1
|
Wei J, Luo J, Chen Y, Wang F, Yang F, Li Y, Zhu Z, Huang Z, Li X, Luo M. Long-term exposure to outdoor air pollution correlated with overweight/obesity in children and adolescents: A cross-sectional real-world study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 387:125912. [PMID: 40414129 DOI: 10.1016/j.jenvman.2025.125912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 05/14/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Air pollution has emerged as an essential risk factor for overweight and obesity. However, the combined effects of multiple air pollutants on overweight/obesity development in children and adolescents are not fully understood. In this study, a total of 189,448 children and adolescents in China were included. Logistics, weighted quantile sum, quantile g-computation, and bayesian kernel machine regression models were used to systematically assess the association between long-term outdoor air pollution exposure and overweight/obesity, and identified the major contributors. Our results revealed a significantly positive association of PM2.5, PM10, CO, and NO2 concentrations with overweight/obesity risk. Multi-pollutant models consistently demonstrated a positive association between the air pollutant mixture and the risk of overweight/obesity (OR: 1.825; 95 % CI: 1.036, 2.614). PM2.5 and PM10 were identified as the most significant contributors. Furthermore, we found significantly positive overall effects and interactions of these pollutants on an additive risk of overweight/obesity. The effects of air pollutants on overweight/obesity were pronounced in boys, rural residents, smokers, and primary school students. Our findings demonstrated that long-term exposure to air pollutants, particularly PM2.5 and PM10 was positively linked with an increased risk of overweight/obesity in children and adolescents. The cross-sectional design and potential confounders limited the ability to establish causality. Prospective cohort studies and specific mechanism investigations are needed to provide more precise and robust evaluations in the future. Coordinated policies to reduce air pollutants and mitigate their combined effects are essential for addressing this public health issue.
Collapse
Affiliation(s)
- Jia Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Jiayou Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Yanhua Chen
- Department of School Health, Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Fei Wang
- Department of School Health, Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Yamei Li
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Zhaozhong Zhu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, 421001, China
| | - Zhihang Huang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China
| | - Xiaojun Li
- Department of School Health, Hunan Provincial Center for Disease Control and Prevention, Changsha, 410005, China.
| | - Miyang Luo
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, 410078, China.
| |
Collapse
|
2
|
Warkentin S, Fossati S, Marquez S, Andersen AMN, Andrusaityte S, Avraam D, Ballester F, Cadman T, Casas M, de Castro M, Chatzi L, Elhakeem A, d'Errico A, Guxens M, Grazuleviciene R, Harris JR, Hernandez CI, Heude B, Isaevska E, Jaddoe VWV, Karachaliou M, Lertxundi A, Lepeule J, McEachan RRC, Thorbjørnsrud Nader JL, Pedersen M, Santos S, Slofstra M, Stephanou EG, Swertz MA, Vrijkotte T, Yang TC, Nieuwenhuijsen M, Vrijheid M. Ambient air pollution and childhood obesity from infancy to late childhood: An individual participant data meta-analysis of 10 European birth cohorts. ENVIRONMENT INTERNATIONAL 2025; 200:109527. [PMID: 40378473 DOI: 10.1016/j.envint.2025.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 05/06/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
Ambient air pollution may contribute to childhood obesity through various mechanisms. However, few longitudinal studies examined the relationship between pre- and postnatal exposure to air pollution and obesity outcomes in childhood. We aimed to investigate the association between pre- and postnatal exposure to air pollution and body mass index (BMI) and the risk of overweight/obesity throughout childhood in European cohorts. This study included mother-child pairs from 10 European birth cohorts (n = 37111 (prenatal), 33860 (postnatal)). Exposure to nitrogen dioxide (NO2) and fine particulate matter with aerodynamic diameter < 2.5 µm (PM2.5) was estimated at the home addresses during pre- and postnatal periods (year prior outcome assessment). BMI z-scores (continuous) and overweight/obesity status (categorical: zBMI≥+2 (<5 years) or ≥+1 (≥5 years) standard deviations) were derived at 0-2, 2-5, 5-9, 9-12 years. Associations between air pollution exposure and zBMI were estimated separately for each pollutant and cohort using linear and logistic longitudinal mixed effects models, followed by a random-effects meta-analysis. The overweight/obesity prevalence ranged from 12.3-40.5 % between cohorts at 0-2 years, 16.7-35.3 % at 2-5 years, 12.5-40.7 % at 5-9 years, and 10.7-43.8 % at 9-12 years. Results showed no robust associations between NO2 exposure and zBMI or overweight/obesity risk. Exposure to PM2.5 during pregnancy was associated with 23 % (95%CI 1.05;1.37) higher overweight/obesity risk across childhood, and higher zBMI and overweight/obesity risk at 9-12 years. Heterogeneity between cohorts was considerable (I2:25-89 %), with some cohort-specific associations; e.g., pre- and postnatal exposure to PM2.5 was associated with lower zBMI across age periods in UK cohorts (ALSPAC and BiB), while postnatal exposure to PM2.5 and NO2 was associated with higher zBMI in one Dutch cohort (Generation R). Overall, this large-scale meta-analysis suggests that prenatal PM2.5 exposure may be associated with adverse childhood obesity outcomes, but provides no evidence to support an effect of postnatal air pollution exposure, although cohort-specific associations were observed.
Collapse
Affiliation(s)
- Sarah Warkentin
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Marquez
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Demetris Avraam
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Ferran Ballester
- FISABIO-University Jaume I-Universitat de València, Valencia, Spain
| | - Tim Cadman
- ISGlobal, Barcelona, Spain; Department of Genetics and Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Leda Chatzi
- University of South California, Los Angeles, USA
| | | | - Antonio d'Errico
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy; Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands; ICREA, Barcelona, Spain
| | | | - Jennifer R Harris
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Carmen Iñiguez Hernandez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Statistics and Operational Research, Universitat de València, Valencia, Spain
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), F-75004 Paris, France
| | - Elena Isaevska
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin, Turin, Italy; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, the Netherlands
| | - Vincent W V Jaddoe
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marianna Karachaliou
- ISGlobal, Barcelona, Spain; Clinic of Preventive and Social Medicine, Medical School, University of Crete, Greece
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; University of the Basque Country, Bilbao, Spain; Biogipuzkoa Health Research Institute, Donostia-San Sebastian, Spain
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology applied to Development and Respiratory Health, IAB, Grenoble, France
| | - Rosemary R C McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK; Public Health Improvement, UK
| | - Johanna L Thorbjørnsrud Nader
- Department of Genetics and Bioinformatics, Division of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Marie Pedersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Susana Santos
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Mariska Slofstra
- Department of Genetics and Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Morris A Swertz
- Department of Genetics and Genomics Coordination Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Tiffany C Yang
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK; Public Health Improvement, UK
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Kim HJ, Hwang J, Park JH. Long-Term Exposure to Ambient Air Pollution and Metabolic Syndrome and Its Components. J Obes Metab Syndr 2025; 34:91-104. [PMID: 40090381 PMCID: PMC12067007 DOI: 10.7570/jomes24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/23/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025] Open
Abstract
Ambient air pollution is a serious public health issue worldwide. A growing number of studies has highlighted the negative effects of air pollution on metabolic syndrome (MetS) and its components, including abdominal obesity, disorders of lipid metabolism, elevated blood pressure, and impaired fasting blood glucose. This review provides a brief overview of epidemiological and genetic interaction studies of the links between chronic exposure to ambient air pollution and MetS and its components, as well as plausible mechanisms underlying these relationships. The cumulative evidence suggests that long-term exposure to air pollution, especially particulate matter, increases the risk of MetS and its components. These associations can be partly modified by baseline characteristics, lifestyle, and health conditions. Gene-by-air-pollution interaction studies, limited to candidate genes in the past, have recently been conducted at an expanded genome-wide level. However, more such studies are needed to comprehensively understand the genetics involved in the association between air pollution and MetS. Mechanistic evidence suggests potential biological pathways, including inflammation, oxidative stress, and endothelial dysfunction.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Juyeon Hwang
- National Cancer Control Institute, National Cancer Center, Goyang, Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Riedlova P, Tomaskova H, Slachtova H, Babjakova J, Jirik V. The impact of environmental conditions on lifestyle quality in industrial and non-industrial region in the Czech Republic. Front Public Health 2025; 13:1505170. [PMID: 40241955 PMCID: PMC12000089 DOI: 10.3389/fpubh.2025.1505170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/22/2025] [Indexed: 04/18/2025] Open
Abstract
Background Long-term exposure to air pollution is associated with a higher incidence of various non-infectious diseases. However, not only air pollution, but also other risk factors, such as lifestyle, can play a role in the occurrence of these diseases or premature deaths from them. The study aimed to compare the lifestyle of residents of two differently air polluted regions and to determine how lifestyle is affected by socioeconomic variables. Methods In the framework of the project Healthy Aging in Industrial Environments, two cohorts of persons from an industrial area and a control area were established. The cohorts consisted of individuals aged 35 to 65 years. Lifestyle factors included diet, BMI, alcohol and cigarette consumption, duration of sleep, physical activity, and time spent doing hobbies. Influencing factors included region, sex, age, education, family status, and economic situation. Fully adjusted binary and ordinal logistic regression models were used for evaluation, and the output was the odds ratio (OR) with 95% confidence intervals (CI). Results The effect of more air polluted industrial region was related to higher BMI (OR = 1.23; 95% CI: 1.08-1.4) and physical activity (OR = 1.31; 95% CI: 1.13-1.51) and surprisingly to lower smoking level (OR = 0.84; 95% CI: 0.74-0.99). Conclusion The results of our study are useful in targeting public health strategies and intervention programs to specific populations, and the results will be share with public awareness groups that focus on prevention and the physiological aspects of physical activity.
Collapse
Affiliation(s)
- Petra Riedlova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Hana Tomaskova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Hana Slachtova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jana Babjakova
- Institute of Hygiene, Faculty of Medicine, Comenius, University in Bratislava, Bratislava, Slovakia
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| |
Collapse
|
5
|
Du X, Guan L, Chen C, Wang X, Geng X. Long-term exposure to PM 2.5 exacerbates dopaminergic neuronal loss through CpG hypermethylation induced down-regulation of PINK1 and DJ-1 genes. Sci Rep 2025; 15:10778. [PMID: 40155616 PMCID: PMC11953427 DOI: 10.1038/s41598-025-89422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/05/2025] [Indexed: 04/01/2025] Open
Abstract
To investigate whether airborne particle (PM2.5) aggravates Parkinson's disease (PD) and alter expression of key PD-related genes by DNA methylation. Two groups of rats were exposed to either clean air or polluted air for 3, 6, and 12 months. The neurotoxin rotenone was injected intraperitoneally to induce a Parkinson's-like disorder. Immunostaining was used to measure the number of dopaminergic neurons in substantia nigra (SN). Real-time PCR was used to measure mRNA levels of PD-related genes PINK1 and DJ-1 in SN. Bisulfate sequencing (BSP) was used to measure DNA methylation levels in gene promoters. In a cell-based mimic of animal experiments, SH-SY5Y cells were treated with Diesel exhaust PM2.5 (DEP) for 1.5, 6, and 24 h. RT-PCR and BSP methods were used to measure gene expression and methylation of CpG islands in the cells. Persistent exposure to PM2.5 significantly increased the loss of dopaminergic neurons in the SN. Prolonged PM2.5 exposure and DEP treatment significantly reduced the mRNA levels of PINK1 and DJ-1. Both PM2.5 and DEP significantly increased the methylation level of the CpG islands in both genes. PM2.5 induced loss of dopaminergic neurons and aggravated Parkinson's disease. PM2.5 induced dysregulation of DNA methylation, resulting in decreased expression of the PINK1 and DJ-1.
Collapse
Affiliation(s)
- Xiangnan Du
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China
| | - Longfei Guan
- Department of Neurology, China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China
| | - Chen Chen
- Department of Neurology, China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China
| | - Xuemei Wang
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China.
| | - Xiaokun Geng
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China.
- Department of Neurology, China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, 82# South of Xin Hua, Beijing, 101100, China.
| |
Collapse
|
6
|
Ueda Yamaguchi N, de Almeida L, Carvalho Gomes Corrêa R, Grossi Milani R, Ueda Yamaguchi M. Global Perspectives on Obesity and Being Overweight: A Bibliometric Analysis in Relation to Sustainable Development Goals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:146. [PMID: 40003372 PMCID: PMC11855184 DOI: 10.3390/ijerph22020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Obesity and being overweight are significant risk factors for diseases and disabilities, making it crucial to address malnutrition in all its forms to ensure health and well-being for all, as well as to achieve sustainable development. This study conducted a bibliometric analysis of research on obesity in relation to Sustainable Development Goals (SDGs) using data from the Web of Science database from 2015 to 2024 and the VOSviewer software. The findings revealed that while research on obesity and SDGs has grown slowly, SDG 3 (Good Health and Well-Being) is predominant in the literature. This study highlighted the fragmentation of research due to the complex, multifactorial nature of obesity, emphasizing the need for a more holistic approach. Furthermore, international collaborations were found to be vital for advancing research and formulating effective public policies. This analysis also identified gaps in the research related to several SDGs, including education (SDG 4), affordable and clean energy (SDG 7), and partnerships (SDG 17), suggesting the need for a broader, more holistic approach. Additionally, emerging research related to SDG 11 (Sustainable Cities and Communities) underscores the importance of urban environments in tackling obesity. In conclusion, future research should adopt an interdisciplinary approach to address these gaps and contribute to advancing the 2030 Agenda.
Collapse
Affiliation(s)
- Natália Ueda Yamaguchi
- Department of Energy and Sustainability, Federal University of Santa Catarina, Campus Ararangua, Ararangua 88905-120, Brazil
| | - Letícia de Almeida
- Center of Biological and Health Sciences, Cesumar University—UNICESUMAR, Maringa 87050-900, Brazil;
| | - Rúbia Carvalho Gomes Corrêa
- Post-Graduation Program in Clean Technologies, Cesumar Institute of Science, Technology and Innovation, Cesumar University—UNICESUMAR, Maringa 87050-900, Brazil;
| | - Rute Grossi Milani
- Post-Graduation Program in Health Promotion, Cesumar Institute of Science, Technology and Innovation, Cesumar University—UNICESUMAR, Maringa 87050-900, Brazil; (R.G.M.); (M.U.Y.)
| | - Mirian Ueda Yamaguchi
- Post-Graduation Program in Health Promotion, Cesumar Institute of Science, Technology and Innovation, Cesumar University—UNICESUMAR, Maringa 87050-900, Brazil; (R.G.M.); (M.U.Y.)
| |
Collapse
|
7
|
Wang Y, Alptekin R, Goldring RM, Oppenheimer BW, Shao Y, Reibman J, Liu M. Association between World Trade Center disaster exposures and body mass index in community members enrolled at World Trade Center Environmental Health Center. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125414. [PMID: 39615564 PMCID: PMC11634636 DOI: 10.1016/j.envpol.2024.125414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Studies suggest that environmental disasters have a big impact on population health conditions including metabolic risk factors, such as obesity and hypertension. The World Trade Center (WTC) destruction from the 9/11 terrorist attack resulted in environmental exposures to community members (Survivors) with potential for metabolic effects. We now examine the impact of WTC exposure on Body Mass Index (BMI) using the data from 7136 adult participants enrolled in the WTC Environmental Health Center (EHC) from August 1, 2005, to December 31, 2022. We characterized WTC-related exposures by multiple approaches including acute dust-cloud exposure, occupational or residential exposures, and latent exposure patterns identified by synthesizing multiplex exposure questions using latent class analysis. Employing multivariable linear and quantile regressions for continuous BMI and ordered logistic regression for BMI categories, we found significant associations of BMI with WTC exposure categories or latent exposure patterns. For example, using exposure categories, compared to the group of local residents, local workers exhibited an average BMI increase of 1.71 kg/m2 with 95% confidence intervals (CI) of (1.33, 2.09), the rescue/recovery group had an increase of 3.13 kg/m2 (95% CI: 2.18, 4.08), the clean-up worker group had an increase of 0.75 kg/m2 (95% CI: 0.09, 1.40), and the other mixer group had an increase of 1.01 kg/m2 (95% CI: 0.43, 1.58). Furthermore, quantile regression analysis demonstrated that WTC exposures adversely affected the entire distribution of BMI in the WTC EHC Survivors, not merely the average. Our analysis also extended to blood pressure and hypertension, demonstrating statistically significant associations with WTC exposures. These outcomes highlight the intricate connection between WTC exposures and metabolic risk factors including BMI and blood pressure in the WTC Survivor population.
Collapse
Affiliation(s)
- Yuyan Wang
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY 10016, USA
| | - Ramazan Alptekin
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Roberta M Goldring
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Beno W Oppenheimer
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, NYU Grossman School of Medicine, 550 1st Avenue, New York, NY 10016, USA.
| | - Mengling Liu
- Department of Population Health, NYU Grossman School of Medicine, 180 Madison, New York, NY 10016, USA.
| |
Collapse
|
8
|
Rho MJ, Park YH, Park J. Moderate PM 10 exposure increases prostate cancer: a longitudinal nationwide cohort study (2010-2020). Front Public Health 2025; 12:1490458. [PMID: 39866357 PMCID: PMC11759305 DOI: 10.3389/fpubh.2024.1490458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/23/2024] [Indexed: 01/28/2025] Open
Abstract
Introduction Fine dust exposure has been reported to affect patients with prostate cancer, making it crucial to understand how environmental pollutants impact health. This study aimed to determine the risk of prostate cancer in South Korea associated with moderate levels of fine dust (PM10) exposure. Methods We analyzed data from 20,430 individuals in the National Health Insurance Sharing Service database from 2010 to 2020, comparing a new prostate cancer group (n = 4,071, 19.9%) with a non-prostate cancer group (n = 16,359, 80.1%). Using PM10 data from Air Korea's annual average air quality database, we conducted logistic regression analysis to assess the risk of prostate cancer. Results Our findings indicate that even moderate PM10 exposure is a risk factor for developing prostate cancer. Additionally, even at low levels of PM2.5, moderate PM10 exposure significantly impacts prostate cancer development, with lifestyle ha bits potentially lowering this risk. Discussion These results underscore the need for stricter environmental standards for PM10 and proactive policies to reduce public health and long-term social costs. Public awareness, including mask use and air quality management, is essential.
Collapse
Affiliation(s)
- Mi Jung Rho
- College of Health Science, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| | - Yong Hyun Park
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jihwan Park
- College of Liberal Arts, Dankook University, Cheonan-si, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
9
|
Peng Y, Zhao Y, Wang M, He Y, Zhang L, Zhao Y, Liu J, Zheng S. Exposure to PM 2.5 and its components leads to obesity: role of socioeconomic status. Sci Rep 2025; 15:114. [PMID: 39748012 PMCID: PMC11696562 DOI: 10.1038/s41598-024-83923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
Exposure to air pollutants is linked to an increased risk of obesity, and socioeconomic status (SES) could modulate this risk. We employed the "Jinchang Cohort" as a platform to investigate the influence of SES (education level, monthly income per household, and marital status) on the obesity risk associated with PM2.5 and its constituents. Study has demonstrated that air pollutant exposure enhances the likelihood of overweight/obesity, with a risk ratio (HR) of 1.229 for each quartile increase in PM2.5 concentration (95% CI: 1.137-1.328, P < 0.05). The risk of overweight/obesity rises with pollutant levels across various SES strata, with the effect being most marked among those with higher SES. For instance, the HRs and 95% CIs for overweight/obesity with each quartile increase in SO42- concentration were 1.338 (1.207-1.484), 1.311 (1.121-1.533), and 2.224 (1.823, 2.714) at low, medium, and high SES levels, respectively (all P < 0.05). An interaction between air pollutants and SES was observed in the context of obesity risk, with RERIs of 0.723 (0.473-0.973) and 0.562 (0.268-0.856) for medium-high SES levels and high NO3- exposure, respectively (both P < 0.05). These findings have practical implications. Public health campaigns could be launched to raise awareness among higher SES individuals about the obesity risk associated with air pollutants and encourage them to adopt preventive measures such as using air purifiers and increasing physical activity.
Collapse
Affiliation(s)
- Yindi Peng
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Yamin Zhao
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Minzhen Wang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China.
| | - Yingqian He
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Lulu Zhang
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Yanan Zhao
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Jing Liu
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China
| | - Shan Zheng
- Institute of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, 199 Donggang West Road, 730000, Lanzhou City, Gansu Province, China.
| |
Collapse
|
10
|
Zhang B, Hart JE, Laden F, Bozigar M, James P. Environmental mixtures and body mass index in two prospective US-based cohorts of female nurses. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135794. [PMID: 39265401 DOI: 10.1016/j.jhazmat.2024.135794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/23/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
We estimated the joint effect of particulate matter ≤ 2.5 µm in diameter (PM2.5), nitrogen dioxide (NO2), seasonal temperature, noise, greenness, light at night, and neighborhood socioeconomic status (NSES) on body mass index (BMI) in a mixture context among 194,966 participants from the Nurses' Health Study (NHS) and Nurses' Health Study II (NHSII) over 30 years. BMI was calculated from self-reported weight and height. Single- and multi-exposure generalized estimating equations models were used to estimate the difference in BMI per interquartile range (IQR) increase of environmental factors, and quantile g-computation methods were used to estimate joint associations. In both cohorts, we consistently observed positive associations of BMI with PM2.5 and NO2 concentrations as well as negative associations with light at night and NSES regardless modeling approach. A positive association with noise was only observed in NHS. Negative associations with greenness and winter temperature were only observed in NHSII. Overall, the changes in BMI per quintile increase in all eight exposures were -0.11 (-0.13, -0.08) in NHS and -0.39 (-0.41, -0.37) in NHSII, which were largely driven by air pollution and nighttime noise (18-45 %) in the positive direction and NSES (>70 %) in the negative direction. Future intervention on environmental factors, especially reducing PM2.5, NO2 and noise or improving the NSES, might be helpful to lower BMI.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Jaime E Hart
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Francine Laden
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Matthew Bozigar
- School of Nutrition and Public Health, College of Health, Oregon State University, 160 SW 26th Street, Corvallis, OR 97331, USA
| | - Peter James
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA; Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| |
Collapse
|
11
|
Sui X, Zhang L, Xu W, Meng X, Zhao Y, Gui Y, Shi H, Wang P, Zhang Y. Prenatal ozone exposure is associated with children overweight and obesity: Evidence from the Shanghai Maternal-Child Pairs Cohort. ECO-ENVIRONMENT & HEALTH 2024; 3:436-444. [PMID: 39559190 PMCID: PMC11570401 DOI: 10.1016/j.eehl.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/01/2024] [Accepted: 04/21/2024] [Indexed: 11/20/2024]
Abstract
Prenatal ozone (O3) exposure may disrupt normal offspring growth. However, epidemiological evidence that prenatal O3 exposure affects the physical development of offspring early in life is far from adequate. A total of 4909 maternal-child pairs from the Shanghai Maternal-Child Pairs Cohort were included. A high-resolution random forest model was utilized to evaluate prenatal exposure levels of O3 based on the home addresses of pregnant women. Group-based trajectory and mixed-effects models were used to assess associations between prenatal O3 exposure and physical parameters. Each 10 μg/m³ increase in O3 concentration was associated with 0.084, 0.048, and 0.082-unit increases in body mass index (BMI) for age Z score (BAZ), weight for age Z score (WAZ), and weight for length Z score (WLZ), respectively. Specifically, a 10 μg/m³ increase in O3 concentration was linked to a 1.208-fold and 1.209-fold increase in the elevated-increasing group for the BAZ and WLZ trajectories, respectively. Moreover, each 10 μg/m³ increases in prenatal O3 was associated with a 1.396-fold and 0.786-fold increase in the risk of BAZ- and length for age Z score (LAZ)-accelerated growth, respectively. Furthermore, a 10 μg/m³ increase in prenatal O3 was linked to a 1.355-fold increase in the risk of overweight and obesity (OAO). Our study revealed that prenatal O3 exposure is associated with accelerated BMI gain or decelerated body length gain in the early life of children. Prenatal O3 may also increase the risk of OAO in children for the first two years.
Collapse
Affiliation(s)
- Xinyao Sui
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Weiqing Xu
- The Maternal and Child Healthcare Institute of Pudong District, Shanghai 201200, China
| | - Xia Meng
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yue Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Yuyan Gui
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Lin J, Shen Y, Wu F, Zhu Q, Huang J, Cai J, Lin J. Maternal exposure to ambient particulate matter on the growth of twin fetuses after in vitro fertilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176014. [PMID: 39241881 DOI: 10.1016/j.scitotenv.2024.176014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/20/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND While ambient air pollution has been associated with fetal growth in singletons, its correlation among twins is not well-established due to limited research in this area. METHODS The effects of exposure to PM2.5 particulate matter and its main components during pregnancy on birth weight and the incidence of large for gestational age (LGA) were investigated in 6177 twins born after in vitro fertilization at the Center for Reproductive Medicine of Shanghai Ninth People's Hospital (Shanghai, China) between 2007 and 2021. Other birth weight-related outcomes included macrosomia, low birth weight, very low birth weight, and small for gestational age (SGA). The associations of PM2.5 exposure with birth weight outcomes were analyzed using linear mixed-effect models and random-effect logistic regression models. Distributed lag models were incorporated to estimate the time-varying associations. RESULTS The findings revealed that an interquartile range (IQR) increase (18 μg/m3) in PM2.5 exposure over the entire pregnancy was associated with a significant increase (57.06 g, 95 % confidence interval [CI]: 30.91, 83.22) in the total birth weight of twins. The effect was more pronounced in larger fetuses (34.93 g, 95 % CI: 21.13, 48.72) compared to smaller fetuses (21.77 g, 95 % CI: 6.94, 36.60) within twin pregnancies. Additionally, an IQR increase in PM2.5 exposure over the entire pregnancy was associated with a 34 % increase in the risk of LGA (95 % CI: 11 %, 63 %). Furthermore, specific chemical components of PM2.5, such as sulfate (SO42-), exhibited effect estimates comparable to the PM2.5 total mass. CONCLUSION Overall, the findings indicate that exposures to PM2.5 and its specific components are associated with fetal overgrowth in twins.
Collapse
Affiliation(s)
- Jing Lin
- Center for Reproductive Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Shen
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Fenglu Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Maternal and Child Health Hospital, Nanchang University School of Medicine, Nanchang 330006, China.
| | - Jing Cai
- School of Public Health, Fudan University, Shanghai 200032, China.
| | - Jiaying Lin
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Dahu BM, Martinez-Villar CI, Toubal IE, Alshehri M, Ouadou A, Khan S, Sheets LR, Scott GJ. Application of Machine Learning and Deep Neural Visual Features for Predicting Adult Obesity Prevalence in Missouri. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1534. [PMID: 39595801 PMCID: PMC11594122 DOI: 10.3390/ijerph21111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024]
Abstract
This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF). Obesity prevalence data, sourced from the CDC's 2022 estimates, is analyzed at the census tract level. The datasets were integrated to apply a machine learning model to predict the obesity rates in 1052 different census tracts in Missouri. The analysis reveals significant associations between DNVF and obesity prevalence. The predictive models show moderate success in estimating and predicting obesity rates in various census tracts within Missouri. The study emphasizes the potential of using satellite imagery and advanced machine learning in public health research. It points to environmental factors as significant determinants of obesity, suggesting the need for targeted health interventions. Employing DNVF to explore and predict obesity rates offers valuable insights for public health strategies and calls for expanded research in diverse geographical contexts.
Collapse
Affiliation(s)
- Butros M. Dahu
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA; (S.K.); (L.R.S.); (G.J.S.)
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Carlos I. Martinez-Villar
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (C.I.M.-V.); (I.E.T.); (M.A.); (A.O.)
| | - Imad Eddine Toubal
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (C.I.M.-V.); (I.E.T.); (M.A.); (A.O.)
| | - Mariam Alshehri
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (C.I.M.-V.); (I.E.T.); (M.A.); (A.O.)
| | - Anes Ouadou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (C.I.M.-V.); (I.E.T.); (M.A.); (A.O.)
| | - Solaiman Khan
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA; (S.K.); (L.R.S.); (G.J.S.)
| | - Lincoln R. Sheets
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA; (S.K.); (L.R.S.); (G.J.S.)
- Department of Health Management and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Grant J. Scott
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA; (S.K.); (L.R.S.); (G.J.S.)
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA; (C.I.M.-V.); (I.E.T.); (M.A.); (A.O.)
| |
Collapse
|
14
|
Li X, Yu B, Li Y, Meng H, Zhou Z, Liu S, Tian Y, Xing X, Lei Y, Yin L. Effect modifications of parents' age at childbirth on association between ambient particulate matter and children obesity. BMC Public Health 2024; 24:3081. [PMID: 39511542 PMCID: PMC11542234 DOI: 10.1186/s12889-024-20598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND There is limited evidence regarding the modifying effects of parents' age at childbirth on the relationship between air pollution and obesity in plateau areas. This study aimed to explore the association between particulate matter (PM) and child obesity, specifically investigating whether parents' age at childbirth could modify this relationship in the Tibetan plateau, China. METHODS Satellite-based random forest models were used to estimate the concentrations of PM2.5 (particulate matter with aerodynamic diameters ≤ 2.5 μm), PMc (particulate matter with aerodynamic diameters between 2.5 μm and 10 μm), and PM10 (particulate matter with aerodynamic diameters ≤ 10 μm). Linear and logistic regression models were employed to assess associations between PM exposure and obesity indicators, and effect estimates of PM across different particle sizes were compared. RESULTS The study comprised 2,015 children under five years old. Postnatal exposure to PM was positively associated with overweight and obesity (OWO), waist-to-hip ratio (WHR) and body mass index (BMI). Among these pollutants, PM10 exhibited the strongest association with BMI and OWO, whereas PMc showed the strongest association with WHR. An interquartile range (IQR) increase in PM2.5 (5.67 µg/m3), PMc (5.25 µg/m3), and PM10 (11.06 µg/m3) was positively associated with OWO (odd ratio [OR] for PM2.5 = 1.52, 95% confidence interval [CI] for PM2.5 = 1.24 to 1.85; OR for PMc = 1.50, 95% CI for PMc = 1.19 to 1.88; OR for PM10 = 1.56, 95% CI for PM10 = 1.25 to 1.96), respectively. Stratified analysis by parents' age at childbirth indicated that the effects of PM on obesity indicators were more pronounced in the advanced age group. CONCLUSIONS Long-term exposure to PM was positively associated with OWO, WHR, and BMI. Our findings also underscore the importance of examining the effects of ambient PM exposure on OWO, particularly in parents of advanced age at childbirth.
Collapse
Affiliation(s)
- Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University - Hong Kong Polytechnic University, Chengdu, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Haorong Meng
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Zonglei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Shunjin Liu
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Yunyun Tian
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
- Dali University, Dali, China
| | - Xiangyi Xing
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Dali University, Dali, China.
- Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China.
| | | | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Clinical Medical Research Center, Panzhihua Central Hospital, Panzhihua, China.
- Dali University, Dali, China.
| |
Collapse
|
15
|
Woeckel M, Rospleszcz S, Wolf K, Breitner-Busch S, Ingrisch M, Bamberg F, Ricke J, Schlett CL, Storz C, Schneider A, Stoecklein S, Peters A. Association between Long-Term Exposure to Traffic-Related Air Pollution and Cardio-Metabolic Phenotypes: An MRI Data-Based Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18064-18075. [PMID: 39365792 PMCID: PMC11483729 DOI: 10.1021/acs.est.4c03163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/13/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024]
Abstract
Long-term exposure to traffic-related air pollution (TRAP) is associated with cardiometabolic disease; however, its role in subclinical stages of disease development is unclear. Thus, we aimed to explore this association in a cross-sectional analysis, with cardiometabolic phenotypes derived from magnetic resonance imaging (MRI). Phenotypes of the left (LV) and right cardiac ventricle, whole-body adipose tissue (AT), and organ-specific AT were obtained by MRI in 400 participants of the KORA cohort. Land-use regression models were used to estimate residential long-term exposures to TRAP, e.g., nitrogen dioxides (NO2) or particle number concentration (PNC). Associations between TRAP and MRI phenotypes were modeled using linear regression. Participants' mean age was 56 ± 9 years, and 42% were female. Long-term exposure to TRAP was associated with decreased LV wall thickness; a 6.0 μg/m3 increase in NO2 was associated with a -1.9% [95% confidence interval: -3.7%; -0.1%] decrease in mean global LV wall thickness. Furthermore, we found associations between TRAP and increased cardiac AT. A 2,242 n/cm3 increase in PNC was associated with a 4.3% [-1.7%; 10.4%] increase in mean total cardiac AT. Associations were more pronounced in women and in participants with diabetes. Our exploratory study indicates that long-term exposure to TRAP is associated with subclinical cardiometabolic disease states, particularly in metabolically vulnerable subgroups.
Collapse
Affiliation(s)
- Margarethe Woeckel
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Susanne Rospleszcz
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Kathrin Wolf
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Susanne Breitner-Busch
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
| | - Michael Ingrisch
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Fabian Bamberg
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Jens Ricke
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Christopher L Schlett
- Department
of Diagnostic and Interventional Radiology, Medical Center, Faculty
of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Corinna Storz
- Department
of Neuroradiology, Medical Center, University
of Freiburg, Freiburg 79106, Germany
| | - Alexandra Schneider
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Sophia Stoecklein
- Department
of Radiology, Ludwig-Maximilians-Universität
Hospital Munich, Munich 81377, Germany
| | - Annette Peters
- Institute
of Epidemiology, German Research Center for Environmental Health,
Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair
of Epidemiology, Institute for Medical Information Processing, Biometry
and Epidemiology, Medical Faculty, Ludwig-Maximilians-Universität
München (LMU Munich), Munich 81377, Germany
- German Center
for Cardiovascular Disease Research (DZHK), Munich Heart Alliance, Munich 80336, Germany
| |
Collapse
|
16
|
Mallah MA, Hill JW, Neupane B, Ahmad MZ, Ali M, Bibi J, Akhtar MF, Naveed M, Zhang Q. Urinary polycyclic aromatic hydrocarbons and adult obesity among the US population: NHANES 2003-2016. Clin Obes 2024; 14:e12687. [PMID: 38965765 DOI: 10.1111/cob.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 06/09/2024] [Indexed: 07/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are naturally occurring environmental pollutants that may contribute to obesity in the adult population. To investigate the relationship between the urinary concentrations of PAH metabolites and adult obesity among the US population, the National Health and Nutritional Examination Survey (NHANES, 2003-2016) was used as a data source for this study. As many as 4464 participants in the NHANES 2003-2016 were included in the final analyses. We used logistic regression to look at the link between urinary PAH metabolites and obesity, using odds ratios (ORs) and 95% confidence intervals (CIs). The study sample comprised 4464 individuals aged ≥18 years, 2199 were male and 2265 were female. The study characteristics for four different quartiles were analyzed, and the average ages of the four urinary PAH quartiles were 49.61 ± 20.01, 46.63 ± 20.33, 44.28 ± 19.19, and 43.27 ± 17.68 years, respectively. In the quartile analysis of all participants, the third quartile was significantly associated with an increased prevalence of obesity (OR = 1.33, 95% CI = 1.12-1.59) with p-values <.05. In addition, females, but not males, had a strong link between the second, third, and fourth quartiles of urinary PAH and a higher risk of obesity (OR = 1.27, 95% CI = 1.00-1.61; OR = 1.52, 95% CI = 1.19-1.94; and OR = 1.39, 95% CI = 1.09-1.78). In conclusion, the study observed that urinary PAH metabolites were associated with the prevalence of obesity among the US population.
Collapse
Affiliation(s)
| | - Jennifer W Hill
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Bidusha Neupane
- Transcultural Psychosocial Organization Nepal (TPO Nepal), Kathmandu, Nepal
| | - Muhammad Zia Ahmad
- Faculty of Social Sciences, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Mukhtiar Ali
- Faculty of Science, Quaid-e-Awam University of Engineering, Science & Technology, Nawab Shah, Sindh, Pakistan
| | - Jannat Bibi
- School of Physical Education, Beijing Sport University, Beijing, China
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Naveed
- College of Medicine and Life Sciences, The University of Toledo, Toledo, Ohio, USA
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Wang M, Wen C, Zhou C, Qi H, Wei M, Xia W, Wang Y, Zhang J. Contribution of greenness, air pollution, and residential food environment to excess gestational weight gain: A cross-sectional study in Wuhan, China. Prev Med 2024; 186:108086. [PMID: 39059478 DOI: 10.1016/j.ypmed.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Our goal was to explore how greenness, air pollution, and residential food environment were linked to excessive gestational weight gain (EGWG), and to estimate their combined effects on this condition. METHOD This cross-sectional analysis included 51,507 pregnant women from the Wuhan Maternal and Child Health Management Information System between 2016 and 2019. Generalized linear mixed regression models were employed to explore the relationships between greenness, air pollution, residential food environmental exposure, and EGWG; and the combined effects were further estimated by cluster analysis and principal components analysis. RESULT We only found a significant association between convenience store density within the 250 m buffer zone (OR = 1.03 and 95% CI: 1.01,1.05) and EGWG. In terms of air pollution, sulfur dioxide(SO2), particulate matter with a diameter of 10 μm or less(PM10), and particulate matter with a diameter of 2.5 μm or less(PM2.5) were substantially correlated with a higher prevalence of EGWG and higher GWG, with (OR = 1.16 and 95% CI: 1.12,1.21; OR = 1.12 and 95% CI: 1.08,1.16; OR = 1.17 and 95% CI: 1.14,1.21, respectively) per interquartile range(IQR) increase. Cluster analysis revealed the presence of three clusters representing urban exposures. In contrast to urban environment clusters characterized by favourable conditions, those exhibiting elevated air pollution levels, high-density residential food environment and low levels of greenness were found to have increased odds of EGWG (OR = 1.10, 95% CI: 1.03, 1.19). CONCLUSION This study emphasizes that exposure to elevated air pollution, high-density residential neighbourhood food environments, and low levels of greenness is a neighbourhood obesogenic environment for pregnant women.
Collapse
Affiliation(s)
- Miyuan Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen Wen
- School of Architecture & Urban Planning, Huazhong University of Science and Technology, Luoyu Road, Wuhan, 430074, China; Hubei Engineering and Technology Research Center of Urbanization, Wuhan 430030, China
| | - Chenmiao Zhou
- Hanyang Maternal and Child Health Hospital, Wuhan 430030, China
| | - Haiqing Qi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Mengna Wei
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenqi Xia
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yimin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jianduan Zhang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
18
|
Persson Å, Pyko A, Stucki L, Ögren M, Åkesson A, Oudin A, Tjønneland A, Rosengren A, Segersson D, Rizzuto D, Helte E, Andersson EM, Aasvang GM, Gudjonsdottir H, Selander J, Christensen JH, Leander K, Mattisson K, Eneroth K, Barregard L, Stockfelt L, Albin M, Simonsen MK, Spanne M, Roswall N, Tiittanen P, Molnár P, Ljungman PLS, Männistö S, Yli-Tuomi T, Cole-Hunter T, Lanki T, Lim YH, Andersen ZJ, Sørensen M, Pershagen G, Eriksson C. Long-term exposure to transportation noise and obesity: A pooled analysis of eleven Nordic cohorts. Environ Epidemiol 2024; 8:e319. [PMID: 38983882 PMCID: PMC11233097 DOI: 10.1097/ee9.0000000000000319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Background Available evidence suggests a link between exposure to transportation noise and an increased risk of obesity. We aimed to assess exposure-response functions for long-term residential exposure to road traffic, railway and aircraft noise, and markers of obesity. Methods Our cross-sectional study is based on pooled data from 11 Nordic cohorts, including up to 162,639 individuals with either measured (69.2%) or self-reported obesity data. Residential exposure to transportation noise was estimated as a time-weighted average Lden 5 years before recruitment. Adjusted linear and logistic regression models were fitted to assess beta coefficients and odds ratios (OR) with 95% confidence intervals (CI) for body mass index, overweight, and obesity, as well as for waist circumference and central obesity. Furthermore, natural splines were fitted to assess the shape of the exposure-response functions. Results For road traffic noise, the OR for obesity was 1.06 (95% CI = 1.03, 1.08) and for central obesity 1.03 (95% CI = 1.01, 1.05) per 10 dB Lden. Thresholds were observed at around 50-55 and 55-60 dB Lden, respectively, above which there was an approximate 10% risk increase per 10 dB Lden increment for both outcomes. However, linear associations only occurred in participants with measured obesity markers and were strongly influenced by the largest cohort. Similar risk estimates as for road traffic noise were found for railway noise, with no clear thresholds. For aircraft noise, results were uncertain due to the low number of exposed participants. Conclusion Our results support an association between road traffic and railway noise and obesity.
Collapse
Affiliation(s)
- Åsa Persson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrei Pyko
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Lara Stucki
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Mikael Ögren
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Oudin
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Anne Tjønneland
- Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Medicine Geriatrics and Emergency Medicine, Sahlgrenska University Hospital Östra Hospital, Gothenburg, Sweden
| | - David Segersson
- Swedish Meteorological and Hydrological Institute, Norrköping, Sweden
| | - Debora Rizzuto
- Aging Research Center, Department of Neurobiology Care Science and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Emilie Helte
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva M Andersson
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Hrafnhildur Gudjonsdottir
- Centre for Epidemiology and Community Medicine, Region Stockholm, Stockholm, Sweden
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Jenny Selander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Kristoffer Mattisson
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Lars Barregard
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Leo Stockfelt
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Albin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Mette K Simonsen
- Department of Neurology and the Parker Institute, Frederiksberg Hospital, Frederiksberg, Denmark
| | - Mårten Spanne
- Environment Department, City of Malmö, Malmö, Sweden
| | - Nina Roswall
- Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Pekka Tiittanen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Peter Molnár
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Petter L S Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd Hospital, Stockholm, Sweden
| | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Tarja Yli-Tuomi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Thomas Cole-Hunter
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Youn-Hee Lim
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mette Sørensen
- Danish Cancer Institute, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
- Department of Natural Science and Environment, Roskilde University, Denmark
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotta Eriksson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Center for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| |
Collapse
|
19
|
Yin C, Yan J, Wang J, Wang T, Li H, Wang Y, Wang H, Feng S, Liang Y. Spatial analysis of the prevalence of abdominal obesity in middle-aged and older adult people in China: exploring the relationship with meteorological factors based on gender differences. Front Public Health 2024; 12:1426295. [PMID: 39100945 PMCID: PMC11294229 DOI: 10.3389/fpubh.2024.1426295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024] Open
Abstract
Background In recent years, the incidence of abdominal obesity among the middle-aged and older adult population in China has significantly increased. However, the gender disparities in the spatial distribution of abdominal obesity incidence and its relationship with meteorological factors among this demographic in China remain unclear. This gap in knowledge highlights the need for further research to understand these dynamics and inform targeted public health strategies. Methods This study utilized data from the 2015 China Health and Retirement Longitudinal Study (CHARLS) to analyze the incidence of abdominal obesity among the middle-aged and older adult population in China. Additionally, meteorological data were collected from the National Meteorological Information Center. Using Moran's I index and Getis-Ord Gi* statistical methods, the spatial distribution characteristics of abdominal obesity incidence were examined. The influence of various meteorological factors on the incidence of abdominal obesity in middle-aged and older adult males and females was investigated using the q statistic from the Geodetector method. Furthermore, Multi-Scale Geographically Weighted Regression (MGWR) analysis was employed to explore the impact of meteorological factors on the spatial heterogeneity of abdominal obesity incidence from a gender perspective. Results The spatial distribution of abdominal obesity among middle-aged and older adult individuals in China exhibits a decreasing trend from northwest to southeast, with notable spatial autocorrelation. Hotspots are concentrated in North and Northeast China, while cold spots are observed in Southwest China. Gender differences have minimal impact on spatial clustering characteristics. Meteorological factors, including temperature, sunlight, precipitation, wind speed, humidity, and atmospheric pressure, influence incidence rates. Notably, temperature and sunlight exert a greater impact on females, while wind speed has a reduced effect. Interactions among various meteorological factors generally demonstrate bivariate enhancement without significant gender disparities. However, gender disparities are evident in the influence of specific meteorological variables such as annual maximum, average, and minimum temperatures, as well as sunlight duration and precipitation, on the spatial heterogeneity of abdominal obesity incidence. Conclusion Meteorological factors show a significant association with abdominal obesity prevalence in middle-aged and older adults, with temperature factors playing a prominent role. However, this relationship is influenced by gender differences and spatial heterogeneity. These findings suggest that effective public health policies should be not only gender-sensitive but also locally adapted.
Collapse
Affiliation(s)
- Chaohui Yin
- School of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jinlong Yan
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, China
| | - Junqi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Wang
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Hangyu Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Wang
- College of Acu-moxibustion and Massage, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Haifeng Wang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xianyang, China
| | - Shixing Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Xianyang, China
- Centre France Chine de la Médecine Chinoise, Selles sur Cher, France
| | - Yafeng Liang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
20
|
Rahnemaei FA, Aghapour E, Asgharpoor H, Ardabili NS, Kashani ZA, Abdi F. Prenatal exposure to ambient air pollution and risk of fetal overgrowth: Systematic review of cohort studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116526. [PMID: 38823346 DOI: 10.1016/j.ecoenv.2024.116526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES Fetal overgrowth has detrimental effects on both the mother and the fetus. The global issue of ambient air pollution has been found to contribute to fetal overgrowth through various pathways. This study aimed to identify the association between prenatal exposure to ambient air pollution and the risk of fetal overgrowth. METHODS We identified articles between January 2013 and February 2024 by searching the Web of Sciences(WoS), PubMed, Proquest, Scopus, and Google Scholar databases. Quality assessment was performed using the Newcastle Ottawa scale. This review was provided based on the PRISMA guideline and registered with PROSPERO, "CRD42023488936". RESULTS The search generated 1719 studies, of which 22 cohort studies were included involving 3,480,041 participants. Results on the effects of air pollutants on fetal overgrowth are inconsistent because they vary in population and geographic region. But in general, the results indicate that prenatal exposure to air pollutants, specifically PM2.5, NO2, and SO2, is linked to a higher likelihood of fetal overgrowth(macrosomia and large for gestational age). Nevertheless, the relationship between CO and O3 pollution and fetal overgrowth remains uncertain. Furthermore, PM10 has a limited effect on fetal overgrowth. It is essential to consider the time that reproductive-age women are exposed to air pollution. Exposure to air pollutants before conception and throughout pregnancy has a substantial impact on the fetus's vulnerability to overgrowth. CONCLUSIONS Fetal overgrowth has implications for the health of both mother and fetus. fetal overgrowth can cause cardiovascular diseases, obesity, type 2 diabetes, and other diseases in adulthood, so it is considered an important issue for the health of the future generation. Contrary to popular belief that air pollution leads to intrauterine growth restriction and low birth weight, this study highlights that one of the adverse consequences of air pollution is macrosomia or LGA during pregnancy. Therefore governments must focus on implementing initiatives that aim to reduce pregnant women's exposure to ambient air pollution to ensure the health of future generations.
Collapse
Affiliation(s)
- Fatemeh Alsadat Rahnemaei
- Mother and Child Welfare Research Center,Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Ehsan Aghapour
- Department of Social Welfare Management, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| | - Homeira Asgharpoor
- Reproductive Health Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | | | | | - Fatemeh Abdi
- Nursing and Midwifery Care Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Luo C, Wei T, Jiang W, Yang YP, Zhang MX, Xiong CL, Tung TH. The association between air pollution and obesity: an umbrella review of meta-analyses and systematic reviews. BMC Public Health 2024; 24:1856. [PMID: 38992628 PMCID: PMC11238414 DOI: 10.1186/s12889-024-19370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
The objective of this umbrella review was to investigate comprehensive and synthesized evidence of the association between ambient air pollution and obesity based on the current systematic reviews and meta-analyses. Related studies from databases including PubMed, EMBASE, Web of Science, and the Cochrane Library, published before July 16, 2023, were considered in the analysis. All selected systematic reviews and meta-analyses were included in accordance with PRISMA guidelines. The risk of bias and the methodological quality were evaluated using the AMSTAR 2 tool. The protocol for this umbrella review was documented in PROSPERO with the registration number: CRD42023450191. This umbrella review identified 7 studies, including 5 meta-analyses and 2 systematic reviews, to assess the impacts of air pollutants on obesity. Commonly examined air pollutants included PM1, PM2.5, PM10, NO2, SO2, O3. Most of the included studies presented that air pollution exposure was positively associated with the increased risk of obesity. The impact of air pollution on obesity varied by different ambient air pollutants. This study provided compelling evidence that exposure to air pollution had a positive association with the risk of obesity. These findings further indicate the importance of strengthening air pollution prevention and control. Future studies should elucidate the possible mechanisms and pathways linking air pollution to obesity.
Collapse
Affiliation(s)
- Chengwen Luo
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ting Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Weicong Jiang
- Department of Financial Markets, Linhai Rural Commercial Bank, Linhai, China
| | - Yu-Pei Yang
- Department of Hematology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Mei-Xian Zhang
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Cai-Lian Xiong
- Department of Nosocomial Infection Control, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Tao-Hsin Tung
- Evidence-based Medicine Center, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
- Taizhou Institute of Medicine, Health and New Drug Clinical Research, Taizhou, China.
| |
Collapse
|
22
|
Darvish S, Mahoney SA, Venkatasubramanian R, Rossman MJ, Clayton ZS, Murray KO. Socioeconomic status as a potential mediator of arterial aging in marginalized ethnic and racial groups: current understandings and future directions. J Appl Physiol (1985) 2024; 137:194-222. [PMID: 38813611 PMCID: PMC11389897 DOI: 10.1152/japplphysiol.00188.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death in the United States. However, disparities in CVD-related morbidity and mortality exist as marginalized racial and ethnic groups are generally at higher risk for CVDs (Black Americans, Indigenous People, South and Southeast Asians, Native Hawaiians, and Pacific Islanders) and/or development of traditional CVD risk factors (groups above plus Hispanics/Latinos) relative to non-Hispanic Whites (NHW). In this comprehensive review, we outline emerging evidence suggesting these groups experience accelerated arterial dysfunction, including vascular endothelial dysfunction and large elastic artery stiffening, a nontraditional CVD risk factor that may predict risk of CVDs in these groups with advancing age. Adverse exposures to social determinants of health (SDOH), specifically lower socioeconomic status (SES), are exacerbated in most of these groups (except South Asians-higher SES) and may be a potential mediator of accelerated arterial aging. SES negatively influences the ability of marginalized racial and ethnic groups to meet aerobic exercise guidelines, the first-line strategy to improve arterial function, due to increased barriers, such as time and financial constraints, lack of motivation, facility access, and health education, to performing conventional aerobic exercise. Thus, identifying alternative interventions to conventional aerobic exercise that 1) overcome these common barriers and 2) target the biological mechanisms of aging to improve arterial function may be an effective, alternative method to aerobic exercise to ameliorate accelerated arterial aging and reduce CVD risk. Importantly, dedicated efforts are needed to assess these strategies in randomized-controlled clinical trials in these marginalized racial and ethnic groups.
Collapse
Affiliation(s)
- Sanna Darvish
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | | | - Matthew J Rossman
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kevin O Murray
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
23
|
Niedermayer F, Wolf K, Zhang S, Dallavalle M, Nikolaou N, Schwettmann L, Selsam P, Hoffmann B, Schneider A, Peters A. Sex-specific associations of environmental exposures with prevalent diabetes and obesity - Results from the KORA Fit study. ENVIRONMENTAL RESEARCH 2024; 252:118965. [PMID: 38642640 DOI: 10.1016/j.envres.2024.118965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/25/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Promising evidence suggests a link between environmental factors, particularly air pollution, and diabetes and obesity. However, it is still unclear whether men and women are equally susceptible to environmental exposures. Therefore, we aimed to assess sex-specific long-term effects of environmental exposures on metabolic diseases. We analyzed cross-sectional data from 3,034 participants (53.7% female, aged 53-74 years) from the KORA Fit study (2018/19), a German population-based cohort. Environmental exposures, including annual averages of air pollutants [nitrogen oxides (NO2, NOx), ozone, particulate matter of different diameters (PM10, PMcoarse, PM2.5), PM2.5abs, particle number concentration], air temperature and surrounding greenness, were assessed at participants' residences. We evaluated sex-specific associations of environmental exposures with prevalent diabetes, obesity, body-mass-index (BMI) and waist circumference using logistic or linear regression models with an interaction term for sex, adjusted for age, lifestyle factors and education. Further effect modification, in particular by urbanization, was assessed in sex-stratified analyses. Higher annual averages of air pollution, air temperature and greenness at residence were associated with diabetes prevalence in men (NO2: Odds Ratio (OR) per interquartile range increase in exposure: 1.49 [95% confidence interval (CI): 1.13, 1.95], air temperature: OR: 1.48 [95%-CI: 1.15, 1.90]; greenness: OR: 0.78 [95%-CI: 0.59, 1.01]) but not in women. Conversely, higher levels of air pollution, temperature and lack of greenness were associated with lower obesity prevalence and BMI in women. After including an interaction term for urbanization, only higher greenness was associated with higher BMI in rural women, whereas higher air pollution was associated with higher BMI in urban men. To conclude, we observed sex-specific associations of environmental exposures with metabolic diseases. An additional interaction between environmental exposures and urbanization on obesity suggests a higher susceptibility to air pollution among urban men, and higher susceptibility to greenness among rural women, which needs corroboration in future studies.
Collapse
Affiliation(s)
- Fiona Niedermayer
- Chair of Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Siqi Zhang
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Environmental Health Sciences, Yale School of Public Health, New Haven, United States
| | - Marco Dallavalle
- Chair of Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nikolaos Nikolaou
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lars Schwettmann
- Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Department of Health Services Research, School of Medicine and Health Sciences, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Peter Selsam
- Department Monitoring and Exploration Technologies, Helmholtz Centre for Environmental Research GmbH-UFZ, Leipzig, Germany
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Chair of Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Neuherberg, Germany
| |
Collapse
|
24
|
Altug H, Ogurtsova K, Breyer-Kohansal R, Schiffers C, Ofenheimer A, Tzivian L, Hartl S, Hoffmann B, Lucht S, Breyer MK. Associations of long-term exposure to air pollution and noise with body composition in children and adults: Results from the LEAD general population study. ENVIRONMENT INTERNATIONAL 2024; 189:108799. [PMID: 38865830 DOI: 10.1016/j.envint.2024.108799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND While long-term air pollution and noise exposure has been linked to increasing cardiometabolic disease risk, potential effects on body composition remains unclear. This study aimed to investigate the associations of long-term air pollution, noise and body composition. METHODS We used repeated data from the LEAD (Lung, hEart, sociAl, boDy) study conducted in Vienna, Austria. Body mass index (BMI; kg/m2), fat mass index (FMI; z-score), and lean mass index (LMI; z-score) were measured using dual-energy x-ray absorptiometry at the first (t0; 2011-ongoing) and second (t1; 2017-ongoing) examinations. Annual particulate matter (PM10) and nitrogen dioxide (NO2) concentrations were estimated with the GRAMM/GRAL model (2015-2021). Day-evening-night (Lden) and night-time (Lnight) noise levels from transportation were modeled for 2017 following the European Union Directive 2002/49/EC. Exposures were assigned to residential addresses. We performed analyses separately in children/adolescents and adults, using linear mixed-effects models with random participant intercepts and linear regression models for cross-sectional and longitudinal associations, respectively. Models were adjusted for co-exposure, lifestyle and sociodemographics. RESULTS A total of 19,202 observations (nt0 = 12,717, nt1 = 6,485) from participants aged 6-86 years (mean age at t0 = 41.0 years; 52.9 % female; mean PM10 = 21 µg/m3; mean follow-up time = 4.1 years) were analyzed. Among children and adolescents (age ≤ 18 years at first visit), higher PM10exposure was cross-sectionally associated with higher FMI z-scores (0.09 [95 % Confidence Interval (CI): 0.03, 0.16]) and lower LMI z-scores (-0.05 [95 % CI: -0.10, -0.002]) per 1.8 µg/m3. Adults showed similar trends in cross-sectional associations as children, though not reaching statistical significance. We observed no associations for noise exposures. Longitudinal analyses on body composition changes over time yielded positive associations for PM10, but not for other exposures. CONCLUSION Air pollution exposure, mainly PM10, was cross-sectionally and longitudinally associated with body composition in children/adolescents and adults. Railway/road-traffic noise exposures showed no associations in both cross-sectional and longitudinal analyses.
Collapse
Affiliation(s)
- Hicran Altug
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| | - Katherine Ogurtsova
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Robab Breyer-Kohansal
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Hietzing, Vienna, Austria
| | | | - Alina Ofenheimer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Lilian Tzivian
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Sylvia Hartl
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Sigmund Freud University, Faculty of Medicine, Vienna, Austria
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany
| | - Sarah Lucht
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Cardinal Health, Dublin, OH, USA
| | - Marie-Kathrin Breyer
- Ludwig Boltzmann Institute for Lung Health, Vienna, Austria; Department of Respiratory and Pulmonary Diseases, Vienna Healthcare Group, Clinic Penzing, Vienna, Austria
| |
Collapse
|
25
|
Bartoskova Polcrova A, Dalecka A, Szabo D, Gonzalez Rivas JP, Bobak M, Pikhart H. Social and environmental stressors of cardiometabolic health. Sci Rep 2024; 14:14179. [PMID: 38898083 PMCID: PMC11187061 DOI: 10.1038/s41598-024-64847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 06/13/2024] [Indexed: 06/21/2024] Open
Abstract
Exposures to social and environmental stressors arise individual behavioural response and thus indirectly affect cardiometabolic health. The aim of this study was to investigate several social and environmental stressors and the paths of their influence on cardiometabolic health. The data of 2154 participants (aged 25-64 years) from the cross-sectional population-based study were analysed. The composite score of metabolic disorders (MS score) was calculated based on 5 biomarkers: waist circumference, blood pressure, fasting blood glucose, HDL-cholesterol, triglycerides. The effects of social stressors (education level, income), environmental stressors (NO2, noise) and behavioural factors (unhealthy diet, smoking, alcohol consumption, sedentary behaviours) on MS score were assessed using a structural model. We observed a direct effect of education on MS score, as well as an indirect effect mediated via an unhealthy diet, smoking, and sedentary behaviours. We also observed a significant indirect effect of income via sedentary behaviours. The only environmental stressor predicting MS was noise, which also mediated the effect of education. In summary, the effect of social stressors on the development of cardiometabolic risk had a higher magnitude than the effect of the assessed environmental factors. Social stressors lead to an individual's unhealthy behaviour and might predispose individuals to higher levels of environmental stressors exposures.
Collapse
Affiliation(s)
| | - Andrea Dalecka
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Daniel Szabo
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Juan Pablo Gonzalez Rivas
- International Clinical Research Centre (ICRC), St Anne's University Hospital Brno (FNUSA), Brno, Czech Republic
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Martin Bobak
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Hynek Pikhart
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Department of Epidemiology and Public Health, University College London, London, UK
| |
Collapse
|
26
|
Brown JA, Ish JL, Chang CJ, Bookwalter DB, O’Brien KM, Jones RR, Kaufman JD, Sandler DP, White AJ. Outdoor air pollution exposure and uterine cancer incidence in the Sister Study. J Natl Cancer Inst 2024; 116:948-956. [PMID: 38346713 PMCID: PMC11160506 DOI: 10.1093/jnci/djae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/16/2024] Open
Abstract
BACKGROUND Outdoor air pollution is a ubiquitous exposure that includes endocrine-disrupting and carcinogenic compounds that may contribute to the risk of hormone-sensitive outcomes such as uterine cancer. However, there is limited evidence about the relationship between outdoor air pollution and uterine cancer incidence. METHODS We investigated the associations of residential exposure to particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) and nitrogen dioxide (NO2) with uterine cancer among 33 417 Sister Study participants with an intact uterus at baseline (2003-2009). Annual average air pollutant concentrations were estimated at participants' geocoded primary residential addresses using validated spatiotemporal models. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals for the association between time-varying 12-month PM2.5 (µg/m3) and NO2 (parts per billion; ppb) averages and uterine cancer incidence. RESULTS Over a median follow-up period of 9.8 years, 319 incident uterine cancer cases were identified. A 5-ppb increase in NO2 was associated with a 23% higher incidence of uterine cancer (hazard ratio = 1.23, 95% confidence interval = 1.04 to 1.46), especially among participants living in urban areas (hazard ratio = 1.53, 95% confidence interval = 1.13 to 2.07), but PM2.5 was not associated with increased uterine cancer incidence. CONCLUSION In this large US cohort, NO2, a marker of vehicular traffic exposure, was associated with a higher incidence of uterine cancer. These findings expand the scope of health effects associated with air pollution, supporting the need for policy and other interventions designed to reduce air pollutant exposure.
Collapse
Affiliation(s)
- Jordyn A Brown
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, WA, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
Yılmaz HÖ, Günen MA. Is environment destiny? Spatial analysis of the relationship between geographic factors and obesity in Türkiye. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:1847-1859. [PMID: 37589469 DOI: 10.1080/09603123.2023.2248016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
This study aims to evaluate the relationship of geographical factors, including precipitation, slope, air pollution and elevation with adult obesity prevalence in Türkiye (TR) using a cross-regional study design. Ordinary least squares (OLS) and geographically weighted regression (GWR) were performed to evaluate the spatial variation in the relationship between all geographic factors and obesity prevalence. In the model, a positive relationship was found between obesity prevalence and slope, whereas a negative significant relationship was determined between obesity prevalence and elevation (p < 0.05). These results, revealing spatially varying associations, were very useful in refining the interpretations of the statistical results on adult obesity. This research suggests that geographical factors should be considered as one of the components of the obesogenic environment. In addition, it is recommended that national and international strategies to overcome obesity should be restructured by taking into account the geographical characteristics of the region.
Collapse
Affiliation(s)
- Hacı Ömer Yılmaz
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gümüşhane University, Gümüşhane, Türkiye
| | - Mehmet Akif Günen
- Department of Geomatics Engineering, Gümüşhane University, Gümüşhane, Türkiye
| |
Collapse
|
28
|
Ferreira SRG, Macotela Y, Velloso LA, Mori MA. Determinants of obesity in Latin America. Nat Metab 2024; 6:409-432. [PMID: 38438626 DOI: 10.1038/s42255-024-00977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024]
Abstract
Obesity rates are increasing almost everywhere in the world, although the pace and timing for this increase differ when populations from developed and developing countries are compared. The sharp and more recent increase in obesity rates in many Latin American countries is an example of that and results from regional characteristics that emerge from interactions between multiple factors. Aware of the complexity of enumerating these factors, we highlight eight main determinants (the physical environment, food exposure, economic and political interest, social inequity, limited access to scientific knowledge, culture, contextual behaviour and genetics) and discuss how they impact obesity rates in Latin American countries. We propose that initiatives aimed at understanding obesity and hampering obesity growth in Latin America should involve multidisciplinary, global approaches that consider these determinants to build more effective public policy and strategies, accounting for regional differences and disease complexity at the individual and systemic levels.
Collapse
Affiliation(s)
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM Campus-Juriquilla, Querétaro, Mexico
| | - Licio A Velloso
- Obesity and Comorbidities Research Center, Faculty of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
| | - Marcelo A Mori
- Institute of Biology, Universidade Estadual de Campinas, Campinas, Brazil.
| |
Collapse
|
29
|
Munir M, Azab SM, I Bangdiwala S, Kurmi O, Doiron D, Brook J, Banfield L, de Souza RJ. Effects of ambient air pollution on obesity and ectopic fat deposition: a protocol for a systematic review and meta-analysis. BMJ Open 2024; 14:e080026. [PMID: 38365287 PMCID: PMC10875506 DOI: 10.1136/bmjopen-2023-080026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION Globally, the prevalence of obesity tripled from 1975 to 2016. There is evidence that air pollution may contribute to the obesity epidemic through an increase in oxidative stress and inflammation of adipose tissue. However, the impact of air pollution on body weight at a population level remains inconclusive. This systematic review and meta-analysis will estimate the association of ambient air pollution with obesity, distribution of ectopic adipose tissue, and the incidence and prevalence of non-alcoholic fatty liver disease among adults. METHODS AND ANALYSIS The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for conduct and reporting. The search will include the following databases: Ovid Medline, Embase, PubMed, Web of Science and Latin America and the Caribbean Literature on Health Sciences, and will be supplemented by a grey literature search. Each article will be independently screened by two reviewers, and relevant data will be extracted independently and in duplicate. Study-specific estimates of associations and their 95% Confidence Intervals will be pooled using a DerSimonian and Laird random-effects model, implemented using the RevMan software. The I2 statistic will be used to assess interstudy heterogeneity. The confidence in the body of evidence will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. ETHICS AND DISSEMINATION As per institutional policy, ethical approval is not required for secondary data analysis. In addition to being published in a peer-reviewed journal and presented at conferences, the results of the meta-analysis will be shared with key stakeholders, health policymakers and healthcare professionals. PROSPERO REGISTRATION NUMBER CRD42023423955.
Collapse
Affiliation(s)
- Mehnaz Munir
- Department of Global Health, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Sandi M Azab
- Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Om Kurmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Faculty Research Centre for Healthcare and Communities, Institute of Health and Wellbeing, Coventry University, Coventry, UK
| | - Dany Doiron
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeffrey Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario, Canada
| | - Russell J de Souza
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Global Health & Department of Health Research Methods, Evidence, and Impact, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
30
|
Healy DR, Kårlund A, Mikkonen S, Puhakka S, Karhunen L, Kolehmainen M. Associations of low levels of air pollution with cardiometabolic outcomes and the role of diet quality in individuals with obesity. ENVIRONMENTAL RESEARCH 2024; 242:117637. [PMID: 37993047 DOI: 10.1016/j.envres.2023.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Exposure to air pollution is associated with adverse cardiometabolic health effects and increased mortality, even at low concentrations. Some of the biological mechanisms through which air pollution can affect cardiometabolic health overlap with health outcomes associated with diet quality and changes in diet. OBJECTIVE The objective of this study is to investigate associations of air pollutants at average concentrations below the World Health Organization, 2021 air quality guidelines with cardiometabolic outcomes. Furthermore, potential interaction between air pollutants and diet quality will be assessed. METHODS 82 individuals with obesity participated in a combined weight loss and weight loss maintenance study for a total of 33 weeks. A secondary analysis was conducted incorporating air pollution measurements. Data were analysed with linear mixed-effects models. RESULTS A total of 17 significant associations were observed for single pollutants with 10 cardiometabolic outcomes, predominantly related to blood lipids, hormones, and glucose regulation. Diet quality, as measured by the Baltic Sea Diet score, did not appear to mediate the association of air pollution with cardiometabolic outcomes, however, diet quality was observed to significantly modify the association of PM2.5 with total cholesterol, and the associations of NO and O3 with ghrelin. DISCUSSION These findings suggest that exposure to ambient air pollutants, especially particulate matter, at levels below World Health Organization, 2021 air quality guidelines, were associated with changes in cardiometabolic risk factors. Diet may be a personal-level approach for individuals to modify the impact of exposure to air pollution on cardiometabolic health.
Collapse
Affiliation(s)
- Darren R Healy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Soile Puhakka
- Department of Medicine, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland; Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr., P. O. Box 365, 90100, Oulu, Finland
| | - Leila Karhunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
31
|
Zheng J, Zhang H, Shi J, Li X, Zhang J, Zhang K, Gao Y, He J, Dai J, Wang J. Association of air pollution exposure with overweight or obesity in children and adolescents: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168589. [PMID: 37984657 DOI: 10.1016/j.scitotenv.2023.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Childhood overweight and obesity is a global problem. 38 million children under five years old were reported as being overweight/obese in 2019. However, current evidence regarding the effects of air pollution on children weight status remains scarce and inconsistent. This study aimed to determine the association between air pollutants and the weight status of children and adolescents. Four databases were searched up to August 9, 2023. Adjusted merged odds ratios (ORs), regression coefficients (β), and their 95 % confidence intervals (95 % CIs) were calculated and pooled. A total of 27 studies were included. The results showed that air pollutants had adverse effects on the body weight of children and adolescents. Exposure to PM1, PM2.5, PMcoarse, and PM10 were associated with increased risk of overweight/obesity, with pooled ORs (95 % CI) of 1.23 (1.09, 1.40), 1.18 (1.10, 1.28), 1.04 (1.03, 1.05) and 1.11 (1.06, 1.17) per 10 μg/m3 increment, respectively. Individuals with higher exposure levels to NOX, O3, SO2 and CO (per 10 μg/m3 increment) were associated with 12 %, 6 %, 28 % and 1 % increased odds of being overweight/obese, respectively. With respect to the level of body mass index, the pooled β (95 % CIs) for each 10 μg/m3 increase in PM1, PM2.5, PM10, and NOX exposure were 0.15 (0.12, 0.18), 0.11 (0.06, 0.16), 0.07 (0.03, 0.10), and 0.03 (0.01, 0.04), respectively. PM1 has relatively strong adverse effects on body weight status. The subgroup analysis revealed a significantly increase in the risk of overweight/obesity when the concentrations of PM2.5, PM10, and NO2 exceeded 35 μg/m3, 50 μg/m3, and 40 μg/m3, respectively. Exposure to PM2.5, PM10 and NOX increased the risk of overweight/obesity, especially in Asia. This study provides evidence of the association between air pollution and being overweight/obese in children and adolescents.
Collapse
Affiliation(s)
- Jingying Zheng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Huiling Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jianyang Shi
- School of Public Health, Jilin University, Changchun 130021, China
| | - Xin Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Kunlun Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Yameng Gao
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jingtong He
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, Xinjiang 834000, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
32
|
Cerin E, Chan YK, Symmons M, Soloveva M, Martino E, Shaw JE, Knibbs LD, Jalaludin B, Barnett A. Associations of the neighbourhood built and natural environment with cardiometabolic health indicators: A cross-sectional analysis of environmental moderators and behavioural mediators. ENVIRONMENTAL RESEARCH 2024; 240:117524. [PMID: 37898226 DOI: 10.1016/j.envres.2023.117524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Most studies examining the effects of neighbourhood urban design on cardiometabolic health focused solely on the built or natural environment. Also, they did not consider the roles of neighbourhood socio-economic status (SES) and ambient air pollution in the observed associations, and the extent to which these associations were mediated by physical activity and sedentary behaviours. METHODS We used data from the AusDiab3 study (N = 4141), a national cohort study of Australian adults to address the above-mentioned knowledge gaps. Spatial data were used to compute indices of neighbourhood walkability (population density, intersection density, non-commercial land use mix, commercial land use), natural environment (parkland and blue spaces) and air pollution (annual average concentrations of nitrogen dioxide (NO2) and fine particulate matter <2.5 μm in diameter (PM2.5)). Census indices were used to define neighbourhood SES. Clinical assessments collected data on adiposity, blood pressure, blood glucose and blood lipids. Generalised additive mixed models were used to estimate associations. RESULTS Neighbourhood walkability showed indirect beneficial associations with most indicators of cardiometabolic health via resistance training, walking and sitting for different purposes; indirect detrimental associations with the same indicators via vigorous gardening; and direct detrimental associations with blood pressure. The neighbourhood natural environment had beneficial indirect associations with most cardiometabolic health indicators via resistance training and leisure-time sitting, and beneficial direct associations with adiposity and blood lipids. Neighbourhood SES and air pollution moderated only a few associations of the neighbourhood environment with physical activity, blood lipids and blood pressure. CONCLUSIONS Within a low-density and low-pollution context, denser, walkable neighbourhoods with good access to nature may benefit residents' cardiometabolic health by facilitating the adoption of an active lifestyle. Possible disadvantages of living in denser neighbourhoods for older populations are having limited opportunities for gardening, higher levels of noise and less healthy dietary patterns associated with eating out.
Collapse
Affiliation(s)
- Ester Cerin
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring St., Melbourne, VIC, Australia; School of Public Health, The University of Hong Kong, 7 Sassoon Rd., Sandy Bay, Hong Kong, Hong Kong SAR, China; Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
| | - Yih-Kai Chan
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring St., Melbourne, VIC, Australia.
| | - Mark Symmons
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring St., Melbourne, VIC, Australia.
| | - Maria Soloveva
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring St., Melbourne, VIC, Australia.
| | - Erika Martino
- School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia.
| | - Jonathan E Shaw
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; School of Life Sciences, La Trobe University, Melbourne, VIC, Australia.
| | - Luke D Knibbs
- Sydney School of Public Health, The University of Sydney, Camperdown, NSW, Australia; Public Health Unit, Sydney Local Health District, Camperdown, NSW, Australia.
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Randwick, NSW, Australia.
| | - Anthony Barnett
- Mary MacKillop Institute for Health Research, Australian Catholic University, 215 Spring St., Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Wang Y, Li W, Chen S, Zhang J, Liu X, Jiang J, Chen L, Tang Z, Wan X, Lian X, Liang B, Xie S, Ma J, Guo X, Dong Y, Wu L, Li J, Koutrakis P. PM 2.5 constituents associated with childhood obesity and larger BMI growth trajectory: A 14-year longitudinal study. ENVIRONMENT INTERNATIONAL 2024; 183:108417. [PMID: 38199130 DOI: 10.1016/j.envint.2024.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
BACKGROUND The association of specific PM2.5 chemical constituents with childhood overweight or obesity (OWOB) remain unclear. Furthermore, the long-term impacts of PM2.5 exposure on the trajectory of children's body mass index (BMI) have not been explored. METHODS We conducted a longitudinal study among 1,450,830 Chinese children aged 6-19 years from Beijing and Zhongshan in China during 2005-2018 to examine the associations of PM2.5 and its chemical constituents with incident OWOB risk. We extracted PM2.5 mass and five main component exposure from Tracking Air Pollution in China (TAP) dataset. Cox proportional hazards models were applied to quantify exposure-response associations. We further performed principal component analysis (PCA) to handle the multi-collinearity and used quantile g-computation (QGC) approach to analyze the impacts of exposure mixtures. Additionally, we selected 125,863 children with at least 8 physical examination measurements and combined group-based trajectory models (GBTM) with multinomial logistic regression models to explore the impacts of exposure to PM2.5 mass and five constituents on BMI and BMI Z-score trajectories during 6-19 years. RESULTS We observed each interquartile range increment in PM2.5 exposure was significantly associated with a 5.1 % increase in the risk of incident OWOB (95 % confidence Interval [CI]: 1.036-1.066). We also found black carbon, sulfate, organic matter, often linked to fossil combustion, had comparable or larger estimates of the effect (HR = 1.139-1.153) than PM2.5. Furthermore, Exposure to PM2.5 mass, sulfate, nitrate, ammonium, organic matter and black carbon was significantly associated with an increased odds of being in a larger BMI trajectory and being assigned to persistent OWOB trajectory. CONCLUSIONS Our findings provide evidence that the constituents mainly from fossil fuel combustion may have a perceptible influence on increased OWOB risk associated with PM2.5 exposure in China. Moreover, long-term exposure to PM2.5 contributes to an increased odds of being in a lager BMI and a persistent OWOB trajectories.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Weiming Li
- Beijing Health Center for Physical Examination, Beijing 100191, China; Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing 100069, China
| | - Shuo Chen
- Beijing Health Center for Physical Examination, Beijing 100191, China; Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing 100069, China
| | - Jingbo Zhang
- Beijing Health Center for Physical Examination, Beijing 100191, China; Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing 100069, China
| | - Xiangtong Liu
- Beijing Health Center for Physical Examination, Beijing 100191, China; Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing 100069, China
| | - Jun Jiang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Li Chen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Ziqi Tang
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Xiaoyu Wan
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Xinyao Lian
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Baosheng Liang
- Department of Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Shaodong Xie
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jun Ma
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Xiuhua Guo
- Beijing Health Center for Physical Examination, Beijing 100191, China; Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing 100069, China
| | - Yanhui Dong
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Lijuan Wu
- Beijing Health Center for Physical Examination, Beijing 100191, China; Department of Epidemiology and Health Statistics, Capital Medical University School of Public Health, Beijing 100069, China.
| | - Jing Li
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
34
|
Luo J, Kibriya MG, Jasmine F, Shaikh A, Jin Z, Sargis R, Kim K, Olopade CO, Pinto J, Ahsan H, Aschebrook-Kilfoy B. Duration-sensitive association between air pollution exposure and changes in cardiometabolic biomarkers: Evidence from a predominantly African American cohort. ENVIRONMENTAL RESEARCH 2024; 240:117496. [PMID: 37884074 PMCID: PMC10872637 DOI: 10.1016/j.envres.2023.117496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) exposure has been related to cardiometabolic diseases, but the underlying biological pathways remain unclear at the population level. OBJECTIVE To investigate the effect of PM2.5 exposure on changes in multiple cardiometabolic biomarkers across different exposure durations. METHOD Data from a prospective cohort study were analyzed. Ten cardiometabolic biomarkers were measured, including ghrelin, resistin, leptin, C-peptide, creatine kinase myocardial band (CK-MB), monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), N-terminal pro B-type natriuretic peptide (NT-proBNP), troponin, and interleukin-6 (IL-6). PM2.5 levels across exposure durations from 1 to 36 months were assessed. Mixed effect model was used to estimate changes in biomarker levels against 1 μg/m3 increase in PM2.5 level across different exposure durations. RESULTS Totally, 641 participants were included. The average PM2.5 exposure level was 9 μg/m3. PM2.5 exposure was inversely associated with ghrelin, and positively associated with all other biomarkers. The magnitudes of these associations were duration-sensitive and exhibited a U-shaped or inverted-U-shaped trend. For example, the association of resistin were β = 0.05 (95% CI: 0.00, 0.09) for 1-month duration, strengthened to β = 0.27 (95% CI: 0.14, 0.41) for 13-month duration, and weakened to β = 0.12 (95% CI: -0.03, 0.26) for 24-month duration. Similar patterns were observed for other biomarkers except for CK-MB, of which the association direction switched from negative to positive as the duration increased. Resistin, leptin, MCP-1, TNF-alpha, and troponin had a sensitive exposure duration of nearly 12 months. Ghrelin and C-peptide were more sensitive to longer-term exposure (>18 months), while NT-proBNP and IL-6 were more sensitive to shorter-term exposure (<6 months). CONCLUSION PM2.5 exposure was associated with elevated levels in cardiometabolic biomarkers related to insulin resistance, inflammation, and heart injury. The magnitudes of these associations depended on the exposure duration. The most sensitive exposure durations of different biomarkers varied.
Collapse
Affiliation(s)
- Jiajun Luo
- Department of Public Health Sciences, The University of Chicago, United States; Institute for Population and Precision Health, The University of Chicago, United States
| | - Muhammad G Kibriya
- Department of Public Health Sciences, The University of Chicago, United States; Institute for Population and Precision Health, The University of Chicago, United States
| | - Farzana Jasmine
- Institute for Population and Precision Health, The University of Chicago, United States
| | - Afzal Shaikh
- Institute for Population and Precision Health, The University of Chicago, United States
| | - Zhihao Jin
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, United States
| | - Robert Sargis
- College of Medicine, University of Illinois Chicago, United States
| | - Karen Kim
- Department of Medicine, The University of Chicago, United States
| | | | - Jayant Pinto
- Department of Medicine, The University of Chicago, United States
| | - Habibul Ahsan
- Department of Public Health Sciences, The University of Chicago, United States; Institute for Population and Precision Health, The University of Chicago, United States
| | - Briseis Aschebrook-Kilfoy
- Department of Public Health Sciences, The University of Chicago, United States; Institute for Population and Precision Health, The University of Chicago, United States.
| |
Collapse
|
35
|
Wolińska IA, Kraik K, Poręba R, Gać P, Poręba M. Environmental factors of obesity before and after COVID-19 pandemic: a review. Front Public Health 2023; 11:1213033. [PMID: 38186688 PMCID: PMC10766782 DOI: 10.3389/fpubh.2023.1213033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
In past decades the prevalence of overweight and obesity had grown rapidly. There are numerous factors contributing to this unfavorable change in people's health. This review article investigates the environmental factors which may play a role in the prevalence of overweight and obesity and additionally the novel factors which appeared after the beginning of the COVID-19 pandemic, which caused the increase in BMI during the lockdown period. Most of the studies reveal that the COVID-19 pandemic and lockdown contributed to the growth of BMI in numerous countries and, eventually the prevalence of overweight and obesity increased. Studies suggest that the physical activity was decreased while sleep time and screen time were increased and the amount of food consumed increased, additionally more processed food with long shelf life was consumed. The diverse environmental factors may have an impact on obesity and overweight development taking into account policy and local school policy issues, socioeconomic status, lifestyle including physical activity, diet habits, and amongst others, more trivial causes such as uninteresting neighborhoods, lack of sense of security outside the place of residence or a long distance from shops. Still, this is the object of debate if air pollution is an environmental risk factor influencing the unfavorable trends towards increasing body weight.
Collapse
Affiliation(s)
- Irena Anna Wolińska
- Divison of Pathophysiology, Department of Physiology and Pathophysiology, Wroclaw Medical University, Wrocław, Poland
| | - Krzysztof Kraik
- Students’ Scientific Association of Cardiovascular Diseases Prevention, Wroclaw Medical University, Wrocław, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Wrocław, Poland
| | - Paweł Gać
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, Wrocław, Poland
| | - Małgorzata Poręba
- Department of Paralympic Sport, Wroclaw University of Health and Sport Sciences, Wrocław, Poland
| |
Collapse
|
36
|
Oliveira Ferreira CKD, Campolim CM, Zordão OP, Simabuco FM, Anaruma CP, Pereira RM, Boico VF, Salvino LG, Costa MM, Ruiz NQ, de Moura LP, Saad MJA, Costa SKP, Kim YB, Prada PO. Subchronic exposure to 1,2-naphthoquinone induces adipose tissue inflammation and changes the energy homeostasis of mice, partially due to TNFR1 and TLR4. Toxicol Rep 2023; 11:10-22. [PMID: 37383489 PMCID: PMC10293596 DOI: 10.1016/j.toxrep.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 05/16/2023] [Accepted: 06/03/2023] [Indexed: 06/30/2023] Open
Abstract
Air pollution affects energy homeostasis detrimentally. Yet, knowledge of how each isolated pollutant can impact energy metabolism remains incomplete. The present study was designed to investigate the distinct effects of 1,2-naphthoquinone (1,2-NQ) on energy metabolism since this pollutant increases at the same rate as diesel combustion. In particular, we aimed to determine in vivo effects of subchronic exposure to 1,2-NQ on metabolic and inflammatory parameters of wild-type mice (WT) and to explore the involvement of tumor necrosis factor receptor 1 (TNFR1) and toll-like receptor 4 (TLR4) in this process. Males WT, TNFR1KO, and TLR4KO mice at eight weeks of age received 1,2-NQ or vehicle via nebulization five days a week for 17 weeks. In WT mice, 1,2-NQ slightly decreased the body mass compared to vehicle-WT. This effect was likely due to a mild food intake reduction and increased energy expenditure (EE) observed after six weeks of exposure. After nine weeks of exposure, we observed higher fasting blood glucose and impaired glucose tolerance, whereas insulin sensitivity was slightly improved compared to vehicle-WT. After 17 weeks of 1,2-NQ exposure, WT mice displayed an increased percentage of M1 and a decreased (p = 0.057) percentage of M2 macrophages in adipose tissue. The deletion of TNFR1 and TLR4 abolished most of the metabolic impacts caused by 1,2-NQ exposure, except for the EE and insulin sensitivity, which remained high in these mice under 1,2-NQ exposure. Our study demonstrates for the first time that subchronic exposure to 1,2-NQ affects energy metabolism in vivo. Although 1,2-NQ increased EE and slightly reduced feeding and body mass, the WT mice displayed higher inflammation in adipose tissue and impaired fasting blood glucose and glucose tolerance. Thus, in vivo subchronic exposure to 1,2-NQ is harmful, and TNFR1 and TLR4 are partially involved in these outcomes.
Collapse
Affiliation(s)
| | - Clara Machado Campolim
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Olívia Pizetta Zordão
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | | | - Chadi Pellegrini Anaruma
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | | | | | | | - Maíra Maftoum Costa
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
| | | | - Leandro Pereira de Moura
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Physical Education, Institute of Biosciences - São Paulo State University, Rio Claro, SP, Brazil
| | - Mario Jose Abdalla Saad
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
| | - Soraia Katia Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Young-Bum Kim
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Patricia Oliveira Prada
- Faculty of Applied Sciences, State University of Campinas, Limeira, SP, Brazil
- Department of Internal Medicine, Faculty of Medical Science, State University of Campinas, Campinas, SP, Brazil
- Max-Planck Institute for Metabolism Research, Köln, Germany
| |
Collapse
|
37
|
Warkentin S, de Bont J, Abellan A, Pistillo A, Saucy A, Cirach M, Nieuwenhuijsen M, Khalid S, Basagaña X, Duarte-Salles T, Vrijheid M. Changes in air pollution exposure after residential relocation and body mass index in children and adolescents: A natural experiment study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122217. [PMID: 37467916 DOI: 10.1016/j.envpol.2023.122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
Air pollution exposure may affect child weight gain, but observational studies provide inconsistent evidence. Residential relocation can be leveraged as a natural experiment by studying changes in health outcomes after a sudden change in exposure within an individual. We aimed to evaluate whether changes in air pollution exposure due to residential relocation are associated with changes in body mass index (BMI) in children and adolescents in a natural experiment study. This population-based study included children and adolescents, between 2 and 17 years, who moved during 2011-2018 and were registered in the primary healthcare in Catalonia, Spain (N = 46,644). Outdoor air pollutants (nitrogen dioxides (NO2), particulate matter <10 μm (PM10) and <2.5 μm (PM2.5)) were estimated at residential census tract level before and after relocation; tertile cut-offs were used to define changes in exposure. Routinely measured weight and height were used to calculate age-sex-specific BMI z-scores. A minimum of 180 days after moving was considered to observe zBMI changes according to changes in exposure using linear fixed effects regression. The majority of participants (60-67% depending on the pollutant) moved to areas with similar levels of air pollution, 15-49% to less polluted, and 14-31% to more polluted areas. Moving to areas with more air pollution was associated with zBMI increases for all air pollutants (β NO2 = 0.10(95%CI 0.09; 0.12), β PM2.5 0.06(0.04; 0.07), β PM10 0.08(0.06; 0.10)). Moving to similar air pollution areas was associated with decreases in zBMI for all pollutants. No associations were found for those moving to less polluted areas. Associations with moving to more polluted areas were stronger in preschool- and primary school-ages. Associations did not differ by area deprivation strata. This large, natural experiment study suggests that increases in outdoor air pollution may be associated with child weight gain, supporting ongoing efforts to lower air pollution levels.
Collapse
Affiliation(s)
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - Alicia Abellan
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Andrea Pistillo
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Marta Cirach
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sara Khalid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, Oxfordshire, UK; Centre for Statistics in Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
38
|
Ye L, Zhou J, Tian Y, Cui J, Chen C, Wang J, Wang Y, Wei Y, Ye J, Li C, Chai X, Sun C, Li F, Wang J, Guo Y, Jaakkola JJK, Lv Y, Zhang J, Shi X. Associations of residential greenness and ambient air pollution with overweight and obesity in older adults. Obesity (Silver Spring) 2023; 31:2627-2637. [PMID: 37649157 DOI: 10.1002/oby.23856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE This study aimed to examine the impact of greenness and fine particulate matter <2.5 μm (PM2.5 ) on overweight/obesity among older adults in China. METHODS A total of 21,355 participants aged ≥65 years were included from the Chinese Longitudinal Healthy Longevity Survey between 2000 and 2018. Normalized difference vegetation index (NDVI) with a radius of 250 m and PM2.5 in a 1 × 1-km grid resolution were calculated around each participant's residence. Cox proportional hazards models were used to estimate the effects of NDVI and PM2.5 on overweight/obesity. Interaction and mediation analyses were conducted to explore combined effects. RESULTS The study observed 1895 incident cases of overweight/obesity over 109,566 person-years. For every 0.1-unit increase in NDVI the hazard ratio of overweight/obesity was 0.91 (95% CI: 0.88-0.95), and for every 10-μg/m3 increase in PM2.5 the hazard ratio was 1.11 (95% CI: 1.07-1.14). The effect of NDVI on overweight/obesity was partially mediated by PM2.5 , with a relative mediation proportion of 20.10% (95% CI: 1.63%-38.57%). CONCLUSIONS Greenness exposure appears to lower the risk of overweight/obesity in older adults in China, whereas PM2.5 , acting as a mediator, partly mediated this protective effect.
Collapse
Affiliation(s)
- Lihong Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Tian
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jia Cui
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yueqing Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jiaming Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xin Chai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chris Sun
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanbo Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jouni J K Jaakkola
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Wang D, Wang Y, Liu Q, Sun W, Wei L, Ye C, Zhu R. Association of Air Pollution with the Number of Common Respiratory Visits in Children in a Heavily Polluted Central City, China. TOXICS 2023; 11:815. [PMID: 37888666 PMCID: PMC10610878 DOI: 10.3390/toxics11100815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Children's respiratory health is vulnerable to air pollution. Based on data collected from June 2019 to June 2022 at a children's hospital in Zhengzhou, China, this study utilized Spearman correlation analysis and a generalized additive model (GAM) to examine the relationship between daily visits for common respiratory issues in children and air pollutant concentrations. Results show that the number of upper respiratory tract infection (URTI), pneumonia (PNMN), bronchitis (BCT), and bronchiolitis (BCLT) visits in children showed a positive correlation with PM2.5, PM10, NO2, SO2, and CO while exhibiting a negative correlation with temperature and relative humidity. The highest increases in PNMN visits in children were observed at lag 07 for NO2, SO2, and CO. A rise of 10 μg/m3 in NO2, 1 μg/m3 in SO2, and 0.1 mg/m3 in CO corresponded to an increase of 9.7%, 2.91%, and 5.16% in PNMN visits, respectively. The effects of air pollutants on the number of BCT and BCLT visits were more pronounced in boys compared to girls, whereas no significant differences were observed in the number of URTI and PNMN visits based on sex. Overall, air pollutants significantly affect the prevalence of respiratory diseases in children, and it is crucial to improve air quality to protect the children's respiratory health.
Collapse
Affiliation(s)
- Dan Wang
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Yanan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (W.S.)
| | - Qianqian Liu
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Wenxin Sun
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (W.S.)
| | - Liangkui Wei
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Chengxin Ye
- Emergency Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, China; (D.W.); (Q.L.); (C.Y.)
- Emergency Department, Maternal and Child Care Service Centre of Henan, Zhengzhou 450014, China
| | - Rencheng Zhu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China; (Y.W.); (W.S.)
| |
Collapse
|
40
|
Wang P, Li K, Xu C, Fan Z, Wang Z. Spatial analysis of overweight prevalence in China: exploring the association with air pollution. BMC Public Health 2023; 23:1595. [PMID: 37608324 PMCID: PMC10463435 DOI: 10.1186/s12889-023-16518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Overweight is a known risk factor for various chronic diseases and poses a significant threat to middle-aged and elderly adults. Previous studies have reported a strong association between overweight and air pollution. However, the spatial relationship between the two remains unclear due to the confounding effects of spatial heterogeneity. METHODS We gathered height and weight data from the 2015 China Health and Retirement Long-term Survey (CHARLS), comprising 16,171 middle-aged and elderly individuals. We also collected regional air pollution data. We then analyzed the spatial pattern of overweight prevalence using Moran's I and Getis-Ord Gi* statistics. To quantify the explanatory power of distinct air pollutants for spatial differences in overweight prevalence across Southern and Northern China, as well as across different age groups, we utilized Geodetector's q-statistic. RESULTS The average prevalence of overweight among middle-aged and elderly individuals in each city was 67.27% and 57.39%, respectively. In general, the q-statistic in southern China was higher than that in northern China. In the north, the prevalence was significantly higher at 54.86% compared to the prevalence of 38.75% in the south. SO2 exhibited a relatively higher q-statistic in middle-aged individuals in both the north and south, while for the elderly in the south, NO2 was the most crucial factor (q = 0.24, p < 0.01). Moreover, fine particulate matter (PM2.5 and PM10) also demonstrated an important effect on overweight. Furthermore, we found that the pairwise interaction between various risk factors improved the explanatory power of the prevalence of overweight, with different effects for different age groups and regions. In northern China, the strongest interaction was found between NO2 and SO2 (q = 0.55) for middle-aged individuals and PM2.5 and SO2 (q = 0.27) for the elderly. Conversely, in southern China, middle-aged individuals demonstrated the strongest interaction between SO2 and PM10 (q = 0.60), while the elderly showed the highest interaction between NO2 and O3 (q = 0.42). CONCLUSION Significant spatial heterogeneity was observed in the effects of air pollution on overweight. Specifically, air pollution in southern China was found to have a greater impact on overweight than that in northern China. And, the impact of air pollution on middle-aged individuals was more pronounced than on the elderly, with distinct pollutants demonstrating significant variation in their impact. Moreover, we found that SO2 had a greater impact on overweight prevalence among middle-aged individuals, while NO2 had a greater impact on the elderly. Additionally, we identified significant statistically interactions between O3 and other pollutants.
Collapse
Affiliation(s)
- Peihan Wang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Kexin Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| | - Chengdong Xu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Zixuan Fan
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
- School of Health Policy and Management, Peking Union Medical College, Beijing, 100730, P.R. China.
| | - Zhenbo Wang
- Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
41
|
Yang S, Hong F, Li S, Han X, Li J, Wang X, Chen L, Zhang X, Tan X, Xu J, Duoji Z, Ciren Z, Guo B, Zhang J, Zhao X. The association between chemical constituents of ambient fine particulate matter and obesity in adults: A large population-based cohort study. ENVIRONMENTAL RESEARCH 2023; 231:116228. [PMID: 37230219 DOI: 10.1016/j.envres.2023.116228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Current evidence demonstrated that ambient fine particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) and its constituents may be obesogenic in children, but evidence from adults is lacking. Our aim was to characterize the association between PM2.5 and its constituents and obesity in adults. METHODS We included 68,914 participants from the China Multi-Ethnic Cohort (CMEC) baseline survey. Three-year average concentrations of PM2.5 and its constituents were evaluated by linking pollutant estimates to the geocoded residential addresses. Obesity was defined as body mass index (BMI) ≥ 28 kg/m2. Logistic regression was used to examine the relationship between PM2.5 and its constituents and obesity. We performed weighed quantile sum (WQS) regression to get the overall effect of PM2.5 and its constituents and the relative contribution of each constituent. RESULTS Per-SD increase in PM2.5 (odds ratio [OR] = 1.43, 95% confidence interval [CI]: 1.37-1.49), black carbon (BC) (1.42, 1.36-1.48), ammonium (1.43, 1.37-1.49), nitrate (1.44, 1.38-1.50), organic matter (OM) (1.45, 1.39-1.51), sulfate (1.42, 1.35-1.48), and soil particles (SOIL) (1.31, 1.27-1.36) were positively associated with obesity, and SS (0.60, 0.55-0.65) was negatively associated with obesity. The overall effect (OR = 1.34, 95% CI: 1.29-1.41) of the PM2.5 and its constituents was positively associated with obesity, and ammonium made the most contribution to this relationship. Participants who were older, female, never smoked, lived in urban areas, had lower income or higher levels of physical activity were more significantly adversely affected by PM2.5, BC, ammonium, nitrate, OM, sulfate and SOIL compared to other individuals. CONCLUSION Our study revealed that PM2.5 constituents except SS were positively associated with obesity, and ammonium played the most important role. These findings provided new evidence for public health interventions, especially the precise prevention and control of obesity.
Collapse
Affiliation(s)
- Shaokun Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Feng Hong
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Sicheng Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xinyu Han
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiawei Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Lin Chen
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xuehui Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Xi Tan
- Wuhou District Center for Disease Control and Prevention, Chengdu, China
| | - Jingru Xu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Zhuoma Duoji
- School of Medicine, Tibet University, Lhasa, China
| | - Zhuoga Ciren
- School of Medicine, Tibet University, Lhasa, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Juying Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
42
|
Duque-Cartagena T, Mundstock E, Dala Bernardina Dalla M, Vontobel Padoin A, Cañon-Montañez W, Mattiello R. The role of environmental pollutants in body composition: Systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 228:115840. [PMID: 37024033 DOI: 10.1016/j.envres.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/16/2023]
Abstract
The effects of environmental pollution are associated with higher rates of mortality, morbidity, and years of life lost. It is known that these produce alterations in the human body, including changes in body composition. Research has focused on the association between contaminants and BMI through cross-sectional studies. The objective of this study was to synthesize the evidence for the association of pollutants on different measures of body composition. The PECOS strategy was defined, in which "P": participants of any age, sex, or ethnicity, "E": a higher level of environmental pollution, "C": a lower level of environmental pollution, "O": body composition measurements and "S": longitudinal studies. Studies from the following databases were included: MEDLINE, EMBASE, SciELO, LILACS, Scopus, Web of Science, SPORTDiscus, and gray literature from inception to January 2023.3069 studies were identified, 18 were included in the systematic review, and 13 in the meta-analysis. These studies included 8.563 people, 47 environmental contaminants, and 16 measures of body composition. The meta-analysis by subgroup found that the association between dioxins, furans, PCBs, and waist circumference was β = 1.0 (95% CI: 0.85 to 1.16; I2: 95%), and the sum of four skinfolds β = 1.02 (95% CI: 0.88 to 1.16; I2: 24%). The association between pesticides and waist circumference was β = 1.00 (95% CI: 0.68 to 1.32; I2: 98%), and the fat mass was β = 0.99 (95% CI: 0.17 to 1.81; I2: 94%). Pollutants, especially endocrine-disrupting chemicals, among which dioxins, furans, PCBs, and pesticides, are associated with changes in body composition, mainly with waist circumference and the sum of four skinfolds.
Collapse
Affiliation(s)
- Tatiana Duque-Cartagena
- Pontifical Catholic University of Rio Grande Do Sul (PUCRS), School of Medicine, Post-Graduate Program in Medicine and Health Sciences, Porto Alegre, RS, Brazil
| | - Eduardo Mundstock
- Pontifical Catholic University of Rio Grande Do Sul (PUCRS), School of Medicine, Post-Graduate Program in Medicine and Health Sciences, Porto Alegre, RS, Brazil; Department of Education, Sport and Leisure of Canela, Canela, RS, Brazil
| | - Marcello Dala Bernardina Dalla
- Cassiano Antônio de Moraes University Hospital, Universidade Federal Do Espírito Santo (HUCAM/UFES), Vitória, ES, Brazil; Capixaba Institute for Teaching Research and Innovation of the State Health Department of Espirito Santo (ICEPI-SESA), Vitória, ES, Brazil
| | - Alexandre Vontobel Padoin
- Pontifical Catholic University of Rio Grande Do Sul (PUCRS), School of Medicine, Post-Graduate Program in Medicine and Health Sciences, Porto Alegre, RS, Brazil
| | | | - Rita Mattiello
- Universidade Federal Do Rio Grande Do Sul, Graduate Program in Epidemiology, Porto Alegre, RS, Brazil.
| |
Collapse
|
43
|
Liao J, Goodrich J, Walker DI, Lin Y, Lurmann F, Qiu C, Jones DP, Gilliland F, Chazi L, Chen Z. Metabolic pathways altered by air pollutant exposure in association with lipid profiles in young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121522. [PMID: 37019258 PMCID: PMC10243191 DOI: 10.1016/j.envpol.2023.121522] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 06/08/2023]
Abstract
Mounting evidence suggests that air pollution influences lipid metabolism and dyslipidemia. However, the metabolic mechanisms linking air pollutant exposure and altered lipid metabolism is not established. In year 2014-2018, we conducted a cross-sectional study on 136 young adults in southern California, and assessed lipid profiles (triglycerides, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, very-low-density lipoprotein (VLDL)-cholesterol), and untargeted serum metabolomics using liquid chromatography-high-resolution mass spectrometry, and one-month and one-year averaged exposures to NO2, O3, PM2.5 and PM10 air pollutants at residential addresses. A metabolome-wide association analysis was conducted to identify metabolomic features associated with each air pollutant. Mummichog pathway enrichment analysis was used to assess altered metabolic pathways. Principal component analysis (PCA) was further conducted to summarize 35 metabolites with confirmed chemical identity. Lastly, linear regression models were used to analyze the associations of metabolomic PC scores with each air pollutant exposure and lipid profile outcome. In total, 9309 metabolomic features were extracted, with 3275 features significantly associated with exposure to one-month or one-year averaged NO2, O3, PM2.5 and PM10 (p < 0.05). Metabolic pathways associated with air pollutants included fatty acid, steroid hormone biosynthesis, tryptophan, and tyrosine metabolism. PCA of 35 metabolites identified three main PCs which together explained 44.4% of the variance, representing free fatty acids and oxidative byproducts, amino acids and organic acids. Linear regression indicated that the free fatty acids and oxidative byproducts-related PC score was associated with air pollutant exposure and outcomes of total cholesterol and LDL-cholesterol (p < 0.05). This study suggests that exposure to NO2, O3, PM2.5 and PM10 contributes to increased level of circulating free fatty acids, likely through increased adipose lipolysis, stress hormone and response to oxidative stress pathways. These alterations were associated with dysregulation of lipid profiles and potentially could contribute to dyslipidemia and other cardiometabolic disorders.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Jesse Goodrich
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Douglas I Walker
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Yan Lin
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Fred Lurmann
- Sonoma Technology Inc., Petaluma, CA, United States
| | - Chenyu Qiu
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Dean P Jones
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| | - Frank Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Lida Chazi
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
44
|
Chung CY, Wu SY, Chiu HH, Wu TN, Wang YT, Lin MY. Associations of air pollutant concentrations with longitudinal kidney function changes in patients with chronic kidney disease. Sci Rep 2023; 13:9609. [PMID: 37311921 DOI: 10.1038/s41598-023-36682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
This longitudinal cohort study investigated the associations of air pollutant exposures, including CO, NO, NO2, NOx, O3, PM10, PM2.5, and SO2, with long-term kidney function changes in patients with chronic kidney disease (CKD). We enrolled 447 CKD patients who took part in a universal hospital pre-ESRD care program during 2011-2015. The daily average air pollutant exposures and temperature were estimated for each patient, with different levels of air pollutant concentrations defined by 5-knot and restricted cubic spline function. Predicted annual estimated glomerular filtration (eGFR) slope values by one mixed model were considered as the study outcome. The average age of the study population was 77.1 ± 12.6 years, and the median annual eGFR decreased by 2.1 ml/min/1.73 m2 per year from 30 ml/min/1.73 m2 at baseline during a mean follow-up time of 3.4 years. The univariable and multivariable analyses revealed no significant linear and non-linear associations between 5-knot air pollutant concentrations and annual eGFR slope. In addition, the visualized spline effect plots show insignificant variation patterns in annual eGFR slope values with increased air pollutant concentrations. These results encourage more extensive studies to clarify the causal relationships and mechanisms of long-term specific air pollutant exposures and longitudinal kidney function change, especially in CKD populations.
Collapse
Affiliation(s)
- Cheng-Yin Chung
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Shang-Yu Wu
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Huei-Hsuan Chiu
- Department of Internal Medicine, Pingtung Hospital, Ministry of Health and Welfare, Pingtung, 900214, Taiwan
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan
| | - Tzu-Ning Wu
- Department of Nursing, Ministry of Health and Welfare, Pingtung Hospital, Pingtung, 900214, Taiwan
| | - Your-Tong Wang
- Department of Nursing, Ministry of Health and Welfare, Pingtung Hospital, Pingtung, 900214, Taiwan
| | - Ming-Yen Lin
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, No. 100, TzYou 1st Road, Sanmin District, Kaohsiung City, 80708, Taiwan.
- Department of Kidney Care, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
45
|
Badaloni C, De Sario M, Caranci N, De' Donato F, Bolignano A, Davoli M, Leccese L, Michelozzi P, Leone M. A spatial indicator of environmental and climatic vulnerability in Rome. ENVIRONMENT INTERNATIONAL 2023; 176:107970. [PMID: 37224679 DOI: 10.1016/j.envint.2023.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Urban areas are disproportionately affected by multiple pressures from overbuilding, traffic, air pollution, and heat waves that often interact and are interconnected in producing health effects. A new synthetic tool to summarize environmental and climatic vulnerability has been introduced for the city of Rome, Italy, to provide the basis for environmental and health policies. METHODS From a literature overview and based on the availability of data, several macro-dimensions were identified on 1,461 grid cells with a width of 1 km2 in Rome: land use, roads and traffic-related exposure, green space data, soil sealing, air pollution (PM2.5, PM10, NO2, C6H6, SO2), urban heat island intensity. The Geographically Weighted Principal Component Analysis (GWPCA) method was performed to produce a composite spatial indicator to describe and interpret each spatial feature by integrating all environmental dimensions. The method of natural breaks was used to define the risk classes. A bivariate map of environmental and social vulnerability was described. RESULTS The first three components explained most of the variation in the data structure with an average of 78.2% of the total percentage of variance (PTV) explained by the GWPCA, with air pollution and soil sealing contributing most in the first component; green space in the second component; road and traffic density and SO2 in the third component. 56% of the population lives in areas with high or very high levels of environmental and climatic vulnerability, showing a periphery-centre trend, inverse to the deprivation index. CONCLUSIONS A new environmental and climatic vulnerability indicator for the city of Rome was able to identify the areas and population at risk in the city, and can be integrated with other vulnerability dimensions, such as social deprivation, providing the basis for risk stratification of the population and for the design of policies to address environmental, climatic and social injustice.
Collapse
Affiliation(s)
- Chiara Badaloni
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy.
| | - Manuela De Sario
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Nicola Caranci
- Regional Health and Social Care Agency, Emilia-Romagna Region, Bologna, Italy
| | - Francesca De' Donato
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | | | - Marina Davoli
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Letizia Leccese
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | - Paola Michelozzi
- Department of Epidemiology of the Lazio Regional Health Service, ASL Roma 1, Rome, Italy
| | | |
Collapse
|
46
|
Zhang Y, Wei J, Liu C, Cao W, Zhang Z, Li Y, Zeng Q, Sun S. Association between ambient PM 1 and semen quality: A cross-sectional study of 27,854 men in China. ENVIRONMENT INTERNATIONAL 2023; 175:107919. [PMID: 37104984 DOI: 10.1016/j.envint.2023.107919] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Exposure to ambient fine and respirable particulate matter is associated with poor sperm quality, but evidence for particulate matter with an aerodynamic diameter ≤ 1 μm (PM1) is scarce. We aimed to estimate the association between PM1 exposure and sperm concentration, sperm count, sperm total motility, and sperm progressive motility in Chinese men. METHODS We conducted a cross-sectional study of 33,221 men attending an infertility clinic in Hubei, China, between 2014 and 2020. Daily concentrations of PM1 data were estimated from a validated spatiotemporal artificial intelligence model. We used multivariate linear regression to estimate the association between PM1 exposure and sperm parameters during the spermatogenesis period after adjusting for age, body mass index (BMI), education, ever having fathered a child, and season of semen collection. In addition, we performed stratified analysis to assess whether the association was varied by age, BMI, and educational attainment. RESULTS A total of 27,854 participants were included in the final analysis. An interquartile range (17.2 μg/m3) increase in PM1 during the entire period of semen development was associated with declined semen concentration [-4.39% (95% CI: -7.67%, -1.12%)] and sperm count [-23.56% (95% CI: -28.95%, -18.18%)], reduced total motility [-0.86% (95% CI: -1.66%, -0.06%)] and progressive motility [-2.22% (95% CI: -3.00%, -1.43%)]. The associations were homogeneous across subgroups defined by age and education, but were more pronounced among men with underweight for sperm concentration and sperm count. We identified a critical exposure window of 0-9 lag days, 10-14 lag days, and 70-90 lag days before semen collection for sperm count and progressive motility. CONCLUSIONS Among men attending an infertility clinic in China, exposure to PM1 was associated with poor semen quality, especially during the 70-90 days before ejaculation. These results suggest that exposure to PM1 might be a novel risk factor for impaired semen quality.
Collapse
Affiliation(s)
- Yangchang Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wangnan Cao
- Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing 100191, China
| | - Zhenyu Zhang
- Department of Global Health, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing 100191, China
| | - Yufeng Li
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, Hubei, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shengzhi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Capital Medical University, Beijing 100069, China; School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
47
|
Wang Y, Tan H, Zheng H, Ma Z, Zhan Y, Hu K, Yang Z, Yao Y, Zhang Y. Exposure to air pollution and gains in body weight and waist circumference among middle-aged and older adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161895. [PMID: 36709892 DOI: 10.1016/j.scitotenv.2023.161895] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Emerging research suggested a nexus between air pollution exposure and risks of overweight and obesity, while existing longitudinal evidence was extensively sparse, particularly in densely populated regions. This study aimed to quantify concentration-response associations of changes in weight and waist circumference (WC) related to air pollution in Chinese adults. METHODS We conceived a nationally representative longitudinal study from 2011 to 2015, by collecting 34,854 observations from 13,757 middle-aged and older adults in 28 provincial regions of China. Participants' height, weight and WC were measured by interviewers using standardized devices. Concentrations of major air pollutants including fine particulate matter (PM2.5), nitrogen dioxide (NO2) and ozone (O3) predicted by well-validated spatiotemporal models were assigned to participants according to their residential cities. Possible exposure biases were checked through 1000 random simulated exposure at individual level, using a Monte Carlo simulation approach. Linear mixed-effects models were applied to estimate the relationships of air pollution with weight and WC changes, and restricted cubic spline functions were adopted to smooth concentration-response (C-R) curves. RESULTS Each 10-μg/m3 rise in PM2.5, NO2 and O3 was associated with an increase of 0.825 (95% confidence interval: 0.740, 0.910), 0.921 (0.811, 1.032) and 1.379 (1.141, 1.616) kg in weight, respectively, corresponding to WC gains of 0.688 (0.592, 0.784), 1.189 (1.040, 1.337) and 0.740 (0.478, 1.002) cm. Non-significant violation for linear C-R relationships was observed with exception of NO2-weight and PM2.5/NO2-WC associations. Sex-stratified analyses revealed elevated vulnerability in women to gain of weight in exposure to PM2.5 and NO2. Sensitive analyses largely supported our primary findings via assessing exposure estimates from 1000 random simulations, and performing reanalysis based on non-imputed covariates and non-obese participants, as well as alternative indicators (i.e., body mass index and waist-to-height ratio). CONCLUSIONS We found positively robust associations of later-life exposure to air pollutants with gains in weight and WC based on a national sample of Chinese adult men and women. Our findings suggested that mitigation of air pollution may be an efficient intervention to relieve obesity burden.
Collapse
Affiliation(s)
- Yaqi Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huiyue Tan
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China; Healthcare Associated Infection Control Department, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Zongwei Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yu Zhan
- Department of Environmental Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kejia Hu
- Institute of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zhiming Yang
- School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China
| | - Yao Yao
- China Center for Health Development Studies, Peking University, Beijing 100871, China
| | - Yunquan Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
48
|
Masrani AS, Nik Husain NR, Musa KI. Five Decades of Research Progress in Air Pollution, Children’s Respiratory Health, and Emergency Department Visits: A Bibliometric Analysis. Cureus 2023; 15:e37151. [PMID: 37153234 PMCID: PMC10161285 DOI: 10.7759/cureus.37151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Air pollution is a global environmental health concern. Our study aims to examine the collective scientific impact of air pollution, children's respiratory health, and emergency department visits during the last five decades. Original articles, review papers, and conference proceedings in the English language published from 1972 to 2022 were obtained after a comprehensive search of the Scopus database using the terms air pollution, children, respiratory health, and emergency department visit. The Biblioshiny web application of the R software (R Foundation for Statistical Computing, Vienna, Austria) was used to analyse the publication trend and identify the top authors and journals of the subject. The countries' collaborative network was mapped, and the authors' trending keywords were tracked using a thematic map. In total, 1,309 publications authored by 6,342 authors from 483 sources were retrieved. Three distinctive collaborative network clusters were observed, with the United States as the connecting central node. Among the 39 trending keywords identified, particulate matter had constantly been a motor theme with an emerging interest in individual pollutants, specific diseases, and time series analysis. In conclusion, political will is a strong driver for research on air pollution, children's respiratory health, and emergency department visits, which is further enhanced by technological advancement that increases the availability and accessibility of air pollution and patient data. The trend for future studies is time series analysis and research on the impact of individual air pollutants on specific respiratory disorders in children.
Collapse
|
49
|
Guo M, Xiao C, Yan H, Yu B, Zhai M, Wei L, Yin X, Gesang Q. Association of air pollution exposure during gestational and the first year of life with physical growth in preschoolers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:337-347. [PMID: 35098822 DOI: 10.1080/09603123.2022.2029829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
This study explored the association of exposure to air pollutants during gestational and the first year of life with physical growth in preschoolers. The linear and logistic regression models were used to estimate the associations between air pollution and childhood growth. After adjusting for confounders, z-scores of body mass index (zBMI, and 95% confidence intervals, 95%CI) increased by 1.164(1.054,1.285), 1.136(1.050,1.228) and 1.165(1.041,1.303), associated with per interquartile range (IQR) increase in NO2 (nitrogen dioxide), PM2.5 and PM10 (particulate matter with aerodynamic diameters ≤2.5 μm and 10 μm) during gestational, respectively. The odds ratios (and 95%CI) of childhood overweight/obesity associated with per IQR increase in NO2, PM2.5 and PM10 during gestational were 1.425(1.168,1.737), 1.255(1.087,1.450) and 1.332(1.104,1.605). Positive associations were found between air pollution during the first year of life and zBMI or overweight/obesity. Our findings suggest exposure to air pollution were associated with childhood growth, and improving air quality is beneficial for childhood growth.
Collapse
Affiliation(s)
- Menglan Guo
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Chenchang Xiao
- Department of Medicine, City College, Wuhan University of Science and Technology, Wuhan, PR China
| | - Hong Yan
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Bin Yu
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Mengxi Zhai
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Liqing Wei
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Xiaohong Yin
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| | - Quzhen Gesang
- Department of Preventive Medicine, School of Public Health, Wuhan University, Wuhan, PR China
| |
Collapse
|
50
|
Stanhope J, Maric F, Rothmore P, Weinstein P. Physiotherapy and ecosystem services: improving the health of our patients, the population, and the environment. Physiother Theory Pract 2023; 39:227-240. [PMID: 34904927 DOI: 10.1080/09593985.2021.2015814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The relevance of ecosystems to physiotherapy has traditionally been overlooked, despite its potential for health impacts relevant to conditions often managed by physiotherapists. PURPOSE The purpose of this article is to introduce the concept of ecosystem services to physiotherapists, and to discuss how understanding ecosystem services may improve patient care, and population and planetary health. DISCUSSION AND CONCLUSION Physiotherapists with an understanding of ecosystem services may improve patient care by value-adding to management through patient education, empathy, advocacy, and broader population health approaches. Physiotherapists are also well placed to promote the conservation and restoration of ecosystem through participation, advocacy, and the development of public health measures, to the benefit of global sustainability and population health. Further research is required into how physiotherapists currently use nature-based interventions, and the barriers and enablers to their use. To be adequately prepared to meet the challenges that climate change and environmental degradation pose to patient care, population health and health systems, both current and future physiotherapists need to take a broader view of their practice. By including consideration of the potential role of the environment and green space exposure in particular on their patient's health, physiotherapists can ultimately contribute more to population and planetary health.
Collapse
Affiliation(s)
- Jessica Stanhope
- School of Allied Health Science and Practice, University of Adelaide, Adelaide, Australia
| | - Filip Maric
- Department of Health and Care Sciences, UiT the Arctic University of Norway (Tromsø), Tromsø, Norway
| | - Paul Rothmore
- School of Allied Health Science and Practice, University of Adelaide, Adelaide, Australia
| | - Philip Weinstein
- School of Public Health, University of Adelaide, Adelaide, Australia
| |
Collapse
|