1
|
Reagin KL, Oliva KE, Hansen MR, Slade CD, Watford WT, Klonowski KD. Regulation of respiratory CD8+ T-cell immunity by suppressive monocyte-like dendritic cells (MCs). JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:977-994. [PMID: 40163680 PMCID: PMC12123217 DOI: 10.1093/jimmun/vkae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/12/2024] [Indexed: 04/02/2025]
Abstract
Active immune suppression can mediate the balance between protective cellular immunity and harmful immunopathology. This suppression can occur locally, at an infection site, or in regional draining lymph nodes (dLNs). Immune regulation is of particular importance in sites such as the lung where aberrant immunopathology can result in loss of tissue function and respiratory failure. We have recently identified a novel population of CD11b+CD103+CCR2+ monocyte-like dendritic cells (MCs) which directly suppress CD8+ T-cell proliferation in vitro. Respiratory infection of mice with RNA viruses recruits these MCs either exclusively to the dLN (after vesicular stomatitis virus infection) or both the dLN and site of viral replication (after influenza infection). Here we show that depletion of MCs from the dLN of mice using CCR2-DTR bone marrow chimeras results in enhanced respiratory CD8+ T-cell responses and lung tissue-resident memory cell (TRM) formation which correlated with enhanced antiviral responses upon heterologous VSV challenge. Conversely, depletion of MCs from both the dLN and respiratory tract following influenza infection results in enhanced respiratory CD8+ T-cell responses coupled with fatal immunopathology. Together, these data suggest that suppressive MCs govern key aspects of respiratory CD8+ T-cell immunity, thereby balancing immunity and adverse pathology in the context of viral infection.
Collapse
Affiliation(s)
- Katie L Reagin
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Kimberly E Oliva
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Matthew R Hansen
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Chris D Slade
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Wendy T Watford
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| | - Kimberly D Klonowski
- Department of Cellular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Jennewein MF, Schultz MD, Beaver S, Battisti P, Bakken J, Hanson D, Akther J, Zhou F, Mohamath R, Singh J, Cross N, Kasal DN, Ykema MR, Reed S, Kalange D, Cheatwood IR, Tipper JL, Foote JB, King RG, Silva-Sanchez A, Harrod KS, Botta D, Gerhardt A, Casper C, Randall TD, Lund FE, Voigt EA. Intranasal replicon SARS-CoV-2 vaccine produces protective respiratory and systemic immunity and prevents viral transmission. Mol Ther 2025:S1525-0016(25)00281-3. [PMID: 40211539 DOI: 10.1016/j.ymthe.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/27/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
While mRNA vaccines have been effective in combating SARS-CoV-2, the waning of vaccine-induced antibody responses and lack of vaccine-induced respiratory tract immunity contribute to ongoing infection and transmission. In this work, we compare and contrast intranasal (i.n.) and intramuscular (i.m.) administration of a SARS-CoV-2 replicon vaccine delivered by a nanostructured lipid carrier (NLC). Both i.m. and i.n. vaccines induce potent systemic serum neutralizing antibodies, bone marrow-resident immunoglobulin G-secreting cells, and splenic T cell responses. The i.n. vaccine additionally induces robust respiratory mucosal immune responses, including SARS-CoV-2-reactive lung-resident memory T cell populations. As a booster following previous i.m. vaccination, the i.n. vaccine also elicits the development of mucosal virus-specific T cells. Both the i.m.- and i.n.-administered vaccines durably protect hamsters from infection-associated morbidity upon viral challenge, significantly reducing viral loads and preventing challenged hamsters from transmitting virus to naive cagemates. This replicon-NLC vaccine's potent systemic immunogenicity, and additional mucosal immunogenicity when delivered i.n., may be key for combating SARS-CoV-2 and other respiratory pathogens.
Collapse
Affiliation(s)
- Madeleine F Jennewein
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Michael D Schultz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Samuel Beaver
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Peter Battisti
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Julie Bakken
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Derek Hanson
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Jobaida Akther
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fen Zhou
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Raodoh Mohamath
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Jasneet Singh
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Noah Cross
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Darshan N Kasal
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Matthew R Ykema
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Sierra Reed
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Davies Kalange
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Isabella R Cheatwood
- Undergraduate Immunology Program, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer L Tipper
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jeremy B Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - R Glenn King
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alana Gerhardt
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA
| | - Corey Casper
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Frances E Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Immunology Institute, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily A Voigt
- Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA.
| |
Collapse
|
3
|
Weiss ES, Hirai T, Li H, Liu A, Baker S, Magill I, Gillis J, Zhang YR, Ramcke T, Kurihara K, Masopust D, Anandasabapathy N, Singh H, Zemmour D, Mackay LK, Kaplan DH. Epidermal Resident Memory T Cell Fitness Requires Antigen Encounter in the Skin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.646438. [PMID: 40236062 PMCID: PMC11996394 DOI: 10.1101/2025.03.31.646438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
CD8 + tissue resident memory T cells (T RM ) develop from effectors that seed peripheral tissues where they persist providing defense against subsequent challenges. T RM persistence requires autocrine TGFβ transactivated by integrins expressed on keratinocytes. T RM precursors that encounter antigen in the epidermis during development outcompete bystander T RM for TGFβ resulting in enhanced persistence. ScRNA-seq analysis of epidermal T RM revealed that local antigen experience in the skin resulted in an enhanced differentiation signature in comparison with bystanders. Upon recall, T RM displayed greater proliferation dictated by affinity of antigen experienced during epidermal development. Finally, local antigen experienced T RM differentially expressed TGFβRIII, which increases avidity of the TGFβRI/II receptor complex for TGFβ. Selective ablation of Tgfbr3 reduced local antigen experienced T RM capacity to persist, rendering them phenotypically like bystander T RM . Thus, antigen driven TCR signaling in the epidermis during T RM differentiation results in a lower TGFβ requirement for persistence and increased proliferative capacity that together enhance epidermal T RM fitness.
Collapse
|
4
|
Traber KE, Mizgerd JP. The Integrated Pulmonary Immune Response to Pneumonia. Annu Rev Immunol 2025; 43:545-569. [PMID: 40036700 DOI: 10.1146/annurev-immunol-082323-031642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Pneumonia is an acute respiratory infection of the lower respiratory tract. The effectiveness of the host immune response determines the severity of infection, or whether pneumonia occurs at all. The lungs house both innate and adaptive immune systems, which integrate their activities to provide host defense that eliminates microbes and prevents lower respiratory infection from becoming severe. Professional immune cells in the lung, like macrophages and lymphocytes, work with lung constituents, like epithelial cells and fibroblasts, to optimize antimicrobial defense. The dynamics of the immune response during infection and the immune components contributing to defense are influenced by prior experiences with respiratory pathogens, remodeling lung immunity in ways that improve responses against subsequent infections. This review covers how innate and adaptive immune activities coordinate inside the lung to provide integrated and effective immune resistance against respiratory pathogens.
Collapse
Affiliation(s)
- Katrina E Traber
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
| | - Joseph P Mizgerd
- Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA;
- Department of Virology, Immunology, and Microbiology and Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Zhu W, Dong C, Wei L, Kim JK, Wang BZ. Inverted HA-EV immunization elicits stalk-specific influenza immunity and cross-protection in mice. Mol Ther 2025; 33:485-498. [PMID: 39741410 PMCID: PMC11852689 DOI: 10.1016/j.ymthe.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/02/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Enhancing protective immunity in the respiratory tract is crucial to combat influenza infection and transmission. Developing mucosal universal influenza vaccines requires effective delivery platforms to overcome the respiratory mucosal barrier and stimulate appropriate innate immune reactions, thereby bridging adaptive immune responses with minimal necessary inflammation. Meanwhile, the vaccine platforms must be biocompatible. This study employed cell-derived extracellular vesicles (EVs) as a mucosal universal influenza vaccine platform. By conjugating influenza hemagglutinin (HA) onto EV surfaces through HA-receptor interaction, we achieved an upside-down (inverted) influenza HA configuration that exposed the conserved HA stalk region while partially hiding the globular head domain. Intranasal immunization with the resulting EVs induced robust HA stalk- and virus-specific serum antibody and mucosal immune responses in mice, protecting against heterologous virus infection. Notably, EVs derived from the lung epithelial cell line A549 induced superior cross-reactive antibodies and enhanced protection upon intranasal immunization. EVs conjugating multivalent HA elicited broadly cross-reactive antibody and cellular responses against different influenza strains. Our results demonstrated that EVs conjugating multiple inverted HAs represented an effective strategy for developing a mucosal universal influenza vaccine.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
6
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Herpes stromal keratitis erodes the establishment of tissue-resident memory T cell pool in HSV-1 infected corneas. Mucosal Immunol 2025; 18:188-204. [PMID: 39581232 PMCID: PMC11891946 DOI: 10.1016/j.mucimm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The recurrent herpes simplex virus-1 (HSV-1) infection of the cornea can cause the development of herpes stromal keratitis (HSK). This chronic immunoinflammatory condition is a major cause of infection-induced vision loss. The previous episodes of HSK increase the risk of future recurrences in the same cornea. However, not all HSV-1 infected corneas that shed infectious virus at the ocular surface develop HSK, suggesting that corneal HSV-1 infection may cause an establishment of protective immunity in HSV-1 infected corneas. However, upon recurrent corneal HSV-1 infection, the established protective immunity can get compromised, resulting in the development of HSK. In this study, we compared the quantity and quality of tissue-resident memory T (TRM) cells in HSV-1 infected corneas that did or did not develop HSK. Our results showed the predominance of TRM cell in the epithelium than in stroma of HSV-1 infected corneas. Furthermore, HSV-1 infected non-HSK corneas exhibited more CD4 and CD8 TRM cells than HSK corneas. The TRM cells in non-HSK than in HSK corneas were more effective in clearing the infectious virus upon secondary corneal HSV-1 infection. Our results demonstrate the differential quantity and quality of TRM cells in HSV-1 infected corneas that did or did not develop HSK.
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States; Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, United States
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States.
| |
Collapse
|
7
|
Scott MC, Steier Z, Pierson MJ, Stolley JM, O'Flanagan SD, Soerens AG, Wijeyesinghe SP, Beura LK, Dileepan G, Burbach BJ, Künzli M, Quarnstrom CF, Ghirardelli Smith OC, Weyu E, Hamilton SE, Vezys V, Shalek AK, Masopust D. Deep profiling deconstructs features associated with memory CD8 + T cell tissue residence. Immunity 2025; 58:162-181.e10. [PMID: 39708817 PMCID: PMC11852946 DOI: 10.1016/j.immuni.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/23/2024]
Abstract
Tissue-resident memory CD8+ T (Trm) cells control infections and cancer and are defined by their lack of recirculation. Because migration is difficult to assess, residence is usually inferred by putative residence-defining phenotypic and gene signature proxies. We assessed the validity and universality of residence proxies by integrating mouse parabiosis, multi-organ sampling, intravascular staining, acute and chronic infection models, dirty mice, and single-cell multi-omics. We report that memory T cells integrate a constellation of inputs-location, stimulation history, antigen persistence, and environment-resulting in myriad differentiation states. Thus, current Trm-defining methodologies have implicit limitations, and a universal residence-specific signature may not exist. However, we define genes and phenotypes that more robustly correlate with tissue residence across the broad range of conditions that we tested. This study reveals broad adaptability of T cells to diverse stimulatory and environmental inputs and provides practical recommendations for evaluating Trm cells.
Collapse
Affiliation(s)
- Milcah C Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zoë Steier
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Mark J Pierson
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - J Michael Stolley
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Stephen D O'Flanagan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrew G Soerens
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sathi P Wijeyesinghe
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalit K Beura
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gayathri Dileepan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brandon J Burbach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Marco Künzli
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Clare F Quarnstrom
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia C Ghirardelli Smith
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eyob Weyu
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sara E Hamilton
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vaiva Vezys
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex K Shalek
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Masopust
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
8
|
Sen Chaudhuri A, Sun J. Lung-resident lymphocytes and their roles in respiratory infections and chronic respiratory diseases. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:214-223. [PMID: 39834580 PMCID: PMC11742555 DOI: 10.1016/j.pccm.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Indexed: 01/22/2025]
Abstract
Recent scientific breakthroughs have blurred traditional boundaries between innate and adaptive immunity, revealing a sophisticated network of tissue-resident cells that deliver immediate, localized immune responses. These lymphocytes not only provide rapid frontline defense but also present a paradoxical role in the pathogenesis of respiratory diseases such as asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and the long-term tissue consequences of viral infections including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). This review traverses the intricate landscape of lung-resident lymphocytes, delving into their origins, diverse functions, and their dualistic impact on pulmonary health. We dissect their interactions with the microenvironment and the regulatory mechanisms guiding their activity, with an emphasis on their contribution to both immune protection and immunopathology. This review aims to elucidate the complex narrative of these cells, enhancing our understanding of the development of precise therapeutic strategies to combat acute and chronic pulmonary diseases. Through this exploration, the review aspires to shed light on the potential of harnessing lung-resident lymphocytes for the treatment of respiratory conditions.
Collapse
Affiliation(s)
- Arka Sen Chaudhuri
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
Cheng L, Becattini S. Local antigen encounter promotes generation of tissue-resident memory T cells in the large intestine. Mucosal Immunol 2024; 17:810-824. [PMID: 38782240 DOI: 10.1016/j.mucimm.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Upon infection, CD8+ T cells that have been primed in the draining lymph nodes migrate to the invaded tissue, where they receive cues prompting their differentiation into tissue-resident memory cells (Trm), which display niche-specific transcriptional features. Despite the importance of these cells, our understanding of their molecular landscape and the signals that dictate their development remains limited, particularly in specific anatomical niches such as the large intestine (LI). Here, we report that LI Trm-generated following oral infection exhibits a distinct transcriptional profile compared to Trm in other tissues. Notably, we observe that local cues play a crucial role in the preferential establishment of LI Trm, favoring precursors that migrate to the tissue early during infection. Our investigations identify cognate antigen recognition as a major driver of Trm differentiation at this anatomical site. Local antigen presentation not only promotes the proliferation of effector cells and memory precursors but also facilitates the acquisition of transcriptional features characteristic of gut Trm. Thus, antigen recognition in the LI favors the establishment of Trm by impacting T cell expansion and gene expression.
Collapse
Affiliation(s)
- Liqing Cheng
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Simone Becattini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Geneva Centre for Inflammation Research, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Ulibarri MR, Lin Y, Ramprashad JC, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. Cell Rep 2024; 43:114621. [PMID: 39153200 PMCID: PMC11401477 DOI: 10.1016/j.celrep.2024.114621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/01/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024] Open
Abstract
Resident memory T cells (TRMs) play a vital role in regional immune defense. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency and low cell survival rates have limited the implementation of TRM-focused high-throughput assays. Here, we engineer a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation. These in-vitro-generated TRMs are phenotypically and transcriptionally similar to in vivo TRMs. Pharmacological and genetic approaches showed that transforming growth factor β (TGF-β) signaling plays a crucial role in their differentiation. The VEOs in our model are susceptible to viral infections and the CD8 T cells are amenable to genetic manipulation, both of which will allow a detailed interrogation of antiviral CD8 T cell biology. Altogether we have established a robust in vitro TRM differentiation system that is scalable and can be subjected to high-throughput assays that will rapidly add to our understanding of TRMs.
Collapse
Affiliation(s)
- Max R Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Pathobiology Graduate Program, Brown University, Providence, RI 02912, USA
| | - Julian C Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Mohammad H Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Farha J Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA; Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA 02115, USA
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX 78229, USA; South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| | - J Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lalit K Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
11
|
Liu C, Xue RY, Li GC, Zhang Y, Wu WY, Liu JY, Feng R, Jin Z, Deng Y, Jin ZL, Cheng H, Mao L, Zou QM, Li HB. pGM-CSF as an adjuvant in DNA vaccination against SARS-CoV-2. Int J Biol Macromol 2024; 264:130660. [PMID: 38460634 DOI: 10.1016/j.ijbiomac.2024.130660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
The emergence of SARS-CoV-2 presents a significant global public health dilemma. Vaccination has long been recognized as the most effective means of preventing the spread of infectious diseases. DNA vaccines have attracted attention due to their safety profile, cost-effectiveness, and ease of production. This study aims to assess the efficacy of plasmid-encoding GM-CSF (pGM-CSF) as an adjuvant to augment the specific humoral and cellular immune response elicited by DNA vaccines based on the receptor-binding domain (RBD) antigen. Compared to the use of plasmid-encoded RBD (pRBD) alone, mice that were immunized with a combination of pRBD and pGM-CSF exhibited significantly elevated levels of RBD-specific antibody titers in serum, BALF, and nasal wash. Furthermore, these mice generated more potent neutralization antibodies against both the wild-type and Omicron pseudovirus, as well as the ancestral virus. In addition, pGM-CSF enhanced pRBD-induced CD4+ and CD8+ T cell responses and promoted central memory T cells storage in the spleen. At the same time, tissue-resident memory T (Trm) cells in the lung also increased significantly, and higher levels of specific responses were maintained 60 days post the final immunization. pGM-CSF may play an adjuvant role by promoting antigen expression, immune cells recruitment and GC B cell responses. In conclusion, pGM-CSF may be an effective adjuvant candidate for the DNA vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- Chang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Department of Pharmacy, Chinese People's Liberation Army Unit 32265, Guangzhou 510310, PR China
| | - Ruo-Yi Xue
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Guo-Cheng Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yi Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Yi Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jing-Yi Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Rang Feng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zhe Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Yan Deng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Zi-Li Jin
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hao Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Quan-Ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Hai-Bo Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
12
|
Lee S, Yeung KK, Watts TH. Tissue-resident memory T cells in protective immunity to influenza virus. Curr Opin Virol 2024; 65:101397. [PMID: 38458064 DOI: 10.1016/j.coviro.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Influenza virus is an important human pathogen with significant pandemic potential. Tissue-resident memory T cells (Trm) in the lung provide critical protection against influenza, but unlike Trm at other mucosal sites, Trm in the respiratory tract (RT) are subject to rapid attrition in mice, mirroring the decline in protective immunity to influenza virus over time. Conversely, dysfunctional Trm can drive fibrosis in aged mice. The requirement for local antigen to induce and maintain RT Trm must be considered in vaccine strategies designed to induce this protective immune subset. Here, we discuss recent studies that inform our understanding of influenza-specific respiratory Trm, and the factors that influence their development and persistence. We also discuss how these biological insights are being used to develop vaccines that induce Trm in the RT, despite the limitations to monitoring Trm in humans.
Collapse
Affiliation(s)
- Seungwoo Lee
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Karen Km Yeung
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tania H Watts
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
13
|
Macedo BG, Masuda MY, Borges da Silva H. Location versus ID: what matters to lung-resident memory T cells? Front Immunol 2024; 15:1355910. [PMID: 38375476 PMCID: PMC10875077 DOI: 10.3389/fimmu.2024.1355910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 02/21/2024] Open
Abstract
Tissue-resident memory T cells (TRM cells) are vital for the promotion of barrier immunity. The lung, a tissue constantly exposed to foreign pathogenic or non-pathogenic antigens, is not devoid of these cells. Lung TRM cells have been considered major players in either the protection against respiratory viral infections or the pathogenesis of lung allergies. Establishment of lung TRM cells rely on intrinsic and extrinsic factors. Among the extrinsic regulators of lung TRM cells, the magnitude of the impact of factors such as the route of antigen entry or the antigen natural tropism for the lung is not entirely clear. In this perspective, we provide a summary of the literature covering this subject and present some preliminary results on this potential dichotomy between antigen location versus antigen type. Finally, we propose a hypothesis to synthesize the potential contributions of these two variables for lung TRM cell development.
Collapse
|
14
|
Uddbäck I, Michalets SE, Saha A, Mattingly C, Kost KN, Williams ME, Lawrence LA, Hicks SL, Lowen AC, Ahmed H, Thomsen AR, Russell CJ, Scharer CD, Boss JM, Koelle K, Antia R, Christensen JP, Kohlmeier JE. Prevention of respiratory virus transmission by resident memory CD8 + T cells. Nature 2024; 626:392-400. [PMID: 38086420 PMCID: PMC11040656 DOI: 10.1038/s41586-023-06937-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/05/2023] [Indexed: 01/26/2024]
Abstract
An ideal vaccine both attenuates virus growth and disease in infected individuals and reduces the spread of infections in the population, thereby generating herd immunity. Although this strategy has proved successful by generating humoral immunity to measles, yellow fever and polio, many respiratory viruses evolve to evade pre-existing antibodies1. One approach for improving the breadth of antiviral immunity against escape variants is through the generation of memory T cells in the respiratory tract, which are positioned to respond rapidly to respiratory virus infections2-6. However, it is unknown whether memory T cells alone can effectively surveil the respiratory tract to the extent that they eliminate or greatly reduce viral transmission following exposure of an individual to infection. Here we use a mouse model of natural parainfluenza virus transmission to quantify the extent to which memory CD8+ T cells resident in the respiratory tract can provide herd immunity by reducing both the susceptibility of acquiring infection and the extent of transmission, even in the absence of virus-specific antibodies. We demonstrate that protection by resident memory CD8+ T cells requires the antiviral cytokine interferon-γ (IFNγ) and leads to altered transcriptional programming of epithelial cells within the respiratory tract. These results suggest that tissue-resident CD8+ T cells in the respiratory tract can have important roles in protecting the host against viral disease and limiting viral spread throughout the population.
Collapse
Affiliation(s)
- Ida Uddbäck
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Sarah E Michalets
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ananya Saha
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Cameron Mattingly
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsten N Kost
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Elliott Williams
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Laurel A Lawrence
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sakeenah L Hicks
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Hasan Ahmed
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Allan R Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Charles J Russell
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jan P Christensen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Lobby JL, Danzy S, Holmes KE, Lowen AC, Kohlmeier JE. Both Humoral and Cellular Immunity Limit the Ability of Live Attenuated Influenza Vaccines to Promote T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:107-116. [PMID: 37982700 PMCID: PMC10842048 DOI: 10.4049/jimmunol.2300343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
One potential advantage of live attenuated influenza vaccines (LAIVs) is their ability to establish both virus-specific Ab and tissue-resident memory T cells (TRM) in the respiratory mucosa. However, it is hypothesized that pre-existing immunity from past infections and/or immunizations prevents LAIV from boosting or generating de novo CD8+ T cell responses. To determine whether we can overcome this limitation, we generated a series of drifted influenza A/PR8 LAIVs with successive mutations in the hemagglutinin protein, allowing for increasing levels of escape from pre-existing Ab. We also inserted a CD8+ T cell epitope from the Sendai virus nucleoprotein (NP) to assess both generation of a de novo T cell response and boosting of pre-existing influenza-specific CD8+ T cells following LAIV immunization. Increasing the level of escape from Ab enabled boosting of pre-existing TRM, but we were unable to generate de novo Sendai virus NP+ CD8+ TRM following LAIV immunization in PR8 influenza-immune mice, even with LAIV strains that can fully escape pre-existing Ab. As these data suggested a role for cell-mediated immunity in limiting LAIV efficacy, we investigated several scenarios to assess the impact of pre-existing LAIV-specific TRM in the upper and lower respiratory tract. Ultimately, we found that deletion of the immunodominant influenza NP366-374 epitope allowed for sufficient escape from cellular immunity to establish de novo CD8+ TRM. When combined, these studies demonstrate that both pre-existing humoral and cellular immunity can limit the effectiveness of LAIV, which is an important consideration for future design of vaccine vectors against respiratory pathogens.
Collapse
Affiliation(s)
- Jenna L. Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| |
Collapse
|
16
|
Zhou J, Uddback I, Kohlmeier JE, Christensen JP, Thomsen AR. Vaccine induced memory CD8 + T cells efficiently prevent viral transmission from the respiratory tract. Front Immunol 2023; 14:1322536. [PMID: 38164135 PMCID: PMC10757911 DOI: 10.3389/fimmu.2023.1322536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Mucosal immunization eliciting local T-cell memory has been suggested for improved protection against respiratory infections caused by viral variants evading pre-existing antibodies. However, it remains unclear whether T-cell targeted vaccines suffice for prevention of viral transmission and to which extent local immunity is important in this context. Methods To study the impact of T-cell vaccination on the course of viral respiratory infection and in particular the capacity to inhibit viral transmission, we used a mouse model involving natural murine parainfluenza infection with a luciferase encoding virus and an adenovirus based nucleoprotein targeting vaccine. Results and discussion Prior intranasal immunization inducing strong mucosal CD8+ T cell immunity provided an almost immediate shut-down of the incipient infection and completely inhibited contact based viral spreading. If this first line of defense did not operate, as in parentally immunized mice, recirculating T cells participated in accelerated viral control that reduced the intensity of inter-individual transmission. These observations underscore the importance of pursuing the development of mucosal T-cell inducing vaccines for optimal protection of the individual and inhibition of inter-individual transmission (herd immunity), while at the same time explain why induction of a strong systemic T-cell response may still impact viral transmission.
Collapse
Affiliation(s)
- Jinglin Zhou
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Uddback
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, United States
| | | | - Allan Randrup Thomsen
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Xu H, Zhou R, Chen Z. Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation. Clin Exp Immunol 2023; 214:249-259. [PMID: 37586053 PMCID: PMC10719502 DOI: 10.1093/cei/uxad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/22/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023] Open
Abstract
Mounting evidence has indicated the essential role of tissue-resident memory T (TRM) cells for frontline protection against viral infection and for cancer immune surveillance (Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defense. Nat Rev Immunol 2016, 16, 79-89. doi:10.1038/nri.2015.3.). TRM cells are transcriptionally, phenotypically, and functionally distinct from circulating memory T (Tcirm) cells. It is necessary to understand the unique ontogenetic mechanism, migratory regulation, and biological function of TRM cells. In this review, we discuss recent insights into cellular mechanisms and discrete responsiveness in different tissue microenvironments underlying TRM cell development. We also emphasize the translational potential of TRM cells by focusing on their establishment in association with improved protection in mucosal tissues against various types of diseases and effective strategies for eliciting TRM cells in both pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Haoran Xu
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Runhong Zhou
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| | - Zhiwei Chen
- AIDS Institute, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
- State Key Laboratory for Emerging Infectious Diseases, University of Hong Kong; Pokfulam, Hong Kong Special Administrative Region, People’s Republic of China
| |
Collapse
|
18
|
Swain SL. CD4 memory has a hierarchical structure created by requirements for infection-derived signals at an effector checkpoint. Front Immunol 2023; 14:1306433. [PMID: 38152398 PMCID: PMC10751922 DOI: 10.3389/fimmu.2023.1306433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Our recent studies reveal that the persistence, location, and amount of both antigen and signals that induce pathogen recognition responses determine the number of CD4 memory cells, the subsets that develop, their location, and hence their protective efficacy. Non-replicating vaccines provide antigen that is short-lived and generate low levels of only some memory subsets that are mostly restricted to secondary lymphoid tissue. In contrast, exposure to long-lived replicating viruses and bacteria provides high levels of diverse antigens in sites of infection and induces strong pathogen recognition signals for extended periods of time, resulting in much higher levels of memory cells of diverse subsets in both lymphoid and nonlymphoid sites. These include memory subsets with highly potent functions such as T follicular helpers and cytotoxic CD4 effectors at sites of infection, where they can most effectively combat the pathogen early after re-infection. These effectors also do not develop without antigen and pathogen recognition signals at the effector stage, and both subsets must receive these signals in the tissue sites where they will become resident. We postulate that this leads to a hierarchical structure of memory, with the strongest memory induced only by replicating pathogens. This paradigm suggests a likely roadmap for markedly improving vaccine design.
Collapse
Affiliation(s)
- Susan L. Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
19
|
Ulibarri MR, Lin Y, Ramprashad JR, Han G, Hasan MH, Mithila FJ, Ma C, Gopinath S, Zhang N, Milner JJ, Beura LK. Epithelial organoid supports resident memory CD8 T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569395. [PMID: 38076957 PMCID: PMC10705482 DOI: 10.1101/2023.12.01.569395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Resident Memory T cells (TRM) play a vital role in regional immune defense in barrier organs. Although laboratory rodents have been extensively used to study fundamental TRM biology, poor isolation efficiency, sampling bias and low cell survival rates have limited our ability to conduct TRM-focused high-throughput assays. Here, we engineered a murine vaginal epithelial organoid (VEO)-CD8 T cell co-culture system that supports CD8 TRM differentiation in vitro. The three-dimensional VEOs established from murine adult stem cells resembled stratified squamous vaginal epithelium and induced gradual differentiation of activated CD8 T cells into epithelial TRM. These in vitro generated TRM were phenotypically and transcriptionally similar to in vivo TRM, and key tissue residency features were reinforced with a second cognate-antigen exposure during co-culture. TRM differentiation was not affected even when VEOs and CD8 T cells were separated by a semipermeable barrier, indicating soluble factors' involvement. Pharmacological and genetic approaches showed that TGF-β signaling played a crucial role in their differentiation. We found that the VEOs in our model remained susceptible to viral infections and the CD8 T cells were amenable to genetic manipulation; both of which will allow detailed interrogation of antiviral CD8 T cell biology in a reductionist setting. In summary, we established a robust model which captures bonafide TRM differentiation that is scalable, open to iterative sampling, and can be subjected to high throughput assays that will rapidly add to our understanding of TRM.
Collapse
Affiliation(s)
- Max R. Ulibarri
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Ying Lin
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Pathobiology Graduate Program, Brown University, Providence, RI, 02912
| | - Julian R. Ramprashad
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Geongoo Han
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Mohammad H. Hasan
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| | - Farha J. Mithila
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
- Molecular Biology, Cell Biology and Biochemistry Graduate Program, Brown University, Providence, RI, 02912
| | - Chaoyu Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
| | - Smita Gopinath
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Cambridge, MA, 02115
| | - Nu Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, 78229
- South Texas Veterans Health Care System, San Antonio, TX, 78229
| | - J. Justin Milner
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599
| | - Lalit K. Beura
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, 02912
| |
Collapse
|
20
|
Osman M, Park SL, Mackay LK. Tissue-resident memory T (T RM ) cells: Front-line workers of the immune system. Eur J Immunol 2023; 53:e2250060. [PMID: 36597841 DOI: 10.1002/eji.202250060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Tissue-resident memory T (TRM ) cells play a vital role in local immune protection against infection and cancer. The location of TRM cells within peripheral tissues at sites of pathogen invasion allows for the rapid detection and elimination of microbes, making their generation an attractive goal for the development of next-generation vaccines. Here, we discuss differential requirements for CD8+ TRM cell development across tissues with implications for establishing local prophylactic immunity, emphasizing the role of tissue-derived factors, local antigen, and adjuvants on TRM cell generation in the context of vaccination.
Collapse
Affiliation(s)
- Maleika Osman
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Simone L Park
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Diniz MO, Maini MK, Swadling L. T cell control of SARS-CoV-2: When, which, and where? Semin Immunol 2023; 70:101828. [PMID: 37651850 DOI: 10.1016/j.smim.2023.101828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
Efficient immune protection against viruses such as SARS-CoV-2 requires the coordinated activity of innate immunity, B and T cells. Accumulating data point to a critical role for T cells not only in the clearance of established infection, but also for aborting viral replication independently of humoral immunity. Here we review the evidence supporting the contribution of antiviral T cells and consider which of their qualitative features favour efficient control of infection. We highlight how studies of SARS-CoV-2 and other coronaviridae in animals and humans have provided important lessons on the optimal timing (When), functionality and specificity (Which), and location (Where) of antiviral T cells. We discuss the clinical implications, particularly for the development of next-generation vaccines, and emphasise areas requiring further study.
Collapse
Affiliation(s)
- Mariana O Diniz
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| | - Leo Swadling
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, Pears Building, London WC1E 6BT, UK.
| |
Collapse
|
22
|
Devarajan P, Vong AM, Castonguay CH, Silverstein NJ, Kugler-Umana O, Bautista BL, Kelly KA, Luban J, Swain SL. Cytotoxic CD4 development requires CD4 effectors to concurrently recognize local antigen and encounter type I IFN-induced IL-15. Cell Rep 2023; 42:113182. [PMID: 37776519 PMCID: PMC10842051 DOI: 10.1016/j.celrep.2023.113182] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/30/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Cytotoxic CD4 T cell effectors (ThCTLs) kill virus-infected major histocompatibility complex (MHC) class II+ cells, contributing to viral clearance. We identify key factors by which influenza A virus infection drives non-cytotoxic CD4 effectors to differentiate into lung tissue-resident ThCTL effectors. We find that CD4 effectors must again recognize cognate antigen on antigen-presenting cells (APCs) within the lungs. Both dendritic cells and B cells are sufficient as APCs, but CD28 co-stimulation is not needed. Optimal generation of ThCTLs requires signals induced by the ongoing infection independent of antigen presentation. Infection-elicited type I interferon (IFN) induces interleukin-15 (IL-15), which, in turn, supports CD4 effector differentiation into ThCTLs. We suggest that these multiple spatial, temporal, and cellular requirements prevent excessive lung ThCTL responses when virus is already cleared but ensure their development when infection persists. This supports a model where continuing infection drives the development of multiple, more differentiated subsets of CD4 effectors by distinct pathways.
Collapse
Affiliation(s)
| | - Allen M Vong
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Catherine H Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Noah J Silverstein
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bianca L Bautista
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Karen A Kelly
- Department of Animal Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Susan L Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
23
|
Do KTH, Willenzon S, Ristenpart J, Janssen A, Volz A, Sutter G, Förster R, Bošnjak B. The effect of Toll-like receptor agonists on the immunogenicity of MVA-SARS-2-S vaccine after intranasal administration in mice. Front Cell Infect Microbiol 2023; 13:1259822. [PMID: 37854858 PMCID: PMC10580083 DOI: 10.3389/fcimb.2023.1259822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Background and aims Modified Vaccinia virus Ankara (MVA) represents a promising vaccine vector for respiratory administration to induce protective lung immunity including tertiary lymphoid structure, the bronchus-associated lymphoid tissue (BALT). However, MVA expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein (MVA-SARS-2-S) required prime-boost administration to induce high titers of anti-Spike antibodies in serum and bronchoalveolar lavage (BAL). As the addition of adjuvants enables efficient tailoring of the immune responses even to live vaccines, we tested whether Toll-like receptor (TLR)-agonists affect immune responses induced by a single dose of intranasally applied MVA-SARS-2-S. Methods We intranasally immunized C57BL/6 mice with MVA-SARS-2-S vaccine in the presence of either TLR3 agonist polyinosinic polycytidylic acid [poly(I:C)], TLR4 agonist bacterial lipopolysaccharide (LPS) from Escherichia coli, or TLR9 agonist CpG oligodeoxynucleotide (CpG ODN) 1826. At different time-points after immunization, we analyzed induced immune responses using flow cytometry, immunofluorescent microscopy, and ELISA. Results TLR agonists had profound effects on MVA-SARS-2-S-induced immune responses. At day 1 post intranasal application, the TLR4 agonist significantly affected MVA-induced activation of dendritic cells (DCs) within the draining bronchial lymph nodes, increasing the ratio of CD11b+CD86+ to CD103+CD86+ DCs. Nevertheless, the number of Spike-specific CD8+ T cells within the lungs at day 12 after vaccination was increased in mice that received MVA-SARS-2-S co-administered with TLR3 but not TLR4 agonists. TLR9 agonist did neither significantly affect MVA-induced DC activation nor the induction of Spike-specific CD8+ T cells but reduced both number and size of bronchus-associated lymphoid tissue. Surprisingly, the addition of all TLR agonists failed to boost the levels of Spike-specific antibodies in serum and bronchoalveolar lavage. Conclusions Our study indicates a potential role of TLR-agonists as a tool to modulate immune responses to live vector vaccines. Particularly TLR3 agonists hold a promise to potentiate MVA-induced cellular immune responses. On the other hand, additional research is necessary to identify optimal combinations of agonists that could enhance MVA-induced humoral responses.
Collapse
Affiliation(s)
- Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | | | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Asisa Volz
- Institute for Virology, University of Veterinary Medicine Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Munich, Germany
| | - Gerd Sutter
- German Centre for Infection Research (DZIF), Munich, Germany
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximiliam University (LMU) Munich, Munich, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Yeung J, Wang T, Shi PY. Improvement of mucosal immunity by a live-attenuated SARS-CoV-2 nasal vaccine. Curr Opin Virol 2023; 62:101347. [PMID: 37604085 DOI: 10.1016/j.coviro.2023.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
The effectiveness of early COVID-19 vaccines in reducing the severity of the disease has led to a focus on developing next-generation vaccines that can prevent infection and transmission of the virus. One promising approach involves the induction of mucosal immunity through nasal administration and a variety of mucosal vaccine candidates using different platforms are currently in development. Live-attenuated viruses, less pathogenic versions of SARS-CoV-2, have promising features as a mucosal vaccine platform and have the potential to induce hybrid immunity in individuals who have already received mRNA vaccines. This review discusses the potential benefits and considerations for the use of live-attenuated SARS-CoV-2 intranasal vaccines and highlights the authors' work in developing such a vaccine platform.
Collapse
Affiliation(s)
- Jason Yeung
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Drug Discovery, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
25
|
Malloy AMW, Lu Z, Kehl M, Pena DaMata J, Lau-Kilby AW, Turfkruyer M. Increased innate immune activation induces protective RSV-specific lung-resident memory T cells in neonatal mice. Mucosal Immunol 2023; 16:593-605. [PMID: 37392972 DOI: 10.1016/j.mucimm.2023.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Young infants frequently experience respiratory tract infections, yet vaccines designed to provide mucosal protection are lacking. Localizing pathogen-specific cellular and humoral immune responses to the lung could provide improved immune protection. We used a well-characterized murine model of respiratory syncytial virus (RSV) to study the development of lung-resident memory T cells (TRM) in neonatal compared to adult mice. We demonstrated that priming with RSV during the neonatal period failed to retain RSV-specific clusters of differentiation (CD8) TRM 6 weeks post infection, in contrast to priming during adulthood. The reduced development of RSV-specific TRM was associated with poor acquisition of two key markers of tissue residence: CD69 and CD103. However, by augmenting both innate immune activation and antigen exposure, neonatal RSV-specific CD8 T cells increased expression of tissue-residence markers and were maintained in the lung at memory time points. Establishment of TRM correlated with more rapid control of the virus in the lungs upon reinfection. This is the first strategy to effectively establish RSV-specific TRM in neonates providing new insight into neonatal memory T cell development and vaccine strategies.
Collapse
Affiliation(s)
- Allison M W Malloy
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA.
| | - Zhongyan Lu
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| | - Margaret Kehl
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| | - Jarina Pena DaMata
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| | - Annie W Lau-Kilby
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| | - Mathilde Turfkruyer
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, USA
| |
Collapse
|
26
|
Longet S, Paul S. Pivotal role of tissue-resident memory lymphocytes in the control of mucosal infections: can mucosal vaccination induce protective tissue-resident memory T and B cells? Front Immunol 2023; 14:1216402. [PMID: 37753095 PMCID: PMC10518612 DOI: 10.3389/fimmu.2023.1216402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Affiliation(s)
- Stephanie Longet
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
| | - Stephane Paul
- Centre International de Recherche en Infectiologie, Team Groupe sur l'immunité des muqueuses et agents pathogènes (GIMAP), Université Jean Monnet, Université Claude Bernard Lyon, Inserm, Saint-Etienne, France
- Centre d'investigation clinique (CIC) 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
27
|
Zhu W, Park J, Pho T, Wei L, Dong C, Kim J, Ma Y, Champion JA, Wang BZ. ISCOMs/MPLA-Adjuvanted SDAD Protein Nanoparticles Induce Improved Mucosal Immune Responses and Cross-Protection in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301801. [PMID: 37162451 PMCID: PMC10524461 DOI: 10.1002/smll.202301801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Indexed: 05/11/2023]
Abstract
The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.
Collapse
Affiliation(s)
- Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Jaeyoung Park
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Thomas Pho
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Joo Kim
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Bioengineering Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
28
|
Abdelbary M, Hobbs SJ, Gibbs JS, Yewdell JW, Nolz JC. T cell receptor signaling strength establishes the chemotactic properties of effector CD8 + T cells that control tissue-residency. Nat Commun 2023; 14:3928. [PMID: 37402742 PMCID: PMC10319879 DOI: 10.1038/s41467-023-39592-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023] Open
Abstract
Tissue-resident memory (TRM) CD8+ T cells are largely derived from recently activated effector T cells, but the mechanisms that control the extent of TRM differentiation within tissue microenvironments remain unresolved. Here, using an IFNγ-YFP reporter system to identify CD8+ T cells executing antigen-dependent effector functions, we define the transcriptional consequences and functional mechanisms controlled by TCR-signaling strength that occur within the skin during viral infection to promote TRM differentiation. TCR-signaling both enhances CXCR6-mediated migration and suppresses migration toward sphingosine-1-phosphate, indicating the programming of a 'chemotactic switch' following secondary antigen encounter within non-lymphoid tissues. Blimp1 was identified as the critical target of TCR re-stimulation that is necessary to establish this chemotactic switch and for TRM differentiation to efficiently occur. Collectively, our findings show that access to antigen presentation and strength of TCR-signaling required for Blimp1 expression establishes the chemotactic properties of effector CD8+ T cells to promote residency within non-lymphoid tissues.
Collapse
Affiliation(s)
- Mahmoud Abdelbary
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - James S Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA.
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Department of Dermatology, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
29
|
Cheon IS, Son YM, Sun J. Tissue-resident memory T cells and lung immunopathology. Immunol Rev 2023; 316:63-83. [PMID: 37014096 PMCID: PMC10524334 DOI: 10.1111/imr.13201] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
Rapid reaction to microbes invading mucosal tissues is key to protect the host against disease. Respiratory tissue-resident memory T (TRM ) cells provide superior immunity against pathogen infection and/or re-infection, due to their presence at the site of pathogen entry. However, there has been emerging evidence that exuberant TRM -cell responses contribute to the development of various chronic respiratory conditions including pulmonary sequelae post-acute viral infections. In this review, we have described the characteristics of respiratory TRM cells and processes underlying their development and maintenance. We have reviewed TRM -cell protective functions against various respiratory pathogens as well as their pathological activities in chronic lung conditions including post-viral pulmonary sequelae. Furthermore, we have discussed potential mechanisms regulating the pathological activity of TRM cells and proposed therapeutic strategies to alleviate TRM -cell-mediated lung immunopathology. We hope that this review provides insights toward the development of future vaccines or interventions that can harness the superior protective abilities of TRM cells, while minimizing the potential for immunopathology, a particularly important topic in the era of coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- In Su Cheon
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi-do, Republic of Korea 17546
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
30
|
Wang Z, Zhang T, Jia F, Ge C, He Y, Tian Y, Wang W, Yang G, Huang H, Wang J, Shi C, Yang W, Cao X, Zeng Y, Wang N, Qian A, Wang C, Jiang Y. Homologous Sequential Immunization Using Salmonella Oral Administration Followed by an Intranasal Boost with Ferritin-Based Nanoparticles Enhanced the Humoral Immune Response against H1N1 Influenza Virus. Microbiol Spectr 2023; 11:e0010223. [PMID: 37154735 PMCID: PMC10269571 DOI: 10.1128/spectrum.00102-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
The influenza virus continues to pose a great threat to public health due to the frequent variations in RNA viruses. Vaccines targeting conserved epitopes, such as the extracellular domain of the transmembrane protein M2 (M2e), a nucleoprotein, and the stem region of hemagglutinin proteins, have been developed, but more efficient strategies, such as nanoparticle-based vaccines, are still urgently needed. However, the labor-intensive in vitro purification of nanoparticles is still necessary, which could hinder the application of nanoparticles in the veterinary field in the future. To overcome this limitation, we used regulated lysis Salmonella as an oral vector with which to deliver three copies of M2e (3M2e-H1N1)-ferritin nanoparticles in situ and evaluated the immune response. Then, sequential immunization using Salmonella-delivered nanoparticles followed by an intranasal boost with purified nanoparticles was performed to further improve the efficiency. Compared with 3M2e monomer administration, Salmonella-delivered in situ nanoparticles significantly increased the cellular immune response. Additionally, the results of sequential immunization showed that the intranasal boost with purified nanoparticles dramatically stimulated the activation of lung CD11b dendritic cells (DCs) and elevated the levels of effector memory T (TEM) cells in both spleen and lung tissues as well as those of CD4 and CD8 tissue-resident memory T (TRM) cells in the lungs. The increased production of mucosal IgG and IgA antibody titers was also observed, resulting in further improvements to protection against a virus challenge, compared with the pure oral immunization group. Salmonella-delivered in situ nanoparticles efficiently increased the cellular immune response, compared with the monomer, and sequential immunization further improved the systemic immune response, as shown by the activation of DCs, the production of TEM cells and TRM cells, and the mucosal immune response, thereby providing us with a novel strategy by which to apply nanoparticle-based vaccines in the future. IMPORTANCE Salmonella-delivered in situ nanoparticle platforms may provide novel nanoparticle vaccines for oral administration, which would be beneficial for veterinary applications. The combination of administering Salmonella-vectored, self-assembled nanoparticles and an intranasal boost with purified nanoparticles significantly increased the production of effector memory T cells and lung resident memory T cells, thereby providing partial protection against an influenza virus challenge. This novel strategy could open a novel avenue for the application of nanoparticle vaccines for veterinary purposes.
Collapse
Affiliation(s)
- Zhannan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tongyu Zhang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Futing Jia
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chongbo Ge
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yingkai He
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yawen Tian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wenfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guilian Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jianzhong Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wentao Yang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Aidong Qian
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yanlong Jiang
- College of Animal Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|
31
|
Danila E, Aleksonienė R, Besusparis J, Gruslys V, Jurgauskienė L, Laurinavičienė A, Laurinavičius A, Mainelis A, Zablockis R, Zeleckienė I, Žurauskas E, Malickaitė R. Lymphocyte Subsets and Pulmonary Nodules to Predict the Progression of Sarcoidosis. Biomedicines 2023; 11:biomedicines11051437. [PMID: 37239108 DOI: 10.3390/biomedicines11051437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The search for biological markers, which allow a relatively accurate assessment of the individual course of pulmonary sarcoidosis at the time of diagnosis, remains one of the research priorities in this field of pulmonary medicine. The aim of our study was to investigate possible prognostic factors for pulmonary sarcoidosis with a special focus on cellular immune inflammation markers. A 2-year follow-up of the study population after the initial prospective and simultaneous analysis of lymphocyte activation markers expression in the blood, as well as bronchoalveolar lavage fluid (BALF) and lung biopsy tissue of patients with newly diagnosed pulmonary sarcoidosis, was performed. We found that some blood and BAL fluid immunological markers and lung computed tomography (CT) patterns have been associated with a different course of sarcoidosis. We revealed five markers that had a significant negative association with the course of sarcoidosis (worsening pulmonary function tests and/or the chest CT changes)-blood CD4+CD31+ and CD4+CD44+ T lymphocytes, BALF CD8+CD31+ and CD8+CD103+ T lymphocytes and a number of lung nodules on chest CT at the time of the diagnosis. Cut-off values, sensitivity, specificity and odds ratio for predictors of sarcoidosis progression were calculated. These markers may be reasonable predictors of sarcoidosis progression.
Collapse
Affiliation(s)
- Edvardas Danila
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Regina Aleksonienė
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Justinas Besusparis
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Vygantas Gruslys
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Laimutė Jurgauskienė
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Aida Laurinavičienė
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Arvydas Laurinavičius
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Antanas Mainelis
- Faculty of Mathematics and Informatics, Vilnius University, 03225 Vilnius, Lithuania
| | - Rolandas Zablockis
- Clinic of Chest Diseases, Immunology and Allergology, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Pulmonology and Allergology, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Ingrida Zeleckienė
- Center of Radiology and Nuclear Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Edvardas Žurauskas
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, 08406 Vilnius, Lithuania
| | - Radvilė Malickaitė
- Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
- Center of Laboratory Medicine, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| |
Collapse
|
32
|
van de Wall S, Crooks S, Varga SM, Badovinac VP, Harty JT. Cutting Edge: Influenza-Induced CD11alo Airway CD103+ Tissue Resident Memory T Cells Exhibit Compromised IFN-γ Production after In Vivo TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1025-1030. [PMID: 36912465 PMCID: PMC10229141 DOI: 10.4049/jimmunol.2200931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Although tissue resident memory T cells (TRM) in the lung confer robust protection against secondary influenza infection, their in vivo production of IFN-γ is unknown. In this study, using a mouse model, we evaluated production of IFN-γ by influenza-induced TRM (defined as CD103+) that localize to the airways or lung parenchyma. Airway TRM consist of both CD11ahi and CD11alo populations, with low CD11a expression signifying prolonged airway residence. In vitro, high-dose peptide stimulation evoked IFN-γ from most CD11ahi airway and parenchymal TRM, whereas most CD11alo airway TRM did not produce IFN-γ. In vivo production of IFN-γ was clearly detectable in CD11ahi airway and parenchymal TRM but essentially absent in CD11alo airway TRM, irrespective of airway-instilled peptide concentration or influenza reinfection. The majority of IFN-γ-producing airway TRM in vivo were CD11ahi, suggesting recent airway entry. These results question the contribution of long-term CD11alo airway TRM to influenza immunity and reinforce the importance of defining TRM tissue compartment-specific contributions to protective immunity.
Collapse
Affiliation(s)
| | - Sequoia Crooks
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Steven M. Varga
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P. Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - John T. Harty
- Department of Pathology, University of Iowa, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
33
|
Fraser R, Orta-Resendiz A, Mazein A, Dockrell DH. Upper respiratory tract mucosal immunity for SARS-CoV-2 vaccines. Trends Mol Med 2023; 29:255-267. [PMID: 36764906 PMCID: PMC9868365 DOI: 10.1016/j.molmed.2023.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023]
Abstract
SARS-CoV-2 vaccination significantly reduces morbidity and mortality, but has less impact on viral transmission rates, thus aiding viral evolution, and the longevity of vaccine-induced immunity rapidly declines. Immune responses in respiratory tract mucosal tissues are crucial for early control of infection, and can generate long-term antigen-specific protection with prompt recall responses. However, currently approved SARS-CoV-2 vaccines are not amenable to adequate respiratory mucosal delivery, particularly in the upper airways, which could account for the high vaccine breakthrough infection rates and limited duration of vaccine-mediated protection. In view of these drawbacks, we outline a strategy that has the potential to enhance both the efficacy and durability of existing SARS-CoV-2 vaccines, by inducing robust memory responses in the upper respiratory tract (URT) mucosa.
Collapse
Affiliation(s)
- Rupsha Fraser
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | - Aurelio Orta-Resendiz
- Institut Pasteur, Université Paris Cité, HIV, Inflammation and Persistence Unit, F-75015 Paris, France
| | - Alexander Mazein
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - David H Dockrell
- The University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
34
|
Heim TA, Lin Z, Steele MM, Mudianto T, Lund AW. CXCR6 promotes dermal CD8 + T cell survival and transition to long-term tissue residence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528487. [PMID: 36824892 PMCID: PMC9949075 DOI: 10.1101/2023.02.14.528487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue resident memory T cells (TRM) provide important protection against infection, and yet the interstitial signals necessary for their formation and persistence remain incompletely understood. Here we show that antigen-dependent induction of the chemokine receptor, CXCR6, is a conserved requirement for TRM formation in peripheral tissue after viral infection. CXCR6 was dispensable for the early accumulation of antigen-specific CD8+ T cells in skin and did not restrain their exit. Single cell sequencing indicated that CXCR6-/- CD8+ T cells were also competent to acquire a transcriptional program of residence but exhibited deficiency in multiple pathways that converged on survival and metabolic signals necessary for memory. As such, CXCR6-/- CD8+ T cells exhibited increased rates of apoptosis relative to controls in the dermis, leading to inefficient TRM formation. CXCR6 expression may therefore represent a common mechanism across peripheral non-lymphoid tissues and inflammatory states that increases the probability of long-term residence.
Collapse
Affiliation(s)
- Taylor A. Heim
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Ziyan Lin
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY, USA
| | - Maria M. Steele
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W. Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Cell, Developmental & Cancer Biology and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
35
|
Humphries DC, O’Connor RA, Stewart HL, Quinn TM, Gaughan EE, Mills B, Williams GO, Stone JM, Finlayson K, Chabaud-Riou M, Boudet F, Dhaliwal K, Pavot V. Specific in situ immuno-imaging of pulmonary-resident memory lymphocytes in human lungs. Front Immunol 2023; 14:1100161. [PMID: 36845117 PMCID: PMC9951616 DOI: 10.3389/fimmu.2023.1100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Introduction Pulmonary-resident memory T cells (TRM) and B cells (BRM) orchestrate protective immunity to reinfection with respiratory pathogens. Developing methods for the in situ detection of these populations would benefit both research and clinical settings. Methods To address this need, we developed a novel in situ immunolabelling approach combined with clinic-ready fibre-based optical endomicroscopy (OEM) to detect canonical markers of lymphocyte tissue residency in situ in human lungs undergoing ex vivo lung ventilation (EVLV). Results Initially, cells from human lung digests (confirmed to contain TRM/BRM populations using flow cytometry) were stained with CD69 and CD103/CD20 fluorescent antibodies and imaged in vitro using KronoScan, demonstrating it's ability to detect antibody labelled cells. We next instilled these pre-labelled cells into human lungs undergoing EVLV and confirmed they could still be visualised using both fluorescence intensity and lifetime imaging against background lung architecture. Finally, we instilled fluorescent CD69 and CD103/CD20 antibodies directly into the lung and were able to detect TRM/BRM following in situ labelling within seconds of direct intra-alveolar delivery of microdoses of fluorescently labelled antibodies. Discussion In situ, no wash, immunolabelling with intra-alveolar OEM imaging is a novel methodology with the potential to expand the experimental utility of EVLV and pre-clinical models.
Collapse
Affiliation(s)
- Duncan C. Humphries
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Research & Development, Sanofi, Marcy L’Etoile, France
| | - Richard A. O’Connor
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Hazel L. Stewart
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tom M. Quinn
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erin E. Gaughan
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Beth Mills
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gareth O.S. Williams
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - James M. Stone
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,Centre for Photonic and Physics, Bath University, Bath, United Kingdom
| | - Keith Finlayson
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Kevin Dhaliwal
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| | - Vincent Pavot
- Research & Development, Sanofi, Marcy L’Etoile, France,*Correspondence: Kevin Dhaliwal, ; Vincent Pavot,
| |
Collapse
|
36
|
Park J, Hsueh PC, Li Z, Ho PC. Microenvironment-driven metabolic adaptations guiding CD8 + T cell anti-tumor immunity. Immunity 2023; 56:32-42. [PMID: 36630916 DOI: 10.1016/j.immuni.2022.12.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
The metabolic stress occurring in the tumor microenvironment (TME) hampers T cell anti-tumor immunity by disturbing T cell metabolic and epigenetic programs. Recent studies are making headway toward identifying strategies to unleash T cell activities by targeting T cell metabolism. Furthermore, efforts have been made to improve the efficacy of immune checkpoint blockade and adoptive cell transfer therapies. However, distinct treatment outcomes across different cancers raise the question of whether our understanding of the features of CD8+ T cells within the TME are universal, regardless of their tissue of origin. Here, we review the common and distinct environmental factors affecting CD8+ T cells across tumors. Moreover, we discuss how distinct tissue-specific niches are interpreted by CD8+ T cells based on studies on tissue-resident memory T (Trm) cells and how these insights can pave the way for a better understanding of the metabolic regulation of CD8+ T cell differentiation and anti-tumor immunity.
Collapse
Affiliation(s)
- Jaeoh Park
- Department of Fundamental Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| | - Pei-Chun Hsueh
- Department of Fundamental Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| | - Zhiyu Li
- Department of Fundamental Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland; Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1066 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland.
| |
Collapse
|
37
|
Kawasaki T, Ikegawa M, Yunoki K, Otani H, Ori D, Ishii KJ, Kuroda E, Takamura S, Kitabatake M, Ito T, Isotani A, Kawai T. Alveolar macrophages instruct CD8 + T cell expansion by antigen cross-presentation in lung. Cell Rep 2022; 41:111828. [PMID: 36516765 DOI: 10.1016/j.celrep.2022.111828] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Lung CD8+ memory T cells play central roles in protective immunity to respiratory viruses, such as influenza A virus (IAV). Here, we find that alveolar macrophages (AMs) function as antigen-presenting cells that support the expansion of lung CD8+ memory T cells. Intranasal antigen administration to mice subcutaneously immunized with antigen results in a rapid expansion of antigen-specific CD8+ T cells in the lung, which is dependent on antigen cross-presentation by AMs. AMs highly express interleukin-18 (IL-18), which mediates subsequent formation of CD103+CD8+ resident memory T (TRM) cells in the lung. In a mouse model of IAV infection, AMs are required for expansion of virus-specific CD8+ T cells and CD103+CD8+ TRM cells and inhibiting virus replication in the lungs during secondary infection. These results suggest that AMs instruct a rapid expansion of antigen-specific CD8+ T cells in lung, which protect the host from respiratory virus infection.
Collapse
Affiliation(s)
- Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan.
| | - Moe Ikegawa
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Kosuke Yunoki
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Hifumi Otani
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Daisuke Ori
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Ken J Ishii
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Etsushi Kuroda
- Department of Immunology, Hyogo College of Medicine, Nishinomiya 663-8501, Japan
| | - Shiki Takamura
- Department of Immunology, Faculty of Medicine, Kindai University, Osaka-Sayama 589-8511, Japan; Laboratory for Immunological Memory, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama 230-0045, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Japan
| | - Ayako Isotani
- Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Nara Institute of Science and Technology (NAIST), Ikoma 630-0192, Japan.
| |
Collapse
|
38
|
Künzli M, O’Flanagan SD, LaRue M, Talukder P, Dileepan T, Stolley JM, Soerens AG, Quarnstrom CF, Wijeyesinghe S, Ye Y, McPartlan JS, Mitchell JS, Mandl CW, Vile R, Jenkins MK, Ahmed R, Vezys V, Chahal JS, Masopust D. Route of self-amplifying mRNA vaccination modulates the establishment of pulmonary resident memory CD8 and CD4 T cells. Sci Immunol 2022; 7:eadd3075. [PMID: 36459542 PMCID: PMC9832918 DOI: 10.1126/sciimmunol.add3075] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Respiratory tract resident memory T cells (TRM), typically generated by local vaccination or infection, can accelerate control of pulmonary infections that evade neutralizing antibody. It is unknown whether mRNA vaccination establishes respiratory TRM. We generated a self-amplifying mRNA vaccine encoding the influenza A virus nucleoprotein that is encapsulated in modified dendron-based nanoparticles. Here, we report how routes of immunization in mice, including contralateral versus ipsilateral intramuscular boosts, or intravenous and intranasal routes, influenced influenza-specific cell-mediated and humoral immunity. Parabiotic surgeries revealed that intramuscular immunization was sufficient to establish CD8 TRM in the lung and draining lymph nodes. Contralateral, compared with ipsilateral, intramuscular boosting broadened the distribution of lymph node TRM and T follicular helper cells but slightly diminished resulting levels of serum antibody. Intranasal mRNA delivery established modest circulating CD8 and CD4 T cell memory but augmented distribution to the respiratory mucosa. Combining intramuscular immunizations with an intranasal mRNA boost achieved high levels of both circulating T cell memory and lung TRM. Thus, routes of mRNA vaccination influence humoral and cell-mediated immunity, and intramuscular prime-boosting establishes lung TRM that can be further expanded by an additional intranasal immunization.
Collapse
Affiliation(s)
- Marco Künzli
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stephen D. O’Flanagan
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Madeleine LaRue
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Thamotharampillai Dileepan
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - J. Michael Stolley
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew G. Soerens
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clare F. Quarnstrom
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sathi Wijeyesinghe
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yanqi Ye
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Jason S. Mitchell
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Richard Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Marc K. Jenkins
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - David Masopust
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Notarbartolo S, Abrignani S. Human T lymphocytes at tumor sites. Semin Immunopathol 2022; 44:883-901. [PMID: 36385379 PMCID: PMC9668216 DOI: 10.1007/s00281-022-00970-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/14/2022] [Indexed: 12/15/2022]
Abstract
CD4+ and CD8+ T lymphocytes mediate most of the adaptive immune response against tumors. Naïve T lymphocytes specific for tumor antigens are primed in lymph nodes by dendritic cells. Upon activation, antigen-specific T cells proliferate and differentiate into effector cells that migrate out of peripheral blood into tumor sites in an attempt to eliminate cancer cells. After accomplishing their function, most effector T cells die in the tissue, while a small fraction of antigen-specific T cells persist as long-lived memory cells, circulating between peripheral blood and lymphoid tissues, to generate enhanced immune responses when re-encountering the same antigen. A subset of memory T cells, called resident memory T (TRM) cells, stably resides in non-lymphoid peripheral tissues and may provide rapid immunity independently of T cells recruited from blood. Being adapted to the tissue microenvironment, TRM cells are potentially endowed with the best features to protect against the reemergence of cancer cells. However, when tumors give clinical manifestation, it means that tumor cells have evaded immune surveillance, including that of TRM cells. Here, we review the current knowledge as to how TRM cells are generated during an immune response and then maintained in non-lymphoid tissues. We then focus on what is known about the role of CD4+ and CD8+ TRM cells in antitumor immunity and their possible contribution to the efficacy of immunotherapy. Finally, we highlight some open questions in the field and discuss how new technologies may help in addressing them.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo Ed Enrica Invernizzi", Milan, Italy.
- Department of Clinical Sciences and Community Health, Università Degli Studi Di Milano, Milan, Italy.
| |
Collapse
|
40
|
The Memory T Cell “Communication Web” in Context with Gastrointestinal Disorders—How Memory T Cells Affect Their Surroundings and How They Are Influenced by It. Cells 2022; 11:cells11182780. [PMID: 36139354 PMCID: PMC9497182 DOI: 10.3390/cells11182780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Gut-related diseases like ulcerative colitis, Crohn’s disease, or colorectal cancer affect millions of people worldwide. It is an ongoing process finding causes leading to the development and manifestation of those disorders. This is highly relevant since understanding molecular processes and signalling pathways offers new opportunities in finding novel ways to interfere with and apply new pharmaceuticals. Memory T cells (mT cells) and their pro-inflammatory properties have been proven to play an important role in gastrointestinal diseases and are therefore increasingly spotlighted. This review focuses on mT cells and their subsets in the context of disease pathogenesis and maintenance. It illustrates the network of regulatory proteins and metabolites connecting mT cells with other cell types and tissue compartments. Furthermore, the crosstalk with various microbes will be a subject of discussion. Characterizing mT cell interactions will help to further elucidate the sophisticated molecular and cellular networking system in the intestine and may present new ideas for future research approaches to control gut-related diseases.
Collapse
|
41
|
Yenyuwadee S, Sanchez-Trincado Lopez JL, Shah R, Rosato PC, Boussiotis VA. The evolving role of tissue-resident memory T cells in infections and cancer. SCIENCE ADVANCES 2022; 8:eabo5871. [PMID: 35977028 PMCID: PMC9385156 DOI: 10.1126/sciadv.abo5871] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 07/05/2022] [Indexed: 06/12/2023]
Abstract
Resident memory T cells (TRM) form a distinct type of T memory cells that stably resides in tissues. TRM form an integral part of the immune sensing network and have the ability to control local immune homeostasis and participate in immune responses mediated by pathogens, cancer, and possibly autoantigens during autoimmunity. TRM express residence gene signatures, functional properties of both memory and effector cells, and remarkable plasticity. TRM have a well-established role in pathogen immunity, whereas their role in antitumor immune responses and immunotherapy is currently evolving. As TRM form the most abundant T memory cell population in nonlymphoid tissues, they are attractive targets for therapeutic exploitation. Here, we provide a concise review of the development and physiological role of CD8+ TRM, their involvement in diseases, and their potential therapeutic exploitation.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jose Luis Sanchez-Trincado Lopez
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Laboratory of Immunomedicine, School of Medicine, Complutense University of Madrid, Ave Complutense S/N, 28040 Madrid, Spain
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cornell University, Ithaca, NY 14850 , USA
| | - Pamela C Rosato
- The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
42
|
Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022; 13:943331. [PMID: 36032142 PMCID: PMC9412965 DOI: 10.3389/fimmu.2022.943331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
The immune system generates memory cells on infection with a virus for the first time. These memory cells play an essential role in protection against reinfection. Tissue-resident memory T (TRM) cells can be generated in situ once attacked by pathogens. TRM cells dominate the defense mechanism during early stages of reinfection and have gradually become one of the most popular focuses in recent years. Here, we mainly reviewed the development and regulation of various TRM cell signaling pathways in the respiratory tract. Moreover, we explored the protective roles of TRM cells in immune response against various respiratory viruses, such as Respiratory Syncytial Virus (RSV) and influenza. The complex roles of TRM cells against SARS-CoV-2 infection are also discussed. Current evidence supports the therapeutic strategies targeting TRM cells, providing more possibilities for treatment. Rational utilization of TRM cells for therapeutics is vital for defense against respiratory viruses.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Na Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yanchao He
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Tianyun Shi
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- *Correspondence: Zhijun Jie,
| |
Collapse
|
43
|
Yao Y, Liu H, Yuan L, Du X, Yang Y, Zhou K, Wu X, Qin L, Yang M, Xiang Y, Qu X, Qin X, Liu C. Integrins are double-edged swords in pulmonary infectious diseases. Biomed Pharmacother 2022; 153:113300. [PMID: 35728353 DOI: 10.1016/j.biopha.2022.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Integrins are an important family of adhesion molecules that are widely distributed on immune cells in the lungs. Of note, accumulating evidences have shown that integrins are double-edged swords in pulmonary infectious diseases. On one hand, integrins promote the migration of immune cells to remove the invaded pathogens in the infected lungs. However, on the other hand, integrins also act as the targets for pathogens to escape from host immune system, which is a potential factor leading to further tissue damage. Thus, the innovative therapeutic strategies based on integrins has inspired well-founded hopes to treat pulmonary infectious diseases. In this review, we illustrate the involvement of integrins in pulmonary infectious diseases, and further discuss the innovative therapeutic targets based on integrins.
Collapse
Affiliation(s)
- Ye Yao
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, Hunan, China.
| |
Collapse
|
44
|
La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F, Caccamo N. Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Front Immunol 2022; 13:884148. [PMID: 35784300 PMCID: PMC9247337 DOI: 10.3389/fimmu.2022.884148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
The immune system, smartly and surprisingly, saves the exposure of a particular pathogen in its memory and reacts to the pathogen very rapidly, preventing serious diseases.Immunologists have long been fascinated by understanding the ability to recall and respond faster and more vigorously to a pathogen, known as “memory”.T-cell populations can be better described by using more sophisticated techniques to define phenotype, transcriptional and epigenetic signatures and metabolic pathways (single-cell resolution), which uncovered the heterogeneity of the memory T-compartment. Phenotype, effector functions, maintenance, and metabolic pathways help identify these different subsets. Here, we examine recent developments in the characterization of the heterogeneity of the memory T cell compartment. In particular, we focus on the emerging role of CD8+ TRM and TSCM cells, providing evidence on how their immunometabolism or modulation can play a vital role in their generation and maintenance in chronic conditions such as infections or autoimmune diseases.
Collapse
Affiliation(s)
- Marco Pio La Manna
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Mojtaba Shekarkar Azgomi
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Bartolo Tamburini
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Leila Mohammadnezhad
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Francesco Dieli
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
| | - Nadia Caccamo
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR) Azienda Ospedaliera Universitaria Policlinico (A.O.U.P.) Paolo Giaccone, University of Palermo, Palermo, Italy
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Nadia Caccamo,
| |
Collapse
|
45
|
Hirai T, Yoshioka Y. Considerations of CD8+ T Cells for Optimized Vaccine Strategies Against Respiratory Viruses. Front Immunol 2022; 13:918611. [PMID: 35774782 PMCID: PMC9237416 DOI: 10.3389/fimmu.2022.918611] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
The primary goal of vaccines that protect against respiratory viruses appears to be the induction of neutralizing antibodies for a long period. Although this goal need not be changed, recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have drawn strong attention to another arm of acquired immunity, CD8+ T cells, which are also called killer T cells. Recent evidence accumulated during the coronavirus disease 2019 (COVID-19) pandemic has revealed that even variants of SARS-CoV-2 that escaped from neutralizing-antibodies that were induced by either infection or vaccination could not escape from CD8+ T cell-mediated immunity. In addition, although traditional vaccine platforms, such as inactivated virus and subunit vaccines, are less efficient in inducing CD8+ T cells, newly introduced platforms for SARS-CoV-2, namely, mRNA and adenoviral vector vaccines, can induce strong CD8+ T cell-mediated immunity in addition to inducing neutralizing antibodies. However, CD8+ T cells function locally and need to be at the site of infection to control it. To fully utilize the protective performance of CD8+ T cells, it would be insufficient to induce only memory cells circulating in blood, using injectable vaccines; mucosal immunization could be required to set up CD8+ T cells for the optimal protection. CD8+ T cells might also contribute to the pathology of the infection, change their function with age and respond differently to booster vaccines in comparison with antibodies. Herein, we overview cutting-edge ideas on CD8+ T cell-mediated immunity that can enable the rational design of vaccines for respiratory viruses.
Collapse
Affiliation(s)
- Toshiro Hirai
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- *Correspondence: Toshiro Hirai,
| | - Yasuo Yoshioka
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Vaccine Creation Group, BIKEN Innovative Vaccine Research Alliance Laboratories, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Nano-design for Innovative Drug Development, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
- The Research Foundation for Microbial Diseases of Osaka University, Suita, Japan
| |
Collapse
|
46
|
Hartmeier PR, Kosanovich JL, Velankar KY, Armen-Luke J, Lipp MA, Gawalt ES, Giannoukakis N, Empey KM, Meng WS. Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Mol Pharm 2022; 19:2638-2650. [PMID: 35621214 PMCID: PMC10105284 DOI: 10.1021/acs.molpharmaceut.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1β, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Armen-Luke
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Nick Giannoukakis
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
47
|
Intranasal administration of a recombinant RBD vaccine induces long-term immunity against Omicron-included SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:159. [PMID: 35581200 PMCID: PMC9112270 DOI: 10.1038/s41392-022-01002-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has posed great threats to global health and economy. Several effective vaccines are available now, but additional booster immunization is required to retain or increase the immune responses owing to waning immunity and the emergency of new variant strains. The deficiency of intramuscularly delivered vaccines to induce mucosal immunity urged the development of mucosal vaccines. Here, we developed an adjuvanted intranasal RBD vaccine and monitored its long-term immunogenicity against both wild-type and mutant strains of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), including Omicron variants, in mice. Three-dose intranasal immunization with this vaccine induced and maintained high levels of neutralizing IgG antibodies in the sera for at least 1 year. Strong mucosal immunity was also provoked, including mucosal secretory IgA and lung-resident memory T cells (TRM). We also demonstrated that the long-term persistence of lung TRM cells is a consequence of local T-cell proliferation, rather than T-cell migration from lymph nodes. Our data suggested that the adjuvanted intranasal RBD vaccine is a promising vaccine candidate to establish robust, long-lasting, and broad protective immunity against SARS-CoV-2 both systemically and locally.
Collapse
|
48
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
49
|
PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. Eur J Pharm Sci 2022; 175:106209. [DOI: 10.1016/j.ejps.2022.106209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/02/2022] [Accepted: 05/12/2022] [Indexed: 11/20/2022]
|
50
|
Dong C, Wang BZ. Engineered Nanoparticulate Vaccines to Combat Recurring and Pandemic Influenza Threats. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100122. [PMID: 35754779 PMCID: PMC9231845 DOI: 10.1002/anbr.202100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Reoccurring seasonal flu epidemics and occasional pandemics are among the most severe threats to public health. Current seasonal influenza vaccines provide limited protection against drifted circulating strains and no protection against influenza pandemics. Next-generation influenza vaccines, designated as universal influenza vaccines, should be safe, affordable, and elicit long-lasting cross-protective influenza immunity. Nanotechnology plays a critical role in the development of such novel vaccines. Engineered nanoparticles can incorporate multiple advantageous properties into the same nanoparticulate platforms to improve vaccine potency and breadth. These immunological properties include virus-like biomimicry, high antigen-load, controlled antigen release, targeted delivery, and induction of innate signaling pathways. Many nanoparticle influenza vaccines have shown promising results in generating potent and broadly protective immune responses. This review will summarize the necessity and characteristics of next-generation influenza vaccines and the immunological correlates of broad influenza immunity and focus on how cutting-edge nanoparticle technology contributes to such vaccine development. The review will give new insights into the rational design of nanoparticle universal vaccines to combat influenza epidemics and pandemics.
Collapse
Affiliation(s)
- Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, Atlanta, Georgia 30303, USA
| |
Collapse
|