1
|
Boulaki V, Efthimiopoulos S, Moschonas NK, Spyrou GΜ. Exploring potential key genes and disease mechanisms in early-onset genetic epilepsy via integrated bioinformatics analysis. Neurobiol Dis 2025; 210:106888. [PMID: 40180227 DOI: 10.1016/j.nbd.2025.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/22/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Epilepsy is a severe common neurological disease affecting all ages. Epilepsy with onset before the age of 5 years, designated early-onset epilepsy (EOE), is of special importance. According to previous studies, genetic factors contribute significantly to the pathogenesis of EOE that remains unclear and must be explored. So, a list of 229 well-selected EOE-associated genes expressed in the brain was created for the investigation of genetic factors and molecular mechanisms involved in its pathogenesis. Enrichment analysis showed that among significant pathways were nicotine addiction, GABAergic synapse, synaptic vesicle cycle, regulation of membrane potential, cholinergic synapse, dopaminergic synapse, and morphine addiction. Performing an integrated analysis as well as protein-protein interaction network-based approaches with the use of GO, KEGG, ClueGO, cytoHubba and 3 network metrics, 12 hub genes were identified, seven of which, CDKL5, GABRA1, KCNQ2, KCNQ3, SCN1A, SCN8A and STXBP1, were identified as key genes (via Venn diagram analysis). These key genes are mostly enriched in SNARE interactions in vesicular transport, regulation of membrane potential and synaptic vesicle exocytosis. Clustering analysis of the PPI network via MCODE showed significant functional modules, indicating also other pathways such as N-Glycan biosynthesis and protein N-linked glycosylation, retrograde endocannabinoid signaling, mTOR signaling and aminoacyl-tRNA biosynthesis. Drug-gene interaction analysis identified a number of drugs as potential medications for EOE, among which the non-FDA approved drugs azetukalner (under clinical development), indiplon and ICA-105665 and the FDA approved drugs retigabine, ganaxolone and methohexital.
Collapse
Affiliation(s)
- Vasiliki Boulaki
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Spiros Efthimiopoulos
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia 15784, Greece
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras 26500, Greece; Metabolic Engineering &Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas (FORTH/ICE-HT), Patras, Greece
| | - George Μ Spyrou
- Bioinformatics Department, The Cyprus Institute of Neurology & Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
| |
Collapse
|
2
|
Lin Z, Wang W, Liu R, Li Q, Lee J, Hirschler C, Liu J. Cyborg organoids integrated with stretchable nanoelectronics can be functionally mapped during development. Nat Protoc 2025:10.1038/s41596-025-01147-7. [PMID: 40140634 DOI: 10.1038/s41596-025-01147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/31/2024] [Indexed: 03/28/2025]
Abstract
Organoids are in vitro miniaturized cellular models of organs that offer opportunities for studying organ development, disease mechanisms and drug screening. Understanding the complex processes governing organoid development and function requires methods suitable for the continuous, long-term monitoring of cell activities (for example, electrophysiological and mechanical activity) at single-cell resolution throughout the entire three-dimensional (3D) structure. Cyborg organoid technology addresses this need by seamlessly integrating stretchable mesh nanoelectronics with tissue-like properties, such as tissue-level flexibility, subcellular feature size and mesh-like networks, into 3D organoids through a 2D-to-3D tissue reconfiguration process during organogenesis. This approach enables longitudinal, tissue-wide, single-cell functional mapping, thereby overcoming the limitations of existing techniques including recording duration, spatial coverage, and the ability to maintain stable contact with the tissue during organoid development. This protocol describes the fabrication and characterization of stretchable mesh nanoelectronics, their electrical performance, their integration with organoids and the acquisition of long-term functional organoid activity requiring multimodal data analysis techniques. Cyborg organoid technology represents a transformative tool for investigating organoid development and function, with potential for improving in vitro disease models, drug screening and personalized medicine. The procedure is suitable for users within a multidisciplinary team with expertise in stem cell biology, tissue engineering, nanoelectronics fabrication, electrophysiology and data science.
Collapse
Affiliation(s)
- Zuwan Lin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wenbo Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Qiang Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jaeyong Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Charles Hirschler
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
3
|
Scott RC, Hsieh J, McTague A, Mahoney JM, Christian-Hinman CA. Merritt-Putnam Symposium | Developmental and Epileptic Encephalopathies-Current Concepts and Novel Approaches. Epilepsy Curr 2025:15357597251320142. [PMID: 40161506 PMCID: PMC11948268 DOI: 10.1177/15357597251320142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are among the most severe and difficult to treat epilepsies. Two broad strategies for understanding the etiology and impacts of DEEs include genetic and complex adaptive systems approaches. This review, inspired by the 2024 Merritt-Putnam Symposium, describes current perspectives of DEE, identifies limitations of current views, and discusses potential novel ways forward. First, we discuss the rationale for a reevaluation of the role of seizures in the pathogenesis of cognitive and behavioral impairments in DEE. Second, we discuss newly emerging methods employing neural organoids to study brain development and DEE in vitro. Third, we present recent precision therapy approaches for the clinical treatment of DEE. Lastly, we discuss computational systems approaches to understanding the genetic landscape of DEE. The severe and multifaceted impacts of DEE and associated comorbidities underscore the necessity of novel interdisciplinary approaches to produce an improved understanding of etiology and more effective treatment strategies.
Collapse
Affiliation(s)
- Rodney C. Scott
- Division of Neuroscience, Nemours Children's Hospital-Delaware, Wilmington, Delaware, USA
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Jenny Hsieh
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Amy McTague
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | | | | |
Collapse
|
4
|
Chen Y, Nie Q, Song T, Zou X, Li Q, Zhang P. Integrated Proteomics and Lipidomics Analysis of Hippocampus to Reveal the Metabolic Landscape of Epilepsy. ACS OMEGA 2025; 10:9351-9367. [PMID: 40092809 PMCID: PMC11904687 DOI: 10.1021/acsomega.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025]
Abstract
Epilepsy encompasses a spectrum of chronic brain disorders characterized by transient central nervous system dysfunctions induced by recurrent, aberrant, synchronized neuronal discharges. Hippocampal sclerosis (HS) is identified as the predominant pathological alteration in epilepsy, particularly in temporal lobe epilepsy. This study investigates the metabolic profiles of epileptic hippocampal tissues using proteomics and lipidomics techniques. An epilepsy model was established in Sprague-Dawley (SD) rats via intraperitoneal injection of pentylenetetrazole (PTZ), with hippocampal tissue samples subsequently extracted for histopathological examination. Proteomics analysis was conducted using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS), while lipidomics analysis employed ultrahigh-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC Q-TOF/MS). Proteomic analysis identified 144 proteins with significant differential expression in acute epileptic hippocampal tissue and 83 proteins in chronic epileptic hippocampal tissue. Key proteins, including neurofilament heavy (Nefh), vimentin (Vim), gelsolin (Gsn), NAD-dependent protein deacetylase (Sirt2), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (Cnp), myocyte enhancer factor 2D (Mef2d), and Cathepsin D (Ctsd), were pivotal in epileptic hippocampal tissue injury and validated through parallel reaction monitoring (PRM). Concurrently, lipid metabolomics analysis identified 32 metabolites with significant differential expression in acute epileptic hippocampal tissue and 61 metabolites in chronic epileptic hippocampal tissue. Bioinformatics analysis indicated that glycerophospholipid (GP) metabolism, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and glycerolipid (GL) metabolism were crucial in epileptic hippocampal tissue injury. Integrated proteomics and lipidomics analysis revealed key protein-lipid interactions in acute and chronic epilepsy and identified critical pathways such as sphingolipid signaling, autophagy, and calcium signaling. These findings provide deeper insights into the pathophysiological mechanisms of epileptic hippocampal tissue damage, potentially unveiling novel therapeutic avenues for clinicians.
Collapse
Affiliation(s)
- Yinyu Chen
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qianyun Nie
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
- Department
of Pathology, School of Basic Medicine and Life Sciences, Hainan Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199 Hainan, China
| | - Tao Song
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Xing Zou
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Qifu Li
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| | - Peng Zhang
- Key
Laboratory of Tropical Translational Medicine of Ministry of Education
& the First Affiliated Hospital, Hainan
Medical University, Xueyuan Road 3#, Longhuaqu, Haikou 571199, Hainan, China
| |
Collapse
|
5
|
Song X, Xia Z, Martinez D, Xu B, Spritzer Z, Zhang Y, Nugent E, Ho Y, Terzic B, Zhou Z. Independent genetic strategies define the scope and limits of CDKL5 deficiency disorder reversal. Cell Rep Med 2025; 6:101926. [PMID: 39855191 PMCID: PMC11866500 DOI: 10.1016/j.xcrm.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/18/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. The early onset of CDD suggests that CDKL5 is essential during development, but post-developmental re-expression rescues multiple CDD-related phenotypes in hemizygous male mice. Since most patients are heterozygous females, studies in clinically relevant female models are essential. Here, we systematically compare phenotype reversal across age and sex using two independent mouse models of CDD. We find that early re-activation of endogenous Cdkl5 in heterozygous females reverses most phenotypes, except working memory. Later re-expression improves several traits but has limited effects on cognitive function. Seizure prevention is more effective with early intervention in heterozygous females but becomes limited after seizure onset. These findings demonstrate the robust potential of CDKL5 re-expression to reverse CDD-related phenotypes in both sexes while underscoring the critical impact of age and disease stage in designing clinical trials.
Collapse
Affiliation(s)
- Xie Song
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, China
| | - Zijie Xia
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Bing Xu
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Organ Transplantation and Nephrosis, Shandong Institute of Nephrology, Jinan, Shandong 250000, China
| | - Zachary Spritzer
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yanjie Zhang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Erin Nugent
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Yugong Ho
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Barbara Terzic
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19102, USA; The Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19102, USA.
| |
Collapse
|
6
|
Yang Z, Teaney NA, Buttermore ED, Sahin M, Afshar-Saber W. Harnessing the potential of human induced pluripotent stem cells, functional assays and machine learning for neurodevelopmental disorders. Front Neurosci 2025; 18:1524577. [PMID: 39844857 PMCID: PMC11750789 DOI: 10.3389/fnins.2024.1524577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Neurodevelopmental disorders (NDDs) affect 4.7% of the global population and are associated with delays in brain development and a spectrum of impairments that can lead to lifelong disability and even mortality. Identification of biomarkers for accurate diagnosis and medications for effective treatment are lacking, in part due to the historical use of preclinical model systems that do not translate well to the clinic for neurological disorders, such as rodents and heterologous cell lines. Human-induced pluripotent stem cells (hiPSCs) are a promising in vitro system for modeling NDDs, providing opportunities to understand mechanisms driving NDDs in human neurons. Functional assays, including patch clamping, multielectrode array, and imaging-based assays, are popular tools employed with hiPSC disease models for disease investigation. Recent progress in machine learning (ML) algorithms also presents unprecedented opportunities to advance the NDD research process. In this review, we compare two-dimensional and three-dimensional hiPSC formats for disease modeling, discuss the applications of functional assays, and offer insights on incorporating ML into hiPSC-based NDD research and drug screening.
Collapse
Affiliation(s)
- Ziqin Yang
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Nicole A. Teaney
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth D. Buttermore
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- Human Neuron Core, Boston Children’s Hospital, Boston, MA, United States
| | - Wardiya Afshar-Saber
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Jhanji M, York EM, Lizarraga SB. The power of human stem cell-based systems in the study of neurodevelopmental disorders. Curr Opin Neurobiol 2024; 89:102916. [PMID: 39293245 DOI: 10.1016/j.conb.2024.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
Neurodevelopmental disorders (NDDs) affect 15% of children and are usually associated with intellectual disability, seizures, and autistic behaviors, among other neurological presentations. Mutations in a wide spectrum of gene families alter key stages of human brain development, leading to defects in neural circuits or brain architecture. Studies in animal systems have provided important insights into the pathobiology of several NDDs. Human stem cell technologies provide a complementary system that allows functional manipulation of human brain cells during developmental stages that would otherwise be inaccessible during human fetal brain development. Therefore, stem cell-based models advance our understanding of human brain development by revealing human-specific mechanisms contributing to the broad pathogenesis of NDDs. We provide a comprehensive overview of the latest research on two and three-dimensional human stem cell-based models. First, we discuss convergent cellular and molecular phenotypes across different NDDs that have been revealed by human iPSC systems. Next, we examine the contribution of in vitro human neural systems to the development of promising therapeutic strategies. Finally, we explore the potential of stem cell systems to draw mechanistic insight for the study of sex dimorphism within NDDs.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA
| | - Elisa M York
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA
| | - Sofia B Lizarraga
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI 02906, USA; Center for Translational Neuroscience, Carney Brain Institute, Brown University, Providence RI 02906, USA.
| |
Collapse
|
8
|
Glass MR, Whye D, Anderson NC, Wood D, Makhortova NR, Polanco T, Kim KH, Donovan KE, Vaccaro L, Jain A, Cacchiarelli D, Sun L, Olson H, Buttermore ED, Sahin M. Excitatory Cortical Neurons from CDKL5 Deficiency Disorder Patient-Derived Organoids Show Early Hyperexcitability Not Identified in Neurogenin2 Induced Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.622878. [PMID: 39605742 PMCID: PMC11601297 DOI: 10.1101/2024.11.11.622878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
CDKL5 deficiency disorder (CDD) is a rare developmental and epileptic encephalopathy resulting from variants in cyclin-dependent kinase-like 5 (CDKL5) that lead to impaired kinase activity or loss of function. CDD is one of the most common genetic etiologies identified in epilepsy cohorts. To study how CDKL5 variants impact human neuronal activity, gene expression and morphology, CDD patient-derived induced pluripotent stem cells and their isogenic controls were differentiated into excitatory neurons using either an NGN2 induction protocol or a guided cortical organoid differentiation. Patient-derived neurons from both differentiation paradigms had decreased phosphorylated EB2, a known molecular target of CDKL5. Induced neurons showed no detectable differences between cases and isogenic controls in network activity using a multielectrode array, or in MAP2+ neurite length, and only two genes were differentially expressed. However, patient-derived neurons from the organoid differentiation showed increased synchrony and weighted mean firing rate on the multielectrode array within the first month of network maturation. CDD patient-derived cortical neurons had lower expression of CDKL5 and HS3ST1, which may change the extracellular matrix around the synapse and contribute to hyperexcitability. Similar to the induced neurons, there were no differences in neurite length across or within patient-control cell lines. Induced neurons have poor cortical specification while the organoid derived neurons expressed cortical markers, suggesting that the changes in neuronal excitability and gene expression are specific to cortical excitatory neurons. Examining molecular mechanisms of early hyperexcitability in cortical neurons is a promising avenue for identification of CDD therapeutics.
Collapse
|
9
|
Massey S, Quigley A, Rochfort S, Christodoulou J, Van Bergen NJ. Cannabinoids and Genetic Epilepsy Models: A Review with Focus on CDKL5 Deficiency Disorder. Int J Mol Sci 2024; 25:10768. [PMID: 39409097 PMCID: PMC11476665 DOI: 10.3390/ijms251910768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Pediatric genetic epilepsies, such as CDKL5 Deficiency Disorder (CDD), are severely debilitating, with early-onset seizures occurring more than ten times daily in extreme cases. Existing antiseizure drugs frequently prove ineffective, which significantly impacts child development and diminishes the quality of life for patients and caregivers. The relaxation of cannabis legislation has increased research into potential therapeutic properties of phytocannabinoids such as cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). CBD's antiseizure properties have shown promise, particularly in treating drug-resistant genetic epilepsies associated with Lennox-Gastaut syndrome (LGS), Dravet syndrome (DS), and Tuberous Sclerosis Complex (TSC). However, specific research on CDD remains limited. Much of the current evidence relies on anecdotal reports of artisanal products lacking accurate data on cannabinoid composition. Utilizing model systems like patient-derived iPSC neurons and brain organoids allows precise dosing and comprehensive exploration of cannabinoids' pharmacodynamics. This review explores the potential of CBD, THC, and other trace cannabinoids in treating CDD and focusing on clinical trials and preclinical models to elucidate the cannabinoid's potential mechanisms of action in disrupted CDD pathways and strengthen the case for further research into their potential as anti-epileptic drugs for CDD. This review offers an updated perspective on cannabinoid's therapeutic potential for CDD.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia;
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC 3065, Australia
- Centre for Clinical Neuroscience and Neurological Research, St. Vincent’s Hospital, Melbourne, VIC 3065, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Simone Rochfort
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083, Australia;
- Agriculture Victoria Research, AgriBio Centre, AgriBio, Melbourne, VIC 3083, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.M.); (J.C.)
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
10
|
Harris AR, McGivern P, Gilbert F, Van Bergen N. Defining Biomarkers in Stem Cell-Derived Tissue Constructs for Drug and Disease Screening. Adv Healthc Mater 2024; 13:e2401433. [PMID: 38741544 DOI: 10.1002/adhm.202401433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/24/2024] [Indexed: 05/16/2024]
Abstract
The development of stem cell-derived tissue constructs (SCTCs) for clinical applications, including regenerative medicine, drug and disease screening offers significant hope for detecting and treating intractable disorders. SCTCs display a variety of biomarkers that can be used to understand biological mechanisms, assess drug interactions, and predict disease. Although SCTCs can be derived from patients and share the same genetic make-up, they are nevertheless distinct from human patients in many significant ways, which can undermine the clinical significance of measurements in SCTCs. This study defines biomarkers, how they apply to SCTCs, and clarifies specific ethical issues associated with the use of SCTCs for drug and disease screening.
Collapse
Affiliation(s)
- Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Patrick McGivern
- School of Humanities and Social Inquiry, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Frederic Gilbert
- School of Humanities, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicole Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3002, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3002, Australia
| |
Collapse
|
11
|
Massey S, Ang CS, Davidson NM, Quigley A, Rollo B, Harris AR, Kapsa RMI, Christodoulou J, Van Bergen NJ. Novel CDKL5 targets identified in human iPSC-derived neurons. Cell Mol Life Sci 2024; 81:347. [PMID: 39136782 PMCID: PMC11335273 DOI: 10.1007/s00018-024-05389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024]
Abstract
CDKL5 Deficiency Disorder (CDD) is a debilitating epileptic encephalopathy disorder affecting young children with no effective treatments. CDD is caused by pathogenic variants in Cyclin-Dependent Kinase-Like 5 (CDKL5), a protein kinase that regulates key phosphorylation events in neurons. For therapeutic intervention, it is essential to understand molecular pathways and phosphorylation targets of CDKL5. Using an unbiased phosphoproteomic approach we identified novel targets of CDKL5, including GTF2I, PPP1R35, GATAD2A and ZNF219 in human iPSC-derived neuronal cells. The phosphoserine residue in the target proteins lies in the CDKL5 consensus motif. We validated direct phosphorylation of GTF2I and PPP1R35 by CDKL5 using complementary approaches. GTF2I controls axon guidance, cell cycle and neurodevelopment by regulating expression of neuronal genes. PPP1R35 is critical for centriole elongation and cilia morphology, processes that are impaired in CDD. PPP1R35 interacts with CEP131, a known CDKL5 phospho-target. GATAD2A and ZNF219 belong to the Nucleosome Remodelling Deacetylase (NuRD) complex, which regulates neuronal activity-dependent genes and synaptic connectivity. In-depth knowledge of molecular pathways regulated by CDKL5 will allow a better understanding of druggable disease pathways to fast-track therapeutic development.
Collapse
Affiliation(s)
- Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Nadia M Davidson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, University of Melbourne, Melbourne, 3010, Australia
| | - Robert M I Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Nicole J Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, 3052, Australia.
- Department of Paediatrics, University of Melbourne, c/o MCRI, 50 Flemington Road, Parkville, VIC, 3052, Australia.
| |
Collapse
|
12
|
Bock M, Hong SJ, Zhang S, Yu Y, Lee S, Shin H, Choi BH, Han I. Morphogenetic Designs, and Disease Models in Central Nervous System Organoids. Int J Mol Sci 2024; 25:7750. [PMID: 39062993 PMCID: PMC11276855 DOI: 10.3390/ijms25147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Since the emergence of the first cerebral organoid (CO) in 2013, advancements have transformed central nervous system (CNS) research. Initial efforts focused on studying the morphogenesis of COs and creating reproducible models. Numerous methodologies have been proposed, enabling the design of the brain organoid to represent specific regions and spinal cord structures. CNS organoids now facilitate the study of a wide range of CNS diseases, from infections to tumors, which were previously difficult to investigate. We summarize the major advancements in CNS organoids, concerning morphogenetic designs and disease models. We examine the development of fabrication procedures and how these advancements have enabled the generation of region-specific brain organoids and spinal cord models. We highlight the application of these organoids in studying various CNS diseases, demonstrating the versatility and potential of organoid models in advancing our understanding of complex conditions. We discuss the current challenges in the field, including issues related to reproducibility, scalability, and the accurate recapitulation of the in vivo environment. We provide an outlook on prospective studies and future directions. This review aims to provide a comprehensive overview of the state-of-the-art CNS organoid research, highlighting key developments, current challenges, and prospects in the field.
Collapse
Affiliation(s)
- Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Sung Jun Hong
- Research Competency Milestones Program, School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Somin Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Haeeun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Byung Hyune Choi
- Department of Biomedical Science, Inha University College of Medicine, Incheon 22212, Republic of Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| |
Collapse
|
13
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
14
|
Petersilie L, Heiduschka S, Nelson JS, Neu LA, Le S, Anand R, Kafitz KW, Prigione A, Rose CR. Cortical brain organoid slices (cBOS) for the study of human neural cells in minimal networks. iScience 2024; 27:109415. [PMID: 38523789 PMCID: PMC10957451 DOI: 10.1016/j.isci.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Brain organoids derived from human pluripotent stem cells are a promising tool for studying human neurodevelopment and related disorders. Here, we generated long-term cultures of cortical brain organoid slices (cBOS) grown at the air-liquid interphase from regionalized cortical organoids. We show that cBOS host mature neurons and astrocytes organized in complex architecture. Whole-cell patch-clamp demonstrated subthreshold synaptic inputs and action potential firing of neurons. Spontaneous intracellular calcium signals turned into synchronous large-scale oscillations upon combined disinhibition of NMDA receptors and blocking of GABAA receptors. Brief metabolic inhibition to mimic transient energy restriction in the ischemic brain induced reversible intracellular calcium loading of cBOS. Moreover, metabolic inhibition induced a reversible decline in neuronal ATP as revealed by ATeam1.03YEMK. Overall, cBOS provide a powerful platform to assess morphological and functional aspects of human neural cells in intact minimal networks and to address the pathways that drive cellular damage during brain ischemia.
Collapse
Affiliation(s)
- Laura Petersilie
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Heiduschka
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Joel S.E. Nelson
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Louis A. Neu
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Stephanie Le
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Karl W. Kafitz
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital and Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Christine R. Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
15
|
Adams JW, Vinokur A, de Souza JS, Austria C, Guerra BS, Herai RH, Wahlin KJ, Muotri AR. Loss of GTF2I promotes neuronal apoptosis and synaptic reduction in human cellular models of neurodevelopment. Cell Rep 2024; 43:113867. [PMID: 38416640 PMCID: PMC11002531 DOI: 10.1016/j.celrep.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Individuals with Williams syndrome (WS), a neurodevelopmental disorder caused by hemizygous loss of 26-28 genes at 7q11.23, characteristically portray a hypersocial phenotype. Copy-number variations and mutations in one of these genes, GTF2I, are associated with altered sociality and are proposed to underlie hypersociality in WS. However, the contribution of GTF2I to human neurodevelopment remains poorly understood. Here, human cellular models of neurodevelopment, including neural progenitors, neurons, and three-dimensional cortical organoids, are differentiated from CRISPR-Cas9-edited GTF2I-knockout (GTF2I-KO) pluripotent stem cells to investigate the role of GTF2I in human neurodevelopment. GTF2I-KO progenitors exhibit increased proliferation and cell-cycle alterations. Cortical organoids and neurons demonstrate increased cell death and synaptic dysregulation, including synaptic structural dysfunction and decreased electrophysiological activity on a multielectrode array. Our findings suggest that changes in synaptic circuit integrity may be a prominent mediator of the link between alterations in GTF2I and variation in the phenotypic expression of human sociality.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego School of Medicine, La Jolla, CA 92093, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA
| | - Annabelle Vinokur
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Janaína S de Souza
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Charles Austria
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA
| | - Bruno S Guerra
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901, Brazil
| | - Karl J Wahlin
- Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA; Center for Academic Research and Training in Anthropogeny, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
16
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
17
|
Kuang H, Li Y, Wang Y, Shi M, Duan R, Xiao Q, She H, Liu Y, Liang Q, Teng Y, Zhou M, Liang D, Li Z, Wu L. A homozygous variant in INTS11 links mitosis and neurogenesis defects to a severe neurodevelopmental disorder. Cell Rep 2023; 42:113445. [PMID: 37980560 DOI: 10.1016/j.celrep.2023.113445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
The INTS11 endonuclease is crucial in modulating gene expression and has only recently been linked to human neurodevelopmental disorders (NDDs). However, how INTS11 participates in human development and disease remains unclear. Here, we identify a homozygous INTS11 variant in two siblings with a severe NDD. The variant impairs INTS11 catalytic activity, supported by its substrate's accumulation, and causes G2/M arrest in patient cells with length-dependent dysregulation of genes involved in mitosis and neural development, including the NDD gene CDKL5. The mutant knockin (KI) in induced pluripotent stem cells (iPSCs) disturbs their mitotic spindle organization and thus leads to slow proliferation and increased apoptosis, possibly through the decreased neurally functional CDKL5-induced extracellular signal-regulated kinase (ERK) pathway inhibition. The generation of neural progenitor cells (NPCs) from the mutant iPSCs is also delayed, with long transcript loss concerning neurogenesis. Our work reveals a mechanism underlying INTS11 dysfunction-caused human NDD and provides an iPSC model for this disease.
Collapse
Affiliation(s)
- Hanzhe Kuang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yunlong Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yixuan Wang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Meizhen Shi
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ranhui Duan
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiao Xiao
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Haoyuan She
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Yingdi Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Qiaowei Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China
| | - Yanling Teng
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Miaojin Zhou
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China.
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics, MOE Key Lab of Rare Pediatric Diseases, School of Life Sciences, Central South University, Changsha 410000, China; Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha 410000, China.
| |
Collapse
|
18
|
Sampedro-Castañeda M, Baltussen LL, Lopes AT, Qiu Y, Sirvio L, Mihaylov SR, Claxton S, Richardson JC, Lignani G, Ultanir SK. Epilepsy-linked kinase CDKL5 phosphorylates voltage-gated calcium channel Cav2.3, altering inactivation kinetics and neuronal excitability. Nat Commun 2023; 14:7830. [PMID: 38081835 PMCID: PMC10713615 DOI: 10.1038/s41467-023-43475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of rare childhood disorders characterized by severe epilepsy and cognitive deficits. Numerous DEE genes have been discovered thanks to advances in genomic diagnosis, yet putative molecular links between these disorders are unknown. CDKL5 deficiency disorder (CDD, DEE2), one of the most common genetic epilepsies, is caused by loss-of-function mutations in the brain-enriched kinase CDKL5. To elucidate CDKL5 function, we looked for CDKL5 substrates using a SILAC-based phosphoproteomic screen. We identified the voltage-gated Ca2+ channel Cav2.3 (encoded by CACNA1E) as a physiological target of CDKL5 in mice and humans. Recombinant channel electrophysiology and interdisciplinary characterization of Cav2.3 phosphomutant mice revealed that loss of Cav2.3 phosphorylation leads to channel gain-of-function via slower inactivation and enhanced cholinergic stimulation, resulting in increased neuronal excitability. Our results thus show that CDD is partly a channelopathy. The properties of unphosphorylated Cav2.3 closely resemble those described for CACNA1E gain-of-function mutations causing DEE69, a disorder sharing clinical features with CDD. We show that these two single-gene diseases are mechanistically related and could be ameliorated with Cav2.3 inhibitors.
Collapse
Affiliation(s)
| | - Lucas L Baltussen
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Laboratory for the Research of Neurodegenerative Diseases (VIB-KU Leuven), Department of Neurosciences, ON5 Herestraat 49, 3000, Leuven, Belgium
| | - André T Lopes
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Liina Sirvio
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Simeon R Mihaylov
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Suzanne Claxton
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jill C Richardson
- Neuroscience, MSD Research Laboratories, 120 Moorgate, London, EC2M 6UR, UK
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, Queen Square House, London, WC1N 3BG, UK
| | - Sila K Ultanir
- Kinases and Brain Development Lab, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
19
|
Harary PM, Jgamadze D, Kim J, Wolf JA, Song H, Ming GL, Cullen DK, Chen HI. Cell Replacement Therapy for Brain Repair: Recent Progress and Remaining Challenges for Treating Parkinson's Disease and Cortical Injury. Brain Sci 2023; 13:1654. [PMID: 38137103 PMCID: PMC10741697 DOI: 10.3390/brainsci13121654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Neural transplantation represents a promising approach to repairing damaged brain circuitry. Cellular grafts have been shown to promote functional recovery through "bystander effects" and other indirect mechanisms. However, extensive brain lesions may require direct neuronal replacement to achieve meaningful restoration of function. While fetal cortical grafts have been shown to integrate with the host brain and appear to develop appropriate functional attributes, the significant ethical concerns and limited availability of this tissue severely hamper clinical translation. Induced pluripotent stem cell-derived cells and tissues represent a more readily scalable alternative. Significant progress has recently been made in developing protocols for generating a wide range of neural cell types in vitro. Here, we discuss recent progress in neural transplantation approaches for two conditions with distinct design needs: Parkinson's disease and cortical injury. We discuss the current status and future application of injections of dopaminergic cells for the treatment of Parkinson's disease as well as the use of structured grafts such as brain organoids for cortical repair.
Collapse
Affiliation(s)
- Paul M. Harary
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Dennis Jgamadze
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - Jaeha Kim
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
| | - John A. Wolf
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Guo-li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D. Kacy Cullen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - H. Isaac Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.M.H.)
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Liao W, Lee KZ. CDKL5-mediated developmental tuning of neuronal excitability and concomitant regulation of transcriptome. Hum Mol Genet 2023; 32:3276-3298. [PMID: 37688574 DOI: 10.1093/hmg/ddad149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a serine-threonine kinase enriched in the forebrain to regulate neuronal development and function. Patients with CDKL5 deficiency disorder (CDD), a severe neurodevelopmental condition caused by mutations of CDKL5 gene, present early-onset epilepsy as the most prominent feature. However, spontaneous seizures have not been reported in mouse models of CDD, raising vital questions on the human-mouse differences and the roles of CDKL5 in early postnatal brains. Here, we firstly measured electroencephalographic (EEG) activities via a wireless telemetry system coupled with video-recording in neonatal mice. We found that mice lacking CDKL5 exhibited spontaneous epileptic EEG discharges, accompanied with increased burst activities and ictal behaviors, specifically at postnatal day 12 (P12). Intriguingly, those epileptic spikes disappeared after P14. We next performed an unbiased transcriptome profiling in the dorsal hippocampus and motor cortex of Cdkl5 null mice at different developmental timepoints, uncovering a set of age-dependent and brain region-specific alterations of gene expression in parallel with the transient display of epileptic activities. Finally, we validated multiple differentially expressed genes, such as glycine receptor alpha 2 and cholecystokinin, at the transcript or protein levels, supporting the relevance of these genes to CDKL5-regulated excitability. Our findings reveal early-onset neuronal hyperexcitability in mouse model of CDD, providing new insights into CDD etiology and potential molecular targets to ameliorate intractable neonatal epilepsy.
Collapse
Affiliation(s)
- Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
- Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| | - Kun-Ze Lee
- Department of Biological Sciences, National Sun Yat-Sen University, No. 70, Lienhai Road, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| |
Collapse
|
21
|
Jo D, Arjunan A, Choi S, Jung YS, Park J, Jo J, Kim OY, Song J. Oligonol ameliorates liver function and brain function in the 5 × FAD mouse model: transcriptional and cellular analysis. Food Funct 2023; 14:9650-9670. [PMID: 37843873 DOI: 10.1039/d3fo03451h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease worldwide and is accompanied by memory deficits, personality changes, anxiety, depression, and social difficulties. For treatment of AD, many researchers have attempted to find medicinal resources with high effectiveness and without side effects. Oligonol is a low molecular weight polypeptide derived from lychee fruit extract. We investigated the effects of oligonol in 5 × FAD transgenic AD mice, which developed severe amyloid pathology, through behavioral tests (Barnes maze, marble burying, and nestle shredding) and molecular experiments. Oligonol treatment attenuated blood glucose levels and increased the antioxidant response in the livers of 5 × FAD mice. Moreover, the behavioral score data showed improvements in anxiety, depressive behavior, and cognitive impairment following a 2-month course of orally administered oligonol. Oligonol treatment not only altered the circulating levels of cytokines and adipokines in 5 × FAD mice, but also significantly enhanced the mRNA and protein levels of antioxidant enzymes and synaptic plasticity in the brain cortex and hippocampus. Therefore, we highlight the therapeutic potential of oligonol to attenuate neuropsychiatric problems and improve memory deficits in the early stage of AD.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Seoyoon Choi
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Jihyun Park
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Jihoon Jo
- Department of Biomedical Science, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea.
- Department of Health Sciences, Graduate School of Dong-A University, Nakdong-daero 550 beon-gil, Saha-gu, Busan, 49315, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Seoyangro 264, Hwasun 58128, Republic of Korea.
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Seoyangro 264, Hwasun 58128, Republic of Korea
| |
Collapse
|
22
|
Patel N, Ouellet V, Paquet-Mercier F, Chetoui N, Bélanger E, Paquet ME, Godin AG, Marquet P. A robust and reliable methodology to perform GECI-based multi-time point neuronal calcium imaging within mixed cultures of human iPSC-derived cortical neurons. Front Neurosci 2023; 17:1247397. [PMID: 37817802 PMCID: PMC10560759 DOI: 10.3389/fnins.2023.1247397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/16/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Human induced pluripotent stem cells (iPSCs), with their ability to generate human neural cells (astrocytes and neurons) from patients, hold great promise for understanding the pathophysiology of major neuropsychiatric diseases such as schizophrenia and bipolar disorders, which includes alterations in cerebral development. Indeed, the in vitro neurodifferentiation of iPSCs, while recapitulating certain major stages of neurodevelopment in vivo, makes it possible to obtain networks of living human neurons. The culture model presented is particularly attractive within this framework since it involves iPSC-derived neural cells, which more specifically differentiate into cortical neurons of diverse types (in particular glutamatergic and GABAergic) and astrocytes. However, these in vitro neuronal networks, which may be heterogeneous in their degree of differentiation, remain challenging to bring to an appropriate level of maturation. It is therefore necessary to develop tools capable of analyzing a large number of cells to assess this maturation process. Calcium (Ca2+) imaging, which has been extensively developed, undoubtedly offers an incredibly good approach, particularly in its versions using genetically encoded calcium indicators. However, in the context of these iPSC-derived neural cell cultures, there is a lack of studies that propose Ca2+ imaging methods that can finely characterize the evolution of neuronal maturation during the neurodifferentiation process. Methods In this study, we propose a robust and reliable method for specifically measuring neuronal activity at two different time points of the neurodifferentiation process in such human neural cultures. To this end, we have developed a specific Ca2+ signal analysis procedure and tested a series of different AAV serotypes to obtain expression levels of GCaMP6f under the control of the neuron-specific human synapsin1 (hSyn) promoter. Results The retro serotype has been found to be the most efficient in driving the expression of the GCaMP6f and is compatible with multi-time point neuronal Ca2+ imaging in our human iPSC-derived neural cultures. An AAV2/retro carrying GCaMP6f under the hSyn promoter (AAV2/retro-hSyn-GCaMP6f) is an efficient vector that we have identified. To establish the method, calcium measurements were carried out at two time points in the neurodifferentiation process with both hSyn and CAG promoters, the latter being known to provide high transient gene expression across various cell types. Discussion Our results stress that this methodology involving AAV2/retro-hSyn-GCaMP6f is suitable for specifically measuring neuronal calcium activities over multiple time points and is compatible with the neurodifferentiation process in our mixed human neural cultures.
Collapse
Affiliation(s)
- Niraj Patel
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - Vincent Ouellet
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | | | - Nizar Chetoui
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - Erik Bélanger
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - Marie-Eve Paquet
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Quebec, QC, Canada
| | - Antoine G. Godin
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
- Centre for Optics, Photonics and Lasers (COPL), Laval University, Quebec, QC, Canada
| | - Pierre Marquet
- Department of Psychiatry and Neuroscience, Laval University, Quebec, QC, Canada
- CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
- Centre for Optics, Photonics and Lasers (COPL), Laval University, Quebec, QC, Canada
| |
Collapse
|
23
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Lang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin-dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. eLife 2023; 12:e88206. [PMID: 37490324 PMCID: PMC10406435 DOI: 10.7554/elife.88206] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 (CDKL5) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual, and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD has indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces postsynaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity, and human neuropathology.
Collapse
Affiliation(s)
- Anna Castano
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Margaux Silvestre
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jennifer L Sanderson
- Department of Pharmacology, University of Colorado School of MedicineAuroraUnited States
| | - Carla A Ferrer
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Han Wee Ong
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Yi Lang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - William Richardson
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Isabelle M Genereux
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| | - Kelvin Dempster
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Navlot S Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy and Comprehensive Cancer Center, The Ohio State UniversityColumbusUnited States
| | - Alex N Bullock
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Tim A Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado School of MedicineAuroraUnited States
| | - Sila K Ultanir
- Kinases and Brain Development Laboratory, The Francis Crick InstituteLondonUnited Kingdom
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel HillChapel HillUnited States
| |
Collapse
|
24
|
Sun X, Wang T. Research progress on the pathogenesis of CDKL5 pathogenic variants and related encephalopathy. Eur J Pediatr 2023:10.1007/s00431-023-05006-z. [PMID: 37166538 DOI: 10.1007/s00431-023-05006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) is a gene encoding a serine/threonine kinase that possesses an N-terminal catalytic domain and a large C-terminal domain and is located on the short arm of the X-chromosome at position 22 (Xp22). CDKL5 regulates neuronal migration, axonal growth, dendritic morphogenesis, and synaptic development and affects synaptic function. Pathogenic variants include deletions, truncations, splice variants, and missense variants. The specificity of CDKL5 is mainly determined by the shared sequence of amino acid residues, which is the phosphorylation site of the target protein with the motif Arg-Pro-X-Ser/Thr-Ala/Pro/Gly/Ser (R-P-X-[S/T]-[A/G/P/S]). Developmental encephalopathy caused by pathogenic variants of CDKL5 has a variety of nervous system symptoms, such as epilepsy, hypotonia, growth retardation, dyskinesia, cortical visual impairment, sleep disorders, and other clinical symptoms. This review summarizes the mechanism of CDKL5-induced allogeneic lesions in the nervous system and the clinical manifestations of related encephalopathy. Conclusion: This review clarifies CDKL5's participation in neurodevelopmental diseases as well as its crucial function in dividing cells, cultured neurons, knockout mice, and human iPSC-derived neurons. CDKL5 variants help identify clinical diagnostic biomarkers. Although a few direct substrates of CDKL5 have been identified, more must be found in order to fully comprehend the signaling pathways connected to CDKL5 in the brain and the mechanisms that underlie its activities.
Collapse
Affiliation(s)
- Xuyan Sun
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Tiancheng Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Castano A, Silvestre M, Wells CI, Sanderson JL, Ferrer CA, Ong HW, Liang Y, Richardson W, Silvaroli JA, Bashore FM, Smith JL, Genereux IM, Dempster K, Drewry DH, Pabla NS, Bullock AN, Benke TA, Ultanir SK, Axtman AD. Discovery and characterization of a specific inhibitor of serine-threonine kinase cyclin dependent kinase-like 5 (CDKL5) demonstrates role in hippocampal CA1 physiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538049. [PMID: 37162893 PMCID: PMC10168277 DOI: 10.1101/2023.04.24.538049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pathological loss-of-function mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) cause CDKL5 deficiency disorder (CDD), a rare and severe neurodevelopmental disorder associated with severe and medically refractory early-life epilepsy, motor, cognitive, visual and autonomic disturbances in the absence of any structural brain pathology. Analysis of genetic variants in CDD have indicated that CDKL5 kinase function is central to disease pathology. CDKL5 encodes a serine-threonine kinase with significant homology to GSK3β, which has also been linked to synaptic function. Further, Cdkl5 knock-out rodents have increased GSK3β activity and often increased long-term potentiation (LTP). Thus, development of a specific CDKL5 inhibitor must be careful to exclude cross-talk with GSK3β activity. We synthesized and characterized specific, high-affinity inhibitors of CDKL5 that do not have detectable activity for GSK3β. These compounds are very soluble in water but blood-brain barrier penetration is low. In rat hippocampal brain slices, acute inhibition of CDKL5 selectively reduces post-synaptic function of AMPA-type glutamate receptors in a dose-dependent manner. Acute inhibition of CDKL5 reduces hippocampal LTP. These studies provide new tools and insights into the role of CDKL5 as a newly appreciated, key kinase necessary for synaptic plasticity. Comparisons to rodent knock-out studies suggest that compensatory changes have limited the understanding of the roles of CDKL5 in synaptic physiology, plasticity and human neuropathology.
Collapse
|
26
|
Adams JW, Negraes PD, Truong J, Tran T, Szeto RA, Guerra BS, Herai RH, Teodorof-Diedrich C, Spector SA, Del Campo M, Jones KL, Muotri AR, Trujillo CA. Impact of alcohol exposure on neural development and network formation in human cortical organoids. Mol Psychiatry 2023; 28:1571-1584. [PMID: 36385168 PMCID: PMC10208963 DOI: 10.1038/s41380-022-01862-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/17/2022]
Abstract
Prenatal alcohol exposure is the foremost preventable etiology of intellectual disability and leads to a collection of diagnoses known as Fetal Alcohol Spectrum Disorders (FASD). Alcohol (EtOH) impacts diverse neural cell types and activity, but the precise functional pathophysiological effects on the human fetal cerebral cortex are unclear. Here, we used human cortical organoids to study the effects of EtOH on neurogenesis and validated our findings in primary human fetal neurons. EtOH exposure produced temporally dependent cellular effects on proliferation, cell cycle, and apoptosis. In addition, we identified EtOH-induced alterations in post-translational histone modifications and chromatin accessibility, leading to impairment of cAMP and calcium signaling, glutamatergic synaptic development, and astrocytic function. Proteomic spatial profiling of cortical organoids showed region-specific, EtOH-induced alterations linked to changes in cytoskeleton, gliogenesis, and impaired synaptogenesis. Finally, multi-electrode array electrophysiology recordings confirmed the deleterious impact of EtOH on neural network formation and activity in cortical organoids, which was validated in primary human fetal tissues. Our findings demonstrate progress in defining the human molecular and cellular phenotypic signatures of prenatal alcohol exposure on functional neurodevelopment, increasing our knowledge for potential therapeutic interventions targeting FASD symptoms.
Collapse
Affiliation(s)
- Jason W Adams
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
- Department of Neurosciences, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, CA, 92093, USA
| | - Priscilla D Negraes
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Justin Truong
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Timothy Tran
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Ryan A Szeto
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
| | - Bruno S Guerra
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
- Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Roberto H Herai
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA
- Experimental Multiuser Laboratory, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Carmen Teodorof-Diedrich
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093, USA
| | - Miguel Del Campo
- Department of Pediatrics, Division of Dysmorphology and Teratology, University of California, La Jolla, CA, 92093, USA
| | - Kenneth L Jones
- Department of Pediatrics, Division of Dysmorphology and Teratology, University of California, La Jolla, CA, 92093, USA
| | - Alysson R Muotri
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA.
- Center for Academic Research and Training in Anthropogeny, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Cleber A Trujillo
- Department of Pediatrics/Rady Children's Hospital, Department of Cellular & Molecular Medicine, University of California San Diego, School of Medicine, La Jolla, CA, 92037, USA.
| |
Collapse
|
27
|
Ademuwagun IA, Oduselu GO, Rotimi SO, Adebiyi E. Pharmacophore-Aided Virtual Screening and Molecular Dynamics Simulation Identifies TrkB Agonists for Treatment of CDKL5-Deficiency Disorders. Bioinform Biol Insights 2023; 17:11779322231158254. [PMID: 36895324 PMCID: PMC9989394 DOI: 10.1177/11779322231158254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Therapeutic intervention in cyclin-dependent kinase-like 5 (CDKL5) deficiency disorders (CDDs) has remained a concern over the years. Recent advances into the mechanistic interplay of signalling pathways has revealed the role of deficient tropomyosin receptor kinase B (TrkB)/phospholipase C γ1 signalling cascade in CDD. Novel findings showed that in vivo administration of a TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), resulted in a remarkable reversal in the molecular pathologic mechanisms underlying CDD. Owing to this discovery, this study aimed to identify more potent TrkB agonists than 7,8-DHF that could serve as alternatives or combinatorial drugs towards effective management of CDD. Using pharmacophore modelling and multiple database screening, we identified 691 compounds with identical pharmacophore features with 7,8-DHF. Virtual screening of these ligands resulted in identification of at least 6 compounds with better binding affinities than 7,8-DHF. The in silico pharmacokinetic and ADMET studies of the compounds also indicated better drug-like qualities than those of 7,8-DHF. Postdocking analyses and molecular dynamics simulations of the best hits, 6-hydroxy-10-(2-oxo-1-azatricyclo[7.3.1.05,13]trideca-3,5(13),6,8-tetraen-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem: 91637738) and 6-hydroxy-10-(8-methyl-2-oxo-1H-quinolin-3-yl)-8-oxa-13,14,16-triazatetracyclo[7.7.0.02,7.011,15]hexadeca-1,3,6,9,11,15-hexaen-5-one (PubChem ID: 91641310), revealed unique ligand interactions, validating the docking findings. We hereby recommend experimental validation of the best hits in CDKL5 knock out models before consideration as drugs in CDD management.
Collapse
Affiliation(s)
- Ibitayo Abigail Ademuwagun
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Gbolahan Oladipupo Oduselu
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Chemistry, Covenant University, Ota, Nigeria
| | - Solomon Oladapo Rotimi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
- Department of Computer and Information Sciences, Covenant University, Ota, Nigeria
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Xin Y, Lin G, Hua T, Liang J, Sun T, Wu X. The altered expression of cytoskeletal and synaptic remodeling proteins during epilepsy. Open Life Sci 2023; 18:20220595. [PMID: 37070078 PMCID: PMC10105555 DOI: 10.1515/biol-2022-0595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 04/19/2023] Open
Abstract
The cytoskeleton plays an important role in epilepsy; however, the mechanism is unknown. Therefore, this study aimed to reveal the mechanism of cytoskeletal proteins in epilepsy by investigating the expression of cytoskeletal proteins and synaptophysin (SYP) in mice at 0, 3, 6, and 24 h, 3 days, and 7 days in a kainic acid (KA)-induced epileptic model. Our results demonstrated that the expression of F-actin decreased significantly between 3 and 6 h, 6 and 24 h, and 24 h and 3 days (P < 0.05). Meanwhile, the expression of the neurofilament light chain, neurofilament medium chain, and neurofilament heavy chain subunits was significantly decreased (P < 0.001) at 3 h after the KA injection compared to the KA 0 h group, followed by an elevation at 6 h and a further decrease at 24 h compared to at 6 h. SYP expression was significantly decreased between 0 and 3 h as well as between 3 and 6 h (P < 0.05). At 24 h, the level was increased compared to at 6 h and continued to increase at 3 days after the KA injection. Thus, we propose that cytoskeletal proteins may be involved in the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Guojiao Lin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, China
| | - Tianbao Hua
- The First Hospital and International Center of Future Science, Jilin University, Changchun 130015, China
| | - Jianmin Liang
- Department of Pediatric Neurology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130000, Jilin Province, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun 130021, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital of Jilin University, Changchun 130021, China
- The First Hospital and International Center of Future Science, Jilin University, Changchun 130015, China
| | - Xuemei Wu
- Department of Pediatric Neurology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun 130000, Jilin Province, China
- Jilin Provincial Key Laboratory of Pediatric Neurology, Changchun 130021, China
| |
Collapse
|
29
|
Shen Q, Qian Z, Wang T, Zhao X, Gu S, Rao X, Lyu S, Zhang R, He L, Li F. Genome-wide identification and expression analysis of the NAC transcription factor family in Saccharum spontaneum under different stresses. PLANT SIGNALING & BEHAVIOR 2022; 17:2088665. [PMID: 35730557 PMCID: PMC9225438 DOI: 10.1080/15592324.2022.2088665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 05/15/2023]
Abstract
The NAC (NAM, ATAF1/2, and CUC2) transcription factor family is one of the largest families unique to plants and is involved in plant growth and development, organs, morphogenesis, and stress responses. The NAC family has been identified in many plants. As the main source of resistance genes for sugarcane breeding, the NAC gene family in the wild species Saccharum spontaneum has not been systematically studied. In this study, 115 SsNAC genes were identified in the S. spontaneum genome, and these genes were heterogeneously distributed on 25 chromosomes. Phylogenetic analysis divided the SsNAC family members into 18 subgroups, and the gene structure and conserved motif analysis further supported the phylogenetic classification. Four groups of tandemly duplicated genes and nine pairs of segmentally duplicated genes were detected. The SsNAC gene has different expression patterns at different developmental stages of stems and leaves. Further qRT-PCR analysis showed that drought, low-temperature, salinity, pathogenic fungi, and other stresses as well as abscisic acid (ABA) and methyl jasmonate (MeJA) treatments significantly induced the expression of 12 SsNAC genes, indicating that these genes may play a key role in the resistance of S. spontaneum to biotic and abiotic stresses. In summary, the results from this study provide comprehensive information on the NAC transcription factor family, providing a reference for further functional studies of the SsNAC gene.
Collapse
Affiliation(s)
- Qingqing Shen
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Tianju Wang
- Institute for Bio-resources Research and Development of Central Yunnan Plateau, Chuxiong Normal University, Chuxiong, China
| | - Xueting Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shujie Gu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Shaozhi Lyu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Rongqiong Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lilian He
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Fusheng Li
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, Yunnan, China
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
- Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
30
|
CDKL5 deficiency causes epileptic seizures independent of cellular mosaicism. J Neurol Sci 2022; 443:120498. [PMID: 36417806 DOI: 10.1016/j.jns.2022.120498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/06/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE In a study using a mouse model of CDKL5 deficiency disorder (CDD), seizures are specific to female mice heterozygous for Cdkl5 mutations and not observed in hemizygous knockout males or homozygous knockout females. The aim of this study was to examine whether the clinical phenotype of patients with CDD can be impacted by the type of genetic variant. METHODS Eleven CDD patients (six females and five males) were included in this study. The molecular diagnosis of hemizygous male patients was performed using digital PCR and their clinical phenotypes were compared with those of patients with mosaic or heterozygous CDKL5 variants. The severity of clinical phenotypes was graded by using CDKL5 Developmental Score and the adapted version of the CDKL5 Clinical Severity Assessment. The effect of cellular mosaicism on the severity of CDD was studied by comparing the clinical characteristics and comorbidities between individuals with hemizygous and mosaic or heterozygous CDKL5 variants. RESULTS One of the five male patients was mosaic for the CDKL5 variant. All patients developed seizures irrespective of their genetic status of the pathogenic variant. However, cellular mosaicism of CDKL5 deficiency was associated with lesser severity of other comorbidities such as feeding, respiratory, and visual functional impairments. SIGNIFICANCE This study provided evidence that cellular mosaicism of CDKL5 deficiency was not necessarily required for developing epilepsy. CDD patients not only exhibited clinical features of epilepsy but also exhibited the developmental consequences arising directly from the effect of the CDKL5 pathogenic variant.
Collapse
|
31
|
Litwa K. Shared mechanisms of neural circuit disruption in tuberous sclerosis across lifespan: Bridging neurodevelopmental and neurodegenerative pathology. Front Genet 2022; 13:997461. [PMID: 36506334 PMCID: PMC9732432 DOI: 10.3389/fgene.2022.997461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous Sclerosis (TS) is a rare genetic disorder manifesting with multiple benign tumors impacting the function of vital organs. In TS patients, dominant negative mutations in TSC1 or TSC2 increase mTORC1 activity. Increased mTORC1 activity drives tumor formation, but also severely impacts central nervous system function, resulting in infantile seizures, intractable epilepsy, and TS-associated neuropsychiatric disorders, including autism, attention deficits, intellectual disability, and mood disorders. More recently, TS has also been linked with frontotemporal dementia. In addition to TS, accumulating evidence implicates increased mTORC1 activity in the pathology of other neurodevelopmental and neurodegenerative disorders. Thus, TS provides a unique disease model to address whether developmental neural circuit abnormalities promote age-related neurodegeneration, while also providing insight into the therapeutic potential of mTORC1 inhibitors for both developing and degenerating neural circuits. In the following review, we explore the ability of both mouse and human brain organoid models to capture TS pathology, elucidate disease mechanisms, and shed light on how neurodevelopmental alterations may later contribute to age-related neurodegeneration.
Collapse
Affiliation(s)
- Karen Litwa
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| |
Collapse
|
32
|
Chung WG, Kim E, Song H, Lee J, Lee S, Lim K, Jeong I, Park JU. Recent Advances in Electrophysiological Recording Platforms for Brain and Heart Organoids. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Won Gi Chung
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Hayoung Song
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jakyoung Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Sanghoon Lee
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Kyeonghee Lim
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering Yonsei University Seoul 03722 Republic of Korea
- Center for Nanomedicine Institute for Basic Science (IBS) Yonsei University Seoul 03722 Republic of Korea
- KIURI Institute Yonsei University Seoul 03722 Republic of Korea
| |
Collapse
|
33
|
Neuronal hyperexcitability and ion channel dysfunction in CDKL5-deficiency patient iPSC-derived cortical organoids. Neurobiol Dis 2022; 174:105882. [DOI: 10.1016/j.nbd.2022.105882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/01/2022] [Accepted: 10/02/2022] [Indexed: 11/18/2022] Open
|
34
|
Lopez-Castroman J, Jaussent I, Pastre M, Baeza-Velasco C, Kahn JP, Leboyer M, Diaz E, Courtet P. Severity features of suicide attempters with epilepsy. J Psychiatr Res 2022; 154:44-49. [PMID: 35926425 DOI: 10.1016/j.jpsychires.2022.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND After the Food and Drug Administration alert about antiepileptic medication and suicide, incident epilepsy has been associated with first or recurrent suicide attempts independently of psychiatric comorbidities and antiepileptic treatment. Following this thread, the aim of this study was to analyze if epilepsy was associated with a higher severity of lifetime suicide attempts (SAs). METHODS Analyses were carried out on 1677 adults hospitalized between 1999 and 2012 after a SA in a specialized ward for affective episodes. Five severity features were studied: frequent SAs (>2), early onset of first SA (≤26 years), history of violent SA, high suicide intent and high lethality of the SA. Adjusted logistic regression models were used to estimate the association between the lifetime diagnosis of epilepsy and the severity features. RESULTS Among suicide attempters, ninety-three patients reported a lifetime diagnosis of epilepsy (5.5%). Epileptic patients diagnosed after the first SA were more likely to be frequent suicide attempters than non-epileptic ones. They showed also higher SA planification scores. LIMITATIONS Diagnosis accuracy is limited by the use of self-reports for epilepsy. The lack of precise information about the disease course and treatment have not allowed for further statistical analysis. With regard to psychiatric comorbidities, personality disorders could not be taken into account. CONCLUSIONS Suicide attempters with epilepsy present an increased severity in some aspects of their suicidal behavior regardless of demographic and clinical variables. Our results give support to the existence of a bidirectional association between epilepsy and suicidal behavior.
Collapse
Affiliation(s)
- Jorge Lopez-Castroman
- Department of Psychiatry, CHU Nimes, Nimes, France; IGF, Université de Montpellier, CNRS-INSERM, Montpellier, France.
| | | | | | - Carolina Baeza-Velasco
- IGF, Université de Montpellier, CNRS-INSERM, Montpellier, France; Department of Emergency Psychiatry and Post-acute Care, CHU Montpellier, Montpellier, France; Université de Paris, Laboratoire de Psychopathologie et Processus de Santé, F-92100, Boulogne Billancourt, France
| | - Jean-Pierre Kahn
- Université de Lorraine, Nancy, France, Clinique Soins-Etudes de Vitry le François, Fondation Santé des Etudiants de France (FSEF), Paris, France
| | - Marion Leboyer
- INSERM U955, Neuro-Psychiatrie Translationnelle, Université Paris-Est, Créteil, France; AP-HP, DMU IMPACT, Département Médical Universitaire de Psychiatrie, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | | | - Philippe Courtet
- IGF, Université de Montpellier, CNRS-INSERM, Montpellier, France; Department of Emergency Psychiatry and Post-acute Care, CHU Montpellier, Montpellier, France
| |
Collapse
|
35
|
Faubel RJ, Santos Canellas VS, Gaesser J, Beluk NH, Feinstein TN, Wang Y, Yankova M, Karunakaran KB, King SM, Ganapathiraju MK, Lo CW. Flow blockage disrupts cilia-driven fluid transport in the epileptic brain. Acta Neuropathol 2022; 144:691-706. [PMID: 35980457 DOI: 10.1007/s00401-022-02463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 01/28/2023]
Abstract
A carpet of ependymal motile cilia lines the brain ventricular system, forming a network of flow channels and barriers that pattern cerebrospinal fluid (CSF) flow at the surface. This CSF transport system is evolutionary conserved, but its physiological function remains unknown. Here we investigated its potential role in epilepsy with studies focused on CDKL5 deficiency disorder (CDD), a neurodevelopmental disorder with early-onset epilepsy refractory to seizure medications and the most common cause of infant epilepsy. CDKL5 is a highly conserved X-linked gene suggesting its function in regulating cilia length and motion in the green alga Chlamydomonas might have implication in the etiology of CDD. Examination of the structure and function of airway motile cilia revealed both the CDD patients and the Cdkl5 knockout mice exhibit cilia lengthening and abnormal cilia motion. Similar defects were observed for brain ventricular cilia in the Cdkl5 knockout mice. Mapping ependymal cilia generated flow in the ventral third ventricle (v3V), a brain region with important physiological functions showed altered patterning of flow. Tracing of cilia-mediated inflow into v3V with fluorescent dye revealed the appearance of a flow barrier at the inlet of v3V in Cdkl5 knockout mice. Analysis of mice with a mutation in another epilepsy-associated kinase, Yes1, showed the same disturbance of cilia motion and flow patterning. The flow barrier was also observed in the Foxj1± and FOXJ1CreERT:Cdkl5y/fl mice, confirming the contribution of ventricular cilia to the flow disturbances. Importantly, mice exhibiting altered cilia-driven flow also showed increased susceptibility to anesthesia-induced seizure-like activity. The cilia-driven flow disturbance arises from altered cilia beating orientation with the disrupted polarity of the cilia anchoring rootlet meshwork. Together these findings indicate motile cilia disturbances have an essential role in CDD-associated seizures and beyond, suggesting cilia regulating kinases may be a therapeutic target for medication-resistant epilepsy.
Collapse
Affiliation(s)
- Regina J Faubel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Veronica S Santos Canellas
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Jenna Gaesser
- Division of Child Neurology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Nancy H Beluk
- Division of Radiology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Tim N Feinstein
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Yong Wang
- Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
| | - Maya Yankova
- Department of Molecular Biology and Biophysics, And Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT, 06030-3305, USA
| | - Kalyani B Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Stephen M King
- Department of Molecular Biology and Biophysics, And Electron Microscopy Facility, University of Connecticut Health Center, Farmington, CT, 06030-3305, USA
| | - Madhavi K Ganapathiraju
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA.
| |
Collapse
|
36
|
Van Bergen NJ, Massey S, Quigley A, Rollo B, Harris AR, Kapsa RM, Christodoulou J. CDKL5 deficiency disorder: molecular insights and mechanisms of pathogenicity to fast-track therapeutic development. Biochem Soc Trans 2022; 50:1207-1224. [PMID: 35997111 PMCID: PMC9444073 DOI: 10.1042/bst20220791] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022]
Abstract
CDKL5 deficiency disorder (CDD) is an X-linked brain disorder of young children and is caused by pathogenic variants in the cyclin-dependent kinase-like 5 (CDKL5) gene. Individuals with CDD suffer infantile onset, drug-resistant seizures, severe neurodevelopmental impairment and profound lifelong disability. The CDKL5 protein is a kinase that regulates key phosphorylation events vital to the development of the complex neuronal network of the brain. Pathogenic variants identified in patients may either result in loss of CDKL5 catalytic activity or are hypomorphic leading to partial loss of function. Whilst the progressive nature of CDD provides an excellent opportunity for disease intervention, we cannot develop effective therapeutics without in-depth knowledge of CDKL5 function in human neurons. In this mini review, we summarize new findings on the function of CDKL5. These include CDKL5 phosphorylation targets and the consequence of disruptions on signaling pathways in the human brain. This new knowledge of CDKL5 biology may be leveraged to advance targeted drug discovery and rapid development of treatments for CDD. Continued development of effective humanized models will further propel our understanding of CDD biology and may permit the development and testing of therapies that will significantly alter CDD disease trajectory in young children.
Collapse
Affiliation(s)
- Nicole J. Van Bergen
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Sean Massey
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Anita Quigley
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Alexander R. Harris
- Aikenhead Centre for Medical Discovery, Department of Biomedical Engineering, University of Melbourne, Melbourne 3010, Australia
| | - Robert M.I. Kapsa
- Electrical and Biomedical Engineering, School of Engineering, RMIT University, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Centre for Clinical Neurosciences and Neurological Research, St. Vincent's Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - John Christodoulou
- Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Discipline of Child and Adolescent Health, University of Sydney, Sydney, Australia
| |
Collapse
|
37
|
mGluR5 PAMs rescue cortical and behavioural defects in a mouse model of CDKL5 deficiency disorder. Neuropsychopharmacology 2022; 48:877-886. [PMID: 35945276 PMCID: PMC10156697 DOI: 10.1038/s41386-022-01412-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 12/19/2022]
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a devastating rare neurodevelopmental disease without a cure, caused by mutations of the serine/threonine kinase CDKL5 highly expressed in the forebrain. CDD is characterized by early-onset seizures, severe intellectual disabilities, autistic-like traits, sensorimotor and cortical visual impairments (CVI). The lack of an effective therapeutic strategy for CDD urgently demands the identification of novel druggable targets potentially relevant for CDD pathophysiology. To this aim, we studied Class I metabotropic glutamate receptors 5 (mGluR5) because of their important role in the neuropathological signs produced by the lack of CDKL5 in-vivo, such as defective synaptogenesis, dendritic spines formation/maturation, synaptic transmission and plasticity. Importantly, mGluR5 function strictly depends on the correct expression of the postsynaptic protein Homer1bc that we previously found atypical in the cerebral cortex of Cdkl5-/y mice. In this study, we reveal that CDKL5 loss tampers with (i) the binding strength of Homer1bc-mGluR5 complexes, (ii) the synaptic localization of mGluR5 and (iii) the mGluR5-mediated enhancement of NMDA-induced neuronal responses. Importantly, we showed that the stimulation of mGluR5 activity by administering in mice specific positive-allosteric-modulators (PAMs), i.e., 3-Cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) or RO6807794, corrected the synaptic, functional and behavioral defects shown by Cdkl5-/y mice. Notably, in the visual cortex of 2 CDD patients we found changes in synaptic organization that recapitulate those of mutant CDKL5 mice, including the reduced expression of mGluR5, suggesting that these receptors represent a promising therapeutic target for CDD.
Collapse
|
38
|
Boutin ME, Strong CE, Van Hese B, Hu X, Itkin Z, Chen YC, LaCroix A, Gordon R, Guicherit O, Carromeu C, Kundu S, Lee E, Ferrer M. A multiparametric calcium signal screening platform using iPSC-derived cortical neural spheroids. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:209-218. [PMID: 35092840 PMCID: PMC9177534 DOI: 10.1016/j.slasd.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Discovery of therapeutics for neurological diseases is hampered by the lack of predictive in vitro and in vivo models. Traditionally, in vitro assays rely on engineered cell lines grown two-dimensionally (2D) outside a physiological tissue context, which makes them very amenable for large scale drug screening but reduces their relevance to in vivo neurophysiology. In recent years, three-dimensional (3D) neural cell culture models derived from human induced pluripotent stem cells (iPSCs) have been developed as an in vitro assay platform to investigate brain development, neurological diseases, and for drug screening. iPSC-derived neural spheroids or organoids can be developed to include complex neuronal and glial cell populations and display spontaneous, synchronous activity, which is a hallmark of in vivo neural communication. In this report we present a proof-of-concept study evaluating 3D iPSC-derived cortical neural spheroids as a physiologically- and pharmacologically-relevant high-throughput screening (HTS) platform and investigate their potential for use for therapeutic development. To this end, a library of 687 neuroactive compounds were tested in a phenotypic screening paradigm which measured calcium activity as a functional biomarker for neural modulation through fluctuations in calcium fluorescence. Pharmacological responses of cortical neural spheroids were analyzed using a multi-parametric approach, whereby seven peak characteristics from the calcium activity in each well were quantified and incorporated into principal component analysis and Sammon mapping to measure compound response. Here, we describe the implementation of the 687-compound library screen and data analysis demonstrating that iPSC-derived cortical spheroids are a robust and information-rich assay platform for HTS.
Collapse
Affiliation(s)
- Molly E Boutin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA; Ecovative Design, 70 Cohoes Avenue, Green Island, NY, USA
| | - Caroline E Strong
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | - Xin Hu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Zina Itkin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | | | | | | | | | - Srikanya Kundu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Emily Lee
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, 9800 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
39
|
Simkin D, Ambrosi C, Marshall KA, Williams LA, Eisenberg J, Gharib M, Dempsey GT, George AL, McManus OB, Kiskinis E. 'Channeling' therapeutic discovery for epileptic encephalopathy through iPSC technologies. Trends Pharmacol Sci 2022; 43:392-405. [PMID: 35427475 PMCID: PMC9119009 DOI: 10.1016/j.tips.2022.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Induced pluripotent stem cell (iPSC) and gene editing technologies have revolutionized the field of in vitro disease modeling, granting us access to disease-pertinent human cells of the central nervous system. These technologies are particularly well suited for the study of diseases with strong monogenic etiologies. Epilepsy is one of the most common neurological disorders in children, with approximately half of all genetic cases caused by mutations in ion channel genes. These channelopathy-associated epilepsies are clinically diverse, mechanistically complex, and hard to treat. Here, we review the genetic links to epilepsy, the opportunities and challenges of iPSC-based approaches for developing in vitro models of channelopathy-associated disorders, the available tools for effective phenotyping of iPSC-derived neurons, and discuss the potential therapeutic approaches for these devastating diseases.
Collapse
Affiliation(s)
- Dina Simkin
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Kelly A Marshall
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jordyn Eisenberg
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mennat Gharib
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
40
|
Weng OY, Li Y, Wang LY. Modeling Epilepsy Using Human Induced Pluripotent Stem Cells-Derived Neuronal Cultures Carrying Mutations in Ion Channels and the Mechanistic Target of Rapamycin Pathway. Front Mol Neurosci 2022; 15:810081. [PMID: 35359577 PMCID: PMC8960276 DOI: 10.3389/fnmol.2022.810081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 02/02/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is a neurological disorder that affects over 65 million people globally. It is characterized by periods of seizure activity of the brain as a result of excitation and inhibition (E/I) imbalance, which is regarded as the core underpinning of epileptic activity. Both gain- and loss-of-function (GOF and LOF) mutations of ion channels, synaptic proteins and signaling molecules along the mechanistic target of rapamycin (mTOR) pathway have been linked to this imbalance. The pathogenesis of epilepsy often has its roots in the early stage of brain development. It remains a major challenge to extrapolate the findings from many animal models carrying these GOF or LOF mutations to the understanding of disease mechanisms in the developing human brain. Recent advent of the human pluripotent stem cells (hPSCs) technology opens up a new avenue to recapitulate patient conditions and to identify druggable molecular targets. In the following review, we discuss the progress, challenges and prospects of employing hPSCs-derived neural cultures to study epilepsy. We propose a tentative working model to conceptualize the possible impact of these GOF and LOF mutations in ion channels and mTOR signaling molecules on the morphological and functional remodeling of intrinsic excitability, synaptic transmission and circuits, ultimately E/I imbalance and behavioral phenotypes in epilepsy.
Collapse
Affiliation(s)
- Octavia Yifang Weng
- Program in Developmental and Stem Cell Biology, Sick Kids Research Institutes, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Yun Li,
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, Sick Kids Research Institutes, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Lu-Yang Wang,
| |
Collapse
|
41
|
Barbiero I, Bianchi M, Kilstrup‐Nielsen C. Therapeutic potential of pregnenolone and pregnenolone methyl ether on depressive and CDKL5 deficiency disorders: Focus on microtubule targeting. J Neuroendocrinol 2022; 34:e13033. [PMID: 34495563 PMCID: PMC9286658 DOI: 10.1111/jne.13033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/27/2021] [Accepted: 08/08/2021] [Indexed: 12/22/2022]
Abstract
Pregnenolone methyl-ether (PME) is a synthetic derivative of the endogenous neuroactive steroid pregnenolone (PREG), which is an important modulator of several brain functions. In addition to being the precursor of steroids, PREG acts directly on various targets including microtubules (MTs), the functioning of which is fundamental for the development and homeostasis of nervous system. The coordination of MT dynamics is supported by a plethora of MT-associated proteins (MAPs) and by a specific MT code that is defined by the post-translational modifications of tubulin. Defects associated with MAPs or tubulin post-translational modifications are linked to different neurological pathologies including mood and neurodevelopmental disorders. In this review, we describe the beneficial effect of PME in major depressive disorders (MDDs) and in CDKL5 deficiency disorder (CDD), two pathologies that are joint by defective MT dynamics. Growing evidence indeed suggests that PME, as well as PREG, is able to positively affect the MT-binding of MAP2 and the plus-end tracking protein CLIP170 that are both found to be deregulated in the above mentioned pathologies. Furthermore, PME influences the state of MT acetylation, the deregulation of which is often associated with neurological abnormalities including MDDs. By contrast to PREG, PME is not metabolised into other downstream molecules with specific biological properties, an aspect that makes this compound more suitable for therapeutic strategies. Thus, through the analysis of MDDs and CDD, this work focuses attention on the possible use of PME for neuronal pathologies associated with MT defects.
Collapse
Affiliation(s)
- Isabella Barbiero
- Department of Biotechnology and Life Sciences, (DBSV)Centre of NeuroScienceUniversity of InsubriaBusto ArsizioItaly
| | - Massimiliano Bianchi
- Ulysses Neuroscience Ltd.Trinity College DublinDublinIreland
- Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Charlotte Kilstrup‐Nielsen
- Department of Biotechnology and Life Sciences, (DBSV)Centre of NeuroScienceUniversity of InsubriaBusto ArsizioItaly
| |
Collapse
|
42
|
Chiola S, Edgar NU, Shcheglovitov A. iPSC toolbox for understanding and repairing disrupted brain circuits in autism. Mol Psychiatry 2022; 27:249-258. [PMID: 34497379 PMCID: PMC8901782 DOI: 10.1038/s41380-021-01288-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/16/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023]
Abstract
Over the past decade, tremendous progress has been made in defining autism spectrum disorder (ASD) as a disorder of brain connectivity. Indeed, whole-brain imaging studies revealed altered connectivity in the brains of individuals with ASD, and genetic studies identified rare ASD-associated mutations in genes that regulate synaptic development and function. However, it remains unclear how specific mutations alter the development of neuronal connections in different brain regions and whether altered connections can be restored therapeutically. The main challenge is the lack of preclinical models that recapitulate important aspects of human development for studying connectivity. Through recent technological innovations, it is now possible to generate patient- or mutation-specific human neurons or organoids from induced pluripotent stem cells (iPSCs) and to study altered connectivity in vitro or in vivo upon xenotransplantation into an intact rodent brain. Here, we discuss how deficits in neurodevelopmental processes may lead to abnormal brain connectivity and how iPSC-based models can be used to identify abnormal connections and to gain insights into underlying cellular and molecular mechanisms to develop novel therapeutics.
Collapse
Affiliation(s)
- Simone Chiola
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Nicolas U Edgar
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | | |
Collapse
|
43
|
Zourray C, Kurian MA, Barral S, Lignani G. Electrophysiological Properties of Human Cortical Organoids: Current State of the Art and Future Directions. Front Mol Neurosci 2022; 15:839366. [PMID: 35250479 PMCID: PMC8888527 DOI: 10.3389/fnmol.2022.839366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/24/2022] [Indexed: 12/13/2022] Open
Abstract
Human cortical development is an intricate process resulting in the generation of many interacting cell types and long-range connections to and from other brain regions. Human stem cell-derived cortical organoids are now becoming widely used to model human cortical development both in physiological and pathological conditions, as they offer the advantage of recapitulating human-specific aspects of corticogenesis that were previously inaccessible. Understanding the electrophysiological properties and functional maturation of neurons derived from human cortical organoids is key to ensure their physiological and pathological relevance. Here we review existing data on the electrophysiological properties of neurons in human cortical organoids, as well as recent advances in the complexity of cortical organoid modeling that have led to improvements in functional maturation at single neuron and neuronal network levels. Eventually, a more comprehensive and standardized electrophysiological characterization of these models will allow to better understand human neurophysiology, model diseases and test novel treatments.
Collapse
Affiliation(s)
- Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
- Department of Pharmacology, UCL School of Pharmacy, London, United Kingdom
| | - Manju A. Kurian
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research Into Rare Disease in Children, GOS-Institute of Child Health, University College London, London, United Kingdom
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
- *Correspondence: Gabriele Lignani,
| |
Collapse
|
44
|
Bhattacharya A, Choi WWY, Muffat J, Li Y. Modeling Developmental Brain Diseases Using Human Pluripotent Stem Cells-Derived Brain Organoids - Progress and Perspective. J Mol Biol 2021; 434:167386. [PMID: 34883115 DOI: 10.1016/j.jmb.2021.167386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023]
Abstract
Developmental brain diseases encompass a group of conditions resulting from genetic or environmental perturbations during early development. Despite the increased research attention in recent years following recognition of the prevalence of these diseases, there is still a significant lack of knowledge of their etiology and treatment options. The genetic and clinical heterogeneity of these diseases, in addition to the limitations of experimental animal models, contribute to this difficulty. In this regard, the advent of brain organoid technology has provided a new means to study the cause and progression of developmental brain diseases in vitro. Derived from human pluripotent stem cells, brain organoids have been shown to recapitulate key developmental milestones of the early human brain. Combined with technological advancements in genome editing, tissue engineering, electrophysiology, and multi-omics analysis, brain organoids have expanded the frontiers of human neurobiology, providing valuable insight into the cellular and molecular mechanisms of normal and pathological brain development. This review will summarize the current progress of applying brain organoids to model human developmental brain diseases and discuss the challenges that need to be overcome to further advance their utility.
Collapse
Affiliation(s)
- Afrin Bhattacharya
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Wendy W Y Choi
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Julien Muffat
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Program in Neurosciences and Mental Health, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; The University of Toronto, Department of Molecular Genetics, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
45
|
Benchoua A, Lasbareilles M, Tournois J. Contribution of Human Pluripotent Stem Cell-Based Models to Drug Discovery for Neurological Disorders. Cells 2021; 10:cells10123290. [PMID: 34943799 PMCID: PMC8699352 DOI: 10.3390/cells10123290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023] Open
Abstract
One of the major obstacles to the identification of therapeutic interventions for central nervous system disorders has been the difficulty in studying the step-by-step progression of diseases in neuronal networks that are amenable to drug screening. Recent advances in the field of human pluripotent stem cell (PSC) biology offers the capability to create patient-specific human neurons with defined clinical profiles using reprogramming technology, which provides unprecedented opportunities for both the investigation of pathogenic mechanisms of brain disorders and the discovery of novel therapeutic strategies via drug screening. Many examples not only of the creation of human pluripotent stem cells as models of monogenic neurological disorders, but also of more challenging cases of complex multifactorial disorders now exist. Here, we review the state-of-the art brain cell types obtainable from PSCs and amenable to compound-screening formats. We then provide examples illustrating how these models contribute to the definition of new molecular or functional targets for drug discovery and to the design of novel pharmacological approaches for rare genetic disorders, as well as frequent neurodegenerative diseases and psychiatric disorders.
Collapse
Affiliation(s)
- Alexandra Benchoua
- Neuroplasticity and Therapeutics, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
- High Throughput Screening Platform, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
- Correspondence:
| | - Marie Lasbareilles
- Neuroplasticity and Therapeutics, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
- UEVE UMR 861, I-STEM, AFM, 91100 Corbeil-Essonnes, France
| | - Johana Tournois
- High Throughput Screening Platform, CECS, I-STEM, AFM, 91100 Corbeil-Essonnes, France;
| |
Collapse
|
46
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|