1
|
Abdallah S, Tabebi M, Qanadilo S, Ali N, Wang J, D'Arcy P, Zhong W, Sjoberg F, Elmasry M, El-Serafi A. Modulation of biological activities in adipose derived stem cells by histone deacetylation. Sci Rep 2025; 15:3629. [PMID: 39880862 PMCID: PMC11779964 DOI: 10.1038/s41598-024-84652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/25/2024] [Indexed: 01/31/2025] Open
Abstract
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments. We investigated the effects of histone deacetylase inhibitor (SAHA) on ADSCs to better understand its cellular and molecular impacts. ADSCs were treated with SAHA for 72 h, showing no change in cell viability at the studied concentrations. However, the expression of histone deacetylase decreased at 1000 nM, while the cell proliferation marker Ki-67 increased after SAHA treatment, as confirmed by immunofluorescence. CCND1 gene expression increased, whereas protein expression of the proliferating cell nuclear antigen (PCNA) decreased. Cell cycle analysis showed an increase in G2 phase in SAHA-treated cells. Microarray analysis revealed 74 upregulated and 40 downregulated differentially expressed genes, including upregulation of P53 targets, CDKN1A and MDM2. Proteomic analysis identified 631 upregulated and 823 downregulated proteins compared to the vehicle. Pathway enrichment analysis showed cell cycle, ATP-dependent chromatin remodeling and DNA processes were among the affected pathways. This study suggests SAHA modulates ADSCs' biological processes, highlighting its potential for skin regeneration.
Collapse
Affiliation(s)
- Sallam Abdallah
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Mouna Tabebi
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Clinical Genomics Linköping, Linköping University, Linköping, Sweden
| | - Sawsan Qanadilo
- Department of Biological Sciences, The University of Jordan, Amman, Jordan
| | - Neserin Ali
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jing Wang
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Pádraig D'Arcy
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Wen Zhong
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Folke Sjoberg
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Moustafa Elmasry
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
- Department of Hand Surgery and Plastic Surgery and Burns, University Hospital, Linköping, Sweden
| | - Ahmed El-Serafi
- The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
- Department of Hand Surgery and Plastic Surgery and Burns, University Hospital, Linköping, Sweden.
| |
Collapse
|
2
|
Wu M, Jiang Y, Zhang D, Wu Y, Jin Y, Liu T, Mao X, Yu H, Xu T, Chen Y, Huang W, Che J, Zhang B, Liu T, Lin N, Dong X. Discovery of a potent PARP1 PROTAC as a chemosensitizer for the treatment of colorectal cancer. Eur J Med Chem 2025; 282:117062. [PMID: 39602992 DOI: 10.1016/j.ejmech.2024.117062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
Given the vulnerability of colorectal cancer (CRC) patients could not obtain a sustained benefit from chemotherapy, combination therapy is frequently employed as a treatment strategy. Targeting PARP1 blockade exhibit specific toxicity towards tumor cells with BRCA1 or BRCA2 mutations through synthetic lethality. This study focuses on developing a series of potent PROTACs targeting PARP1 in order to enhance the sensitivity of CRC cells with BRCA1 or BRCA2 mutations to chemotherapy. Compound C6, obtained based on precise structural optimization of the linker, has been shown to effectively degrade PARP1 with a DC50 value of 58.14 nM. Furthermore, C6 significantly increased the cytotoxic efficacy of SN-38, an active metabolite of Irinotecan, in BRCA-mutated CRC cells, achieving a favorable combination index (CI) of 0.487. In conclusion, this research underscores the potential benefits of employing a combination therapy that utilizes PAPRP1 degrader C6 alongside Irinotecan for CRC patients harboring BRCA mutations in CRC.
Collapse
Affiliation(s)
- Mingfei Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiming Jiang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daoming Zhang
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yiquan Wu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinfei Mao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hengyuan Yu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tengfei Xu
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Chen
- Institute of Modern Chinese Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, China
| | - Jinxin Che
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| | - Tao Liu
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| | - Nengming Lin
- Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310024, China; Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China.
| | - Xiaowu Dong
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Chan KH, Zheng BX, Leung ASL, Long W, Zhao Y, Zheng Y, Wong WL. A NRAS mRNA G-quadruplex structure-targeting small-molecule ligand reactivating DNA damage response in human cancer cells for combination therapy with clinical PI3K inhibitors. Int J Biol Macromol 2024; 279:135308. [PMID: 39244134 DOI: 10.1016/j.ijbiomac.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The Neuroblastoma RAS (NRAS) oncogene homologue plays crucial roles in diverse cellular processes such as cell proliferation, survival, and differentiation. Several strategies have been developed to inhibit NRAS or its downstream effectors; however, there is no effective drug available to treat NRAS-driven cancers and thus new approaches are needed to be established. The mRNA sequence expressing NRAS containing several guanine(G)-rich regions may form quadruplex structures (G4s) and regulate NRAS translation. Therefore, targeting NRAS mRNA G4s to repress NRAS expression at translational level with ligands may be a feasible strategy against NRAS-driven cancers but it is underexplored. We reported herein a NRAS mRNA G4-targeting ligand, B3C, specifically localized in cytoplasm in HeLa cells. It effectively downregulates NRAS proteins, reactivates the DNA damage response (DDR), causes cell cycle arrest in G2/M phase, and induces apoptosis and senescence. Moreover, combination therapy with NARS mRNA G4-targeting ligands and clinical PI3K inhibitors for cancer cells inhibition treatment is unexplored, and we demonstrated that B3C combining with PI3Ki (pictilisib (GDC-0941)) showed potent antiproliferation activity against HeLa cells (IC50 = 1.03 μM (combined with 10 μM PI3Ki) and 0.42 μM (combined with 20 μM PI3Ki)) and exhibited strong synergistic effects in inhibiting cell proliferation. This study provides new insights into drug discovery against RAS-driven cancers using this conceptually new combination therapy strategy.
Collapse
Affiliation(s)
- Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yuchen Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yingying Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
4
|
Liang L, Liang X, Yu X, Xiang W. Bioinformatic Analyses and Integrated Machine Learning to Predict prognosis and therapeutic response Based on E3 Ligase-Related Genes in colon cancer. J Cancer 2024; 15:5376-5395. [PMID: 39247594 PMCID: PMC11375543 DOI: 10.7150/jca.98723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024] Open
Abstract
Purpose: Colorectal cancer is the third most common cause of cancer death worldwide. We probed the correlations between E3 ubiquitin ligase (E3)-related genes (ERGs) and colon cancer prognosis and immune responses. Methods: Gene expression profiles and clinical data of patients with colon cancer were acquired from the TCGA, GTEx, GSE17537 and GSE29621 databases. ERGs were identified by coexpression analysis. WGCNA and differential expression analysis were subsequently conducted. Consensus clustering identified two molecular clusters. Differential analysis of the two clusters and Cox regression were then conducted. A prognostic model was constructed based on 10 machine learning algorithms and 92 algorithm combinations. The CIBERSORT, ssGSEA and TIMER algorithms were used to estimate immune infiltration. The OncoPredict algorithm and The Cancer Immunome Atlas (TCIA) predicted susceptibility to chemotherapeutic and targeted drugs and immunotherapy sensitivity. CCK-8, scratch-wound and RT‒PCR assays were subsequently conducted. Results: Two ERG-associated clusters were identified. The prognosis and immune function of patients in cluster A were superior to those of patients in cluster B. We constructed a prognostic model with perfect predictive capability and validated it in internal and external colon cancer datasets. We discovered significant discrepancies in immune infiltration and immune checkpoints between different risk groups. The group with high-risk had a reduced half-maximal inhibitory concentration (IC50) for some routine antitumor drugs and reduced susceptibility to immunotherapy. In vitro experiments demonstrated that the ectopic expression of PRELP inhibited the migration and proliferation of CRC cells. Conclusions: In summary, we identified novel molecular subtypes and developed a prognostic model, which will help a lot in the advancement of better forecasting and therapeutic approaches.
Collapse
Affiliation(s)
- Lunxi Liang
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Liang
- School of Clinical Medicine, Changsha Medical University, Changsha, China
| | - Xueke Yu
- Department of Gastroenterology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Wanting Xiang
- Department of Pathology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|
5
|
Xu X, Qiu H. BRD4 promotes gouty arthritis through MDM2-mediated PPARγ degradation and pyroptosis. Mol Med 2024; 30:67. [PMID: 38773379 PMCID: PMC11110350 DOI: 10.1186/s10020-024-00831-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Gouty arthritis (GA) is characterized by monosodium urate (MSU) crystal accumulation that instigates NLRP3-mediated pyroptosis; however, the underlying regulatory mechanisms have yet to be fully elucidated. The present research endeavors to elucidate the regulatory mechanisms underpinning this MSU-induced pyroptotic cascade in GA. METHODS J774 cells were exposed to lipopolysaccharide and MSU crystals to establish in vitro GA models, whereas C57BL/6 J male mice received MSU crystal injections to mimic in vivo GA conditions. Gene and protein expression levels were evaluated using real-time quantitative PCR, Western blotting, and immunohistochemical assays. Inflammatory markers were quantified via enzyme-linked immunosorbent assays. Pyroptosis was evaluated using immunofluorescence staining for caspase-1 and flow cytometry with caspase-1/propidium iodide staining. The interaction between MDM2 and PPARγ was analyzed through co-immunoprecipitation assays, whereas the interaction between BRD4 and the MDM2 promoter was examined using chromatin immunoprecipitation and dual-luciferase reporter assays. Mouse joint tissues were histopathologically evaluated using hematoxylin and eosin staining. RESULTS In GA, PPARγ was downregulated, whereas its overexpression mitigated NLRP3 inflammasome activation and pyroptosis. MDM2, which was upregulated in GA, destabilized PPARγ through the ubiquitin-proteasome degradation pathway, whereas its silencing attenuated NLRP3 activation by elevating PPARγ levels. Concurrently, BRD4 was elevated in GA and exacerbated NLRP3 activation and pyroptosis by transcriptionally upregulating MDM2, thereby promoting PPARγ degradation. In vivo experiments showed that BRD4 silencing ameliorated GA through this MDM2-PPARγ-pyroptosis axis. CONCLUSION BRD4 promotes inflammation and pyroptosis in GA through MDM2-mediated PPARγ degradation, underscoring the therapeutic potential of targeting this pathway in GA management.
Collapse
Affiliation(s)
- Xiaoxia Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, People's Republic of China
| | - Hongbin Qiu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, People's Republic of China.
| |
Collapse
|
6
|
Yalaz C, Bridges E, Alham NK, Zois CE, Chen J, Bensaad K, Miar A, Pires E, Muschel RJ, McCullagh JSO, Harris AL. Cone photoreceptor phosphodiesterase PDE6H inhibition regulates cancer cell growth and metabolism, replicating the dark retina response. Cancer Metab 2024; 12:5. [PMID: 38350962 PMCID: PMC10863171 DOI: 10.1186/s40170-023-00326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND PDE6H encodes PDE6γ', the inhibitory subunit of the cGMP-specific phosphodiesterase 6 in cone photoreceptors. Inhibition of PDE6, which has been widely studied for its role in light transduction, increases cGMP levels. The purpose of this study is to characterise the role of PDE6H in cancer cell growth. METHODS From an siRNA screen for 487 genes involved in metabolism, PDE6H was identified as a controller of cell cycle progression in HCT116 cells. Role of PDE6H in cancer cell growth and metabolism was studied through the effects of its depletion on levels of cell cycle controllers, mTOR effectors, metabolite levels, and metabolic energy assays. Effect of PDE6H deletion on tumour growth was also studied in a xenograft model. RESULTS PDE6H knockout resulted in an increase of intracellular cGMP levels, as well as changes to the levels of nucleotides and key energy metabolism intermediates. PDE6H knockdown induced G1 cell cycle arrest and cell death and reduced mTORC1 signalling in cancer cell lines. Both knockdown and knockout of PDE6H resulted in the suppression of mitochondrial function. HCT116 xenografts revealed that PDE6H deletion, as well as treatment with the PDE5/6 inhibitor sildenafil, slowed down tumour growth and improved survival, while sildenafil treatment did not have an additive effect on slowing the growth of PDE6γ'-deficient tumours. CONCLUSIONS Our results indicate that the changes in cGMP and purine pools, as well as mitochondrial function which is observed upon PDE6γ' depletion, are independent of the PKG pathway. We show that in HCT116, PDE6H deletion replicates many effects of the dark retina response and identify PDE6H as a new target in preventing cancer cell proliferation and tumour growth.
Collapse
Affiliation(s)
- Ceren Yalaz
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Nasullah K Alham
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Christos E Zois
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Jianzhou Chen
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Karim Bensaad
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Miar
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Elisabete Pires
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Ruth J Muschel
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Adrian L Harris
- Molecular Oncology Laboratories, Department of Medical Oncology, John Radcliffe Hospital, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
7
|
Wang Z, Chao Z, Wang Q, Zou F, Song T, Xu L, Ning J, Cheng F. EXO1/P53/SREBP1 axis-regulated lipid metabolism promotes prostate cancer progression. J Transl Med 2024; 22:104. [PMID: 38279172 PMCID: PMC10811948 DOI: 10.1186/s12967-023-04822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024] Open
Abstract
Prostate cancer (PCa) is one of the most common malignant tumors affecting the male genitourinary system. However, there is currently a lack of effective treatments for patients with advanced prostate cancer, which significantly impacts men's overall health. Exonuclease 1 (EXO1), a protein with mismatch repair and recombination functions, has been found to play a vital role in various diseases. In our study, we discovered that EXO1 acts as a novel biomarker of PCa, which promotes prostate cancer progression by regulating lipid metabolism reprogramming in prostate cancer cells. Mechanistically, EXO1 promotes the expression of SREBP1 by inhibiting the P53 signaling pathway. In summary, our findings suggest that EXO1 regulated intracellular lipid reprogramming through the P53/SREBP1 axis, thus promoting PCa progression. The result could potentially lead to new insights and therapeutic targets for diagnosing and treating PCa.
Collapse
Affiliation(s)
- Zefeng Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zheng Chao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fan Zou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tianbao Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lizhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
8
|
Zheng J, Miao F, Wang Z, Ma Y, Lin Z, Chen Y, Kong X, Wang Y, Zhuang A, Wu T, Li W. Identification of MDM2 as a prognostic and immunotherapeutic biomarker in a comprehensive pan-cancer analysis: A promising target for breast cancer, bladder cancer and ovarian cancer immunotherapy. Life Sci 2023; 327:121832. [PMID: 37276911 DOI: 10.1016/j.lfs.2023.121832] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The murine double minute 2 (MDM2) gene is a crucial factor in the development and progression of various cancer types. Multiple rigorous scientific studies have consistently shown its involvement in tumorigenesis and cancer progression in a wide range of cancer types. However, a comprehensive analysis of the role of MDM2 in human cancer has yet to be conducted. METHODS We used various databases, including TIMER2.0, TCGA, GTEx and STRING, to analyze MDM2 expression and its correlation with clinical outcomes, interacting genes and immune cell infiltration. We also investigated the association of MDM2 with immune checkpoints and performed gene enrichment analysis using DAVID tools. RESULTS The pan-cancer MDM2 analysis found that MDM2 expression and mutation status were observably different in 25 types of cancer tissue compared with healthy tissues, and prognosis analysis showed that there was a significant correlation between MDM2 expression and patient prognosis. Furthermore, correlation analysis showed that MDM2 expression was correlated with tumor mutational burden, microsatellite instability and drug sensitivity in certain cancer types. We found that there was an association between MDM2 expression and immune cell infiltration across cancer types, and MDM2 inhibitors might enhance the effect of immunotherapy on breast cancer, bladder cancer and ovarian cancer. CONCLUSIONS The first systematic pan-cancer analysis of MDM2 was conducted, and it demonstrated that MDM2 was a reliable prognostic biomarker and was closely related to cancer immunity, providing a potential immunotherapeutic target for breast cancer, bladder cancer and ovarian cancer.
Collapse
Affiliation(s)
- Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhao Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yaqin Chen
- Nursing Department of Fujian Medical University Union Hospital, Fujian Medical University, Fuzhou, Fujian 350001, China
| | - Xu Kong
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yue Wang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Aobo Zhuang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Wu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| | - Wengang Li
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
9
|
Wang X, Ye J, Gao M, Zhang D, Jiang H, Zhang H, Zhao S, Liu X. Nifuroxazide inhibits the growth of glioblastoma and promotes the infiltration of CD8 T cells to enhance antitumour immunity. Int Immunopharmacol 2023; 118:109987. [PMID: 36924564 DOI: 10.1016/j.intimp.2023.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
INTRODUCTION Glioblastoma is a primary intracranial tumour with extremely high disability and fatality rates among adults. Existing diagnosis and treatment methods have not significantly improved the overall poor prognosis of patients. Nifuroxazide, an oral antibiotic, has been reported to act as a tumour suppressor in a variety of tumours and to participate in the process of antitumour immunity. However, whether it can inhibit the growth of glioma is still unclear. METHODS We explored the potential mechanism of nifuroxazide inhibiting the growth of glioblastoma cells through in vitro and in vivo experiments. RESULTS nifuroxazide can inhibit the proliferation of glioblastoma cells, promote G2 phase arrest, induce apoptosis, and inhibit epithelial-mesenchymal transition through the MAP3K1/JAK2/STAT3 pathway. Similarly, clinical sample analysis confirmed that MAP3K1 combined with STAT3 can affect the prognostic characteristics of patients with glioma. In addition, nifuroxazide can drive the M1 polarization of microglioma cells, inhibit the expression of CTLA4 and PD-L1 in tumour cells, and promote the infiltration of CD8 T cells to exert antitumour effects. Combination treatment with PD-L1 inhibitors can significantly prolong the survival time of mice. CONCLUSION we found that nifuroxazide can inhibit the growth of glioblastoma and enhance antitumour immunity. Thus, nifuroxazide is an effective drug for the treatment of glioblastoma and has great potential for clinical application.
Collapse
Affiliation(s)
- Xinzhuang Wang
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junyi Ye
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ming Gao
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Dongzhi Zhang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Haiping Jiang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Hong Zhang
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, China
| | - Shiguang Zhao
- Shenzhen University General Hospital, Xueyuan AVE 1098, Nanshan District, 11, Shenzhen, Guangdong, P. R. China; Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xianzhi Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
10
|
Li Y, Lian D, Wang J, Zhao Y, Li Y, Liu G, Wu S, Deng S, Du X, Lian Z. MDM2 antagonists promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:309-323. [PMID: 36726409 PMCID: PMC9883270 DOI: 10.1016/j.omtn.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
CRISPR-Cas9-mediated genome editing in sheep is of great use in both agricultural and biomedical applications. While targeted gene knockout by CRISPR-Cas9 through non-homologous end joining (NHEJ) has worked efficiently, the knockin efficiency via homology-directed repair (HDR) remains lower, which severely hampers the application of precise genome editing in sheep. Here, in sheep fetal fibroblasts (SFFs), we optimized several key parameters that affect HDR, including homology arm (HA) length and the amount of double-stranded DNA (dsDNA) repair template; we also observed synchronization of SFFs in G2/M phase could increase HDR efficiency. Besides, we identified three potent small molecules, RITA, Nutlin3, and CTX1, inhibitors of p53-MDM2 interaction, that caused activation of the p53 pathway, resulting in distinct G2/M cell-cycle arrest in response to DNA damage and improved CRISPR-Cas9-mediated HDR efficiency by 1.43- to 4.28-fold in SFFs. Furthermore, we demonstrated that genetic knockout of p53 could inhibit HDR in SFFs by suppressing the expression of several key factors involved in the HDR pathway, such as BRCA1 and RAD51. Overall, this study offers an optimized strategy for the usage of dsDNA repair template, more importantly, the application of MDM2 antagonists provides a simple and efficient strategy to promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells.
Collapse
Affiliation(s)
- Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China,These authors contributed equally
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,These authors contributed equally
| | - Jiahao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,These authors contributed equally
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China,Corresponding author: Shoulong Deng, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, 5 Panjiayuannanli, Chaoyang District, Beijing 100021, China.
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Corresponding author: Xuguang Du, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Corresponding author: Zhengxing Lian, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2 Mingyuanxilu, Haidian District, Beijing 100193, China. .
| |
Collapse
|
11
|
Transcriptional profiling of drug-induced liver injury biomarkers: association of hepatic Srebf1/Pparα signaling and crosstalk of thrombin, alcohol dehydrogenase, MDR and DNA damage regulators. Mol Cell Biochem 2022:10.1007/s11010-022-04648-1. [PMID: 36583794 DOI: 10.1007/s11010-022-04648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
Cell stress transcribing genes provide a diverse platform of molecular mediators that vary in response to toxicity. Common drug-induced liver injury (DILI) biomarkers are usually expressed in mild toxicity and limited to confirming it rather than categorizing its intensity. Thus, new parametric biomarkers are needed to be explored. Classifying the toxicological response based on the dose-level and severity of stimuli will aid in the evaluation and approach against drug exposure. The present research explored the involvement of gene expression of potential biomarkers as a severity-specific hallmark in different acetaminophen (APAP)-induced hepatotoxicity levels in C57BL/6 mice. The differentially expressed genes were annotated and analyzed using bioinformatics tools to predict canonical pathways altered by DILI. The results revealed alteration in genes encoding for antioxidant enhancement; Slc7a11, bile efflux; MDR4, fatty acid metabolism and transcriptional factors namely Srebf1 and Pparα. Potential APAP toxicity biomarkers included Adh1 and thrombin, and other DNA damage and stress chaperones which were changed at least fourfold between control and the three tested severity models. The current investigation demonstrates a dose-mediated association of several hallmark genes in APAP-induced liver damage and addressed the involvement of uncommonly studied molecular responses. Such biomarkers can be further developed into predictive models, translated for risk assessment against drug exposure and guide in building theragnostic targets.
Collapse
|
12
|
Wang B, Gao J, Zhao Z, Zhong X, Cui H, Hou H, Zhang Y, Zheng J, Di J, Liu Y. Identification of a small-molecule RPL11 mimetic that inhibits tumor growth by targeting MDM2-p53 pathway. Mol Med 2022; 28:109. [PMID: 36071402 PMCID: PMC9450376 DOI: 10.1186/s10020-022-00537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Targeting ribosome biogenesis to activate p53 has recently emerged as a therapeutic strategy in human cancer. Among various ribosomal proteins, RPL11 centralizes the nucleolar stress-sensing pathway by binding MDM2, leading to MDM2 inactivation and p53 activation. Therefore, the identification of MDM2-binding RPL11-mimetics would be valuable for anti-cancer therapeutics. METHODS Based on the crystal structure of the interface between RPL11 and MDM2, we have identified 15 potential allosteric modulators of MDM2 through the virtual screening. RESULTS One of these compounds, named S9, directly binds MDM2 and competitively inhibits the interaction between RPL11 and MDM2, leading to p53 stabilization and activation. Moreover, S9 inhibits cancer cell proliferation in vitro and in vivo. Mechanistic study reveals that MDM2 is required for S9-induced G2 cell cycle arrest and apoptosis, whereas p53 contributes to S9-induced apoptosis. CONCLUSIONS Putting together, S9 may serve as a lead compound for the development of an anticancer drug that specifically targets RPL11-MDM2-p53 pathway.
Collapse
Affiliation(s)
- Bingwu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Jian Gao
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221000, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Xuefei Zhong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hao Cui
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Hui Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Yanping Zhang
- Department of Radiation and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, USA
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
| | - Yong Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China. .,The State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.
| |
Collapse
|
13
|
RACGAP1 promotes proliferation and cell cycle progression by regulating CDC25C in cervical cancer cells. Tissue Cell 2022; 76:101804. [DOI: 10.1016/j.tice.2022.101804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 01/16/2023]
|
14
|
Xu W, Liu C, Deng B, Lin P, Sun Z, Liu A, Xuan J, Li Y, Zhou K, Zhang X, Huang Q, Zhou H, He Q, Li B, Qu L, Yang J. TP53-inducible putative long noncoding RNAs encode functional polypeptides that suppress cell proliferation. Genome Res 2022; 32:1026-1041. [PMID: 35609991 DOI: 10.1101/gr.275831.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 05/06/2022] [Indexed: 01/10/2023]
Abstract
Polypeptides encoded by long non-coding RNAs (lncRNAs) are a novel class of functional molecules. However, whether these hidden polypeptides participate in the TP53 pathway and play a significant biological role is still unclear. Here, we discover that TP53-regulated lncRNAs encode peptides, two of which are functional in various human cell lines. Using ribosome profiling and RNA-seq approaches in HepG2 cells, we systematically identified more than 300 novel TP53-regulated lncRNAs and further confirmed that fifteen of these TP53-regulated lncRNAs encode peptides. Furthermore, several peptides were validated by multiple mass spectrometry measures. Ten of the novel translational lncRNAs were directly inducible by TP53 in response to DNA damage. Notably, we showed that the TP53-inducible peptides TP53LC02 and TP53LC04, but not their lncRNAs, could suppress cell proliferation. TP53LC04 peptide also had a function associated with cell proliferation by regulating the cell cycle in response to DNA damage. This study demonstrates that TP53-inducible lncRNAs encode new functional peptides, leading to the enlargement of the components of TP53 tumor suppressor network and providing novel potential targets for cancer therapy.
Collapse
Affiliation(s)
- Wenli Xu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, The Third Affiliated Hospital, Sun Yat-sen University
| | - Chang Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Bing Deng
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Penghui Lin
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Zhenghua Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University
| | - Anrui Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Jiajia Xuan
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Yuying Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University
| | - Keren Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | | | - Qiaojuan Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Hui Zhou
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Qingyu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University
| | - Bin Li
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Lianghu Qu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, Sun Yat-sen University
| | - Jianhua Yang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol,The Fifth Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
15
|
Symbiosis with Dinoflagellates Alters Cnidarian Cell-Cycle Gene Expression. Cell Microbiol 2022. [DOI: 10.1155/2022/3330160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the cnidarian-dinoflagellate symbiosis, hosts show altered expression of genes involved in growth and proliferation when in the symbiotic state, but little is known about the molecular mechanisms that underlie the host’s altered growth rate. Using tissue-specific transcriptomics, we determined how symbiosis affects expression of cell cycle-associated genes, in the model symbiotic cnidarian Exaiptasia diaphana (Aiptasia). The presence of symbionts within the gastrodermis elicited cell-cycle arrest in the G1 phase in a larger proportion of host cells compared with the aposymbiotic gastrodermis. The symbiotic gastrodermis also showed a reduction in the amount of cells synthesizing their DNA and progressing through mitosis when compared with the aposymbiotic gastrodermis. Host apoptotic inhibitors (Mdm2) were elevated, while host apoptotic sensitizers (c-Myc) were depressed, in the symbiotic gastrodermis when compared with the aposymbiotic gastrodermis and epidermis of symbiotic anemones, respectively. This indicates that the presence of symbionts negatively regulates host apoptosis, possibly contributing to their persistence within the host. Transcripts (ATM/ATR) associated with DNA damage were also downregulated in symbiotic gastrodermal tissues. In epidermal cells, a single gene (Mob1) required for mitotic completion was upregulated in symbiotic compared with aposymbiotic anemones, suggesting that the presence of symbionts in the gastrodermis stimulates host cell division in the epidermis. To further corroborate this hypothesis, we performed microscopic analysis using an S-phase indicator (EdU), allowing us to evaluate cell cycling in host cells. Our results confirmed that there were significantly more proliferating host cells in both the gastrodermis and epidermis in the symbiotic state compared with the aposymbiotic state. Furthermore, when comparing between tissue layers in the presence of symbionts, the epidermis had significantly more proliferating host cells than the symbiont-containing gastrodermis. These results contribute to our understanding of the influence of symbionts on the mechanisms of cnidarian cell proliferation and mechanisms associated with symbiont maintenance.
Collapse
|
16
|
Zhou C, Wang L, Hu W, Tang L, Zhang P, Gao Y, Du J, Li Y, Wang Y. CDC25C is a prognostic biomarker and correlated with mitochondrial homeostasis in pancreatic adenocarcinoma. Bioengineered 2022; 13:13089-13107. [PMID: 35615982 PMCID: PMC9275923 DOI: 10.1080/21655979.2022.2078940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive tract malignant tumor with an extremely poor prognosis. The survival and prognosis may significantly improve if it is diagnosed early. Therefore, identifying biomarkers for early diagnosis is still considered a great clinical challenge in PAAD. Cell Division Cycle 25C (CDC25C), a cardinal cell cycle regulatory protein, directly mediates the G2/M phase and is intimately implicated in tumor development. In the current study, we aim to explore the possible functions of CDC25C and determine the potential role of CDC25C in the early diagnosis and prognosis of PAAD. Expression analysis indicated that CDC25C was overexpressed in PAAD . In addition, survival analysis revealed a strong correlation between the enhanced expression of CDC25C and poor survival in PAAD. Furthermore, pathway analysis showed that CDC25C is related to TP53 signaling pathways, glutathione metabolism, and glycolysis. Mechanically, our in vitro experiments verified that CDC25C was capable of promoting cell viability and proliferation. CDC25C inhibition increases the accumulation of ROS, inhibits mitochondrial respiration, suppresses glycolysis metabolism and reduces GSH levels. To summarize, CDC25C may be involved in energy metabolism by maintaining mitochondrial homeostasis. Our results suggested that CDC25C is a potential biological marker and promising therapeutic target of PAAD.
Collapse
Affiliation(s)
- Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Lusheng Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Malenge MM, Maaland AF, Repetto-Llamazares A, Middleton B, Nijland M, Visser L, Patzke S, Heyerdahl H, Kolstad A, Stokke T, Ree AH, Dahle J. Anti-CD37 radioimmunotherapy with 177Lu-NNV003 synergizes with the PARP inhibitor olaparib in treatment of non-Hodgkin’s lymphoma in vitro. PLoS One 2022; 17:e0267543. [PMID: 35486574 PMCID: PMC9053826 DOI: 10.1371/journal.pone.0267543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose
PARP inhibitors have been shown to increase the efficacy of radiotherapy in preclinical models. Radioimmunotherapy results in selective radiation cytotoxicity of targeted tumour cells. Here we investigate the combined effect of anti-CD37 β-emitting 177Lu-NNV003 radioimmunotherapy and the PARP inhibitor olaparib, and gene expression profiles in CD37 positive non-Hodgkin’s lymphoma cell lines.
Materials and methods
The combined effect of 177Lu-NNV003 and olaparib was studied in seven cell lines using a fixed-ratio ray design, and combination index was calculated for each combination concentration. mRNA was extracted before and after treatment with the drug combination. After RNA-sequencing, hierarchical clustering was performed on basal gene expression profiles and on differentially expressed genes after combination treatment from baseline. Functional gene annotation analysis of significant differentially expressed genes after combination treatment was performed to identify enriched biological processes.
Results
The combination of olaparib and 177Lu-NNV003 was synergistic in four of seven cell lines, antagonistic in one and both synergistic and antagonistic (conditionally synergistic) in two, depending on the concentration ratio between olaparib and 177Lu-NNV003. Cells treated with the combination significantly overexpressed genes in the TP53 signalling pathway. However, cluster analysis did not identify gene clusters that correlate with the sensitivity of cells to single agent or combination treatment.
Conclusion
The cytotoxic effect of the combination of the PARP inhibitor olaparib and the β-emitting radioimmunoconjugate 177Lu-NNV003 was synergistic in the majority of tested lymphoma cell lines.
Collapse
Affiliation(s)
- Marion M. Malenge
- Nordic Nanovector ASA, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Astri Fjelde Maaland
- Nordic Nanovector ASA, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | - Marcel Nijland
- University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- University Medical Center Groningen, Groningen, The Netherlands
| | - Sebastian Patzke
- Nordic Nanovector ASA, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | - Arne Kolstad
- Department of Oncology, Innlandet Sykehus, Lillehammer, Norway
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Anne Hansen Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | | |
Collapse
|
18
|
Kung CP, Weber JD. It’s Getting Complicated—A Fresh Look at p53-MDM2-ARF Triangle in Tumorigenesis and Cancer Therapy. Front Cell Dev Biol 2022; 10:818744. [PMID: 35155432 PMCID: PMC8833255 DOI: 10.3389/fcell.2022.818744] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/07/2022] [Indexed: 01/31/2023] Open
Abstract
Anti-tumorigenic mechanisms mediated by the tumor suppressor p53, upon oncogenic stresses, are our bodies’ greatest weapons to battle against cancer onset and development. Consequently, factors that possess significant p53-regulating activities have been subjects of serious interest from the cancer research community. Among them, MDM2 and ARF are considered the most influential p53 regulators due to their abilities to inhibit and activate p53 functions, respectively. MDM2 inhibits p53 by promoting ubiquitination and proteasome-mediated degradation of p53, while ARF activates p53 by physically interacting with MDM2 to block its access to p53. This conventional understanding of p53-MDM2-ARF functional triangle have guided the direction of p53 research, as well as the development of p53-based therapeutic strategies for the last 30 years. Our increasing knowledge of this triangle during this time, especially through identification of p53-independent functions of MDM2 and ARF, have uncovered many under-appreciated molecular mechanisms connecting these three proteins. Through recognizing both antagonizing and synergizing relationships among them, our consideration for harnessing these relationships to develop effective cancer therapies needs an update accordingly. In this review, we will re-visit the conventional wisdom regarding p53-MDM2-ARF tumor-regulating mechanisms, highlight impactful studies contributing to the modern look of their relationships, and summarize ongoing efforts to target this pathway for effective cancer treatments. A refreshed appreciation of p53-MDM2-ARF network can bring innovative approaches to develop new generations of genetically-informed and clinically-effective cancer therapies.
Collapse
Affiliation(s)
- Che-Pei Kung
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| | - Jason D. Weber
- ICCE Institute, St. Louis, MO, United States
- Division of Molecular Oncology, Department of Medicine, St. Louis, MO, United States
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
- *Correspondence: Che-Pei Kung, ; Jason D. Weber,
| |
Collapse
|
19
|
Li Q, Yuan Q, Wang T, Zhan Y, Yang L, Fan Y, Lei H, Su J. Fumonisin B 1 Inhibits Cell Proliferation and Decreases Barrier Function of Swine Umbilical Vein Endothelial Cells. Toxins (Basel) 2021; 13:toxins13120863. [PMID: 34941701 PMCID: PMC8704807 DOI: 10.3390/toxins13120863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022] Open
Abstract
The fumonisins are a group of common mycotoxins found around the world that mainly contaminate maize. As environmental toxins, they pose a threat to human and animal health. Fumonisin B1 (FB1) is the most widely distributed and the most toxic. FB1 can cause pulmonary edema in pigs. However, the current toxicity mechanism of fumonisins is still in the exploratory stage, which may be related to sphingolipid metabolism. Our study is designed to investigate the effect of FB1 on the cell proliferation and barrier function of swine umbilical vein endothelial cells (SUVECs). We show that FB1 can inhibit the cell viability of SUVECs. FB1 prevents cells from entering the S phase from the G1 phase by regulating the expression of the cell cycle-related genes cyclin B1, cyclin D1, cyclin E1, Cdc25c, and the cyclin-dependent kinase-4 (CDK-4). This results in an inhibition of cell proliferation. In addition, FB1 can also change the cell morphology, increase paracellular permeability, destroy tight junctions and the cytoskeleton, and reduce the expression of tight junction-related genes claudin 1, occludin, and ZO-1. This indicates that FB1 can cause cell barrier dysfunction of SUVECs and promote the weakening or even destruction of the connections between endothelial cells. In turn, this leads to increased blood vessel permeability and promotes exudation. Our findings suggest that FB1 induces toxicity in SUVECs by affecting cell proliferation and disrupting the barrier function.
Collapse
|
20
|
Portman N, Chen J, Lim E. MDM2 as a Rational Target for Intervention in CDK4/6 Inhibitor Resistant, Hormone Receptor Positive Breast Cancer. Front Oncol 2021; 11:777867. [PMID: 34804982 PMCID: PMC8596371 DOI: 10.3389/fonc.2021.777867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
With the adoption of inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6i) in combination with endocrine therapy as standard of care for the treatment of advanced and metastatic estrogen receptor positive (ER+) breast cancer, the search is now on for novel therapeutic options to manage the disease after the inevitable development of resistance to CDK4/6i. In this review we will consider the integral role that the p53/MDM2 axis plays in the interactions between CDK4/6, ERα, and inhibitors of these molecules, the current preclinical evidence for the efficacy of MDM2 inhibitors in ER+ breast cancer, and discuss the possibility of targeting the p53/MDM2 via inhibition of MDM2 in the CDK4/6i resistance setting.
Collapse
Affiliation(s)
- Neil Portman
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Julia Chen
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Elgene Lim
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
21
|
Tian S, Fu L, Zhang J, Xu J, Yuan L, Qin J, Zhang W. Identification of a DNA Methylation-Driven Genes-Based Prognostic Model and Drug Targets in Breast Cancer: In silico Screening of Therapeutic Compounds and in vitro Characterization. Front Immunol 2021; 12:761326. [PMID: 34745136 PMCID: PMC8567755 DOI: 10.3389/fimmu.2021.761326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is a vital epigenetic change that regulates gene transcription and helps to keep the genome stable. The deregulation hallmark of human cancer is often defined by aberrant DNA methylation which is critical for tumor formation and controls the expression of several tumor-associated genes. In various cancers, methylation changes such as tumor suppressor gene hypermethylation and oncogene hypomethylation are critical in tumor occurrences, especially in breast cancer. Detecting DNA methylation-driven genes and understanding the molecular features of such genes could thus help to enhance our understanding of pathogenesis and molecular mechanisms of breast cancer, facilitating the development of precision medicine and drug discovery. In the present study, we retrospectively analyzed over one thousand breast cancer patients and established a robust prognostic signature based on DNA methylation-driven genes. Then, we calculated immune cells abundance in each patient and lower immune activity existed in high-risk patients. The expression of leukocyte antigen (HLA) family genes and immune checkpoints genes were consistent with the above results. In addition, more mutated genes were observed in the high-risk group. Furthermore, a in silico screening of druggable targets and compounds from CTRP and PRISM databases was performed, resulting in the identification of five target genes (HMMR, CCNB1, CDC25C, AURKA, and CENPE) and five agents (oligomycin A, panobinostat, (+)-JQ1, voxtalisib, and arcyriaflavin A), which might have therapeutic potential in treating high-risk breast cancer patients. Further in vitro evaluation confirmed that (+)-JQ1 had the best cancer cell selectivity and exerted its anti-breast cancer activity through CENPE. In conclusion, our study provided new insights into personalized prognostication and may inspire the integration of risk stratification and precision therapy.
Collapse
Affiliation(s)
- Saisai Tian
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lu Fu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Jinbo Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Department of Pharmacy, Tianjin Rehabilitation Center of Joint Logistics Support Force, Tianjin, China
| | - Jia Xu
- School of Pharmacy, Henan University, Kaifeng, China
| | - Li Yuan
- Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jiangjiang Qin
- Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Innovation Center of Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Gil-Ranedo J, Gallego-García C, Almendral JM. Viral targeting of glioblastoma stem cells with patient-specific genetic and post-translational p53 deregulations. Cell Rep 2021; 36:109673. [PMID: 34496248 DOI: 10.1016/j.celrep.2021.109673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer therapy urges targeting of malignant subsets within self-renewing heterogeneous stem cell populations. We dissect the genetic and functional heterogeneity of human glioblastoma stem cells (GSCs) within patients by their innate responses to non-pathogenic mouse parvoviruses that are tightly restrained by cellular physiology. GSC neurospheres accumulate assembled capsids but restrict viral NS1 cytotoxic protein expression by an innate PKR/eIF2α-P response counteractable by electric pulses. NS1 triggers a comprehensive DNA damage response involving cell-cycle arrest, neurosphere disorganization, and bystander disruption of GSC-derived brain tumor architecture in rodent models. GSCs and cancer cell lines permissive to parvovirus genome replication require p53-Ser15 phosphorylation (Pp53S15). NS1 expression is enhanced by exogeneous Pp53S15 induction but repressed by wtp53. Consistently, patient-specific GSC subpopulations harboring p53 gain-of-function mutants and/or Pp53S15 are selective viral targets. This study provides a molecular foundation for personalized biosafe viral therapies against devastating glioblastoma and other cancers with deregulated p53 signaling.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Gallego-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - José M Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
23
|
Ma S, Yan J, Barr T, Zhang J, Chen Z, Wang LS, Sun JC, Chen J, Caligiuri MA, Yu J. The RNA m6A reader YTHDF2 controls NK cell antitumor and antiviral immunity. J Exp Med 2021; 218:e20210279. [PMID: 34160549 PMCID: PMC8225680 DOI: 10.1084/jem.20210279] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/07/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
N 6-methyladenosine (m6A) is the most prevalent posttranscriptional modification on RNA. NK cells are the predominant innate lymphoid cells that mediate antiviral and antitumor immunity. However, whether and how m6A modifications affect NK cell immunity remain unknown. Here, we discover that YTHDF2, a well-known m6A reader, is upregulated in NK cells upon activation by cytokines, tumors, and cytomegalovirus infection. Ythdf2 deficiency in NK cells impairs NK cell antitumor and antiviral activity in vivo. YTHDF2 maintains NK cell homeostasis and terminal maturation, correlating with modulating NK cell trafficking and regulating Eomes, respectively. YTHDF2 promotes NK cell effector function and is required for IL-15-mediated NK cell survival and proliferation by forming a STAT5-YTHDF2 positive feedback loop. Transcriptome-wide screening identifies Tardbp to be involved in cell proliferation or survival as a YTHDF2-binding target in NK cells. Collectively, we elucidate the biological roles of m6A modifications in NK cells and highlight a new direction to harness NK cell antitumor immunity.
Collapse
Affiliation(s)
- Shoubao Ma
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
| | - Jiazhuo Yan
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Los Angeles, CA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Joseph C. Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
| | - Michael A. Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA
- Comprehensive Cancer Center, City of Hope, Los Angeles, CA
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope, Los Angeles, CA
| |
Collapse
|
24
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
25
|
Huang H, Park S, Zhang H, Park S, Kwon W, Kim E, Zhang X, Jang S, Yoon D, Choi SK, Yi JK, Kim SH, Dong Z, Lee MH, Ryoo Z, Kim MO. Targeting AKT with costunolide suppresses the growth of colorectal cancer cells and induces apoptosis in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:114. [PMID: 33785035 PMCID: PMC8010944 DOI: 10.1186/s13046-021-01895-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is a clinically challenging malignant tumor worldwide. As a natural product and sesquiterpene lactone, Costunolide (CTD) has been reported to possess anticancer activities. However, the regulation mechanism and precise target of this substance remain undiscovered in CRC. In this study, we found that CTD inhibited CRC cell proliferation in vitro and in vivo by targeting AKT. METHODS Effects of CTD on colon cancer cell growth in vitro were evaluated in cell proliferation assays, migration and invasion, propidium iodide, and annexin V-staining analyses. Targets of CTD were identified utilizing phosphoprotein-specific antibody array; Costunolide-sepharose conjugated bead pull-down analysis and knockdown techniques. We investigated the underlying mechanisms of CTD by ubiquitination, immunofluorescence staining, and western blot assays. Cell-derived tumour xenografts (CDX) in nude mice and immunohistochemistry were used to assess anti-tumour effects of CTD in vivo. RESULTS CTD suppressed the proliferation, anchorage-independent colony growth and epithelial-mesenchymal transformation (EMT) of CRC cells including HCT-15, HCT-116 and DLD1. Besides, the CTD also triggered cell apoptosis and cell cycle arrest at the G2/M phase. The CTD activates and induces p53 stability by inhibiting MDM2 ubiquitination via the suppression of AKT's phosphorylation in vitro. The CTD suppresses cell growth in a p53-independent fashion manner; p53 activation may contribute to the anticancer activity of CTD via target AKT. Finally, the CTD decreased the volume of CDX tumors without of the body weight loss and reduced the expression of AKT-MDM2-p53 signaling pathway in xenograft tumors. CONCLUSIONS Our project has uncovered the mechanism underlying the biological activity of CTD in colon cancer and confirmed the AKT is a directly target of CTD. All of which These results revealed that CTD might be a new AKT inhibitor in colon cancer treatment, and CTD is worthy of further exploration in preclinical and clinical trials.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea
| | - Haibo Zhang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Sijun Park
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Wookbong Kwon
- Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Enugyung Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Soyoung Jang
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Duhak Yoon
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea
| | - Seong-Kyoon Choi
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea.,Division of Biotechnology, DGIST, Daegu, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbuk-do Livestock Research Institute, Yeongju, South Korea
| | - Sung-Hyun Kim
- Department of Bio-Medical Analysis, Korea Polytechnic College, Chungnam, Korea
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, 450008, Henan, China
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, 58245, Republic of Korea.
| | - Zaeyoung Ryoo
- School of Life Science, Kyungpook National University, Daegu, Republic of Korea.
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju, 37224, Republic of Korea.
| |
Collapse
|
26
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
27
|
Structural Insights into Substrate Recognition and Processing by the 20S Proteasome. Biomolecules 2021; 11:biom11020148. [PMID: 33498876 PMCID: PMC7910952 DOI: 10.3390/biom11020148] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Four decades of proteasome research have yielded extensive information on ubiquitin-dependent proteolysis. The archetype of proteasomes is a 20S barrel-shaped complex that does not rely on ubiquitin as a degradation signal but can degrade substrates with a considerable unstructured stretch. Since roughly half of all proteasomes in most eukaryotic cells are free 20S complexes, ubiquitin-independent protein degradation may coexist with ubiquitin-dependent degradation by the highly regulated 26S proteasome. This article reviews recent advances in our understanding of the biochemical and structural features that underlie the proteolytic mechanism of 20S proteasomes. The two outer α-rings of 20S proteasomes provide a number of potential docking sites for loosely folded polypeptides. The binding of a substrate can induce asymmetric conformational changes, trigger gate opening, and initiate its own degradation through a protease-driven translocation mechanism. Consequently, the substrate translocates through two additional narrow apertures augmented by the β-catalytic active sites. The overall pulling force through the two annuli results in a protease-like unfolding of the substrate and subsequent proteolysis in the catalytic chamber. Although both proteasomes contain identical β-catalytic active sites, the differential translocation mechanisms yield distinct peptide products. Nonoverlapping substrate repertoires and product outcomes rationalize cohabitation of both proteasome complexes in cells.
Collapse
|
28
|
Liu Y, Yu W, Ren P, Zhang T. Upregulation of centromere protein M promotes tumorigenesis: A potential predictive target for cancer in humans. Mol Med Rep 2020; 22:3922-3934. [PMID: 33000180 PMCID: PMC7533490 DOI: 10.3892/mmr.2020.11461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/20/2020] [Indexed: 01/04/2023] Open
Abstract
Centromere protein M (CENPM), a protein required for chromosome separation, is involved in in mitosis. However, little has been reported about the roles of CENPM in various types of cancer. The present study identified that the mRNA expression levels of CENPM were significantly upregulated in 14 types of human cancer and identified a positive association between CENPM mRNA expression and patient mortality using the Oncomine, Gene Expression Profiling Interactive Analysis, Human Protein Atlas and Kaplan‑Meier Plotter databases. A protein interaction network constructed with CENPM‑interacting genes obtained from the cBioPortal demonstrated that nine genes participating in the cell cycle served key roles in the function of CENPM. Cell cycle analysis, reverse transcription‑quantitative polymerase chain reaction, a Cell Counting Kit‑8‑based proliferation assay and a terminal deoxynucleotidyl transferase dUTP nick end labelling assay further revealed the tumorigenic and carcinogenic roles of CENPM in vitro. In addition, it was identified that the mRNA expression levels of five of the nine identified genes were significantly associated with CENPM in MCF7 cells and that CENPM was rarely mutated among various types of human cancer. In conclusion, the data from the present study revealed that CENPM exerted its pro‑tumorigenic function by regulating cell cycle‑associated protein expression and suggested that CENPM could be used as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Peng Ren
- Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 556000, P.R. China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases of The Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
29
|
The Undervalued Avenue to Reinstate Tumor Suppressor Functionality of the p53 Protein Family for Improved Cancer Therapy-Drug Repurposing. Cancers (Basel) 2020; 12:cancers12092717. [PMID: 32971841 PMCID: PMC7563196 DOI: 10.3390/cancers12092717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
p53 and p73 are critical tumor suppressors that are often inactivated in human cancers through various mechanisms. Owing to their high structural homology, the proteins have many joined functions and recognize the same set of genes involved in apoptosis and cell cycle regulation. p53 is known as the 'guardian of the genome' and together with p73 forms a barrier against cancer development and progression. The TP53 is mutated in more than 50% of all human cancers and the germline mutations in TP53 predispose to the early onset of multiple tumors in Li-Fraumeni syndrome (LFS), the inherited cancer predisposition. In cancers where TP53 gene is intact, p53 is degraded. Despite the ongoing efforts, the treatment of cancers remains challenging. This is due to late diagnoses, the toxicity of the current standard of care and marginal benefit of newly approved therapies. Presently, the endeavors focus on reactivating p53 exclusively, neglecting the potential of the restoration of p73 protein for cancer eradication. Taken that several small molecules reactivating p53 failed in clinical trials, there is a need to develop new treatments targeting p53 proteins in cancer. This review outlines the most advanced strategies to reactivate p53 and p73 and describes drug repurposing approaches for the efficient reinstatement of the p53 proteins for cancer therapy.
Collapse
|
30
|
Li P, Shi Y, Zhao B, Xu W, Xu Z, Zhang J, Guo Z, Bi Y, Wang T, Qin Y, Wang T. Pharmacological evaluation and mechanistic study of compound Xishu Granule in hepatocellular carcinoma. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Abstract
The evolutionarily conserved p53 protein and its cellular pathways mediate tumour suppression through an informed, regulated and integrated set of responses to environmental perturbations resulting in either cellular death or the maintenance of cellular homeostasis. The p53 and MDM2 proteins form a central hub in this pathway that receives stressful inputs via MDM2 and respond via p53 by informing and altering a great many other pathways and functions in the cell. The MDM2-p53 hub is one of the hubs most highly connected to other signalling pathways in the cell, and this may be why TP53 is the most commonly mutated gene in human cancers. Initial or truncal TP53 gene mutations (the first mutations in a stem cell) are selected for early in cancer development inectodermal and mesodermal-derived tissue-specific stem and progenitor cells and then, following additional mutations, produce tumours from those tissue types. In endodermal-derived tissue-specific stem or progenitor cells, TP53 mutations are functionally selected as late mutations transitioning the mutated cell into a malignant tumour. The order in which oncogenes or tumour suppressor genes are functionally selected for in a stem cell impacts the timing and development of a tumour.
Collapse
Affiliation(s)
- Arnold J Levine
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ, USA.
| |
Collapse
|
32
|
Tian R, Zou H, Wang LF, Song MJ, Liu L, Zhang H. Identification of microRNA-mRNA regulatory networks and pathways related to retinoblastoma across human and mouse. Int J Ophthalmol 2020; 13:535-544. [PMID: 32399402 PMCID: PMC7137714 DOI: 10.18240/ijo.2020.04.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
AIM To explore the mRNA and pathways related to retinoblastoma (RB) genesis and development. METHODS Microarray datasets GSE29683 (human) and GSE29685 (mouse) were downloaded from NCBI GEO database. Homologous genes between the two species were identified using WGCNA, followed by protein-protein interaction (PPI) network construction and gene enrichment analysis. Disease-related miRNAs and pathways were retrieved from miR2Disease database and Comparative Toxicogenomics Database (CTD), respectively. RESULTS A total of 352 homologous genes were identified. Two pathways including "cell cycle" and "pathway in cancer" in CTD and enrichment analysis were identified and seven miRNAs (including hsa-miR-373, hsa-miR-34a, hsa-miR-129, hsa-miR-494, hsa-miR-503, hsa-let-7 and hsa-miR-518c) were associated with RB. miRNAs modulate "cell cycle" and "pathway in cancer" pathways via regulating 13 genes (including CCND1, CDC25C, E2F2, CDKN2D and TGFB2). CONCLUSION These results suggest that these miRNAs play crucial roles in RB genesis through "cell cycle" and "pathway in cancer" pathways by regulating their targets including CCND1, CDC25C, E2F2 and CDKN2D.
Collapse
Affiliation(s)
- Rui Tian
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - He Zou
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu-Fei Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Mei-Jiao Song
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Lu Liu
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Hui Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| |
Collapse
|
33
|
You Y, He Q, Lu H, Zhou X, Chen L, Liu H, Lu Z, Liu D, Liu Y, Zuo D, Fu X, Kwan H, Zhao X. Silibinin Induces G2/M Cell Cycle Arrest by Activating Drp1-Dependent Mitochondrial Fission in Cervical Cancer. Front Pharmacol 2020; 11:271. [PMID: 32226384 PMCID: PMC7080994 DOI: 10.3389/fphar.2020.00271] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the fourth leading cancer type and the second most common gynecological malignancy among women worldwide. Silibinin (SB), a chief bioactive natural polyphenolic flavonoid of Silybum marianum L., has been used clinically for its hepatocyte protective effects. It also has anticancer effects via the induction of apoptosis and cell cycle arrest. However, the effects of SB on cervical cancer cells through mitochondrial fission have not been studied. Here, we showed that SB markedly suppressed cervical cell proliferation by inducing G2/M cell cycle arrest via the activation of dynamin-related protein 1 (Drp1), which in turn mediated the mitochondrial fission dysfunction both in vitro and in vivo. SB decreased the ATP content, mitochondrial membrane potential, and mtDNA copy number, as well as reduced the reactive oxygen species levels in cervical cells. Furthermore, SB induced excessive mitochondrial fragmentation and reduced tubule formation. Further study showed that knockdown of Drp1 abolished the SB-induced G2/M cell cycle arrest in cervical cancer cells by inhibiting the mitochondrial fission pathway. More importantly, SB inhibited Hela cell growth in vivo model. In conclusion, we are the first to demonstrate that SB induces cervical cancer cell G2/M cell cycle arrest by activating Drp1-dependent mitochondrial fission dysfunction. This study suggests the strategy of inducing Drp1-dependent mitochondrial fission for cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiuxing He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hanqi Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Huaxi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Zibin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Dongyi Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Traditional Chinese Pharmacological Laboratory, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Daming Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Hiuyee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Kumar Reddy Nagireddy P, Krishna Kommalapati V, Siva Krishna V, Sriram D, Devi Tangutur A, Kantevari S. Anticancer Potential of
N
‐Sulfonyl Noscapinoids: Synthesis and Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | | | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research LaboratoryPharmacy GroupBirla Institute of Technology & Science Pilani Hyderabad Campus Hyderabad 500078 India
| | - Anjana Devi Tangutur
- Department of Applied BiologyCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Srinivas Kantevari
- Fluoro & Agrochemicals DivisionCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative ResearchCSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| |
Collapse
|
35
|
Heltberg ML, Chen SH, Jiménez A, Jambhekar A, Jensen MH, Lahav G. Inferring Leading Interactions in the p53/Mdm2/Mdmx Circuit through Live-Cell Imaging and Modeling. Cell Syst 2019; 9:548-558.e5. [PMID: 31812692 PMCID: PMC7263464 DOI: 10.1016/j.cels.2019.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 08/23/2019] [Accepted: 10/29/2019] [Indexed: 01/31/2023]
Abstract
The tumor-suppressive transcription factor p53 is a master regulator of stress responses. In non-stressed conditions, p53 is maintained at low levels by the ubiquitin ligase Mdm2 and its binding partner Mdmx. Mdmx depletion leads to a biphasic p53 response, with an initial post-mitotic pulse followed by oscillations. The mechanism underlying this dynamical behavior is unknown. Two different roles for Mdmx have been proposed: enhancing p53 ubiquitination by Mdm2 and inhibiting p53 activity. Here, we developed a mathematical model of the p53/Mdm2/Mdmx network to investigate which Mdmx functions quantitatively affect specific features of p53 dynamics under various conditions. We found that enhancement of Mdm2 activity was the most critical role of Mdmx under unstressed conditions. The model also accurately predicted p53 dynamics in Mdmx-depleted cells following DNA damage. This work outlines a strategy for rapidly testing possible network interactions to reveal those most impactful in regulating the dynamics of key proteins.
Collapse
Affiliation(s)
- Mathias L Heltberg
- Niels Bohr Institute, University of Copenhagen 2100, Copenhagen, Denmark; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Sheng-Hong Chen
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Alba Jiménez
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Mogens H Jensen
- Niels Bohr Institute, University of Copenhagen 2100, Copenhagen, Denmark.
| | - Galit Lahav
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Lee D, Hokinson D, Park S, Elvira R, Kusuma F, Lee JM, Yun M, Lee SG, Han J. ER Stress Induces Cell Cycle Arrest at the G2/M Phase Through eIF2α Phosphorylation and GADD45α. Int J Mol Sci 2019; 20:E6309. [PMID: 31847234 PMCID: PMC6940793 DOI: 10.3390/ijms20246309] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is known to influence various cellular functions, including cell cycle progression. Although it is well known how ER stress inhibits cell cycle progression at the G1 phase, the molecular mechanism underlying how ER stress induces G2/M cell cycle arrest remains largely unknown. In this study, we found that ER stress and subsequent induction of the UPR led to cell cycle arrest at the G2/M phase by reducing the amount of cyclin B1. Pharmacological inhibition of the IRE1α or ATF6α signaling did not affect ER stress-induced cell cycle arrest at the G2/M phase. However, when the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation was genetically abrogated, the cell cycle progressed without arresting at the G2/M phase after ER stress. GEO database analysis showed that growth arrest and DNA-damage-inducible protein α (Gadd45α) were induced in an eIF2a phosphorylation-dependent manner, which was confirmed in this study. Knockdown of GADD45α abrogated cell cycle arrest at the G2/M phase upon ER stress. Finally, the cell death caused by ER stress significantly reduced when GADD45α expression was knocked down. In conclusion, GADD45α is a key mediator of ER stress-induced growth arrest via regulation of the G2/M transition and cell death through the eIF2α signaling pathway.
Collapse
Affiliation(s)
- Duckgue Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Daniel Hokinson
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Soyoung Park
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Rosalie Elvira
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Fedho Kusuma
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Ji-Min Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| | - Miyong Yun
- Department of Bioindustry and Bioresource Engineering, College of Life Sciences, Sejong University, Seoul 02447, Korea;
| | - Seok-Geun Lee
- KHU-KIST Department of Converging Science & Technology, Department of Science in Korean Medicine, and Bionanocomposite Research Center, Kyung Hee Univerisity, 26 Kyungheedae-ro, Seoul 02447, Korea;
| | - Jaeseok Han
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, Korea; (D.L.); (D.H.); (S.P.); (R.E.); (F.K.); (J.-M.L.)
| |
Collapse
|
37
|
Palmitic Acid Methyl Ester Induces G 2/M Arrest in Human Bone Marrow-Derived Mesenchymal Stem Cells via the p53/p21 Pathway. Stem Cells Int 2019; 2019:7606238. [PMID: 31885624 PMCID: PMC6915012 DOI: 10.1155/2019/7606238] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/14/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Bone marrow-derived mesenchymal cells (BM-MSCs) are able to differentiate into adipocytes, which can secrete adipokines to affect BM-MSC proliferation and differentiation. Recent evidences indicated that adipocytes can secrete fatty acid metabolites, such as palmitic acid methyl ester (PAME), which is able to cause vasorelaxation and exerts anti-inflammatory effects. However, effects of PAME on BM-MSC proliferation remain unclear. The aim of this study was to investigate the effect of PAME on human BM-MSC (hBM-MSC) proliferation and its underlying molecular mechanisms. hBM-MSCs were treated with PAME for 48 h and then subjected to various analyses. The results from the present study show that PAME significantly reduced the levels of G2/M phase regulatory proteins, cyclin-dependent kinase 1 (Cdk1), and cyclin B1 and inhibited proliferation in hBM-MSCs. Moreover, the level of Mdm2 protein decreased, while the levels of p21 and p53 protein increased in the PAME-treated hBM-MSCs. However, PAME treatment did not significantly affect apoptosis/necrosis, ROS generation, and the level of Cdc25C protein. PAME also induced intracellular acidosis and increased intracellular Ca2+ levels. Cotreatment with PAME and Na+/H+ exchanger inhibitors together further reduced the intracellular pH but did not affect the PAME-induced decreases of cell proliferation and increases of the cell population at the G2/M phase. Cotreatment with PAME and a calcium chelator together inhibited the PAME-increased intracellular Ca2+ levels but did not affect the PAME-induced cell proliferation inhibition and G2/M cell cycle arrest. Moreover, the half-life of p53 protein was prolonged in the PAME-treated hBM-MSCs. Taken together, these results suggest that PAME induced p53 stabilization, which in turn increased the levels of p53/p21 proteins and decreased the levels of Cdk1/cyclin B1 proteins, thereby preventing the activation of Cdk1, and eventually caused cell cycle arrest at the G2/M phase. The findings from the present study might help get insight into the physiological roles of PAME in regulating hBM-MSC proliferation.
Collapse
|
38
|
Kanagasabai T, Venkatesan T, Natarajan U, Alobid S, Alhazzani K, Algahtani M, Rathinavelu A. Regulation of cell cycle by MDM2 in prostate cancer cells through Aurora Kinase-B and p21WAF1 /CIP1 mediated pathways. Cell Signal 2019; 66:109435. [PMID: 31706019 DOI: 10.1016/j.cellsig.2019.109435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
Abstract
Overexpression of MDM2 oncoprotein has been detected in a large number of diverse human malignancies and has been shown to play both p53-dependent and p53-independent roles in oncogenesis. Our study was designed to explore the impact of MDM2 overexpression on the levels of various cell cycle regulatory proteins including Aurora kinase-B (AURK-B), CDC25C and CDK1, which are known to promote tumor progression and increase metastatic potential. Our data from human cell cycle RT2 profiler PCR array experiments revealed significant changes in the expression profile of genes that are involved in different phases of cell cycle regulation in LNCaP-MST (MDM2 transfected) prostate cancer cells. Our current study has demonstrated a significant increase in the expression level of AURK-B, CDC25C, Cyclin A2, Cyclin B and CDK1 in LNCaP-MST cells as compared with wild type LNCaP cells that were modulated by MDM2 specific inhibitor Nutlin-3. In fact, the expression levels of the above- mentioned proteins were significantly altered at both mRNA and protein levels after treating the cells with 20 μM Nutlin-3 for 24h. Additionally, the pro-apoptotic proteins including p53, p21, and Bax were elevated with the concomitant decrease in the key anti-apoptotic proteins following MDM2 inhibitor treatment. Also, Nutlin-3 treated cells demonstrated caspase-3 activation was observed with an in-vitro caspase-3 fluorescent assay performed with caspase 3/7 specific DEVD-amc substrate. Our results offer significant evidence towards the effectiveness of MDM2 inhibition in causing cell cycle arrest via blocking the transmission of signals through AURKB-CDK1 axis and inducing apoptosis in LNCaP-MST cancer cells. It is evident from our data that MDM2 overexpression probably is the primary cause for CDK1 up-regulation in the LNCaP-MST cells, which might have occurred possibly through activation of AURK-B. However, further studies in this direction should shed more light on the intracellular mechanisms involved in the regulation of Aurora kinase-B and CDK1 axis in MDM2 positive cancers.
Collapse
Affiliation(s)
- Thanigaivelan Kanagasabai
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Thiagarajan Venkatesan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA
| | - Umamaheswari Natarajan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; VRR Institute of Biomedical Sciences, Kattupakkam, Chennai, TN 600056, India
| | - Saad Alobid
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Khalid Alhazzani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Mohammad Algahtani
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Appu Rathinavelu
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA; College of Pharmacy, Health Professions Division, Nova Southeastern University, Ft. Lauderdale, FL 33314, USA.
| |
Collapse
|
39
|
Expression Profile of Cell Cycle-Related Genes in Human Fibroblasts Exposed Simultaneously to Radiation and Simulated Microgravity. Int J Mol Sci 2019; 20:ijms20194791. [PMID: 31561588 PMCID: PMC6801845 DOI: 10.3390/ijms20194791] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
Multiple unique environmental factors such as space radiation and microgravity (μG) pose a serious threat to human gene stability during space travel. Recently, we reported that simultaneous exposure of human fibroblasts to simulated μG and radiation results in more chromosomal aberrations than in cells exposed to radiation alone. However, the mechanisms behind this remain unknown. The purpose of this study was thus to obtain comprehensive data on gene expression using a three-dimensional clinostat synchronized to a carbon (C)-ion or X-ray irradiation system. Human fibroblasts (1BR-hTERT) were maintained under standing or rotating conditions for 3 or 24 h after synchronized C-ion or X-ray irradiation at 1 Gy as part of a total culture time of 2 days. Among 57,773 genes analyzed with RNA sequencing, we focused particularly on the expression of 82 cell cycle-related genes after exposure to the radiation and simulated μG. The expression of cell cycle-suppressing genes (ABL1 and CDKN1A) decreased and that of cell cycle-promoting genes (CCNB1, CCND1, KPNA2, MCM4, MKI67, and STMN1) increased after C-ion irradiation under μG. The cell may pass through the G1/S and G2 checkpoints with DNA damage due to the combined effects of C-ions and μG, suggesting that increased genomic instability might occur in space.
Collapse
|
40
|
Xu L, Zhao J, Wang Z. Genotoxic response and damage recovery of macrophages to graphene quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:536-545. [PMID: 30759415 DOI: 10.1016/j.scitotenv.2019.01.356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
The potential adverse effects of graphene quantum dots (GQDs) have increasingly attracted attention. Our present study revealed the genotoxic responses of rat alveolar macrophages (NR8383) to aminated graphene QDs (AG-QDs) and detected the cellular recovery after removing AG-QDs. Global gene expression analysis from RNA-sequencing showed that AG-QDs (100 μg/mL) caused significant alterations in expression of 2898 genes after exposure for 24 h. Among these, 1335 and 1563 genes were up-regulated and down-regulated, respectively. Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, we found that most of the down-regulated genes were responsive to "cell cycle", which correlated well with the cell cycle arrest data that AG-QDs triggered cell cycle arrest at S (synthesis) and G2/M (second gap/mitosis) phase. The percentages of cells in S and G2/M phase were increased by 4.5%, and 29.0%, respectively. In addition, the up-regulated genes related with "endocytosis" and "phagocytosis" were identified, which could regulate the internalization of AG-QDs by endocytosis and phagocytosis. After removing exposed AG-QDs and re-incubating the cells in fresh medium, the arrest of S and G2/M phase in NR8383 cells was reduced, and the cell cycle gradually recovered. This cellular recovery could be attributed to the cellular excretion of AG-QDs and the up-regulation of the DNA-repair-related genes (Rad51, Brca2, and Atm). The current work provides insights into the potential hazards of AG-QDs in transcriptional level and presented the long-term effects of AG-QDs on organisms in environment.
Collapse
Affiliation(s)
- Lina Xu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Institute of Coastal Environmental Pollution Control, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
41
|
Atractylenolide II Induces Apoptosis of Prostate Cancer Cells through Regulation of AR and JAK2/STAT3 Signaling Pathways. Molecules 2018; 23:molecules23123298. [PMID: 30545141 PMCID: PMC6320989 DOI: 10.3390/molecules23123298] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer is the most common illness affecting men worldwide. Although much progress has been made in the study of prostate cancer prevention and treatment, less attention has been paid to the molecular mechanism of the disease. The molecular arrangement by which atractylenolide II (ATR II) induces human prostate cancer cytotoxicity was comprehensively examined in the present study. As indicated by the results, ATR II could inhibit prostate cancer cell proliferation and promote DU145 and LNCaP cell apoptosis through induced G2/M cell cycle arrest. The cell apoptosis process induced by ATR II in both DU145 and LNCaP cells was associated with its ability to inhibit androgen receptor (AR) with overexpression of protein inhibitor of activated STAT-1 (PIAS1) and the repression of Janus kinase (Jak2) signaling pathways. The data from the present study demonstrated the antitumor effects and the potential pharmacological application of ATR II as an efficient drug for prostate cancer treatment.
Collapse
|
42
|
Li L, Zhang C, Chen JL, Hong FF, Chen P, Wang JF. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Cell Prolif 2018; 52:e12539. [PMID: 30397970 PMCID: PMC6496301 DOI: 10.1111/cpr.12539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/16/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives Exposure to microgravity induces many adaptive and pathological changes in human bone marrow mesenchymal stem cells (hBMSCs). However, the underlying mechanisms of these changes are poorly understood. We revealed the gene expression patterns of hBMSCs under normal ground (NG) and simulated microgravity (SMG), which showed an interpretation for these changes by gene regulation and signal pathways analysis. Materials and methods In this study, hBMSCs were osteogenically induced for 0, 2, 7 and 14 days under normal ground gravity and simulated microgravity, followed by analysis of the differences in transcriptome expression during osteogenic differentiation by RNA sequencing and some experimental verification for these results. Results The results indicated that 837, 399 and 894 differentially expressed genes (DEGs) were identified in 2, 7 and 14 days samples, respectively, out of which 13 genes were selected for qRT‐PCR analysis to confirm the RNA‐sequencing results. After analysis, we found that proliferation was inhibited in the early stage of induction. In the middle stage, osteogenic differentiation was inhibited, whereas adipogenic differentiation benefited from SMG. Moreover, SMG resulted in the up‐regulation of genes specific for tumorigenesis in the later stage. Conclusion Our data revealed that SMG inhibits the proliferation and inhibits the differentiation towards osteoblasts but promotes adipogenesis. SMG also selects highly tumorigenic cells for survival under prolonged SMG.
Collapse
Affiliation(s)
- Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Ling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fan-Fan Hong
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ping Chen
- Departments of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia
| | - Jin-Fu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Xu Y, Li R, Zhang K, Wu W, Wang S, Zhang P, Xu H. The multifunctional RNA-binding protein hnRNPK is critical for the proliferation and differentiation of myoblasts. BMB Rep 2018; 51:350-355. [PMID: 29898807 PMCID: PMC6089871 DOI: 10.5483/bmbrep.2018.51.7.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 11/20/2022] Open
Abstract
HnRNPK is a multifunctional protein that participates in chromatin remodeling, transcription, RNA splicing, mRNA stability and translation. Here, we uncovered the function of hnRNPK in regulating the proliferation and differentiation of myoblasts. hnRNPK was mutated in the C2C12 myoblast cell line using the CRISPR/Cas9 system. A decreased proliferation rate was observed in hnRNPK-mutated cells, suggesting an impaired proliferation phenotype. Furthermore, increased G2/M phase, decreased S phase and increased sub-G1 phase cells were detected in the hnRNPK-mutated cell lines. The expression analysis of key cell cycle regulators indicated mRNA of Cyclin A2 was significantly increased in the mutant myoblasts compared to the control cells, while Cyclin B1, Cdc25b and Cdc25c were decreased sharply. In addition to the myoblast proliferation defect, the mutant cells exhibited defect in myotube formation. The myotube formation marker, myosin heavy chain (MHC), was decreased sharply in hnRNPK-mutated cells compared to control myoblasts during differentiation. The deficiency in hnRNPK also resulted in the repression of Myog expression, a key myogenic regulator during differentiation. Together, our data demonstrate that hnRNPK is required for myoblast proliferation and differentiation and may be an essential regulator of myoblast function.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Rui Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Kaili Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Wei Wu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Suying Wang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
44
|
Huang S, Dong X, Wang J, Ding J, Li Y, Li D, Lin H, Wang W, Zhao M, Chang Q, Zhou N, Cui W, Huang C. Overexpression of the Ubiquilin-4 (UBQLN4) is Associated with Cell Cycle Arrest and Apoptosis in Human Normal Gastric Epithelial Cell Lines GES-1 Cells by Activation of the ERK Signaling Pathway. Med Sci Monit 2018; 24:3564-3570. [PMID: 29807370 PMCID: PMC6004079 DOI: 10.12659/msm.909621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ubiquilin-4 (UBQLN4) is a component of the ubiquitin-proteasome system and regulates the degradation of many proteins implicated in pathological conditions. The aim of this study was to determine the role of UBQLN4 in regulating the proliferation and survival of the normal gastric epithelial cell line GES-1. MATERIAL AND METHODS We constructed GES-1 lines stably overexpressing UBQLN4 by lentiviral infection. Cell proliferation, apoptosis, and the cell cycle were analyzed using the MTT assay and flow cytometric assays. Phosphorylation of ERK, JNK, p38, and expression of cyclin D1 were detected by western blot analysis. RESULTS Overexpression of UBQLN4 significantly reduced proliferation and induced G2/M phase arrest and apoptosis in GES-1 cells. Moreover, upregulation of UBQLN4 increased the expression of cyclin D1 and phosphorylated ERK, but not JNK or p38. CONCLUSIONS These data suggest that UBQLN4 may induce cell cycle arrest and apoptosis via activation of the ERK pathway and upregulation of cyclin D1 in GES-1 cells.
Collapse
Affiliation(s)
- Shengkai Huang
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Jia Wang
- Department of Clinical Laboratory, Meitan General Hospital, Beijing, China (mainland)
| | - Jie Ding
- State Key Laboratory of Cardiovascular Disease, Anesthesia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Yan Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Dongdong Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Hong Lin
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Wenjie Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Qing Chang
- Department of Ultrasound, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Ning Zhou
- The Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China (mainland)
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland)
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (mainland).,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China (mainland)
| |
Collapse
|
45
|
Tao L, Cao Y, Wei Z, Jia Q, Yu S, Zhong J, Wang A, Woodgett JR, Lu Y. Xanthatin triggers Chk1-mediated DNA damage response and destabilizes Cdc25C via lysosomal degradation in lung cancer cells. Toxicol Appl Pharmacol 2017; 337:85-94. [PMID: 29074359 DOI: 10.1016/j.taap.2017.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/01/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022]
Abstract
Previous studies had shown that xanthatin, a natural xanthanolide sesquiterpene lactone, could induce mitotic arrest and apoptosis in non-small cell lung cancer (NSCLC) cells. Here, we examined whether the DNA damage response (DDR) could be a primary cytotoxic event underlying xanthatin-mediated anti-tumor activity. Using EdU incorporation assay in combination with novel imaging flow cytometry, our data indicated that xanthatin suppressed DNA replication, prevented cells from G2/M entry and increased the spot count of γH2AX nuclear foci. Given that checkpoint kinase 1 (Chk1) represents a core component in DDR-mediated cell cycle transition and the phosphorylation on Ser-345 is essential for kinase activation and function, we surprisingly found xanthatin distinctly modulated Ser-345 phosphorylation of Chk1 in A549 and H1299 cells. Further investigation on Cdc25C/CDK1/CyclinB1 signaling cascade in the absence or presence of pharmacological DDR inhibitors showed that xanthatin directly destabilized the protein levels of Cdc25C, and recovery of p53 expression in p53-deficient H1299 cells further intensified xanthatin-mediated inhibition of Cdc25C, suggesting p53-dependent regulation of Cdc25C in a DDR machinery. Moreover, exogenous expression of Cdc25C was also substantially repressed by xanthatin and partially impaired xanthatin-induced G2 arrest. In addition, xanthatin could induce accumulation of ubiquitinated Cdc25C without undergoing further proteasomal degradation. However, an alternative lysosomal proteolysis of Cdc25C was observed. Interestingly, lysosome-like vesicles were produced upon xanthatin treatment, accompanied by rapid accumulation of lysosomal associated membrane protein LAPM-1. Furthermore, vacuolar proton (V)-ATPases inhibitor bafilomycin A1 and lysosomal proteases inhibitor leupeptin could remarkably overturn the levels of Cdc25C in xanthatin-treated H1299 cells. Altogether, these data provide insight into how xanthatin can be effectively targeted DDR molecules towards certain tumors.
Collapse
Affiliation(s)
- Li Tao
- Department of Pharmacy, College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| | - Yuzhu Cao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Qi Jia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jinqiu Zhong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ainyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1X5, Canada.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| |
Collapse
|