/ Prof. Beltrán Báguena, 8, 46009 Valencia, Spain
| | - Ana Calatrava
- Department of Pathology, Fundación Instituto Valenciano de Oncología, C/ Prof. Beltrán Báguena, 8, 46009 Valencia, Spain
| | - Maria García-Flores
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/ Prof. Beltrán Báguena, 8, 46009 Valencia, Spain
| | - Cecilia Garofalo
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Andrea Grilli
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy
| | - José Rubio-Briones
- Department of Urology, Fundación Instituto Valenciano de Oncología, C/ Prof. Beltrán Báguena, 8, 46009 Valencia, Spain
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, via di Barbiano, 1/10, 40136 Bologna, Italy
| | - José Antonio López-Guerrero
- Laboratory of Molecular Biology, Fundación Instituto Valenciano de Oncología, C/ Prof. Beltrán Báguena, 8, 46009 Valencia, Spain
| |
Collapse
|
38
|
Abstract
Metastatic castration-resistant prostate cancer (CRPC) is associated with substantial clinical, pathologic, and molecular heterogeneity. Most tumors remain driven by androgen receptor (AR) signaling, which has clinical implications for patient selection for AR-directed approaches. However, histologic and clinical resistance phenotypes can emerge after AR inhibition, in which the tumors become less dependent on the AR. In this review, we discuss prostate cancer variants including neuroendocrine (NEPC) and aggressive variant (AVPC) prostate cancers and their clinical implications. Improvements in the understanding of the biologic mechanisms and molecular features underlying prostate cancer variants may help prognostication and facilitate the development of novel therapeutic approaches for subclasses of patient with CRPC.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA
| | - Loredana Puca
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA
| | - Himisha Beltran
- Division of Hematology and Medical Oncology, Weill Cornell Medicine, 413 East 69th Street 1412,, New York, NY, 10021, USA.
| |
Collapse
|
39
|
Liu X, Xue M. Noninvasive Prenatal Diagnosis Significance of ERG Methylation as a Biomarker in Down's Syndrome. Med Sci Monit 2017; 23:398-404. [PMID: 28111453 PMCID: PMC5282964 DOI: 10.12659/msm.898687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Down’s syndrome (DS) is a genetic disease with chromosome abnormality due to the increasing chromosome 21. This study focused on the clinical application value of ERG methylation level in blood of pregnant women as a biomarker in Down’s syndrome. Material/Methods The sham group consisted of 210 nonpregnant women, the positive control group consisted of 33 women with a delivery history of DS fetus, and the negative control group consisted of 60 women with eutocia history. A combination of restriction enzyme digestion experiment and PCR was performed to examine ERG methylation levels, methylation sites, and distribution in blood of pregnant women and in chorion tissues from abortion samples. Gene sequencing was performed to determine the ERG sequence in chromosome 21. Homology between normal tissues and chorion tissues from abortion samples was analyzed with bioinformatics technology. Results ERG methylation in chorion tissues from 210 abortion samples at 8, 9, and 10 weeks gestational age were determined; however, no ERG methylation was determined in blood of pregnant women. Gene sequencing indicated that normal ERG sequence in chromosome 21 was in fetus chorion tissues, and these ERG sequences were aberrantly methylated. Bioinformatics result showed that homology and DNA methylation level was discrepancy in normal tissues and chorion tissues from abortion samples. Conclusions It was worthwhile to use ERG methylation as biomarker in noninvasive prenatal diagnosis, and ERG methylation should be applied with consent of pregnancy and her relatives.
Collapse
Affiliation(s)
- Xiangju Liu
- Genetics Diagnostic Lab, Tai'an Maternity and Child Care Hospital, Tai'an, Shandong, China (mainland)
| | - Ming Xue
- Genetics Diagnostic Lab, Tai'an Maternity and Child Care Hospital, Tai'an, Shandong, China (mainland)
| |
Collapse
|
40
|
Spratt DE, Zumsteg ZS, Feng FY, Tomlins SA. Translational and clinical implications of the genetic landscape of prostate cancer. Nat Rev Clin Oncol 2016; 13:597-610. [PMID: 27245282 PMCID: PMC5030163 DOI: 10.1038/nrclinonc.2016.76] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the past several years, analyses of data from high-throughput studies have elucidated many fundamental insights into prostate cancer biology. These insights include the identification of molecular alterations and subtypes that drive tumour progression, recurrent aberrations in signalling pathways, the existence of substantial intertumoural and intratumoural heterogeneity, Darwinian evolution in response to therapeutic pressures and the complicated multidirectional patterns of spread between primary tumours and metastatic sites. However, these concepts have not yet been fully translated into clinical tools to improve prognostication, prediction and personalization of treatment of patients with prostate cancer. The current and future clinical implications of 'omics' level knowledge is not only revolutionizing our understanding of prostate cancer biology, but is also shaping ongoing, and future clinical investigations and practice. In this Review, we summarize these advances, and the remaining challenges surrounding tumour heterogeneity and the ability to overcome treatment resistance are also described.
Collapse
Affiliation(s)
- Daniel E Spratt
- Department of Radiation Oncology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | - Zachary S Zumsteg
- Department of Radiation Oncology, Cedars Sinai Medical Center, 8700 Beverly Blvd, West Hollywood, CA 90048, USA
| | - Felix Y Feng
- Department of Radiation Oncology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, 1524 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, Ann Arbor, Michigan, USA
| | - Scott A Tomlins
- Department of Pathology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Department of Urology, University of Michigan Medical School, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109, USA
- Michigan Center for Translational Pathology, University of Michigan Medical School, 1524 BSRB, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109-2200, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Priemer DS, Montironi R, Wang L, Williamson SR, Lopez-Beltran A, Cheng L. Neuroendocrine Tumors of the Prostate: Emerging Insights from Molecular Data and Updates to the 2016 World Health Organization Classification. Endocr Pathol 2016; 27:123-35. [PMID: 26885643 DOI: 10.1007/s12022-016-9421-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neuroendocrine neoplasms of the prostate represent a multifarious group of tumors that exist both in pure forms and associated with prostatic adenocarcinoma. Morphologically, neuroendocrine cells in prostate neoplasms can range from being indistinguishable from surrounding prostate adenocarcinoma cells to having high-grade neuroendocrine appearances similar to neuroendocrine malignancies of other organs. On the molecular level, neuroendocrine malignancies arising in the setting of prostate adenocarcinoma have been the subject of a large amount of recent research, most of which has supported the conclusion that neuroendocrine malignancy within the prostate develops as a transdifferentiation from prostate adenocarcinoma. There has not, however, been substantial investigation into rare, pure neuroendocrine malignancies and the possibility that these tumors may have a different cell of origin and molecular genesis. Here, we discuss the morphologic spectrum of malignant neuroendocrine prostate neoplasms and review the most recent molecular data on the subject of malignant neuroendocrine differentiation in prostatic adenocarcinoma. In reflection of the most recent data, we also discuss diagnostic classification of prostate neuroendocrine tumors with reference to the 2016 World Health Organization (WHO) classification. We discuss the reporting of these tumors, placing emphasis on the differentiation between pure and mixed neuroendocrine malignancies so that, in the least, they can be easily identified for the purposes of future clinical and laboratory-based investigation. Finally, we suggest a designation for an unclassifiable (or not otherwise specified) high-grade neuroendocrine prostate malignancy whose features do not easily place it into one of the WHO diagnostic entities.
Collapse
Affiliation(s)
- David S Priemer
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, IU Health Pathology Laboratory Room 4010, Indianapolis, IN, 46202, USA
| | - Rodolfo Montironi
- Institute of Pathological Anatomy and Histopathology, School of Medicine, Polytechnic University of the Marche Region (Ancona), United Hospitals, Ancona, Italy
| | - Lisha Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Sean R Williamson
- Department of Pathology and Laboratory Medicine, Henry Ford Health System, Detroit, MI, USA
- Josephine Ford Cancer Institute, Henry Ford Health System, Detroit, MI, USA
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Antonio Lopez-Beltran
- Department of Surgery, Faculty of Medicine, Cordoba University, Cordoba, Spain
- Champalimaud Clinical Center, Lisbon, Portugal
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 350 West 11th Street, IU Health Pathology Laboratory Room 4010, Indianapolis, IN, 46202, USA.
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
42
|
Mounir Z, Korn JM, Westerling T, Lin F, Kirby CA, Schirle M, McAllister G, Hoffman G, Ramadan N, Hartung A, Feng Y, Kipp DR, Quinn C, Fodor M, Baird J, Schoumacher M, Meyer R, Deeds J, Buchwalter G, Stams T, Keen N, Sellers WR, Brown M, Pagliarini RA. ERG signaling in prostate cancer is driven through PRMT5-dependent methylation of the Androgen Receptor. eLife 2016; 5. [PMID: 27183006 PMCID: PMC4909395 DOI: 10.7554/elife.13964] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/06/2016] [Indexed: 11/17/2022] Open
Abstract
The TMPRSS2:ERG gene fusion is common in androgen receptor (AR) positive prostate cancers, yet its function remains poorly understood. From a screen for functionally relevant ERG interactors, we identify the arginine methyltransferase PRMT5. ERG recruits PRMT5 to AR-target genes, where PRMT5 methylates AR on arginine 761. This attenuates AR recruitment and transcription of genes expressed in differentiated prostate epithelium. The AR-inhibitory function of PRMT5 is restricted to TMPRSS2:ERG-positive prostate cancer cells. Mutation of this methylation site on AR results in a transcriptionally hyperactive AR, suggesting that the proliferative effects of ERG and PRMT5 are mediated through attenuating AR’s ability to induce genes normally involved in lineage differentiation. This provides a rationale for targeting PRMT5 in TMPRSS2:ERG positive prostate cancers. Moreover, methylation of AR at arginine 761 highlights a mechanism for how the ERG oncogene may coax AR towards inducing proliferation versus differentiation. DOI:http://dx.doi.org/10.7554/eLife.13964.001 Prostate cancers are among the most common types of cancer in men, which, like other cancers, are driven by genetic mutations. Roughly half of all prostate cancers contain a genetic change that incorrectly fuses two genes together, causing the cells to produce abnormally high levels of a protein called ERG. ERG is a transcription factor, a protein that binds to specific sequences of DNA to influence the activity of nearby genes. ERG represses genes that help to prevent prostate cancers from growing, and so promotes prostate cancer development. Like most other transcription factors, ERG is difficult to target with drugs and no therapies that directly prevent the activity of ERG currently exist. Mounir et al. wanted to find out whether ERG cooperates with other proteins to cause prostate cancer cells to grow, with the hope that these proteins could be more easily targeted with a drug. By using various biochemical techniques in human prostate cancer cell lines, Mounir et al. found that ERG interacts with an enzyme called PRMT5. This interaction enables PRMT5 to chemically modify other proteins to change their activity. In the case of prostate cancer cells, PRMT5 inappropriately modifies the androgen receptor, a protein that regulates the growth of normal prostate cells. This abnormal modification contributes to the excessive growth of the cancer cells. Although PRMT5 will be easier to target with drugs than ERG, it also has many other roles besides those described by Mounir et al. Much more work is therefore needed to investigate whether PRMT5 could be safely targeted to treat patients with prostate cancer. DOI:http://dx.doi.org/10.7554/eLife.13964.002
Collapse
Affiliation(s)
- Zineb Mounir
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Joshua M Korn
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Thomas Westerling
- Department of Medical Oncology, Harvard Medical School, Boston, United States.,Center for Functional Cancer Epigenetics, Harvard Medical School, Boston, United States.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Fallon Lin
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Christina A Kirby
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Markus Schirle
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Gregg McAllister
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Greg Hoffman
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Nadire Ramadan
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - Anke Hartung
- Genomics Institute of the Novartis Research Foundation, Novartis Institutes for Bio Medical Resarch, San Diego, United States
| | - Yan Feng
- Developmental and Molecular Pathways, Novartis Institutes for Biomedical Research, Cambridge, United States
| | - David Randal Kipp
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Christopher Quinn
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Michelle Fodor
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Jason Baird
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Marie Schoumacher
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Ronald Meyer
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - James Deeds
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Gilles Buchwalter
- Department of Medical Oncology, Harvard Medical School, Boston, United States.,Center for Functional Cancer Epigenetics, Harvard Medical School, Boston, United States.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Travis Stams
- Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Nicholas Keen
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - William R Sellers
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| | - Myles Brown
- Department of Medical Oncology, Harvard Medical School, Boston, United States.,Center for Functional Cancer Epigenetics, Harvard Medical School, Boston, United States.,Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Raymond A Pagliarini
- Department of Oncology, Novartis Institutes for BioMedical Research, Cambridge, United States
| |
Collapse
|
43
|
Li Q, Zhang CS, Zhang Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res 2016; 28:122-9. [PMID: 27041934 DOI: 10.3978/j.issn.1000-9604.2016.01.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine differentiation (NED), which is not uncommon in prostate cancer, is increases in prostate cancer after androgen-deprivation therapy (ADT) and generally appears in castration-resistant prostate cancer (CRPC). Neuroendocrine cells, which are found in normal prostate tissue, are a small subset of cells and have unique function in regulating the growth of prostate cells. Prostate cancer with NED includes different types of tumor, including focal NED, pure neuroendocrine tumor or mixed neuroendocrine-adenocarcinoma. Although more and more studies are carried out on NED in prostate cancer, the molecular components that are involved in NED are still poorly elucidated. We review neuroendocrine cells in normal prostate tissue, NED in prostate cancer, terminology of NED and biomarkers used for detecting NED in routine pathological practice. Some recently reported molecular components which drive NED in prostate cancer are listed in the review.
Collapse
Affiliation(s)
- Qi Li
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Connie S Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yifen Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
44
|
Pertega-Gomes N, Vizcaino JR, Felisbino S, Warren AY, Shaw G, Kay J, Whitaker H, Lynch AG, Fryer L, Neal DE, Massie CE. Epigenetic and oncogenic regulation of SLC16A7 (MCT2) results in protein over-expression, impacting on signalling and cellular phenotypes in prostate cancer. Oncotarget 2015; 6:21675-84. [PMID: 26035357 PMCID: PMC4673295 DOI: 10.18632/oncotarget.4328] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/30/2015] [Indexed: 12/01/2022] Open
Abstract
Monocarboxylate Transporter 2 (MCT2) is a major pyruvate transporter encoded by the SLC16A7 gene. Recent studies pointed to a consistent overexpression of MCT2 in prostate cancer (PCa) suggesting MCT2 as a putative biomarker and molecular target. Despite the importance of this observation the mechanisms involved in MCT2 regulation are unknown. Through an integrative analysis we have discovered that selective demethylation of an internal SLC16A7/MCT2 promoter is a recurrent event in independent PCa cohorts. This demethylation is associated with expression of isoforms differing only in 5'-UTR translational control motifs, providing one contributing mechanism for MCT2 protein overexpression in PCa. Genes co-expressed with SLC16A7/MCT2 also clustered in oncogenic-related pathways and effectors of these signalling pathways were found to bind at the SLC16A7/MCT2 gene locus. Finally, MCT2 knock-down attenuated the growth of PCa cells. The present study unveils an unexpected epigenetic regulation of SLC16A7/MCT2 isoforms and identifies a link between SLC16A7/MCT2, Androgen Receptor (AR), ETS-related gene (ERG) and other oncogenic pathways in PCa. These results underscore the importance of combining data from epigenetic, transcriptomic and protein level changes to allow more comprehensive insights into the mechanisms underlying protein expression, that in our case provide additional weight to MCT2 as a candidate biomarker and molecular target in PCa.
Collapse
Affiliation(s)
| | - Jose R Vizcaino
- Department of Pathology, Centro Hospitalar do Porto, Porto, Portugal
| | - Sergio Felisbino
- Department of Morphology, Institute of Biosciences, Sao Paulo State University (UNESP), Sao Paulo, Brazil
| | - Anne Y Warren
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Greg Shaw
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - Jonathan Kay
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Hayley Whitaker
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Molecular Diagnostics and Therapeutics Group, University College London, London, UK
| | - Andy G Lynch
- Statistics and Computational Biology Group, CRUK Cambridge Institute, Cambridge, UK
| | - Lee Fryer
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| | - David E Neal
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
- Department of Urology, University of Cambridge, Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Charles E Massie
- Uro-oncology Research Group, CRUK Cambridge Institute, Cambridge, UK
| |
Collapse
|
45
|
Davare MA, Tognon CE. Detecting and targetting oncogenic fusion proteins in the genomic era. Biol Cell 2015; 107:111-29. [PMID: 25631473 DOI: 10.1111/boc.201400096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 01/23/2015] [Indexed: 12/15/2022]
Abstract
The advent of widespread cancer genome sequencing has accelerated our understanding of the molecular aberrations underlying malignant disease at an unprecedented rate. Coupling the large number of bioinformatic methods developed to locate genomic breakpoints with increased sequence read length and a deeper understanding of coding region function has enabled rapid identification of novel actionable oncogenic fusion genes. Using examples of kinase fusions found in liquid and solid tumours, this review highlights major concepts that have arisen in our understanding of cancer pathogenesis through the study of fusion proteins. We provide an overview of recently developed methods to identify potential fusion proteins from next-generation sequencing data, describe the validation of their oncogenic potential and discuss the role of targetted therapies in treating cancers driven by fusion oncoproteins.
Collapse
Affiliation(s)
- Monika A Davare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, U.S.A; Department of Pediatrics, Oregon Health & Science University, Portland, OR, 97239, U.S.A
| | | |
Collapse
|
46
|
Massie CE, Spiteri I, Ross-Adams H, Luxton H, Kay J, Whitaker HC, Dunning MJ, Lamb AD, Ramos-Montoya A, Brewer DS, Cooper CS, Eeles R, Warren AY, Tavaré S, Neal DE, Lynch AG. HES5 silencing is an early and recurrent change in prostate tumourigenesis. Endocr Relat Cancer 2015; 22:131-44. [PMID: 25560400 PMCID: PMC4335379 DOI: 10.1530/erc-14-0454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 12/18/2014] [Accepted: 01/05/2015] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the most common cancer in men, resulting in over 10 000 deaths/year in the UK. Sequencing and copy number analysis of primary tumours has revealed heterogeneity within tumours and an absence of recurrent founder mutations, consistent with non-genetic disease initiating events. Using methylation profiling in a series of multi-focal prostate tumours, we identify promoter methylation of the transcription factor HES5 as an early event in prostate tumourigenesis. We confirm that this epigenetic alteration occurs in 86-97% of cases in two independent prostate cancer cohorts (n=49 and n=39 tumour-normal pairs). Treatment of prostate cancer cells with the demethylating agent 5-aza-2'-deoxycytidine increased HES5 expression and downregulated its transcriptional target HES6, consistent with functional silencing of the HES5 gene in prostate cancer. Finally, we identify and test a transcriptional module involving the AR, ERG, HES1 and HES6 and propose a model for the impact of HES5 silencing on tumourigenesis as a starting point for future functional studies.
Collapse
Affiliation(s)
- Charles E Massie
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Inmaculada Spiteri
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Helen Ross-Adams
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Hayley Luxton
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Jonathan Kay
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Hayley C Whitaker
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Mark J Dunning
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Alastair D Lamb
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Antonio Ramos-Montoya
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Daniel S Brewer
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Colin S Cooper
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Rosalind Eeles
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Anne Y Warren
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Simon Tavaré
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - David E Neal
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| | - Andy G Lynch
- Cancer Research UK Cambridge InstituteUniversity of Cambridge, Cambridge, CB2 0RE, UKDivision of Genetics and EpidemiologyThe Institute of Cancer Research, Sutton, UKDepartment of Biological Sciences and School of MedicineUniversity of East Anglia, Norwich, UKRoyal Marsden NHS Foundation TrustLondon and Sutton, UKDepartments of PathologyUrologySurgical OncologyAddenbrooke's Hospital, Hills Road, Cambridge, UK
| |
Collapse
|
47
|
Higgins J, Brogley M, Palanisamy N, Mehra R, Ittmann MM, Li JZ, Tomlins SA, Robins DM. Interaction of the Androgen Receptor, ETV1, and PTEN Pathways in Mouse Prostate Varies with Pathological Stage and Predicts Cancer Progression. Discov Oncol 2015; 6:67-86. [PMID: 25631336 DOI: 10.1007/s12672-014-0215-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
To examine the impact of common somatic mutations in prostate cancer (PCa) on androgen receptor (AR) signaling, mouse models were designed to perturb sequentially the AR, ETV1, and PTEN pathways. Mice with "humanized" AR (hAR) alleles that modified AR transcriptional strength by varying polyglutamine tract (Q-tract) length were crossed with mice expressing a prostate-specific, AR-responsive ETV1 transgene (ETV1(Tg)). While hAR allele did not grossly affect ETV1-induced neoplasia, ETV1 strongly antagonized global AR regulation and repressed critical androgen-induced differentiation and tumor suppressor genes, such as Nkx3-1 and Hoxb13. When Pten was varied to determine its impact on disease progression, mice lacking one Pten allele (Pten(+/-) ) developed more frequent prostatic intraepithelial neoplasia (PIN). Yet, only those with the ETV1 transgene progressed to invasive adenocarcinoma. Furthermore, progression was more frequent with the short Q-tract (stronger) AR, suggesting that the AR, ETV1, and PTEN pathways cooperate in aggressive disease. On the Pten(+/-) background, ETV1 had markedly less effect on AR target genes. However, a strong inflammatory gene expression signature, notably upregulation of Cxcl16, was induced by ETV1. Comparison of mouse and human patient data stratified by the presence of E26 transformation-specific ETS fusion genes highlighted additional factors, some not previously associated with prostate cancer but for which targeted therapies are in development for other diseases. In sum, concerted use of these mouse models illuminates the complex interplay of AR, ETV1, and PTEN pathways in pre-cancerous neoplasia and early tumorigenesis, disease stages difficult to analyze in man.
Collapse
Affiliation(s)
- Jake Higgins
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Braadland PR, Ramberg H, Grytli HH, Taskén KA. β-Adrenergic Receptor Signaling in Prostate Cancer. Front Oncol 2015; 4:375. [PMID: 25629002 PMCID: PMC4290544 DOI: 10.3389/fonc.2014.00375] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/16/2014] [Indexed: 12/29/2022] Open
Abstract
Enhanced sympathetic signaling, often associated with obesity and chronic stress, is increasingly acknowledged as a contributor to cancer aggressiveness. In prostate cancer, intact sympathetic nerves are critical for tumor formation, and sympathectomy induces apoptosis and blocks tumor growth. Perineural invasion, involving enrichment of intra-prostatic nerves, is frequently observed in prostate cancer and is associated with poor prognosis. β2-adrenergic receptor (ADRB2), the most abundant receptor for sympathetic signals in prostate luminal cells, has been shown to regulate trans-differentiation of cancer cells to neuroendocrine-like cells and to affect apoptosis, angiogenesis, epithelial–mesenchymal transition, migration, and metastasis. Epidemiologic studies have shown that use of β-blockers, inhibiting β-adrenergic receptor activity, is associated with reduced prostate cancer-specific mortality. In this review, we aim to present an overview on how β-adrenergic receptor and its downstream signaling cascade influence the development of aggressive prostate cancer, primarily through regulating neuroendocrine differentiation.
Collapse
Affiliation(s)
- Peder Rustøen Braadland
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway
| | - Håkon Ramberg
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway
| | - Helene Hartvedt Grytli
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute of Cancer Research, Division of Cancer Medicine, Transplantation and Surgery, Oslo University Hospital , Oslo , Norway ; Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|