1
|
Khemraj P, Kuznyetsova A, Hood DA. Adaptations in mitochondrial quality control and interactions with innate immune signaling within skeletal muscle: A narrative review. JOURNAL OF SPORT AND HEALTH SCIENCE 2025:101049. [PMID: 40318804 DOI: 10.1016/j.jshs.2025.101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 03/17/2025] [Indexed: 05/07/2025]
Abstract
Skeletal muscle health and function are essential determinants of metabolic health, physical performance, and overall quality of life. The quality of skeletal muscle is heavily dependent on the complex mitochondrial reticulum that contributes toward its unique adaptability. It is now recognized that mitochondrial perturbations can activate various innate immune pathways, such as the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome complex by propagating inflammatory signaling in response to damage-associated molecular patterns (DAMPs). The NLRP3 inflammasome is a multimeric protein complex and is a prominent regulator of innate immunity and cell death by mediating the activation of caspase-1, pro-inflammatory cytokines interleukin-1β and interleukin-18 and pro-pyroptotic protein gasdermin-D. While several studies have begun to demonstrate the relationship between various mitochondrial DAMPs (mtDAMPs) and NLRP3 inflammasome activation, the influence of various metabolic states on the production of these DAMPs and subsequent inflammatory profile remains poorly understood. This narrative review aimed to address this by highlighting the effects of skeletal muscle use and disuse on mitochondrial quality mechanisms including mitochondrial biogenesis, fusion, fission and mitophagy. Secondly, this review summarized the impact of alterations in mitochondrial quality control mechanisms following muscle denervation, aging, and exercise training in relation to NLRP3 inflammasome activation. By consolidating the current body of literature, this work aimed to further the understanding of innate immune signaling within skeletal muscle, which can highlight areas for future research and therapeutic strategies to regulate NLRP3 inflammasome activation during divergent metabolic conditions.
Collapse
Affiliation(s)
- Priyanka Khemraj
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto M3J 1P3, Canada
| | - Anastasiya Kuznyetsova
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto M3J 1P3, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto M3J 1P3, Canada.
| |
Collapse
|
2
|
Huang R, Tang X, Liu S, Sun L. Decoding CKD-induced muscle atrophy through the critical role of lncRNA GAS5 and pyroptosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102451. [PMID: 39974290 PMCID: PMC11835621 DOI: 10.1016/j.omtn.2025.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025]
Abstract
Skeletal muscle atrophy is a prevalent complication of chronic kidney disease (CKD) and serves as an indicator of adverse prognosis and poor quality of life; however, the underlying mechanisms remain ambiguous. Emerging evidence has shown that long non-coding RNAs (lncRNAs) are involved in the pathogenesis of skeletal muscle atrophy. Using RNA sequencing (RNA-seq), we discerned elevated GAS5 expression in the muscles of CKD mice and verified these findings by real-time qPCR. Transmission electron microscopy confirmed morphological signs of pyroptosis, a potentially causal cellular death form. Additionally, elevated levels of pyroptosis markers, such as NLRP3, cleaved caspase-1, and GSDMD-N, were observed in CKD mouse models and lipopolysaccharide (LPS)/ATP-stimulated C2C12 myotubes. Intriguingly, the knockdown of GAS5 reduced these markers, alleviating pyroptosis and enhancing myofiber size, both in vitro and in vivo. Furthermore, we pinpointed an interaction between GAS5 and the mitochondrial translation elongation factor (TUFM) through RNA pull-down and mass spectrometry. This interaction amplified NLRP3 activity, contributing to pyroptosis and muscle atrophy. Notably, overexpressing TUFM counterbalanced this effect. Fundamentally, the interaction between GAS5 and TUFM appears to compromise the anti-pyroptosis capacity of TUFM. Consequently, this amplifies the activation of the NLRP3 pathway, which may underpin the crucial mechanism driving pyroptosis-mediated muscle atrophy. Our findings provide new evidence for GAS5's role in regulating cellular pyroptosis in CKD-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Rong Huang
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xinying Tang
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Shuang Liu
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lijing Sun
- Department of Nephrology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
3
|
Cefis M, Marcangeli V, Hammad R, Granet J, Leduc-Gaudet JP, Gaudreau P, Trumpff C, Huang Q, Picard M, Aubertin-Leheudre M, Bélanger M, Robitaille R, Morais JA, Gouspillou G. Impact of physical activity on physical function, mitochondrial energetics, ROS production, and Ca 2+ handling across the adult lifespan in men. Cell Rep Med 2025; 6:101968. [PMID: 39933528 PMCID: PMC11866497 DOI: 10.1016/j.xcrm.2025.101968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/05/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Aging-related muscle atrophy and weakness contribute to loss of mobility, falls, and disability. Mitochondrial dysfunction is widely considered a key contributing mechanism to muscle aging. However, mounting evidence positions physical activity as a confounding factor, making unclear whether muscle mitochondria accumulate bona fide defects with aging. To disentangle aging from physical activity-related mitochondrial adaptations, we functionally profiled skeletal muscle mitochondria in 51 inactive and 88 active men aged 20-93. Physical activity status confers partial protection against age-related decline in physical performance. Mitochondrial respiration remains unaltered in active participants, indicating that aging per se does not alter mitochondrial respiratory capacity. Mitochondrial reactive oxygen species (ROS) production is unaffected by aging and higher in active participants. In contrast, mitochondrial calcium retention capacity decreases with aging regardless of physical activity and correlates with muscle mass, performance, and the stress-responsive metabokine/mitokine growth differentiation factor 15 (GDF15). Targeting mitochondrial calcium handling may hold promise for treating aging-related muscle impairments.
Collapse
Affiliation(s)
- Marina Cefis
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; INSERM UMR1093-CAPS, UFR des Sciences de santé, Université de Bourgogne, Dijon, France
| | - Vincent Marcangeli
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; Département des sciences biologiques, Université du Québec À Montréal, Montreal, QC, Canada
| | - Rami Hammad
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; Département des sciences biologiques, Université du Québec À Montréal, Montreal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada; Al-Ahliyya Amman university, Faculty of educational sciences, Department of physical and health education, Amman, Jordan
| | - Jordan Granet
- Département des sciences biologiques, Université du Québec À Montréal, Montreal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Jean-Philippe Leduc-Gaudet
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, Canada
| | - Pierrette Gaudreau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Département de médecine, Université de Montréal, Montreal, QC, Canada
| | - Caroline Trumpff
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, and Robert N Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Qiuhan Huang
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, and Robert N Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, and Robert N Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Mylène Aubertin-Leheudre
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada
| | - Marc Bélanger
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada
| | - Richard Robitaille
- Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; Département de neurosciences, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Montreal, QC, Canada
| | - José A Morais
- Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Division of Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Gilles Gouspillou
- Département des sciences de l'activité physique, Université du Québec À Montréal, Montreal, QC, Canada; Groupe de recherche en Activité Physique Adaptée, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada; Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
5
|
Wyatt EC, VanDerStad LR, Cook NE, McGovern MR, Zaman T, Lundin PM, Vaughan RA. Valsartan Rescues Suppressed Mitochondrial Metabolism during Insulin Resistance in C2C12 Myotubes. Cell Biochem Funct 2024; 42:e4117. [PMID: 39243192 DOI: 10.1002/cbf.4117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Elevated circulating branched-chain amino acids (BCAA) have been linked with the severity of insulin resistance across numerous populations, implicating heightened BCAA metabolism as a potential therapy for insulin resistance. Recently, the angiotensin II type 1 receptor (AT1R) inhibitor Valsartan (VAL) was identified as a potent inhibitor of branched-chain alpha-keto acid dehydrogenase kinase (BCKDK), a negative regulator of BCAA metabolism. This work investigated the effect of VAL on myotube metabolism and insulin sensitivity under both insulin sensitive and insulin resistant conditions. C2C12 myotubes were treated with or without VAL at 8 µM for 24 h, both with and without hyperinsulinemic-induced insulin resistance. Oxygen consumption and extracellular acidification were used to measure mitochondrial and glycolytic metabolism, respectively. Gene expression was assessed via qRT-PCR, and insulin sensitivity was assessed via Western blot. Insulin resistance significantly reduced both basal and peak mitochondrial function which were rescued to control levels by concurrent VAL. Changes in mitochondrial function occurred without substantial changes in mitochondrial content or related gene expression. Insulin sensitivity and glycolytic metabolism were unaffected by VAL, as was lipogenic signaling and lipid content. Additionally, both VAL and insulin resistance depressed Bckdha expression. Interestingly, an interaction effect was observed for extracellular isoleucine, valine, and total BCAA (but not leucine), suggesting VAL may alter BCAA utilization in an insulin sensitivity-dependent manner. Insulin resistance appears to suppress mitochondrial function in a myotube model which can be rescued by VAL. Further research will be required to explore the implications of these findings in more complex models.
Collapse
Affiliation(s)
- Emily C Wyatt
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Lindsey R VanDerStad
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Norah E Cook
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Macey R McGovern
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| | - Toheed Zaman
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Pamela M Lundin
- Department of Chemistry, High Point University, High Point, North Carolina, USA
| | - Roger A Vaughan
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
| |
Collapse
|
6
|
Vemuri V, Kratholm N, Nagarajan D, Cathey D, Abdelbaset-Ismail A, Tan Y, Straughn A, Cai L, Huang J, Kakar SS. Withaferin A as a Potential Therapeutic Target for the Treatment of Angiotensin II-Induced Cardiac Cachexia. Cells 2024; 13:783. [PMID: 38727319 PMCID: PMC11083229 DOI: 10.3390/cells13090783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
In our previous studies, we showed that the generation of ovarian tumors in NSG mice (immune-compromised) resulted in the induction of muscle and cardiac cachexia, and treatment with withaferin A (WFA; a steroidal lactone) attenuated both muscle and cardiac cachexia. However, our studies could not address if these restorations by WFA were mediated by its anti-tumorigenic properties that might, in turn, reduce the tumor burden or WFA's direct, inherent anti-cachectic properties. To address this important issue, in our present study, we used a cachectic model induced by the continuous infusion of Ang II by implanting osmotic pumps in immunocompetent C57BL/6 mice. The continuous infusion of Ang II resulted in the loss of the normal functions of the left ventricle (LV) (both systolic and diastolic), including a significant reduction in fractional shortening, an increase in heart weight and LV wall thickness, and the development of cardiac hypertrophy. The infusion of Ang II also resulted in the development of cardiac fibrosis, and significant increases in the expression levels of genes (ANP, BNP, and MHCβ) associated with cardiac hypertrophy and the chemical staining of the collagen abundance as an indication of fibrosis. In addition, Ang II caused a significant increase in expression levels of inflammatory cytokines (IL-6, IL-17, MIP-2, and IFNγ), NLRP3 inflammasomes, AT1 receptor, and a decrease in AT2 receptor. Treatment with WFA rescued the LV functions and heart hypertrophy and fibrosis. Our results demonstrated, for the first time, that, while WFA has anti-tumorigenic properties, it also ameliorates the cardiac dysfunction induced by Ang II, suggesting that it could be an anticachectic agent that induces direct effects on cardiac muscles.
Collapse
Affiliation(s)
- Vasa Vemuri
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Nicholas Kratholm
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Darini Nagarajan
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
| | - Dakotah Cathey
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Ahmed Abdelbaset-Ismail
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Yi Tan
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Alex Straughn
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| | - Lu Cai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA;
| | - Jiapeng Huang
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; (D.C.); (Y.T.); (L.C.); (J.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Sham S. Kakar
- Department of Physiology, University of Louisville, Louisville, KY 40202, USA; (V.V.); (N.K.); (D.N.)
- Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA;
| |
Collapse
|
7
|
Slavin MB, Khemraj P, Hood DA. Exercise, mitochondrial dysfunction and inflammasomes in skeletal muscle. Biomed J 2024; 47:100636. [PMID: 37499756 PMCID: PMC10828562 DOI: 10.1016/j.bj.2023.100636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
In the broad field of inflammation, skeletal muscle is a tissue that is understudied. Yet it represents about 40% of body mass in non-obese individuals and is therefore of fundamental importance for whole body metabolism and health. This article provides an overview of the unique features of skeletal muscle tissue, as well as its adaptability to exercise. This ability to adapt, particularly with respect to mitochondrial content and function, confers a level of metabolic "protection" against energy consuming events, and adds a measure of quality control that determines the phenotypic response to stress. Thus, we describe the particular role of mitochondria in promoting inflammasome activation in skeletal muscle, contributing to muscle wasting and dysfunction in aging, disuse and metabolic disease. We will then discuss how exercise training can be anti-inflammatory, mitigating the chronic inflammation that is observed in these conditions, potentially through improvements in mitochondrial quality and function.
Collapse
Affiliation(s)
- Mikhaela B Slavin
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada
| | - Priyanka Khemraj
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada
| | - David A Hood
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
8
|
Kim ME, Lee JS. Molecular Foundations of Inflammatory Diseases: Insights into Inflammation and Inflammasomes. Curr Issues Mol Biol 2024; 46:469-484. [PMID: 38248332 PMCID: PMC10813887 DOI: 10.3390/cimb46010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammatory diseases are a global health problem affecting millions of people with a wide range of conditions. These diseases, including inflammatory bowel disease (IBD), rheumatoid arthritis (RA), osteoarthritis (OA), gout, and diabetes, impose a significant burden on patients and healthcare systems. A complicated interaction between genetic variables, environmental stimuli, and dysregulated immune responses shows the complex biological foundation of various diseases. This review focuses on the molecular mechanisms underlying inflammatory diseases, including the function of inflammasomes and inflammation. We investigate the impact of environmental and genetic factors on the progression of inflammatory diseases, explore the connection between inflammation and inflammasome activation, and examine the incidence of various inflammatory diseases in relation to inflammasomes.
Collapse
Affiliation(s)
| | - Jun Sik Lee
- Department of Biological Science, Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
9
|
Zhou T, Wang S, Pan Y, Dong X, Wu L, Meng J, Zhang J, Pang Q, Zhang A. Irisin Ameliorated Skeletal Muscle Atrophy by Inhibiting Fatty Acid Oxidation and Pyroptosis Induced by Palmitic Acid in Chronic Kidney Disease. Kidney Blood Press Res 2023; 48:628-641. [PMID: 37717561 PMCID: PMC10614467 DOI: 10.1159/000533926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Protein-energy waste (PEW) is a common complication in patients with chronic kidney disease (CKD), among which skeletal muscle atrophy is one of the most important clinical features of PEW. Pyroptosis is a type of proinflammatory, programmed cell death associated with skeletal muscle disease. Irisin, as a novel myokine, has attracted extensive attention for its protective role in the complications associated with CKD, but its role in muscle atrophy in CKD is unclear. METHODS Palmitic acid (PA)-induced muscular atrophy was evaluated by a reduction in C2C12 myotube diameter. Muscle atrophy model was established in male C57BL/6J mice treated with 0.2% adenine for 4 weeks and then fed a 45% high-fat diet. Blood urea nitrogen and creatinine levels, body and muscle weight, and muscle histology were assessed. The expression of carnitine palmitoyltransferase 1A (CPT1A) and pyroptosis-related protein was analysed by Western blots or immunohistochemistry. The release of IL-1β was detected by enzyme-linked immunosorbent assay. RESULTS In this study, we showed that PA-induced muscular atrophy manifested as a reduction in C2C12 myotube diameter. During this process, PA can also induce pyroptosis, as shown by the upregulation of NLRP3, cleaved caspase-1 and GSDMD-N expression and the increased IL-1β release and PI-positive cell rate. Inhibition of caspase-1 or NLRP3 attenuated PA-induced pyroptosis and myotube atrophy in C2C12 cells. Importantly, irisin treatment significantly ameliorated PA-induced skeletal muscle pyroptosis and atrophy. In terms of mechanism, PA upregulated CPT1A, a key enzyme of fatty acid oxidation (FAO), and irisin attenuated this effect, which was consistent with etomoxir (CPT1A inhibitor) treatment. Moreover, irisin improved skeletal muscle atrophy and pyroptosis in adenine-induced mice by regulating FAO. CONCLUSION Our study firstly verifies that pyroptosis is a novel mechanism of skeletal muscle atrophy in CKD. Irisin ameliorates skeletal muscle atrophy by inhibiting FAO and pyroptosis in CKD, and irisin may be developed as a potential therapeutic agent for the treatment of muscle wasting in CKD patients.
Collapse
Affiliation(s)
- Ting Zhou
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shiyuan Wang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yajing Pan
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xingtong Dong
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Leiyun Wu
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jiali Meng
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jialing Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qi Pang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Aihua Zhang
- Department of Nephrology, Xuanwu Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Li N, Wang X, Wang Y, Wang P, Sun N, Chen J, Han L, Li Z, Fan H, Gong Y. Delayed step-by-step decompression with DSF alleviates skeletal muscle crush injury by inhibiting NLRP3/CASP-1/GSDMD pathway. Cell Death Discov 2023; 9:280. [PMID: 37528068 PMCID: PMC10394048 DOI: 10.1038/s41420-023-01570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023] Open
Abstract
Crush injury (CI) is a common disease in earthquake and traffic accidents. It refers to long-term compression that induces ischemia and hypoxia injury of skeletal muscle rich parts, leading to rupture of muscle cells and release of contents into the blood circulation. Crush syndrome (CS) is the systemic manifestation of severe, traumatic muscle injury. CI rescue faces a dilemma. Ischemic reperfusion due to decompression is a double-edged sword for the injured. Death often occurs when the injured are glad to be rescued. Programmed cell death (PCD) predominates in muscle CI or ischemia-reperfusion injury. However, the function and mechanism of pyroptosis and apoptosis in the pathogenesis of skeletal muscle injury in CI remain elusive. Here, we identified that pyroptosis and apoptosis occur independently of each other and are regulated differently in the injured mice's skeletal muscle of CI. While in vitro model, we found that glucose-deprived ischemic myoblast cells could occur pyroptosis. However, the cell damage degree was reduced if the oxygen was further deprived. Then, we confirmed that delayed step-by-step decompression of CI mice could significantly reduce skeletal muscle injury by substantially inhibiting NLRP3/Casp-1/GSDMD pyroptosis pathway but not altering the Casp-3/PARP apoptosis pathway. Moreover, pyroptotic inhibitor DSF therapy alone, or the combination of delayed step-by-step decompression and pyroptotic inhibitor therapy, significantly alleviated muscle injury of CI mice. The new physical stress relief and drug intervention method proposed in this study put forward new ideas and directions for rescuing patients with CI, even CS-associated acute kidney injury (CS-AKI).
Collapse
Affiliation(s)
- Ning Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Xinyue Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yuru Wang
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Pengtao Wang
- Department of Intensive Care Unit, Tianjin First Center Hospital, Tianjin, 300192, China
| | - Na Sun
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jiale Chen
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Lu Han
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Zizheng Li
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Yanhua Gong
- Institute of Disaster and Emergency Medicine, Medical College, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China.
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China.
| |
Collapse
|
11
|
Xiao T, Bao J, Tian J, Lin R, Zhang Z, Zhu Y, He Y, Gao D, Sun R, Zhang F, Cheng Y, Shaletanati J, Zhou H, Xie C, Yang C. Flavokawain A suppresses the vasculogenic mimicry of HCC by inhibiting CXCL12 mediated EMT. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154687. [PMID: 36804756 DOI: 10.1016/j.phymed.2023.154687] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/03/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Hepatocellular carcinoma has high ability of vascular invasion and metastasis. Vasculogenic mimicry (VM) is closely related to the metastasis and recurrence of hepatocellular carcinoma (HCC). According to previous research, Chloranthus henryi has anti-tumor effect, but its molecular mechanism in the treatment of HCC has not yet been stated. PURPOSE In our study, we aimed to investigate the effect of the extract of Chloranthus henryi in HCC and its target and molecular mechanism. We hoped to explore potential drugs for HCC treatment. STUDY DESIGN/METHODS In this study, we isolated a chalcone compound from Chloranthus henryi, compound 4, identified as flavokawain A (FKA). We determined the anti-HCC effect of FKA by MTT and identified the target of FKA by molecular docking and CETSA. Hepatoma cells proliferation, migration, invasion, and VM formation were examined using EDU, wound healing, transwell, vasculogenic mimicry, and IF. WB, RT-PCR, and cell transfection were used to explore the mechanism of FKA on hepatoma cells. Tissue section staining is mainly used to demonstrate the effect of FKA on HCC in vivo. RESULTS We confirmed that FKA can directly interact with CXCL12 and HCC proliferation, migration, invasion, and VM formation were all inhibited through reversing the EMT progress in vitro and in vivo through the PI3K/Akt/NF-κB signaling pathway. Additionally, by overexpressing and knocking down CXCL12, we got the same results. CONCLUSION FKA attenuated proliferation, invasion and metastatic and reversed EMT in HCC via PI3K/Akt/HIF-1α/NF-κB/Twist1 pathway by targeting CXCL12. This study proposed that FKA may be a candidate drug and prospective strategy for HCC therapy.
Collapse
Affiliation(s)
- Ting Xiao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Jiali Bao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Jiao Tian
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Rong Lin
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Zihui Zhang
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yuxin Zhu
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Yiming He
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Dandi Gao
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ronghao Sun
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Fubo Zhang
- Organ Transplantation Center, Tianjin First Central Hospital, Tianjin 300192, China
| | - Yexin Cheng
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jiadelati Shaletanati
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Chunfeng Xie
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| |
Collapse
|
12
|
Wang Y, Yang M, Zhang J, Ren J, Liu N, Liu B, Lu L, Yang B. S-Doped carbonized polymer dots inhibit early myocardial fibrosis by regulating mitochondrial function. Biomater Sci 2023; 11:894-907. [PMID: 36524407 DOI: 10.1039/d2bm00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Myocardial fibrosis (MF) is a critical pathological lesion in the progression of various acute and chronic cardiovascular diseases. However, there is still a lack of clinically effective drugs and treatments for MF therapies. Herein, for the first time, we developed fluorescent sulfur-doped carbonized polymer dots (S-CPDs) as new nano-antioxidants to reduce the cardiomyocyte damage caused by reactive oxygen species (ROS) in the early stage of fibrotic lesions. In vitro results suggested that the pre-protection of S-CPDs significantly increased the survival rate of H9c2 cells under severe oxidative stress, inhibited the isoproterenol (ISO)-induced hypertrophy of myocardial cells through improving the content of mitochondria related proteins and adenosine triphosphate (ATP) in cells. Moreover, S-CPD administration could effectively decrease cardiac hypertrophy and promote heart function in MF rat models. The rapid internalization, high biocompatibility and fluorescence imaging potential of S-CPDs revealed their promising application prospects in the diagnoses and treatments of cardiovascular diseases.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Mingxi Yang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China. .,State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| | - Jiayi Zhang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Jingyan Ren
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Laijin Lu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun 130021, P.R. China.
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P.R. China.
| |
Collapse
|
13
|
Gu Y, Hsu ACY, Zuo X, Guo X, Zhou Z, Jiang S, Ouyang Z, Wang F. Chronic exposure to low-level lipopolysaccharide dampens influenza-mediated inflammatory response via A20 and PPAR network. Front Immunol 2023; 14:1119473. [PMID: 36726689 PMCID: PMC9886269 DOI: 10.3389/fimmu.2023.1119473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Influenza A virus (IAV) infection leads to severe inflammation, and while epithelial-driven inflammatory responses occur via activation of NF-κB, the factors that modulate inflammation, particularly the negative regulators are less well-defined. In this study we show that A20 is a crucial molecular switch that dampens IAV-induced inflammatory responses. Chronic exposure to low-dose LPS environment can restrict this excessive inflammation. The mechanisms that this environment provides to suppress inflammation remain elusive. Here, our evidences show that chronic exposure to low-dose LPS suppressed IAV infection or LPS stimulation-induced inflammation in vitro and in vivo. Chronic low-dose LPS environment increases A20 expression, which in turn positively regulates PPAR-α and -γ, thus dampens the NF-κB signaling pathway and NLRP3 inflammasome activation. Knockout of A20 abolished the inhibitory effect on inflammation. Thus, A20 and its induced PPAR-α and -γ play a key role in suppressing excessive inflammatory responses in the chronic low-dose LPS environment.
Collapse
Affiliation(s)
- Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alan Chen-Yu Hsu
- Signature Research Program in Emerging Infectious Diseases, Duke - National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore,School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia,Viruses, Infections/Immunity, Vaccines and Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Xu Zuo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaoping Guo
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengjie Zhou
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shengyu Jiang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhuoer Ouyang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China,*Correspondence: Fang Wang,
| |
Collapse
|
14
|
Hu C, Zhang Y, Bi X, Yao L, Zhou Y, Ding W. Correlation between serum trimethylamine- N-oxide concentration and protein energy wasting in patients on maintenance hemodialysis. Ren Fail 2022; 44:1669-1676. [PMID: 36217682 PMCID: PMC9559320 DOI: 10.1080/0886022x.2022.2131572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives Chronic kidney disease (CKD) is a serious health problem that is associated with several systemic changes, including protein energy wasting (PEW). However, the exact mechanism of PEW in CKD remains unclear. As one of the important intestinal flora metabolites and uremic toxins, trimethylamine-N-oxide (TMAO) is involved in CKD-associated mortality, which might play a role in the development of PEW in CKD patients especially in patients on maintenance hemodialysis (MHD). However, this possibility has not been investigated. Methods PEW was diagnosed in a group of CKD patients on MHD according to the criteria of the International Society of Renal Nutrition and Metabolism. Serum TMAO concentration was assessed by high-performance liquid chromatography and mass spectrometry. The association between TMAO concentration and PEW was assessed using linear regression and logistic analysis after adjustment for confounding factors, including basic characteristics, comorbidities, and laboratory findings. Results The circulating TMAO level was higher in the MHD patients than in control (healthy) individuals (5653.76 ± 2853.51 vs. 254.92 ± 197.88 ng/mL, p < 0.001). Further, after the MHD patients were screened for PEW, those with PEW were found to have significantly higher serum TMAO levels than those without PEW (6760.9 vs. 4016.1 ng/mL, p < 0.001). Further, the serum TMAO concentration exhibited a significant negative correlation with body mass index (BMI) and dietary protein intake. In the logistic regression analysis, after adjustment for confounding factors, the serum TMAO concentration was still significantly correlated with PEW occurrence. Conclusions The circulating TMAO level is significantly correlated with the prevalence of PEW in MHD patients. TMAO might be a potential target in the prevention and treatment of PEW in CKD especially ESRD.
Collapse
Affiliation(s)
- Chun Hu
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yumei Zhang
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao Bi
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lu Yao
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yueling Zhou
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
15
|
Liu Y, Wang D, Li T, Yang F, Li Z, Bai X, Wang Y. The role of NLRP3 inflammasome in inflammation-related skeletal muscle atrophy. Front Immunol 2022; 13:1035709. [PMID: 36405697 PMCID: PMC9668849 DOI: 10.3389/fimmu.2022.1035709] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 04/04/2024] Open
Abstract
Skeletal muscle atrophy is a common complication in survivors of sepsis, which affects the respiratory and motor functions of patients, thus severely impacting their quality of life and long-term survival. Although several advances have been made in investigations on the pathogenetic mechanism of sepsis-induced skeletal muscle atrophy, the underlying mechanisms remain unclear. Findings from recent studies suggest that the nucleotide-binding and oligomerisation domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, a regulator of inflammation, may be crucial in the development of skeletal muscle atrophy. NLRP3 inhibitors contribute to the inhibition of catabolic processes, skeletal muscle atrophy and cachexia-induced inflammation. Here, we review the mechanisms by which NLRP3 mediates these responses and analyse how NLRP3 affects muscle wasting during inflammation.
Collapse
Affiliation(s)
- Yukun Liu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongfang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Yang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanfei Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangjun Bai
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchang Wang
- Trauma Center/Department of Emergency and Traumatic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Skeletal muscle mitochondrial remodeling in heart failure: An update on mechanisms and therapeutic opportunities. Biomed Pharmacother 2022; 155:113833. [DOI: 10.1016/j.biopha.2022.113833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
|
17
|
Taivassalo T, Hepple RT. Integrating Mechanisms of Exacerbated Atrophy and Other Adverse Skeletal Muscle Impact in COPD. Front Physiol 2022; 13:861617. [PMID: 35721564 PMCID: PMC9203961 DOI: 10.3389/fphys.2022.861617] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
The normal decline in skeletal muscle mass that occurs with aging is exacerbated in patients with chronic obstructive pulmonary disease (COPD) and contributes to poor health outcomes, including a greater risk of death. There has been controversy about the causes of this exacerbated muscle atrophy, with considerable debate about the degree to which it reflects the very sedentary nature of COPD patients vs. being precipitated by various aspects of the COPD pathophysiology and its most frequent proximate cause, long-term smoking. Consistent with the latter view, recent evidence suggests that exacerbated aging muscle loss with COPD is likely initiated by decades of smoking-induced stress on the neuromuscular junction that predisposes patients to premature failure of muscle reinnervation capacity, accompanied by various alterations in mitochondrial function. Superimposed upon this are various aspects of COPD pathophysiology, such as hypercapnia, hypoxia, and inflammation, that can also contribute to muscle atrophy. This review will summarize the available knowledge concerning the mechanisms contributing to exacerbated aging muscle affect in COPD, consider the potential role of comorbidities using the specific example of chronic kidney disease, and identify emerging molecular mechanisms of muscle impairment, including mitochondrial permeability transition as a mechanism of muscle atrophy, and chronic activation of the aryl hydrocarbon receptor in driving COPD muscle pathophysiology.
Collapse
Affiliation(s)
- Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
| | - Russell T. Hepple
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States
- Department of Physical Therapy, University of Florida, Gainesville, FL, United States
- *Correspondence: Russell T. Hepple,
| |
Collapse
|
18
|
Videla LA, Marimán A, Ramos B, José Silva M, Del Campo A. Standpoints in mitochondrial dysfunction: Underlying mechanisms in search of therapeutic strategies. Mitochondrion 2022; 63:9-22. [PMID: 34990812 DOI: 10.1016/j.mito.2021.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction has been defined as a reduced efficiency of mitochondria to produce ATP given by a loss of mitochondrial membrane potential, alterations in the electron transport chain (ETC) function, with increase in reactive oxygen species (ROS) generation and decrease in oxygen consumption. During the last decades, mitochondrial dysfunction has been the focus of many researchers as a convergent point for the pathophysiology of several diseases. Numerous investigations have demonstrated that mitochondrial dysfunction is detrimental to cells, tissues and organisms, nevertheless, dysfunctional mitochondria can signal in a particular way in response to stress, a characteristic that may be useful to search for new therapeutic strategies with a common feature. The aim of this review addresses mitochondrial dysfunction and stress signaling as a promising target for future drug development.
Collapse
Affiliation(s)
- Luis A Videla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile.
| | - Andrea Marimán
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Bastián Ramos
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - María José Silva
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
| | - Andrea Del Campo
- Laboratorio de Fisiología y Bioenergética Celular, Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile.
| |
Collapse
|
19
|
Wang H, Kan WJ, Feng Y, Feng L, Yang Y, Chen P, Xu JJ, Si TM, Zhang L, Wang G, Du J. Nuclear receptors modulate inflammasomes in the pathophysiology and treatment of major depressive disorder. World J Psychiatry 2021; 11:1191-1205. [PMID: 35070770 PMCID: PMC8717028 DOI: 10.5498/wjp.v11.i12.1191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/29/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Major depressive disorder (MDD) is highly prevalent and is a significant cause of mortality and morbidity worldwide. Currently, conventional pharmacological treatments for MDD produce temporary remission in < 50% of patients; therefore, there is an urgent need for a wider spectrum of novel antidepressants to target newly discovered underlying disease mechanisms. Accumulated evidence has shown that immune inflammation, particularly inflammasome activity, plays an important role in the pathophysiology of MDD. In this review, we summarize the evidence on nuclear receptors (NRs), such as glucocorticoid receptor, mineralocorticoid receptor, estrogen receptor, aryl hydrocarbon receptor, and peroxisome proliferator-activated receptor, in modulating the inflammasome activity and depression-associated behaviors. This review provides evidence from an endocrine perspective to understand the role of activated NRs in the pathophysiology of MDD, and to provide insight for the discovery of antidepressants with novel mechanisms for this devastating disorder.
Collapse
Affiliation(s)
- Han Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Wei-Jing Kan
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Lei Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Yang Yang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Pei Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing-Jie Xu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Tian-Mei Si
- Department of Clinical Psychopharmacology, Peking University Institute of Mental Health, Beijing 100191, Beijing Province, China
| | - Ling Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
| | - Jing Du
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing 100088, Beijing Province, China
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, Yunnan Province, China
| |
Collapse
|
20
|
Li T, Huang HY, Wang H, Gao CC, Liang H, Deng CL, Zhao X, Han YL, Zhou ML. Restoration of Brain Angiotensin-Converting Enzyme 2 Alleviates Neurological Deficits after Severe Traumatic Brain Injury via Mitigation of Pyroptosis and Apoptosis. J Neurotrauma 2021; 39:423-434. [PMID: 34861788 DOI: 10.1089/neu.2021.0382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clinically, the renin-angiotensin-aldosterone system is intensely activated in moderate to severe traumatic brain injury (TBI) patients. Increased angiotensin II in circulatory blood after TBI can enter the brain through the disrupted blood-brain barrier. Angiotensin-converting enzyme 2 (ACE2) is an enzyme that metabolizes angiotensin II into angiotensin (1-7), which has been shown to have neuroprotective results. However, the expression and role of ACE2 in the brain after TBI remains elusive. We found that ACE2 protein abundance was downregulated around the contusional area in the brains of both humans and mice. Endogenous ACE2 was expressed in neurons, astrocytes, and microglia in the cortex of the mouse brain. Administration of recombinant human ACE2 intracerebroventricularly alleviated neurological defects after TBI in mice. Treatment of recombinant human ACE2 suppressed TBI-induced increase of angiotensin II and the decrease of angiotensin (1-7) in the brain, mitigated neural cell death, reduced the activation of NLRP3 and Caspase3, decreased phosphorylation of mitogen-activated protein kinases, and nuclear factor kappa B, and reduced inflammatory cytokines TNF-α and IL-1β. Administration of ACE2 enzyme activator diminazene aceturate intraperitoneally rescued downregulation of ACE2 enzymatic activity and protein abundance in the brain. Diminazene aceturate treatment once per day in the acute stage after TBI alleviated long-term cognitive defects and neuronal loss in mice. Collectively, these results indicated that restoration of ACE2 alleviated neurological deficits after TBI by mitigation of pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Tao Li
- Nanjing Medical University, 12461, Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine,, Nanjing, Jiangsu, China;
| | - Han-Yu Huang
- Nanjing Medical University, 12461, Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine,, Nanjing, Jiangsu, China;
| | - Handong Wang
- Nanjing Medical University, 12461, neurosurgery of jinling hospital, Nanjing, Jiangsu, China;
| | - Chao-Chao Gao
- Nanjing Medical University, 12461, Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine,, Nanjing, Jiangsu, China;
| | - Hui Liang
- Nanjing University, 12581, Department of Neurosurgery, Jinling Hospital, Nanjing, Jiangsu, China;
| | - Chu-Lei Deng
- Nanjing Jinling Hospital, 144990, Department of Neurosurgery, Nanjing, Jiangsu, China;
| | - Xin Zhao
- Nanjing University, 12581, Department of Neurosurgery, Jinling Hospital, Nanjing, Jiangsu, China;
| | - Yan-Lin Han
- Nanjing University, 12581, Department of Neurosurgery, Jinling Hospital, Nanjing, Jiangsu, China;
| | - Meng-Liang Zhou
- Nanjing University, 12581, Department of Neurosurgery, Jinling Hospital, Nanjing, Jiangsu, China;
| |
Collapse
|
21
|
Cheng C, Xue F, Sui W, Meng L, Xie L, Zhang C, Yang J, Zhang Y. Deletion of natriuretic peptide receptor C alleviates adipose tissue inflammation in hypercholesterolemic Apolipoprotein E knockout mice. J Cell Mol Med 2021; 25:9837-9850. [PMID: 34528389 PMCID: PMC8505842 DOI: 10.1111/jcmm.16931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 12/16/2022] Open
Abstract
The inflammation of adipose tissue is one of the most common secondary pathological changes in atherosclerosis, which in turn influences the process of atherosclerosis. Natriuretic peptides have been revealed important effect in regulating adipose metabolism. However, the relationship between natriuretic peptide receptor C and inflammation of adipose tissue in atherosclerosis remains unknown. This study aims to explore the effect natriuretic peptide receptor C exerts on the regulation of the adipose inflammation in atherosclerotic mice induced by western-type diet and its overlying mechanisms. To clarify the importance of NPRC of adipose inflammation in atherosclerotic mice, NPRC expression was measured in mice fed with chow diet and western-type diet for 12 weeks and we found a considerable increase in adipose tissue of atherosclerotic mice. Global NPRC knockout in mice was bred onto ApoE-/- mice to generate NPRC-/- ApoE-/- mice, which displayed remarked increase in browning of white adipose tissue and lipolysis of adipose tissue and decrease in adipose inflammation manifested by decreased macrophage invasion to form less CLS (crown-like structure), reduced oxidative stress and alleviated expression of TNFα, IL-6, IL-1β and MCP1, but increased expression of adiponectin in adipose tissue. Moreover, our study showed that white adipose tissue browning in NPRC-/- ApoE-/- atherosclerotic mice was associated with decreased inflammatory response through cAMP/PKA signalling activation. These results identify NPRC as a novel regulator for adipose inflammation in atherosclerotic mice by modulating white adipose tissue browning.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Fei Xue
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Wenhai Sui
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Linlin Meng
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Lin Xie
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Cheng Zhang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Jianmin Yang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Yun Zhang
- Department of CardiologyThe Key Laboratory of Cardiovascular Remodeling and Function ResearchChinese Ministry of EducationChinese National Health Commission and Chinese Academy of Medical SciencesThe State and Shandong Province Joint Key Laboratory of Translational Cardiovascular MedicineQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| |
Collapse
|
22
|
Zhang W, Wang W, Xu M, Xie H, Pu Z. GPR43 regulation of mitochondrial damage to alleviate inflammatory reaction in sepsis. Aging (Albany NY) 2021; 13:22588-22610. [PMID: 34584017 PMCID: PMC8507289 DOI: 10.18632/aging.203572] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 12/14/2022]
Abstract
Sepsis is a common critical illness in ICU and always a great difficulty in clinical treatment. GPR43 (G protein-coupled receptor 43) participates in regulating appetite and gastrointestinal peptide secretion to modulate fat decomposition and formation. However, the biological contribution of GPR43 on inflammation of sepsis has not been previously investigated. We investigated the mechanisms of GPR43 gene, which plays a possible role in distinguishing sepsis and contributes to the pathogenesis of sepsis-induced inflammatory reaction. Furthermore, we performed studies with mice induced to sepsis by Cecal Ligation and Puncture (CLP), Knockout GPR43 (GPR43-/-) mice, and Wild Type (WT) mice induced with CLP. In addition, lung tissues and cell samples were analyzed by histology, Quantitative Polymerase Chain Reaction (Q-PCR), Enzyme-linked Immunosorbent (ELISA) Assay, and western blot. GPR43 agonist could significantly reduce inflammation reactions and trigger lung injury in mice with sepsis. As for GPR43-/- mice, the risks of sepsis-induced inflammatory reactions and corresponding lung injury were promoted. On the one hand, the up-regulation of GPR43 gene reduced ROS mitochondrial damage to inhibit inflammatory reactions via the inactivation of NLRP3 Inflammasome by PPARγ/ Nox1/EBP50/ p47phox signal channel. On the other hand, the down-regulation of GPR43 promoted inflammatory reactions in vitro model through the acceleration of ROS-dependently mitochondrial damage by PPARγ/ Nox1/EBP50/ p47phox/ NLRP3 signal channel. These findings indicate that the inhibition of GPR43 as a possible important factor of sepsis may shed lights on the mechanism of sepsis-induced inflammation reaction.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Pharmacy, Second Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Wusan Wang
- Department of Pharmacology, College of Pharmacy, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Maodi Xu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Haitang Xie
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| | - Zhichen Pu
- Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, Wuhu 241001, Anhui, China.,State Key Laboratory of Natural Medicines, Key Lab of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
23
|
Chen X, Zhang D, Li Y, Wang W, Bei W, Guo J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol Res 2021; 173:105885. [PMID: 34536551 DOI: 10.1016/j.phrs.2021.105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and atherosclerosis have gradually garnered great attention as inflammatory diseases. Previously, the fact that Interleukin-1β (IL-1β) accelerates the development of type 2 diabetes and atherosclerosis has been proved in animal experiments and clinical trials. However, the continued studies found that the effect of IL-1β on type 2 diabetes and atherosclerosis is much more complicated than the negative impact. Nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome, whose activation and assembly significantly affect the release of IL-1β, is a crucial effector activated by a variety of metabolites. The diversity of NLRP3 activation mode is one of the fundamental reasons for the intricate effects on the progression of type 2 diabetes and atherosclerosis, providing many new insights for us to intervene in metabolic diseases. This review focuses on how NLRP3 inflammasome affects the progression of type 2 diabetes and atherosclerosis and what opportunities and challenges it can bring us.
Collapse
Affiliation(s)
- Xu Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Dongxing Zhang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yuping Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weixuan Wang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weijian Bei
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
24
|
Wang L, Jiao XF, Wu C, Li XQ, Sun HX, Shen XY, Zhang KZ, Zhao C, Liu L, Wang M, Bu YL, Li JW, Xu F, Chang CL, Lu X, Gao W. Trimetazidine attenuates dexamethasone-induced muscle atrophy via inhibiting NLRP3/GSDMD pathway-mediated pyroptosis. Cell Death Discov 2021; 7:251. [PMID: 34537816 PMCID: PMC8449784 DOI: 10.1038/s41420-021-00648-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle atrophy is one of the major side effects of high dose or sustained usage of glucocorticoids. Pyroptosis is a novel form of pro-inflammatory programmed cell death that may contribute to skeletal muscle injury. Trimetazidine, a well-known anti-anginal agent, can improve skeletal muscle performance both in humans and mice. We here showed that dexamethasone-induced atrophy, as evidenced by the increase of muscle atrophy F-box (Atrogin-1) and muscle ring finger 1 (MuRF1) expression, and the decrease of myotube diameter in C2C12 myotubes. Dexamethasone also induced pyroptosis, indicated by upregulated pyroptosis-related protein NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and gasdermin-D (GSDMD). Knockdown of NLRP3 or GSDMD attenuated dexamethasone-induced myotube pyroptosis and atrophy. Trimetazidine treatment ameliorated dexamethasone-induced muscle pyroptosis and atrophy both in vivo and in vitro. Activation of NLRP3 using LPS and ATP not only increased the cleavage and activation of Caspase-1 and GSDMD, but also increased the expression levels of atrophy markers MuRF1 and Atrogin-1 in trimetazidine-treated C2C12 myotubes. Mechanically, dexamethasone inhibited the phosphorylation of PI3K/AKT/FoxO3a, which could be attenuated by trimetazidine. Conversely, co-treatment with a PI3K/AKT inhibitor, picropodophyllin, remarkably increased the expression of NLRP3 and reversed the protective effects of trimetazidine against dexamethasone-induced C2C12 myotube pyroptosis and atrophy. Taken together, our study suggests that NLRP3/GSDMD-mediated pyroptosis might be a novel mechanism for dexamethasone-induced skeletal muscle atrophy. Trimetazidine might be developed as a potential therapeutic agent for the treatment of dexamethasone-induced muscle atrophy.
Collapse
Affiliation(s)
- Li Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Xin-Feng Jiao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China
| | - Cheng Wu
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Qing Li
- Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui-Xian Sun
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Yu Shen
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kang-Zhen Zhang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Can Zhao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Li Liu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Man Wang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun-Ling Bu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-Wen Li
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Lu Chang
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiang Lu
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wei Gao
- Department of Geriatrics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China. .,Department of Geriatrics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Soliman AM, Sim RH, Das S, Mahakkanukrauh P. Therapeutic Targeting of Inflammatory Pathways with Emphasis on NLRP3 Inflammasomes by Natural Products: A Novel Approach for the Treatment of Inflammatory Eye Diseases. Curr Med Chem 2021; 29:2891-2912. [PMID: 34514977 DOI: 10.2174/0929867328666210910154330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
There is an increase in the incidence of inflammatory eye diseases worldwide. Several dysregulated inflammatory pathways, including the NOD-like receptor protein 3 (NLRP3) inflammasome, have been reported to contribute significantly to the pathogenesis and progression of ophthalmic diseases. Although the available allopathic/conventional medicine has demonstrated effectiveness in managing eye diseases, there is an ongoing global demand for alternative therapeutics with minimal adverse drug reactions, easy availability, increase in patient-compliance, and better disease outcome. Therefore, several studies are investigating the utilization of natural products and herbal formulations in impeding inflammatory pathways, including the NLRP3 inflammasome, in order to prevent or manage eye diseases. In the present review, we highlight the recently reported inflammatory pathways with special emphasis on NLRP3 Inflammasomes involved in the development of eye diseases. Furthermore, we present a variety of natural products and phytochemicals that were reported to interfere with these pathways and their underlying mechanisms of action. These natural products represent potential therapeutic applications for the treatment of several inflammatory eye diseases.
Collapse
Affiliation(s)
- Amro M Soliman
- Department of Biological Sciences-Physiology, Cell and Developmental Biology, University of Alberta, Edmonton, AB T6G 2R3. Canada
| | - Ru Hui Sim
- Tanglin Health Clinic, 50480 Kuala Lumpu. Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat. Oman
| | - Pasuk Mahakkanukrauh
- Department of Anatomy & Excellence Center of Osteology Research and Training, Cadaveric Surgical and Training Center, Chiang Mai University. Thailand
| |
Collapse
|
26
|
Liu J, Yan X, Wang Z, Zhang N, Lin A, Li Z. Adipocyte factor CTRP6 inhibits homocysteine-induced proliferation, migration, and dedifferentiation of vascular smooth muscle cells through PPARγ/NLRP3. Biochem Cell Biol 2021; 99:596-605. [PMID: 34469206 DOI: 10.1139/bcb-2020-0670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NLRP3 and PPARγ play important roles in the development of atherosclerosis (AS). Studies have shown that PPARγ regulates the expression of NLRP3 in vascular diseases. In addition, the adipocyte factor CTRP6 can improve the activation of PPARγ in vascular diseases. However, the regulatory relationship between CTRP6, PPARγ, and NLRP3 in AS and its underlying mechanism have not been reported. Since proliferation, migration, and dedifferentiation of vascular smooth muscle cells (VSMCs) are key events in AS, in this study, we induced proliferation, migration, and dedifferentiation of VSCMs through homocysteine (HCY) to detect the specific effects of CTRP6, PPARγ, and NLRP3. Subsequently, CTRP6 was overexpressed and the PPARγ inhibitor GW9662 and agonist rosiglitazone were administered to HCY-induced VSCMs to investigate the mechanisms. The results show that the expression of CTRP6 decreased in HCY-induced VSMCs. In addition, CTRP6 overexpression inhibited the proliferation and migration of HCY-induced VSMCs, as well as cell cycle acceleration and dedifferentiation. Overexpression of CTRP6 increased HCY-induced PPARγ expression and inhibited NLRP3 expression. The addition of GW9662 and rosiglitazone further demonstrated that overexpression of CTRP6 inhibited HCY-induced VSMC proliferation, migration, and dedifferentiation through PPARγ/NLRP3 signaling. In conclusion, CTRP6 inhibited HCY-induced proliferation, migration, and dedifferentiation of VSMCs through PPARγ/NLRP3.
Collapse
Affiliation(s)
- JiLi Liu
- Department of Geriatrics, The First Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - XiaoNing Yan
- The Fourth Clinical College, Shanxi Hospital of Integrated Traditional and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, China
| | - ZhaoLin Wang
- Department of Traditional Chinese Medicine, The Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Na Zhang
- Department of Hematology, Shanxi Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi 030012, China
| | - AnHua Lin
- Department of Endocrinology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi 330006, China
| | - ZhiQiang Li
- Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| |
Collapse
|
27
|
PPAR Gamma and Viral Infections of the Brain. Int J Mol Sci 2021; 22:ijms22168876. [PMID: 34445581 PMCID: PMC8396218 DOI: 10.3390/ijms22168876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.
Collapse
|
28
|
Development of mode of action networks related to the potential role of PPARγ in respiratory diseases. Pharmacol Res 2021; 172:105821. [PMID: 34403731 DOI: 10.1016/j.phrs.2021.105821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/30/2022]
Abstract
The peroxisome proliferator-activated receptor γ (PPARγ) is a key transcription factor, operating at the intercept of metabolic control and immunomodulation. It is ubiquitously expressed in multiple tissues and organs, including lungs. There is a growing body of information supporting the role of PPARγ signalling in respiratory diseases. The aim of the present study was to develop mode of action (MoA) networks reflecting the relationships between PPARγ signalling and the progression/alleviation of a spectrum of lung pathologies. Data mining was performed using the resources of the NIH PubMed and PubChem information systems. By linking available data on pathological/therapeutic effects of PPARγ modulation, knowledge-based MoA networking at different levels of biological organization (molecular, cellular, tissue, organ, and system) was performed. Multiple MoA networks were developed to relate PPARγ modulation to the progress or the alleviation of pulmonary disorders, triggered by diverse pathogenic, genetic, chemical, or mechanical factors. Pharmacological targeting of PPARγ signalling was discussed with regard to ligand- and cell type-specific effects in the context of distinct disease inductor- and disease stage-dependent patterns. The proposed MoA networking analysis allows for a better understanding of the potential role of PPARγ modulation in lung pathologies. It presents a mechanistically justified basis for further computational, experimental, and clinical monitoring studies on the dynamic control of PPARγ signalling in respiratory diseases.
Collapse
|
29
|
Leduc-Gaudet JP, Hussain SNA, Barreiro E, Gouspillou G. Mitochondrial Dynamics and Mitophagy in Skeletal Muscle Health and Aging. Int J Mol Sci 2021; 22:ijms22158179. [PMID: 34360946 PMCID: PMC8348122 DOI: 10.3390/ijms22158179] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 01/18/2023] Open
Abstract
The maintenance of mitochondrial integrity is critical for muscle health. Mitochondria, indeed, play vital roles in a wide range of cellular processes, including energy supply, Ca2+ homeostasis, retrograde signaling, cell death, and many others. All mitochondria-containing cells, including skeletal muscle cells, dispose of several pathways to maintain mitochondrial health, including mitochondrial biogenesis, mitochondrial-derived vesicles, mitochondrial dynamics (fusion and fission process shaping mitochondrial morphology), and mitophagy—the process in charge of the removal of mitochondria though autophagy. The loss of skeletal muscle mass (atrophy) is a major health problem worldwide, especially in older people. Currently, there is no treatment to counteract the progressive decline in skeletal muscle mass and strength that occurs with aging, a process termed sarcopenia. There is increasing data, including our own, suggesting that accumulation of dysfunctional mitochondria contributes to the development of sarcopenia. Impairments in mitochondrial dynamics and mitophagy were recently proposed to contribute to sarcopenia. This review summarizes the current state of knowledge on the role played by mitochondrial dynamics and mitophagy in skeletal muscle health and in the development of sarcopenia. We also highlight recent studies showing that enhancing mitophagy in skeletal muscle is a promising therapeutic target to prevent or even treat skeletal muscle dysfunction in the elderly.
Collapse
Affiliation(s)
- Jean-Philippe Leduc-Gaudet
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Correspondence: ; Tel.: +1-514-476-6688
| | - Sabah N. A. Hussain
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Esther Barreiro
- Pulmonology Department-Muscle Wasting & Cachexia in Chronic Respiratory Diseases & Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain;
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Biomedical Research Park (PRBB), C/Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Gilles Gouspillou
- Research Institute of the McGill University Health Centre, Department of Critical Care, Montréal, QC H4A 3J1, Canada; (S.N.A.H.); (G.G.)
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
- Département des Sciences de l’activité Physique, Faculté des Sciences, UQAM, Montréal, QC H2X 1Y4, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC H3W 1W5, Canada
| |
Collapse
|
30
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
31
|
Garg S, Khan SI, Malhotra RK, Sharma MK, Kumar M, Kaur P, Nag TC, Ray R, Bhatia J, Arya DS. Cardioprotective effects of azilsartan compared with that of telmisartan on an in vivo model of myocardial ischemia-reperfusion injury. J Biochem Mol Toxicol 2021; 35:e22785. [PMID: 33860986 DOI: 10.1002/jbt.22785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Azilsartan is found to be more potent than other angiotensin receptor blockers in reducing blood pressure. However, its effect on the heart following myocardial infarction remains to be established. For the first time, we investigated the peroxisome proliferator-activated receptor-γ (PPAR-γ) agonistic and cardioprotective properties of azilsartan. Computational modeling studies of interactions between azilsartan and PPAR-γ revealed azilsartan as an agonist of PPAR-γ and showed the mechanism of azilsartan in cardioprotection. Our study compared the cardioprotective potential of telmisartan to that of azilsartan in a murine model of myocardial ischemia-reperfusion injury by comparing their antioxidant, ant apoptotic, anti-inflammatory, mitogen-activated protein kinase (MAPK)-modulating ability, and PPAR-γ agonistic activity. Male Wistar rats were grouped into four to receive vehicle (dimethyl sulfoxide [0.05%] 2 ml/kg) telmisartan (10 mg/kg p.o.), azilsartan (10 mg/kg p.o.) or azilsartan with specific PPAR-γ blocker, GW 9662 for 28 days. Ischemia was induced for 45 min on the 29th day followed by 60 min of reperfusion. Telmisartan and azilsartan pretreatment significantly nearly normalized cardiac parameters and preserved structural changes. Both drugs inhibited oxidative burst, inflammation, as well as cell death by modulating apoptotic protein expression along with reduction in 4',6-diamidino-2-phenylindole/terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. An increment in pro-survival kinase ERK paralleled with a reduction in p38 and JNK was also revealed by MAPK pathway studies, after administration of these drugs. Interestingly, the aforementioned changes induced by both drugs were reversed by administration of the specific PPAR-γ antagonist, GW9662. However, we found that azilsartan upregulated PPAR-γ to a lesser extent as compared to telmisartan and the latter may be preferred in hypertensive patients at risk of myocardial infarction.
Collapse
Affiliation(s)
- Shanky Garg
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Sana Irfan Khan
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Rajiv Kumar Malhotra
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Kumar Sharma
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Manoj Kumar
- Department of Biosphysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biosphysics, All India Institute of Medical Sciences, New Delhi, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Ruma Ray
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Jagriti Bhatia
- Department of Pharmacology, Cardiovascular Research Laboratory, All India Institute of Medical Sciences, New Delhi, India
| | - Dharamvir Singh Arya
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
32
|
Ausoni S, Calamelli S, Saccà S, Azzarello G. How progressive cancer endangers the heart: an intriguing and underestimated problem. Cancer Metastasis Rev 2021; 39:535-552. [PMID: 32152913 DOI: 10.1007/s10555-020-09869-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since it came into being as a discipline, cardio-oncology has focused on the prevention and treatment of cardiotoxicity induced by antitumor chemotherapy and radiotherapy. Over time, it has been proved that even more detrimental is the direct effect generated by cancer cells that release pro-cachectic factors in the bloodstream. Secreted molecules target different organs at a distance, including the heart. Inflammatory and neuronal modulators released by the tumor bulk, either as free molecules or through exosomes, contribute to the pathogenesis of cardiac disease. Progressive cancer causes cachexia and severe cardiac muscle wasting accompanied by cardiomyocyte atrophy, tissue fibrosis, and several functional impairments up to heart failure. The molecular mechanisms responsible for such a cardiac muscle wasting have been partially elucidated in animal models, but minimally investigated in humans, although severe cardiac dysfunction exacerbates global cachexia and hampers efficient anti-cancer treatments. This review provides an overview of cancer-induced structural cardiac and functional damage, drawing on both clinical and scientific research. We start by looking at the pathophysiological mechanisms and evolving epidemiology and go on to discuss prevention, diagnosis, and a multimodal policy of intervention aimed at providing overall prognosis and global care for patients. Despite much interest in the cardiotoxicity of cancer therapies, the direct tumor effect on the heart remains poorly explored. There is still a lack of diagnostic criteria for the identification of the early stages of cardiac disease in cancer patients, while the possibilities that there are for effective prevention are largely underestimated. Research on innovative therapies has claimed considerable advances in preclinical studies, but none of the molecular targets suitable for clinical application has been approved for therapy. These issues are critically discussed here.
Collapse
Affiliation(s)
- Simonetta Ausoni
- Department of Biomedical Sciences, University of Padua, Padova, Italy.
| | - Sara Calamelli
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Salvatore Saccà
- Department of Cardiology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy
| | - Giuseppe Azzarello
- Department of Medical Oncology, Local Health Unit 3 Serenissima, Mirano Hospital, Mirano, Venice, Italy.
| |
Collapse
|
33
|
NLRP3 Inflammasome and Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4063562. [PMID: 32148650 PMCID: PMC7049400 DOI: 10.1155/2020/4063562] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 02/06/2023]
Abstract
Almost all human diseases are strongly associated with inflammation, and a deep understanding of the exact mechanism is helpful for treatment. The NLRP3 inflammasome composed of the NLRP3 protein, procaspase-1, and ASC plays a vital role in regulating inflammation. In this review, NLRP3 regulation and activation, its proinflammatory role in inflammatory diseases, interactions with autophagy, and targeted therapeutic approaches in inflammatory diseases will be summarized.
Collapse
|