1
|
Liu Z, Lin X, Tu Y, Zhou Y, Huang M, Fang C. MALAT1 promotes microglia activation and neuronal apoptosis through via the miR-124-3p/ SGK1 axis mediating experimental autoimmune encephalomyelitis disease progression in mice. Int Immunopharmacol 2025; 152:114417. [PMID: 40090080 DOI: 10.1016/j.intimp.2025.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
Abstract
Multiple sclerosis (MS) significantly impairs quality of life due to its high disability rate. Recent research indicates that the long non-coding RNA Malat1 is specifically upregulated in MS and is critically involved in mediating neuroinflammatory responses and microglial activation. This study explores the function and mechanism of the Malat1/miR-124-3p/Sgk1 pathway in MS and microglia activation. Initially, the study established an experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice using MOG35-55. Subsequently, it confirmed a correlation between the expression of Malat1 in the L5 spinal cord and disease progression and microglia numbers. Further, cell transfection and lentiviral infection of BV2 microglia were performed, followed by an assessment of interactions within the Malat1/miR-124-3p/Sgk1 pathway. Western blotting was used to detect changes in CD68 and IκBα/NFκB phosphorylation, key indicators of microglia activation. Furthermore, co-incubation of BV2 and HT-22 mouse hippocampal neuronal cells revealed that increased Malat1 expression enhances BV2's role in promoting HT-22 cell apoptosis under 200 ng/mL LPS. Both miR-124-3p inhibition and Sgk1 overexpression replicated these effects. Dual luciferase reporter assays confirmed that Malat1 absorbed miR-124-3p to upregulate Sgk1 expression. Malat1 overexpression in EAE mice led to an increase in TUNEL-positive cells and upregulated CD68 and phosphorylated IκBα/NFκB proteins. Conversely, intrathecal silencing of Malat1 reduced these protein expression changes. This study elucidates Malat1's role in MS, offering critical insights for developing future therapeutic strategies.
Collapse
MESH Headings
- Animals
- Microglia/immunology
- Microglia/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Neurons/physiology
- Mice, Inbred C57BL
- Mice
- Apoptosis
- Immediate-Early Proteins/metabolism
- Immediate-Early Proteins/genetics
- Disease Progression
- Female
- Signal Transduction
- Spinal Cord/pathology
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Cell Line
- Humans
- Multiple Sclerosis/immunology
Collapse
Affiliation(s)
- Zhengxia Liu
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Xiang Lin
- Department of Traditional Chinese Medicine, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Youquan Tu
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Yun Zhou
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Minghai Huang
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China
| | - Chunyan Fang
- Department of Neurology, Women and Children's Hospital Affiliated to Ningbo University, Ningbo 315012, China.
| |
Collapse
|
2
|
Chen T, Zhang B, Zhang X, Tang L, Wang C. Electroacupuncture improves postoperative cognitive dysfunction by inhibiting ferroptosis via the TFR1-DMT1-FPN pathway. Acupunct Med 2025; 43:74-84. [PMID: 39754452 DOI: 10.1177/09645284241302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
OBJECTIVE The aim of this study was to investigate the role of ferroptosis in the occurrence of postoperative cognitive dysfunction (POCD) using a mouse model and to elucidate whether electroacupuncture (EA) can improve POCD by suppressing ferroptosis via the transferrin receptor 1 (TFR1)-divalent metal transporter 1 (DMT1)-ferroportin (FPN) pathway. METHODS The experiment involved three groups: the control group, the POCD group and the POCD + EA group. The POCD animal model was established using sevoflurane anesthesia and tibial fracture. Cognitive and behavioral changes in mice were assessed using the novel object recognition test (NORT) and the Morris water maze (MWM) test, 1 and 3 days after surgery. Transmission electron microscopy was performed to observe changes in the mitochondrial structure of hippocampal tissue. Enzyme-linked immunosorbent assay was conducted to determine the levels of glutathione (GSH) and iron ion (Fe) concentrations. Western blot analysis was used to measure the expression of TFR1, DMT1 and iron pump protein. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to detect the mRNA levels of DMT1 and FPN. RESULTS Based on the experimental results of the MWM test and the NORT, we found that EA can improve POCD in mice. Observation by projection electron microscopy showed that EA improved the mitochondrial structure in the hippocampus. The enzyme-linked immunosorbent assay (ELISA) results showed that EA suppressed ferroptosis in the hippocampal area. The qRT-PCR and Western blot results suggested that EA suppresses ferroptosis by regulating the TFR1-DMT1-FPN pathway. CONCLUSION This study reveals that sevoflurane and tibial fractures cause cognitive damage through the mechanism of ferroptosis, while EA may inhibit ferroptosis through the TFR1-DMT1-FPN pathway and improve POCD when induced in this way.
Collapse
Affiliation(s)
- Tianren Chen
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Binsen Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaojia Zhang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Lu Tang
- Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunai Wang
- Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Tu Q, Zhou R, Lv G, Wan Z, Chen S, Que B. Effects of preemptive acupuncture on cognitive function of older patients after hip replacement: a randomized controlled trial. Front Med (Lausanne) 2025; 12:1503727. [PMID: 40182842 PMCID: PMC11965931 DOI: 10.3389/fmed.2025.1503727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Background Postoperative cognitive impairment is a common complication in older patients after major orthopedic surgery; however, the underlying mechanism is not completely understood. Objective This study aimed to evaluate the effects of preemptive acupuncture on cognitive dysfunction after hip replacement and explore its potential mechanisms. Methods Finally, 54 participants were randomized into sham acupuncture (n = 27) or acupuncture (n = 27) groups, who received acupuncture at the Sishencong (EX-HN1) and Baihui (DU20) acupoints, while participants in the sham acup group received sham acup at the target acupoints. Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE) scores, the incidence of postoperative cognitive dysfunction (POCD), and other adverse events were assessed. The levels of microRNA (miR)-124 and miR-146a and inflammatory cytokines in the peripheral blood were detected. Correlations among miR-124, miR-146a, and inflammatory cytokines were analyzed. Results Compared with the sham acup group, the MMSE and MoCA scores in the acup group on the first and seventh day after surgery were higher, and the incidence of POCD on the first day was lower. Acupuncture upregulated levels of miR-124 and -146a and decreased the levels of TNF-α, IL-6, and IL-1β to protect cognitive function. Correlation analysis indicated that upregulated miR-124 and miR-146 were associated with lower levels of inflammatory cytokines. Conclusion Acupuncture protects postoperative cognitive function in older patients undergoing hip replacement, potentially reducing the incidence of POCD by upregulating miR-124 and miR-146a to inhibit neuroinflammation. Clinical trial registration www.chictr.org.cn, identifier ChiCTR2200062027.
Collapse
Affiliation(s)
- Qiguo Tu
- Department of Anesthesiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Zhou
- Department of Anesthesiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Guiping Lv
- Operating Room, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhengzuo Wan
- Department of Anesthesiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shan Chen
- Department of Anesthesiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Que
- Department of Anesthesiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Évora A, Garcia G, Rubi A, De Vitis E, Matos AT, Vaz AR, Gervaso F, Gigli G, Polini A, Brites D. Exosomes enriched with miR-124-3p show therapeutic potential in a new microfluidic triculture model that recapitulates neuron-glia crosstalk in Alzheimer's disease. Front Pharmacol 2025; 16:1474012. [PMID: 40144670 PMCID: PMC11936931 DOI: 10.3389/fphar.2025.1474012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/03/2025] [Indexed: 03/28/2025] Open
Abstract
Background Alzheimer's disease (AD), a complex neurodegenerative disease associated with ageing, is the leading cause of dementia. Few people with early AD are eligible for the novel Food and Drug Administration (FDA)-approved drug treatments. Accordingly, new tools and early diagnosis markers are required to predict subtypes, individual stages, and the most suitable personalized treatment. We previously demonstrated that the regulation of microRNA (miR)-124 is crucial for proper neuronal function and microglia reshaping in human AD cell models. Objective The aim of this study was to develop an efficient miR-124-3p-loaded exosome strategy and validate its therapeutic potential in using a multi-compartment microfluidic device of neuron-glia that recapitulates age-AD pathological features. Methods and results Using cortical microglia from mouse pups, separated from glial mixed cultures and maintained for 2 days in vitro (stressed microglia), we tested the effects of SH-SY5Y-derived exosomes loaded with miR-124-3p mimic either by their direct transfection with Exo-Fect™ (ET124) or by their isolation from the secretome of miR-124 transfected cells (CT124). ET124 revealed better delivery effciency and higher potent effects in improving the stressed microglia status than CT124. Tricultures of human SH-SY5Y neuroblastoma cells (SH-WT) were established in the presence of the human microglia cell line (HMC3) and immortalized human astrocytes (IM-HA) in tricompartmentalized microfluidic devices. Replacement of SH-WT cells with those transfected with APP695 (SH-SWE) in the tricultures and addition of low doses of hydrogen peroxide were used to simulate late-onset AD. The system mimicked AD-associated neurodegeneration and neuroinflammation processes. Notably, ET124 exhibited neuroprotective properties across the three cell types in the AD model by preventing neuronal apoptosis and neurite deficits, redirecting microglial profiles towards a steady state, and attenuating the inflammatory and miRNA fingerprints associated with astrocyte reactivity. Conclusion To the best of our knowledge, this is the first study supporting the neuro- and immunoprotective properties of miR-124-engineered exosomes in a microfluidic triculture platform, recapitulating age-related susceptibility to AD. Our system offers potential to develop personalized medicines in AD patient subtypes.
Collapse
Affiliation(s)
- Artemizia Évora
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rubi
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora De Vitis
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Ana Teresa Matos
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Rita Vaz
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Francesca Gervaso
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
- Dipartimento di Medicina Sperimentale, Università Del Salento, Lecce, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR Nanotec), Lecce, Italy
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
An Y, Yao Y, Liu H, Xi Y, Pi M, Xu R, Huang Y, Li S, Gu X. The role of the CCL5-CCR5 axis in microglial activation leading to postoperative cognitive dysfunction. Exp Neurol 2025; 385:115114. [PMID: 39667654 DOI: 10.1016/j.expneurol.2024.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgeries involving general anesthesia. Although the CCL5-CCR5 axis is implicated in various neurological conditions, its role in POCD remains unclear. In our POCD model, we observed an increase in CCL5 and CCR5 levels concurrent with microglial activation and significant upregulation of inflammatory cytokines IL-6 and IL-1β. Administration of MVC, a CCR5 antagonist, alleviated neuroinflammation, prevented dendritic spine loss, and improved cognitive deficits by inhibiting the CCR5/CREB/NLRP1 pathway. However, the cognitive benefits of MVC were reversed by the CREB inhibitor 666-15. Our findings highlight the potential of targeting the CCL5-CCR5 axis as a therapeutic strategy for preventing and treating POCD.
Collapse
Affiliation(s)
- Yuanyuan An
- Department of Anesthesiology, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, China; Department of Anesthesiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Yao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huan Liu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuqing Xi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengying Pi
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Rui Xu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yulin Huang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Shuming Li
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Xiaoping Gu
- Department of Anesthesiology, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, China; Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
6
|
Zhang L, Li J, Li C, Wu Y, Liu S, Li Q, Qi S. Role of Microglial Mitophagy in Alleviating Postoperative Cognitive Dysfunction: a Mechanistic Study. Mol Neurobiol 2025; 62:2376-2395. [PMID: 39110392 DOI: 10.1007/s12035-024-04405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/28/2024] [Indexed: 01/04/2025]
Abstract
Postoperative cognitive dysfunction (POCD), a common complication following anesthesia and surgery, is influenced by hippocampal neuroinflammation and microglial activation. Mitophagy, a process regulating inflammatory responses by limiting the accumulation of damaged mitochondria, plays a significant role. This study aimed to determine whether regulating microglial mitophagy and the cGAS-STING pathway could alleviate cognitive decline after surgery. Exploratory laparotomy was performed to establish a POCD model using mice. Western blotting, immunofluorescence staining, transmission electron microscopy, and mt-Keima assays were used to examine microglial mitophagy and the cGAS-STING pathway. Quantitative polymerase chain reaction (qPCR) was used to detect inflammatory mediators and cytosolic mitochondrial DNA (mtDNA) levels in BV2 cells. Exploratory laparotomy triggered mitophagy and enhanced the cGAS-STING pathway in mice hippocampi. Pharmacological treatment reduced microglial activation, neuroinflammation, and cognitive impairment after surgery. Mitophagy suppressed the cGAS-STING pathway in mice hippocampi. In vitro, microglia-induced inflammation was mediated by mitophagy and the cGAS-STING pathway. Small interfering RNA (siRNA) of PINK1 hindered mitophagy activation and facilitated the cytosolic release of mtDNA, resulting in the initiation of the cGAS-STING pathway and innate immune response. Microglial mitophagy inhibited inflammatory responses via the mtDNA-cGAS-STING pathway inducing microglial mitophagy and inhibiting the mtDNA-cGAS-STING pathway may be an effective therapeutic approach for patients with POCD.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Jiaying Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Chenglong Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Yujin Wu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Shuai Liu
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Qi Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China
| | - Sihua Qi
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Road, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
7
|
Jia M, Li G, Chen J, Tang X, Zang Y, Yang G, Shi YS, Ma D, Ji M, Yang J. Hippocampal Nogo66-NgR1 signaling activation restricts postsynaptic assembly in aged mice with postoperative neurocognitive disorders. Aging Cell 2025; 24:e14366. [PMID: 39412367 PMCID: PMC11709113 DOI: 10.1111/acel.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 01/11/2025] Open
Abstract
Postoperative neurocognitive disorders (pNCD) are a common neurological complication, especially in elderly following anesthesia and surgery. Yet, the underlying mechanisms of pNCD remain elusive. This study aimed to investigate the molecular mechanisms that compromise synaptic metaplasticity in pNCD development with a focus on the involvement of Nogo-66 receptor 1 (NgR1) in the pathogenesis of pNCD in aged mice. Aged mice subjected to anesthesia and laparotomy surgery exhibited anxiety-like behavior and contextual fear memory impairment. Moreover, the procedure significantly increased NogoA and NgR1 expressions, particularly in the hippocampal CA1 and CA3 regions. This increase led to the depolymerization of F-actin, attributed to the activation of the RhoA-GTPase, resulting in a reduction of dendritic spines and changes in their morphology. Additionally, these changes hindered the efficient postsynaptic delivery of the subunit GluA1 and GluA2 of AMPA receptors (AMPARs), consequently diminishing excitatory neurotransmission in the hippocampus. Importantly, administering the competitive NgR1 antagonist peptide NEP1-40 (Nogo-A extracellular peptide residues 1-40 amino acids of Nogo-66) and Fasudil (a Rho-kinase inhibitor) effectively mitigated synaptic impairments and reversed neurocognitive deficits in aged mice following anesthesia and surgery. Our work indicates that high hippocampal Nogo66-NgR1 signaling disrupts postsynaptic AMPA receptor surface delivery due to F-actin depolymerization in the pathophysiology of pNCD.
Collapse
Affiliation(s)
- Min Jia
- Department of Anaesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gui‐zhou Li
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Jiang Chen
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Xiao‐hui Tang
- Department of Anaesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yan‐yu Zang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Guo‐lin Yang
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Yun Stone Shi
- Minister of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing UniversityNanjingChina
| | - Daqing Ma
- Perioperative and Systems Medicine LaboratoryNational Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of MedicineHangzhouChina
- Division of Anaesthetics, Pain Medicine & Intensive Care, Department of Surgery & Cancer, Faculty of MedicineImperial College London, Chelsea & Westminster HospitalLondonUK
| | - Mu‐huo Ji
- Department of AnaesthesiologyThe Second Affiliated Hospital, Nanjing Medical UniversityNanjingChina
| | - Jian‐jun Yang
- Department of Anaesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
8
|
Qi Z, Peng J, Wang H, Wang L, Su Y, Ding L, Cao B, Zhao Y, Xing Q, Yang J. Modulating neuroinflammation and cognitive function in postoperative cognitive dysfunction via CCR5-GPCRs-Ras-MAPK pathway targeting with microglial EVs. CNS Neurosci Ther 2024; 30:e14924. [PMID: 39143678 PMCID: PMC11324532 DOI: 10.1111/cns.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junlin Peng
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu Su
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingying Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qinghe Xing
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
9
|
Li Y, Li YJ, Fang X, Chen DQ, Yu WQ, Zhu ZQ. Peripheral inflammation as a potential mechanism and preventive strategy for perioperative neurocognitive disorder under general anesthesia and surgery. Front Cell Neurosci 2024; 18:1365448. [PMID: 39022312 PMCID: PMC11252726 DOI: 10.3389/fncel.2024.1365448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
General anesthesia, as a commonly used medical intervention, has been widely applied during surgical procedures to ensure rapid loss of consciousness and pain relief for patients. However, recent research suggests that general anesthesia may be associated with the occurrence of perioperative neurocognitive disorder (PND). PND is characterized by a decline in cognitive function after surgery, including impairments in attention, memory, learning, and executive functions. With the increasing trend of population aging, the burden of PND on patients and society's health and economy is becoming more evident. Currently, the clinical consensus tends to believe that peripheral inflammation is involved in the pathogenesis of PND, providing strong support for further investigating the mechanisms and prevention of PND.
Collapse
Affiliation(s)
- Yuan Li
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Ying-Jie Li
- Department of General Surgery, Mianyang Hospital of Traditional Chinese Medicine, Mianyang, China
| | - Xu Fang
- Department of Anesthesiology, Nanchong Central Hospital, The Second Clinical Medical School of North Sichuan Medical College, Zunyi, China
| | - Dong-Qin Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wan-Qiu Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhao-Qiong Zhu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Early Clinical Research Ward of Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
10
|
Dong Q, Fu H, Jiang H. The role of exosome-shuttled miRNAs in heavy metal-induced peripheral tissues and neuroinflammation in Alzheimer's disease. Biomed Pharmacother 2024; 176:116880. [PMID: 38850652 DOI: 10.1016/j.biopha.2024.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Heavy metal-induced neuroinflammation is a significant pathophysiologic mechanism in Alzheimer's disease (AD). Microglia-mediated neuroinflammation plays a crucial role in the pathogenesis of AD. Multiple miRNAs are differentially expressed in peripheral tissues after heavy metal exposure, and increasing evidence suggests that they are involved in AD progression by regulating microglial homeostasis. Exosomes, which are capable of loading miRNAs and crossing the bloodbrain barrier, serve as mediators of communication between peripheral tissues and the brain. In this review, we summarize the current evidence on the link between miRNAs in peripheral tissues and neuroinflammation in AD after heavy metal exposure and propose a role for miRNAs in the microglial neurodegenerative phenotype (MGnD) of AD. This study will help to elucidate the link between peripheral tissue damage and MGnD-mediated neuroinflammation in AD after heavy metal exposure. Additionally, we summarize the regulatory effects of natural compounds on peripheral tissue-derived miRNAs, which could be potential therapeutic targets for natural compounds to regulate peripheral tissue-derived exosomal miRNAs to ameliorate heavy metal-induced MGnD-mediated neuroinflammation in patients with AD after heavy metal exposure.
Collapse
Affiliation(s)
- Qing Dong
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Huanyong Fu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; The Key Laboratory of Liaoning Province on Toxic and Biological Effects of Arsenic, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
11
|
Hu Y, Zang W, Feng Y, Mao Q, Chen J, Zhu Y, Xue W. mir-605-3p prevents liver premetastatic niche formation by inhibiting angiogenesis via decreasing exosomal nos3 release in gastric cancer. Cancer Cell Int 2024; 24:184. [PMID: 38802855 PMCID: PMC11131241 DOI: 10.1186/s12935-024-03359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cancer-induced pre-metastatic niches (PMNs) play a decisive role in promoting metastasis by facilitating angiogenesis in distant sites. Evidence accumulates suggesting that microRNAs (miRNAs) exert significant influence on angiogenesis during PMN formation, yet their specific roles and regulatory mechanisms in gastric cancer (GC) remain underexplored. METHODS miR-605-3p was identified through miRNA-seq and validated by qRT-PCR. Its correlation with the clinicopathological characteristics and prognosis was analyzed in GC. Functional assays were performed to examine angiogenesis both in vitro and in vivo. The related molecular mechanisms were elucidated using RNA-seq, immunofluorescence, transmission electron microscopy, nanoparticle tracking analysis, enzyme-linked immunosorbent assay, luciferase reporter assays and bioinformatics analysis. RESULTS miR-605-3p was screened as a candidate miRNA that may regulate angiogenesis in GC. Low expression of miR-605-3p is associated with shorter overall survival and disease-free survival in GC. miR-605-3p-mediated GC-secreted exosomes regulate angiogenesis by regulating exosomal nitric oxide synthase 3 (NOS3) derived from GC cells. Mechanistically, miR-605-3p reduced the secretion of exosomes by inhibiting vesicle-associated membrane protein 3 (VAMP3) expression and affects the transport of multivesicular bodies to the GC cell membrane. At the same time, miR-605-3p reduces NOS3 levels in exosomes by inhibiting the expression of intracellular NOS3. Upon uptake of GC cell-derived exosomal NOS3, human umbilical vein endothelial cells exhibited increased nitric oxide levels, which induced angiogenesis, established liver PMN and ultimately promoted the occurrence of liver metastasis. Furthermore, a high level of plasma exosomal NOS3 was clinically associated with metastasis in GC patients. CONCLUSIONS miR-605-3p may play a pivotal role in regulating VAMP3-mediated secretion of exosomal NOS3, thereby affecting the formation of GC PMN and thus inhibiting GC metastasis.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Weijie Zang
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Qinsheng Mao
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Junjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| |
Collapse
|
12
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Jin D, Xu L, Ge S. SS-31 inhibits mtDNA-cGAS-STING signaling to improve POCD by activating mitophagy in aged mice. Inflamm Res 2024; 73:641-654. [PMID: 38411634 DOI: 10.1007/s00011-024-01860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/30/2023] [Accepted: 02/06/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Neuroinflammation is crucial in the development of postoperative cognitive dysfunction (POCD), and microglial activation is an active participant in this process. SS-31, a mitochondrion-targeted antioxidant, is widely regarded as a potential drug for neurodegenerative diseases and inflammatory diseases. In this study, we sought to explore whether SS-31 plays a neuroprotective role and the underlying mechanism. METHODS Internal fixation of tibial fracture was performed in 18-month-old mice to induce surgery-associated neurocognitive dysfunction. LPS was administrated to BV2 cells to induce neuroinflammation. Neurobehavioral deficits, hippocampal injury, protein expression, mitophagy level and cell state were evaluated after treatment with SS-31, PHB2 siRNA and an STING agonist. RESULTS Our study revealed that SS-31 interacted with PHB2 to activate mitophagy and improve neural damage in surgically aged mice, which was attributed to the reduced cGAS-STING pathway and M1 microglial polarization by decreased release of mitochondrial DNA (mtDNA) but not nuclear DNA (nDNA). In vitro, knockdown of PHB2 and an STING agonist abolished the protective effect of SS-31. CONCLUSIONS SS-31 conferred neuroprotection against POCD by promoting PHB2-mediated mitophagy activation to inhibit mtDNA release, which in turn suppressed the cGAS-STING pathway and M1 microglial polarization.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Yimei Ma
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Ying Wang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Xining Zhao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Danfeng Jin
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Li Xu
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China
| | - Shengjin Ge
- Department of Anesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
13
|
Zhao W, Zou W. Effects of electroacupuncture on postoperative cognitive dysfunction and its underlying mechanisms: a literature review of rodent studies. Front Aging Neurosci 2024; 16:1384075. [PMID: 38596595 PMCID: PMC11002135 DOI: 10.3389/fnagi.2024.1384075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
With the aging of the population, the health of the elderly has become increasingly important. Postoperative cognitive dysfunction (POCD) is a common neurological complication in elderly patients following general anesthesia or surgery. It is characterized by cognitive decline that may persist for weeks, months, or even longer. Electroacupuncture (EA), a novel therapy that combines physical nerve stimulation with acupuncture treatment from traditional Chinese medicine, holds potential as a therapeutic intervention for preventing and treating POCD, particularly in elderly patients. Although the beneficial effects of EA on POCD have been explored in preclinical and clinical studies, the reliability of EA is limited by methodological shortcomings, and the underlying mechanisms remain largely unexplored. Therefore, we have synthesized existing evidence and proposed potential biological mechanisms underlying the effects of EA on neuroinflammation, oxidative stress, autophagy, the microbiota-gut-brain axis, and epigenetic modification. This review summarizes recent advances in EA and POCD, provides a theoretical foundation, explores potential molecular mechanisms for the prevention and treatment of POCD, and offers a basis for conducting relevant clinical trials.
Collapse
Affiliation(s)
- Wenbo Zhao
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Zhang J, Cui B, He T, Hei R, Yang L, Liu C, Wu X, Wang X, Gao Z, Lin F, Zhang H, Dong K. Enhancing Neuroprotection in Mouse Model of Parkinson's Disease through Protein Nanosystem Conjugation with ApoE Peptide for miR-124 Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8199-8212. [PMID: 38345297 DOI: 10.1021/acsami.3c13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Parkinson's disease (PD) affects millions of people's lives worldwide. The main pathogenesis of PD is dopaminergic neuron necrosis and neuroinflammation mediated by activated microglia cells. In recent years, the anti-inflammatory ability and neuroprotective effects of miR-124 in PD models were well proved, but the in vivo delivery of miR-124 remains challenging. Herein, we report a protein nanosystem modified with a brain-targeting peptide ApoE that could efficiently deliver miR-124 across the blood-brain barrier (BBB). This nanosystem showed good cell viability on brain endothelial cells and microglia cells, and administration of this nanosystem significantly decreased the neuroinflammation and dopaminergic neuron loss, as well as recovered parts of neurobehavioral deficits. This ApoE peptide-based protein nanosystem holds great promise for the delivery of RNA therapeutics to the brain and for realizing neuron protection in PD treatment.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Bozhou Cui
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting He
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ruoxuan Hei
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xianan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xi Wang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Zhaowei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Fang Lin
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Huizhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| |
Collapse
|
15
|
Li XC, Chen H, Chen Y, Chu YX, Mi WL, Wang YQ, Mao-Ying QL. Spinal Neuronal miR-124 Inhibits Microglial Activation and Contributes to Preventive Effect of Electroacupuncture on Chemotherapy-Induced Peripheral Neuropathy in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:410-420. [PMID: 38088802 DOI: 10.4049/jimmunol.2300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a persistent and irreversible side effect of antineoplastic agents. Patients with CIPN usually show chronic pain and sensory deficits with glove-and-stocking distribution. However, whether spinal neuronal microRNA (miR)-124 is involved in cisplatin-induced peripheral neuropathy remains to be studied. In this study, miR-124 was significantly reduced in the spinal dorsal horn in CIPN mice. Overexpression of neuronal miR-124 induced by injecting adeno-associated virus with neuron-specific promoter into the spinal cord of mice prevented the development of mechanical allodynia, sensory deficits, and the loss of intraepidermal nerve fibers induced by cisplatin. Meanwhile, cisplatin-induced M1 microglia activation and the release of proinflammatory cytokines were significantly inhibited by overexpression of neuronal miR-124. Furthermore, electroacupuncture (EA) treatment upregulated miR-124 expression in the spinal dorsal horn of CIPN mice. Interestingly, downregulation of spinal neuronal miR-124 significantly inhibited the regulatory effect of EA on CIPN and microglia activity as well as spinal neuroinflammation induced by cisplatin. These results demonstrate that spinal neuronal miR-124 is involved in the prevention and treatment of EA on cisplatin-induced peripheral neuropathy in mice. Our findings suggest that spinal neuronal miR-124 might be a potential target for EA effect, and we provide, to our knowledge, a new experimental basis for EA prevention of CIPN.
Collapse
Affiliation(s)
- Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hui Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Kong E, Geng X, Wu F, Yue W, Sun Y, Feng X. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain in elderly mice. J Cell Mol Med 2024; 28:e18090. [PMID: 38140846 PMCID: PMC10844686 DOI: 10.1111/jcmm.18090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/14/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cognitive impairment induced by postoperative pain severely deteriorates the rehabilitation outcomes in elderly patients. The present study focused on the relationship between microglial exosome miR-124-3p in hippocampus and cognitive impairment induced by postoperative pain. Cognitive impairment model induced by postoperative pain was constructed by intramedullary nail fixation after tibial fracture. Morphine intraperitoneally was carried out for postoperative analgesia. Morris water maze tests were carried out to evaluate the cognitive impairment, while mRNA levels of neurotrophic factors (BDNF, NG) and neurodegenerative biomarker (VILIP-1) in hippocampus were tested by q-PCR. Transmission electron microscope was used to observe the axon degeneration in hippocampus. The levels of pro-inflammatory factors (TNF-α, IL-1β, IL-6), the levels of anti-inflammatory factors (Ym, Arg-1, IL-10) and microglia proliferation marker cyclin D1 in hippocampus were measured to evaluate microglia polarization. Bioinformatics analysis was conducted to identify key exosomes while BV-2 microglia overexpressing exosome miR-124-3p was constructed to observe microglia polarization in vitro experiments. Exogenous miR-124-3p-loaded exosomes were injected into hippocampus in vivo. Postoperative pain induced by intramedullary fixation after tibial fracture was confirmed by decreased mechanical and thermal pain thresholds. Postoperative pain induced cognitive impairment, promoted axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus. Postoperative pain also increased pro-inflammatory factors, cyclin D1 and decreased anti-inflammatory factors in hippocampus. However, these changes were all reversed by morphine analgesia. Bioinformatics analysis identified the critical role of exosome miR-124-3p in cognitive impairment, which was confirmed to be down-regulated in hippocampus of postoperative pain mice. BV-2 microglia overexpressing exosome miR-124-3p showed decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. In vivo, stereotactic injection of exogenous miR-124-3p into hippocampus decreased pro-inflammatory factors, cyclin D1 and increased anti-inflammatory factors. The cognitive impairment, axon demyelination, decreased BDNF, NG and increased VILIP-1 expressions in hippocampus were all alleviated by exogenous exosome miR-124-3p. Microglial exosome miR-124-3p in hippocampus alleviates cognitive impairment induced by postoperative pain through microglia polarization in elderly mice.
Collapse
Affiliation(s)
- Erliang Kong
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Xuqiang Geng
- Department of Rheumatology and Immunology, Changzheng HospitalSecond Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Feixiang Wu
- Department of Intensive Care Unit, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Wei Yue
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| | - Yuming Sun
- Department of Anesthesiology, Shanghai Eastern Hepatobiliary Surgery HospitalThird Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Xudong Feng
- Department of AnesthesiologyThe 988th Hospital of Joint Logistic Support Force of Chinese People's Liberation ArmyZhengzhouChina
| |
Collapse
|
17
|
Ji Y, Ma Y, Ma Y, Wang Y, Zhao X, Jin D, Xu L, Ge S. Rutin prevents pyroptosis and M1 microglia via Nrf2/Mac-1/caspase-1-mediated inflammasome axis to improve POCD. Int Immunopharmacol 2024; 127:111290. [PMID: 38064815 DOI: 10.1016/j.intimp.2023.111290] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Neuroinflammation following peripheral surgery plays a key role in postoperative cognitive dysfunction (POCD) development and there is no effective therapy to inflammation-mediated cognitive impairment. Recent studies showed that rutin, a natural flavonoid compound, conferred neuroprotection. However, the effects and mechanisms of rutin on cognition of surgical and aged mice and LPS-induced BV2 need deeper exploration. METHODS The effect of rutin in vivo and vitro were evaluated by Morris water maze test, HE stainin, Golgi-Cox staining, IF, IHC, RT-PCR, Flow Cytometer and Western blotting. In vivo, aged mice were treated with rutin and surgery. In vitro, rutin, Nrf2 knockdown, MAC-1 overexpression and VX765, a caspase-1 inhibitor, were administration on BV2 microglial cells. RESULTS Surgery led to compensatory increase in nuclear Nrf2 and rutin could further increase it. Neural damage was accompanied with high level in MAC-1, caspase-1-mediated pyroptosis and M1 microglia, while rutin recovered the process. Nrf2 inhibition abolished the effect of rutin with the increase of MAC-1, caspase-1-mediated pyroptosis and M1 microglia. Activation of MAC-1 abrogated protection of rutin by increase in pyroptosis and M1 microglia. Finally, we found that treatment with VX765 improved injury and increased M2 microglia against overexpression of MAC-1. CONCLUSIONS Our study indicated that rutin may be a potential therapy in POCD and exerted neural protection via Nrf2/ Mac-1/ caspase-1-mediated inflammasome axis to regulate pyroptosis and microglial polarization.
Collapse
Affiliation(s)
- Yelong Ji
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Yuanyuan Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Yimei Ma
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Ying Wang
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Xining Zhao
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Danfeng Jin
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Li Xu
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China
| | - Shengjin Ge
- Department of Anaesthesia, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai 200032 China.
| |
Collapse
|
18
|
Alikiaii B, Bagherniya M, Askari G, Rajendram R, Sahebkar A. MicroRNA Profiles in Critically Ill Patients. Curr Med Chem 2024; 31:6801-6825. [PMID: 37496239 DOI: 10.2174/0929867331666230726095222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 07/28/2023]
Abstract
The use of biomarkers to expedite diagnosis, prognostication, and treatment could significantly improve patient outcomes. The early diagnosis and treatment of critical illnesses can greatly reduce mortality and morbidity. Therefore, there is great interest in the discovery of biomarkers for critical illnesses. Micro-ribonucleic acids (miRNAs) are a highly conserved group of non-coding RNA molecules. They regulate the expression of genes involved in several developmental, physiological, and pathological processes. The characteristics of miRNAs suggest that they could be versatile biomarkers. Assay panels to measure the expression of several miRNAs could facilitate clinical decision-- making for a range of diseases. We have, in this paper, reviewed the current understanding of the role of miRNAs as biomarkers in critically ill patients.
Collapse
Affiliation(s)
- Babak Alikiaii
- Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Bagherniya
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rajkumar Rajendram
- Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University of Health Sciences, Riyadh, Saudi Arabia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Zhang S, Liu C, Sun J, Li Y, Lu J, Xiong X, Hu L, Zhao H, Zhou H. Bridging the Gap: Investigating the Link between Inflammasomes and Postoperative Cognitive Dysfunction. Aging Dis 2023; 14:1981-2002. [PMID: 37450925 PMCID: PMC10676784 DOI: 10.14336/ad.2023.0501] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 07/18/2023] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a cluster of cognitive problems that may arise after surgery. POCD symptoms include memory loss, focus inattention, and communication difficulties. Inflammasomes, intracellular multiprotein complexes that control inflammation, may have a significant role in the development of POCD. It has been postulated that the NLRP3 inflammasome promotes cognitive impairment by triggering the inflammatory response in the brain. Nevertheless, there are many gaps in the current literature to understand the underlying pathophysiological mechanisms and develop future therapy. This review article underlines the limits of our current knowledge about the NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3) inflammasome and POCD. We first discuss inflammasomes and their types, structures, and functions, then summarize recent evidence of the NLRP3 inflammasome's involvement in POCD. Next, we propose a hypothesis that suggests the involvement of inflammasomes in multiple organs, including local surgical sites, blood circulation, and other peripheral organs, leading to systemic inflammation and subsequent neuronal dysfunction in the brain, resulting in POCD. Research directions are then discussed, including analyses of inflammasomes in more clinical POCD animal models and clinical trials, studies of inflammasome types that are involved in POCD, and investigations into whether inflammasomes occur at the surgical site, in circulating blood, and in peripheral organs. Finally, we discuss the potential benefits of using new technologies and approaches to study inflammasomes in POCD. A thorough investigation of inflammasomes in POCD might substantially affect clinical practice.
Collapse
Affiliation(s)
- Siyu Zhang
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Jintao Sun
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Yang Li
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Jian Lu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hu
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| | - Heng Zhao
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Joint Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| | - Hongmei Zhou
- Anesthesiology Department, Zhejiang Chinese Medical University, Hangzhou, China.
- Anesthesiology Department, The Second Hospital of Jiaxing, The Second Affiliated Hospital of Jiaxing University, Jiaxing Key Laboratory of Basic Research and Clinical Transformation of Perioperative Precision Anesthesia, Jiaxing, China.
| |
Collapse
|
20
|
Xu X, Guo W, Zhao L, Sun Y, Xu D, Yang J, Liu Y, Xie S, Wang Y, Xu Y. Exploring the in vitro anti-inflammatory activity of gross saponins of Tribulus terrestris L. fruit by using liquid chromatography-mass spectrometry-based cell metabolomics approach. J Sep Sci 2023; 46:e2300531. [PMID: 37933967 DOI: 10.1002/jssc.202300531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Our previous studies confirmed the efficacy of gross saponins of Tribulus terrestris L. fruit in treating cerebral ischemia. This study aimed to investigate the related mechanisms in vitro. The lipopolysaccharide-induced BV2 cells model was constructed and treated with gross saponins at different concentrations to explore its anti-inflammatory activity. The cell metabolite changes were tracked by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics, and the metabolic biomarkers and related metabolic pathways were analyzed. Molecular biochemistry analysis was further used to verify the relevant inflammatory pathways. The results showed that the saponins reduced nitric oxide release and the secretion of tumor necrosis factor-alpha, interleukin-1β, and interleukin-6 from lipopolysaccharide-induced BV2 cells. Metabolic perturbations occurred in lipopolysaccharide-treated BV2 cells, which could be reversed by drug treatment via mainly regulating glycerophospholipid metabolism, tryptophan metabolism, purine metabolism pathways, etc. The western blot analysis demonstrated that saponin could suppress the activation of the inflammatory-related signaling pathway. The present study explored the in vitro anti-inflammatory mechanism of gross saponins of Tribulus terrestris L. fruit using an LC-MS-based cell metabolomics approach, which confirms the great potential of LC-MS for drug efficacy evaluation and can be applied in other herbal medicine-related analyses.
Collapse
Affiliation(s)
- Xiaohang Xu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Wenjun Guo
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Liang Zhao
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yuanhe Sun
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Jingxuan Yang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yue Liu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Shengxu Xie
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Yang Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Yajuan Xu
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, Changchun, China
| |
Collapse
|
21
|
Wu P, He B, Li X, Zhang H. Roles of microRNA-124 in traumatic brain injury: a comprehensive review. Front Cell Neurosci 2023; 17:1298508. [PMID: 38034588 PMCID: PMC10687822 DOI: 10.3389/fncel.2023.1298508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Traumatic brain injury (TBI) is a prominent global cause of mortality due to the limited availability of effective prevention and treatment strategies for this disorder. An effective molecular biomarker may contribute to determining the prognosis and promoting the therapeutic efficiency of TBI. MicroRNA-124 (miR-124) is most abundantly expressed in the brain and exerts different biological effects in a variety of diseases by regulating pathological processes of apoptosis and proliferation. Recently, increasing evidence has demonstrated the association between miR-124 and TBI, but there is still a lack of relevant literature to summarize the current evidence on this topic. Based on this review, we found that miR-124 was involved as a regulatory factor in cell apoptosis and proliferation, and was also strongly related with the pathophysiological development of TBI. MiR-124 played an essential role in TBI by interacting with multiple biomolecules and signaling pathways, such as JNK, VAMP-3, Rela/ApoE, PDE4B/mTOR, MDK/TLR4/NF-κB, DAPK1/NR2B, JAK/STAT3, PI3K/AKT, Ras/MEK/Erk. The potential benefits of upregulating miR-124 in facilitating TBI recovery have been identified. The advancement of miRNA nanocarrier system technology presents an opportunity for miR-124 to emerge as a novel therapeutic target for TBI. However, the specific mechanisms underlying the role of miR-124 in TBI necessitate further investigation. Additionally, comprehensive large-scale studies are required to evaluate the clinical significance of miR-124 as a therapeutic target for TBI.
Collapse
Affiliation(s)
- Panxing Wu
- Department of Neurosurgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Bao He
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Xiaoliang Li
- Department of Neurosurgery, The First People’s hospital of Kunshan, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
- Suzhou Key Laboratory of Neuro-Oncology and Nano-Bionics, Suzhou, Jiangsu, China
| | - Hongwei Zhang
- Department of Emergency Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
22
|
Zhang X, Yang C, Meng Z, Zhong H, Hou X, Wang F, Lu Y, Guo J, Zeng Y. miR-124 and VAMP3 Act Antagonistically in Human Neuroblastoma. Int J Mol Sci 2023; 24:14877. [PMID: 37834325 PMCID: PMC10573497 DOI: 10.3390/ijms241914877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor that affects developing nerve cells in the fetus, infants, and children. miR-124 is a microRNA (miRNA) enriched in neuronal tissues, and VAMP3 (vesicle-associated membrane protein 3) has been reported to be an miR-124 target, although the relationship between NB and miR-124 or VAMP3 is unknown. Our current work identified that miR-124 levels are high in NB cases and that elevated miR-124 correlates with worse NB outcomes. Conversely, depressed VAMP3 correlates with worse NB outcomes. To investigate the mechanisms by which miR-124 and VAMP3 regulate NB, we altered miR-124 or VAMP3 expression in human NB cells and observed that increased miR-124 and reduced VAMP3 stimulated cell proliferation and suppressed apoptosis, while increased VAMP3 had the opposite effects. Genome-wide mRNA expression analyses identified gene and pathway changes which might explain the NB cell phenotypes. Together, our studies suggest that miR-124 and VAMP3 could be potential new markers of NB and targets of NB treatments.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyong Yang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhen Meng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huanhuan Zhong
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xutian Hou
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fenfen Wang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiping Lu
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao 999078, China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
23
|
Zhuang Y, Xu J, Zheng K, Zhang H. Research progress of postoperative cognitive dysfunction in cardiac surgery under cardiopulmonary bypass. IBRAIN 2023; 10:290-304. [PMID: 39346790 PMCID: PMC11427806 DOI: 10.1002/ibra.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 10/01/2024]
Abstract
Cardiopulmonary bypass (CPB) is often used in cardiothoracic surgery because its nonphysiological state causes pathophysiological changes in the body, causing multiorgan and multitissue damage to varying degrees. Postoperative cognitive dysfunction (POCD) is a common central nervous system complication after cardiac surgery. The etiology and mechanism of POCD are not clear. Neuroinflammation, brain mitochondrial dysfunction, cerebral embolism, ischemia, hypoxia, and other factors are related to the pathogenesis of POCD. There is a close relationship between CPB and POCD, as CPB can cause inflammation, hypoxia and reperfusion injury, and microemboli formation, all of which can trigger POCD. POCD increases medical costs, seriously affects patients' quality of life, and increases mortality. Currently, there is a lack of effective treatment methods for POCD. Commonly used methods include preoperative health management, reducing inflammation response during surgery, preventing microemboli formation, and implementing individualized rehabilitation programs after surgery. Strengthening preventive measures can minimize the occurrence of POCD and its adverse effects.
Collapse
Affiliation(s)
- Yi‐Ming Zhuang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Ji‐Yang Xu
- Department of AnesthesiologyJudicial Police Hospital of Guizhou ProvinceGuiyangChina
| | - Kun Zheng
- Department of AnesthesiologyGuizhou Provincial People's HospitalGuiyangChina
| | - Hong Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
24
|
Wu WF, Lin JT, Qiu YK, Dong W, Wan J, Li S, Zheng H, Wu YQ. The role of epigenetic modification in postoperative cognitive dysfunction. Ageing Res Rev 2023; 89:101983. [PMID: 37321381 DOI: 10.1016/j.arr.2023.101983] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
With the ageing of the population, the health problems of elderly individuals have become particularly important. Through a large number of clinical studies and trials, it has been confirmed that elderly patients can experience postoperative cognitive dysfunction after general anesthesia/surgery. However, the mechanism of postoperative cognitive dysfunction is still unknown. In recent years, the role of epigenetics in postoperative cognitive dysfunction has been widely studied and reported. Epigenetics includes the genetic structure and biochemical changes of chromatin not involving changes in the DNA sequence. This article summarizes the epigenetic mechanism of cognitive impairment after general anesthesia/surgery and analyses the broad prospects of epigenetics as a therapeutic target for postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
25
|
Zhang J, Liu L, Zhu M, Zheng X, Liang Y, Zhong Y, Xu J, Yang J. Research Status and Prospects of Acupuncture in Perioperative Medicine Over the Past Decade: A Bibliometric Analysis. J Pain Res 2023; 16:2189-2204. [PMID: 37397275 PMCID: PMC10314771 DOI: 10.2147/jpr.s415998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
Background Over the past decade, acupuncture in the perioperative period has attracted great interest, and a growing number of related literature has been published. Purpose To analyze the general information and identify the research hotspots and trends of acupuncture in perioperative medicine in the last 10 years by bibliometric analysis. Methods We searched the Web of Science Core Collection for publications on acupuncture in perioperative medicine from 2013 to 2023. The articles and reviews were collected with no language restriction. CiteSpace and VOSviewer software were used for bibliometric and visual analysis of relevant literature. Results A total of 814 bibliographic records were retrieved. Overall, the annual number of publications showed an increasing trend. China and its institutions were in a leading position regarding the publication number. With comparatively more scientific collaboration with China, the USA ranked second. Shanghai University of Traditional Chinese Medicine was the most prolific institution. Ha, In-Hyuk had the most publications, and Han JS and Lee A were the most cited authors. Medicine was the most popular journal and Journal of Clinical Oncology had the highest impact factor. "Acupuncture", "electroacupuncture" and "postoperative pain" were the top three keywords. The most popular topics were postoperative pain, postoperative ileus, and postoperative nausea and vomiting according to the keywords and references. And the clusters of postoperative cognitive dysfunction, anxiety, and breast cancer attracted relatively more attention recently. Conclusion This study summarized the research status, hotspots, and trends of acupuncture in perioperative medicine in the past decade, which may aid researchers in better understanding this field. The research hotspots primarily focused on postoperative pain management and postoperative gastrointestinal function. The research of acupuncture for postoperative cognitive dysfunction, cancer-related surgery, and psychological states were the main frontiers topics and may be the focus in the future.
Collapse
Affiliation(s)
- Jingwen Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Liying Liu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Manjia Zhu
- Basic Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Xiaoyan Zheng
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Yun Liang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Ying Zhong
- Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, Sichuan, People’s Republic of China
| | - Jing Xu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
| | - Jie Yang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People’s Republic of China
- Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
26
|
Cristóbal I, Santos A, Rojo F, García-Foncillas J. A complex microRNA regulatory network may control the HCP5/UTP3/c-Myc/VAMP3 signaling axis. Mol Ther 2023; 31:922-923. [PMID: 36933561 PMCID: PMC10124069 DOI: 10.1016/j.ymthe.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| | - Andrea Santos
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain
| | - Jesús García-Foncillas
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain; Translational Oncology Division, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, Madrid, Spain.
| |
Collapse
|
27
|
Wang W, Zhao B, Gao W, Song W, Hou J, Zhang L, Xia Z. Inhibition of PINK1-Mediated Mitophagy Contributes to Postoperative Cognitive Dysfunction through Activation of Caspase-3/GSDME-Dependent Pyroptosis. ACS Chem Neurosci 2023; 14:1249-1260. [PMID: 36946264 DOI: 10.1021/acschemneuro.2c00691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
PTEN-induced kinase 1 (PINK1)-mediated mitophagy and caspase-1/gasdermin D canonical pyroptosis pathways have been implicated in the pathogenesis of postoperative cognitive dysfunction (POCD). However, gasdermin E (GSDME), another recently identified executioner of pyroptosis that can be specifically cleaved by caspase-3, is highly expressed in the brain and neurons. This study aimed to ascertain whether PINK1-dependent mitophagy governs postoperative cognitive capacity through caspase-3/GSDME. Twelve month old male Sprague-Dawley rats underwent exploratory laparotomy under isoflurane anesthesia. Lipopolysaccharide (LPS)-primed SH-SY5Y cells were used to mimic postsurgical neuroinflammation. For the interventional study, rats were administered with adeno-associated virus serotype 9 (AAV9)-mediated silencing of Pink1 and/or caspase-3 inhibitor Ac-DEVD-CHO (Ac-DC). SH-SY5Y cells were treated with siPINK1 and/or Ac-DC. Cognitive performance was assessed using the Morris water maze test. The mitophagy- and pyroptosis-related parameters were determined in the hippocampus and SH-SY5Y cells. Anesthesia/surgery and LPS caused defective PINK1-mediated mitophagy and activation of caspase-3/GSDME-dependent pyroptosis. AAV-9 mediated Pink1 overexpression mitigated cognitive impairment and caspase-3/GSDME-dependent pyroptosis. Conversely, inhibition of PINK1 aggravates POCD and overactivates neuronal pyroptosis. These abnormalities were rescued by Ac-DC treatment. Collectively, PINK1-mediated mitophagy regulates anesthesia and surgery-induced cognitive impairment by negatively affecting the caspase-3/GSDME pyroptosis pathway, which provides a promising therapeutic target for POCD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060 Hubei, China
| |
Collapse
|
28
|
Gao S, Jiang Y, Chen Z, Zhao X, Gu J, Wu H, Liao Y, Sun H, Wang J, Chen W. Metabolic Reprogramming of Microglia in Sepsis-Associated Encephalopathy: Insights from Neuroinflammation. Curr Neuropharmacol 2023; 21:1992-2005. [PMID: 36529923 PMCID: PMC10514522 DOI: 10.2174/1570159x21666221216162606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a diffuse brain dysfunction caused by sepsis that manifests as a range of brain dysfunctions from delirium to coma. It is a relatively common complication of sepsis associated with poor patient prognosis and mortality. The pathogenesis of SAE involves neuroinflammatory responses, neurotransmitter dysfunction, blood-brain barrier (BBB) disruption, abnormal blood flow regulation, etc. Neuroinflammation caused by hyperactivation of microglia is considered to be a key factor in disease development, which can cause a series of chain reactions, including BBB disruption and oxidative stress. Metabolic reprogramming has been found to play a central role in microglial activation and executive functions. In this review, we describe the pivotal role of energy metabolism in microglial activation and functional execution and demonstrate that the regulation of microglial metabolic reprogramming might be crucial in the development of clinical therapeutics for neuroinflammatory diseases like SAE.
Collapse
Affiliation(s)
- Shenjia Gao
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yi Jiang
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhaoyuan Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaoqiang Zhao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | - Jiahui Gu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Han Wu
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yun Liao
- Shanghai Medical College of Fudan University, Shanghai, China
| | - Hao Sun
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jun Wang
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Wankun Chen
- Department of Anesthesiology, Cancer Center, Zhongshan Hospital, Fudan University, 180# Feng-Lin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Fudan Zhangjiang Institute, Shanghai, 201203, China
| |
Collapse
|
29
|
Yang YS, He SL, Chen WC, Wang CM, Huang QM, Shi YC, Lin S, He HF. Recent progress on the role of non-coding RNA in postoperative cognitive dysfunction. Front Cell Neurosci 2022; 16:1024475. [PMID: 36313620 PMCID: PMC9608859 DOI: 10.3389/fncel.2022.1024475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD), especially in elderly patients, is a serious complication characterized by impairment of cognitive and sensory modalities after surgery. The pathogenesis of POCD mainly includes neuroinflammation, neuronal apoptosis, oxidative stress, accumulation of Aβ, and tau hyperphosphorylation; however, the exact mechanism remains unclear. Non-coding RNA (ncRNA) may play an important role in POCD. Some evidence suggests that microRNA, long ncRNA, and circular RNA can regulate POCD-related processes, making them promising biomarkers in POCD diagnosis, treatment, and prognosis. This article reviews the crosstalk between ncRNAs and POCD, and systematically discusses the role of ncRNAs in the pathogenesis and diagnosis of POCD. Additionally, we explored the possible mechanisms of ncRNA-associated POCD, providing new knowledge for developing ncRNA-based treatments for POCD.
Collapse
Affiliation(s)
- Yu-Shen Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shi-Ling He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei-Can Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Cong-Mei Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiao-Mei Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Chuan Shi
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Yan-Chuan Shi,
| | - Shu Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Neuroendocrinology Group, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Shu Lin,
| | - He-fan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- He-fan He,
| |
Collapse
|
30
|
Xu J, Zheng Y, Wang L, Liu Y, Wang X, Li Y, Chi G. miR-124: A Promising Therapeutic Target for Central Nervous System Injuries and Diseases. Cell Mol Neurobiol 2022; 42:2031-2053. [PMID: 33886036 PMCID: PMC11421642 DOI: 10.1007/s10571-021-01091-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Central nervous system injuries and diseases, such as ischemic stroke, spinal cord injury, neurodegenerative diseases, glioblastoma, multiple sclerosis, and the resulting neuroinflammation often lead to death or long-term disability. MicroRNAs are small, non-coding, single-stranded RNAs that regulate posttranscriptional gene expression in both physiological and pathological cellular processes, including central nervous system injuries and disorders. Studies on miR-124, one of the most abundant microRNAs in the central nervous system, have shown that its dysregulation is related to the occurrence and development of pathology within the central nervous system. Herein, we review the molecular regulatory functions, underlying mechanisms, and effective delivery methods of miR-124 in the central nervous system, where it is involved in pathological conditions. The review also provides novel insights into the therapeutic target potential of miR-124 in the treatment of human central nervous system injuries or diseases.
Collapse
Affiliation(s)
- Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China
| | - Liangjia Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yining Liu
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Xishu Wang
- Clinical Medical College, Jilin University, Changchun, 130000, People's Republic of China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130000, People's Republic of China.
| |
Collapse
|
31
|
Wang W, Huo P, Zhang L, Lv G, Xia Z. Decoding competitive endogenous RNA regulatory network in postoperative cognitive dysfunction. Front Neurosci 2022; 16:972918. [PMID: 36203795 PMCID: PMC9530360 DOI: 10.3389/fnins.2022.972918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common postoperative neurological complication in elderly patients. Circular RNAs (circRNAs) are abundant in the mammalian brain and can probably regulate cognitive function. However, the competitive endogenous RNA (ceRNA) regulatory network in POCD remains illiterate. Transcriptomic signatures in the hippocampus of POCD mice derived from the Gene Expression Omnibus (GEO) dataset GSE190880, GSE95070, and GSE115440 were used to identify the circRNA, miRNA, and mRNA expression profiles of POCD mice compared with controls, respectively. A set of differentially expressed RNAs, including 119 circRNAs, 33 miRNAs, and 49 mRNAs were identified. Transcript validation showed the enhanced expression of circ_0001634, circ_0001345, and circ_0001493. A ceRNA regulatory network composed of three circRNAs, three miRNAs, and six mRNAs was established. The hub mRNAs in the ceRNA network were further found to be involved in the hormone catabolic process and regulation of canonical Wnt signaling pathway, revealing their crucial role in POCD. Finally, three miRNAs and four mRNAs were verified by qRT-PCR. These results based on bioinformatics and PCR array suggest that circ_0001634/miR-490-5p/Rbm47, circ_0001634/miR-490-5p/Sostdc1, circ_0001634/miR-7001-5p/Sostdc1, circ_0001345/miR-7001-5p/Sostdc1, and circ_0001493/miR-7001-5p/Sostdc1 may be novel diagnostic biomarkers and therapeutic targets for POCD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengwei Huo
- Department of Anesthesiology, Yulin No.2 Hospital, Yulin, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Lv
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Gang Lv,
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
- Zhongyuan Xia,
| |
Collapse
|
32
|
Wang YH, Chen YW, Xiao WL, Li XL, Feng L, Liu YL, Duan XX. MiR-214-3p Prevents the Development of Perioperative Neurocognitive Disorders in Elderly Rats. Curr Med Sci 2022; 42:871-884. [PMID: 35451808 DOI: 10.1007/s11596-022-2572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/01/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This study aimed to identify microRNAs (miRNAs) involved in the development of perioperative neurocognitive disorders (PND). METHODS Plasma exosomal miRNA expression was examined in patients before and after cardiopulmonary bypass (CPB) using microarray and qRT-PCR and these patients were diagnosed as PND later. Elderly rats were subjected to CPB, and the cognitive functions were examined. Bioinformatics analysis was conducted to predict the targets of miR-214-3p. Rats were administered rno-miR-214-3p agomir before or after CPB to investigate the role of miR-214-3p in PND development. RESULTS We identified 76 differentially expressed plasma exosomal miRNAs in PND patients after surgery (P<0.05, ∣log2FC∣>0.58), including the upregulated hsa-miR-214-3p (P=0.002399392). Prostaglandin-endoperoxide synthase 2 (PTGS2) was predicted as a miR-214-3p target. In rats, CPB reduced the platform crossing numbers and target quadrant stay time, accompanied with hippocampal neuronal necrosis. The rno-miR-214-3p level was significantly increased in plasma exosomes but decreased in rat hippocampus after surgery, exhibiting a negative correlation (P<0.001, r=-0.762). A negative correlation between miR-214-3p and PTGS2 protein expression was also observed in the hippocampus after surgery. Importantly, rno-miR-214-3p agomir treatment, before or after surgery, significantly increased the platform crossing numbers (P=0.035) and target quadrant stay time (P=0.029) compared with negative control. Hippocampal PTGS2 protein level was increased in the untreated surgery group and decreased in response to rno-miR-214-3p agomir treatment before or after surgery (both P<0.05 vs. negative control). CONCLUSION These data suggest that miR-214-3p/PTGS2 signaling contributes to the development of PND, serving as a potential therapeutic target for PND.
Collapse
Affiliation(s)
- Yu-Hao Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Yong-Wang Chen
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Wan-Li Xiao
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Xue-Lian Li
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Lan Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Yu-Lin Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Xia Duan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Anesthesiology, Southwest Medical University, Luzhou, 646000, China.
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
33
|
Liu Q, Huang Y, Duan M, Yang Q, Ren B, Tang F. Microglia as Therapeutic Target for Radiation-Induced Brain Injury. Int J Mol Sci 2022; 23:8286. [PMID: 35955439 PMCID: PMC9368164 DOI: 10.3390/ijms23158286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
Radiation-induced brain injury (RIBI) after radiotherapy has become an increasingly important factor affecting the prognosis of patients with head and neck tumor. With the delivery of high doses of radiation to brain tissue, microglia rapidly transit to a pro-inflammatory phenotype, upregulate phagocytic machinery, and reduce the release of neurotrophic factors. Persistently activated microglia mediate the progression of chronic neuroinflammation, which may inhibit brain neurogenesis leading to the occurrence of neurocognitive disorders at the advanced stage of RIBI. Fully understanding the microglial pathophysiology and cellular and molecular mechanisms after irradiation may facilitate the development of novel therapy by targeting microglia to prevent RIBI and subsequent neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qun Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Yan Huang
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Mengyun Duan
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Qun Yang
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China; (M.D.); (Q.Y.)
| | - Boxu Ren
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China; (Q.L.); (Y.H.)
| | - Fengru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
34
|
Chen Y, An Q, Yang ST, Chen YL, Tong L, Ji LL. MicroRNA-124 attenuates PTSD-like behaviors and reduces the level of inflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats following single-prolonged stress. Exp Neurol 2022; 356:114154. [PMID: 35753367 DOI: 10.1016/j.expneurol.2022.114154] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND MicroRNA-124-3p (miR-124) plays an important role in neuroprotective functions in various neurological disorders, but whether miR-124 participates in the pathological progression of posttraumatic stress disorder (PTSD) remains poorly understood. METHODS In the present study, we assessed the level of neuroinflammation in the hippocampus of rats exposed to single-prolonged stress (SPS) by Western blot and immunofluorescence staining, while the effect of miR-124 on PTSD-like behaviors was evaluated by behavioral test. RESULTS Our results showed that the level of miR-124 in the hippocampus of rats exposed to SPS was downregulated and that the upregulation of miR-124 could alleviate the PTSD-like behaviors of SPS rats. This effect of miR-124 might be achieved through TNF receptor-associated Factor 6 (TRAF6), which is a target gene of miR-124 and plays an important role in the immune and inflammatory reaction by regulating nuclear factor kappa-B (NF-κB). Furthermore, we found that miR-124 not only decreased the level of proinflammatory cytokines but also increased the expression levels of synaptic proteins (PSD95 and synapsin I) and regulated the morphology of neurons. CONCLUSION These results suggested that miR-124 might attenuate PTSD-like behaviors and decrease the level of proinflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats exposed to SPS.
Collapse
Affiliation(s)
- Yao Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qi An
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Shu-Ting Yang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Yu-Lu Chen
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| | - Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
35
|
sVCAM1 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Mice by Inducing Microglial Activation Through the VLA-4 Receptor. Mol Neurobiol 2022; 59:5485-5503. [PMID: 35727436 DOI: 10.1007/s12035-022-02924-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Postoperative cognitive dysfunction (POCD) is a severe postsurgical complication, but its underlying mechanisms remain unclear. Neuroinflammation mediated by microglial activation plays a major role in POCD pathophysiology. Upregulation of vascular cell adhesion molecule 1 (VCAM1) on brain endothelial cells is closely correlated with microglial activation in the mouse hippocampus. However, the role of VCAM1 upregulation in microglial activation remains unknown. Soluble VCAM1 (sVCAM1) activates the very late antigen-4 (VLA-4) receptor under inflammatory conditions. Therefore, we hypothesized that sVCAM1 which is shed from VCAM1 contributes to POCD by triggering hippocampal microglial activation through the VLA-4 receptor. We found that VCAM1 and sVCAM1 expression in the mouse hippocampus was upregulated after surgery, and the upregulation was accompanied by hippocampal microglial activation. sVCAM1 levels in mouse and human serum were increased after surgery. Anti-VCAM1 treatment inhibited microglial activation, proinflammatory cytokine production, VLA-4 expression and P38 mitogen-associated protein kinase (MAPK) pathway activation and attenuated hippocampal-dependent cognitive dysfunction. In vitro, recombinant sVCAM1 promoted M1 polarization in BV2 cells, increased VLA-4 expression and activated the P38 MAPK pathway. These effects were reversed by VLA-4 receptor blockade. Anti-VLA-4 treatment ameliorated hippocampal-dependent cognitive dysfunction after surgery by inhibiting microglial activation, proinflammatory cytokine production and P38 pathway activation. In conclusion, increased sVCAM1 in the hippocampus is involved in microglial activation and cognitive dysfunction induced by surgery. Inhibiting the sVCAM1-VLA-4 interaction in microglia may be a therapeutic strategy for POCD.
Collapse
|
36
|
Ding L, Ning J, Guo Y, Wang Q, Kou S, Ke H, Zhou R, Yu B. The Preventive Effect of Transcutaneous Electrical Acupoint Stimulation on Postoperative Delirium in Elderly Patients with Time Factors: A Randomized Trial. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2022; 28:689-696. [PMID: 35714357 DOI: 10.1089/jicm.2021.0141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objectives: There is currently no exact and effective treatment for postoperative delirium (POD). The purpose of this study was to observe the effect of transcutaneous electrical acupoint stimulation (TEAS) before surgery and during surgery in elderly patients with POD. Materials and Methods: A total of 90 patients were randomly divided into three groups: a preoperative TEAS group (group E1), an intraoperative TEAS group (group E2), and a control group (group C). In group E1, TEAS was applied at the Shenting, Baihui, bilateral Neiguan, and Hegu points for 30 min 1 day before surgery and before the induction of anesthesia. In group E2, TEAS was applied during surgery. In group C, electrodes were applied to the points just cited, but no electric stimulation was administered. The incidence of delirium was assessed within 5 days after surgery, and the plasma concentration of propofol at bispectral index (BIS) = 50 was recorded. Blood samples were collected to measure neuron-specific enolation (NSE), tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β 1 day before surgery and 1 and 5 days after surgery. Results: The incidence of delirium in group E1 was decreased in comparison with group C and group E1 (both p < 0.05). The propofol plasma concentration at BIS = 50 in group E1 was also decreased in comparison with group C and group E2 (both p < 0.05). Compared with group C, the concentrations of NSE, TNF-α, and IL-1β in plasma were decreased in group E1 and group E2 1 and 5 days after surgery (both p < 0.05), and the concentrations of NSE and IL-1β in plasma in group E1 were decreased 1 and 5 days after surgery in comparison with group E2. Conclusion: The TEAS can reduce the dosage of propofol required during surgery and the occurrence of delirium after surgery. Its mechanism may be related to inhibiting inflammation response and alleviating brain injury. Compared with intraoperative application, the effect of preconditioning with TEAS before surgery is better. Trial Registration: ChiCTR-INR-17012501. Date of registration: August 29, 2017.
Collapse
Affiliation(s)
- Lingling Ding
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Jiaqi Ning
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.,Capital Medical University, Beijing 100069, China
| | - Yuhong Guo
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Qi Wang
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Shishun Kou
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Hai Ke
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Ruiling Zhou
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Bo Yu
- Department of Anesthesiology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
37
|
Chen D, Fang X, Zhu Z. Progress in the correlation of postoperative cognitive dysfunction and Alzheimer's disease and the potential therapeutic drug exploration. IBRAIN 2022; 9:446-462. [PMID: 38680509 PMCID: PMC11045201 DOI: 10.1002/ibra.12040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 05/01/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a decrease in mental capacity that can occur days to weeks after a medical procedure and may become permanent and rarely lasts for a longer period of time. With the continuous development of research, various viewpoints in academic circles have undergone subtle changes, and the role of anesthesia depth and anesthesia type seems to be gradually weakened; Alzheimer's disease (AD) is a latent and progressive neurodegenerative disease in the elderly. The protein hypothesis and the synaptic hypothesis are well-known reasons. These changes will also lead to the occurrence of an inflammatory cascade. The exact etiology and pathogenesis need to be studied. The reasonable biological mechanism affecting brain protein deposition, neuroinflammation, and acetylcholine-like effect has a certain relationship between AD and POCD. Whereas there is still further uncertainty about the mechanism and treatment, and it is elusive whether POCD is a link in the continuous progress of AD or a separate entity, which has doubts about the diagnosis and treatment of the disease. Therefore, this review is based on the current common clinical characteristics of AD and POCD, and pathophysiological research, to search for their common points and explore the direction and new strategies for future treatment.
Collapse
Affiliation(s)
- Dong‐Qin Chen
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Xu Fang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- College of AnesthesiologyZunyi Medical UniversityZunyiChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
38
|
Song G, Liang H, Song H, Ding X, Wang D, Zhang X, Sun T. Metformin Improves the Prognosis of Adult Mice with Sepsis-Associated Encephalopathy Better than That of Aged Mice. J Immunol Res 2022; 2022:3218452. [PMID: 35571566 PMCID: PMC9095413 DOI: 10.1155/2022/3218452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/08/2022] [Accepted: 04/06/2022] [Indexed: 12/26/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is often associated with increased ICU occupancy and hospital mortality and poor long-term outcomes, with currently no specific treatment. Pathophysiological mechanisms of SAE are complex and may involve activation of microglia, multiple intracranial inflammatory factors, and inflammatory pathways. We hypothesized that metformin may have an effect on microglia, which affects the prognosis of SAE. In this study, metformin treatment of mice with SAE induced by lipopolysaccharide (LPS) reduced the expression of microglia protein and related inflammatory factors. Poor prognosis of SAE is related to increased expression of tumor necrosis factor-α (TNF-α) and interleukin-1 beta (IL-1β) in brain tissues. Levels of inflammatory cytokines produced by LPS-induced SAE mouse microglia were significantly increased compared with those in the sham group. In addition, ionized calcium-binding adapter molecule 1 (Iba-1) was significantly reduced in metformin-treated SAE mice compared with untreated SAE mice, suggesting that metformin can reduce microgliosis and inhibit central nervous system inflammation, thereby improving patient outcomes. In conclusion, our results stipulate that metformin inhibits inflammation through the adenosine 5'-monophosphate (AMP-) activated protein kinase pathway by inhibiting nuclear factor kappa beta (NF-κB). Metformin can partially reverse the severe prognosis caused by sepsis by blocking microglial proliferation and inhibiting the production of inflammatory factors.
Collapse
Affiliation(s)
- Gaofei Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Heng Song
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Dong Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
39
|
Dexmedetomidine Mitigates Microglial Activation Associated with Postoperative Cognitive Dysfunction by Modulating the MicroRNA-103a-3p/VAMP1 Axis. Neural Plast 2022; 2022:1353778. [PMID: 35494481 PMCID: PMC9042642 DOI: 10.1155/2022/1353778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.
Collapse
|
40
|
Ouyang Q, Liu K, Zhu Q, Deng H, Le Y, Ouyang W, Yan X, Zhou W, Tong J. Brain-Penetration and Neuron-Targeting DNA Nanoflowers Co-Delivering miR-124 and Rutin for Synergistic Therapy of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107534. [PMID: 35182016 DOI: 10.1002/smll.202107534] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Alzheimer disease (AD) is the leading cause of dementia that affects millions of old people. Despite significant advances in the understanding of AD pathobiology, no disease modifying treatment is available. MicroRNA-124 (miR-124) is the most abundant miRNA in the normal brain with great potency to ameliorate AD-like pathology, while it is deficient in AD brain. Herein, the authors develop a DNA nanoflowers (DFs)-based delivery system to realize exogenous supplementation of miR-124 for AD therapy. The DFs with well-controlled size and morphology are prepared, and a miR-124 chimera is attached via hybridization. The DFs are further modified with RVG29 peptide to simultaneously realize brain-blood barrier (BBB) penetration and neuron targeting. Meanwhile, Rutin, a small molecular ancillary drug, is co-loaded into the DFs structure via its intercalation into the double stranded DNA region. Interestingly, Rutin could synergize miR-124 to suppress the expression of both BACE1 and APP, thus achieving a robust inhibition of amyloid β generation. The nanosystem could pro-long miR-124 circulation in vivo, promote its BBB penetration and neuron targeting, resulting in a significant increase of miR-124 in the hippocampus of APP/PS1 mice and robust therapeutic efficacy in vivo. Such a bio-derived therapeutic system shows promise as a biocompatible nanomedicine for AD therapy.
Collapse
Affiliation(s)
- Qin Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Kai Liu
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Postdoctoral Research Station of Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yuan Le
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Wen Ouyang
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan, 410013, China
| | - Wenhu Zhou
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jianbin Tong
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
41
|
Li Z, Zhu Y, Kang Y, Qin S, Chai J. Neuroinflammation as the Underlying Mechanism of Postoperative Cognitive Dysfunction and Therapeutic Strategies. Front Cell Neurosci 2022; 16:843069. [PMID: 35418837 PMCID: PMC8995749 DOI: 10.3389/fncel.2022.843069] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/11/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication following surgery and general anesthesia, especially in elderly patients. Severe cases delay patient discharge, affect the patient’s quality of life after surgery, and are heavy burdens to society. In addition, as the population ages, surgery is increasingly used for older patients and those with higher prevalences of complications. This trend presents a huge challenge to the current healthcare system. Although studies on POCD are ongoing, the underlying pathogenesis is still unclear due to conflicting results and lack of evidence. According to existing studies, the occurrence and development of POCD are related to multiple factors. Among them, the pathogenesis of neuroinflammation in POCD has become a focus of research in recent years, and many clinical and preclinical studies have confirmed the correlation between neuroinflammation and POCD. In this article, we reviewed how central nervous system inflammation occurred, and how it could lead to POCD with changes in peripheral circulation and the pathological pathways between peripheral circulation and the central nervous system (CNS). Furthermore, we proposed some potential therapeutic targets, diagnosis and treatment strategies at the cellular and molecular levels, and clinical applications. The goal of this article was to provide a better perspective for understanding the occurrence of POCD, its development, and preventive strategies to help manage these vulnerable geriatric patients.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihan Kang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shangyuan Qin
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chai
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Jun Chai,
| |
Collapse
|
42
|
Kuffner MTC, Koch SP, Kirchner M, Mueller S, Lips J, An J, Mertins P, Dirnagl U, Endres M, Boehm-Sturm P, Harms C, Hoffmann CJ. Paracrine Interleukin 6 Induces Cerebral Remodeling at Early Stages After Unilateral Common Carotid Artery Occlusion in Mice. Front Cardiovasc Med 2022; 8:805095. [PMID: 35155612 PMCID: PMC8830347 DOI: 10.3389/fcvm.2021.805095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Aims Carotid artery disease is frequent and can result in chronic modest hypoperfusion of the brain. If no transient ischemic attack or stroke occur, it is classified asymptomatic. In the long-term, though, it can lead to cognitive impairment. Fostering cerebral remodeling after carotid artery occlusion might be a new concept of treatment. Paracrine Interleukin 6 (IL-6) can induce such remodeling processes at early stages. However, it has neurodegenerative long-term effects. With this exploratory study, we investigated the effect of paracrine IL-6 on cerebral remodeling in early stages after asymptomatic carotid artery occlusion to identify new treatment targets. Methods and Results To mimic a human asymptomatic carotid artery disease, we used a mouse model of unilateral common carotid artery (CCA) occlusion. We developed a mouse model for inducible paracrine cerebral IL-6 expression (Cx30-Cre-ERT2;FLEX-IL6) and induced IL-6 2 days after CCA occlusion. We studied the effects of paracrine IL-6 after CCA occlusion on neuronal connectivity using diffusion tensor imaging and on local proteome regulations of the hypo-perfused striatum and contralateral motor cortex using mass spectrometry of laser capture micro-dissected tissues. Paracrine IL-6 induced cerebral remodeling leading to increased inter-hemispheric connectivity and changes in motor system connectivity. We identified changes in local protein abundance which might have adverse effects on functional outcome such as upregulation of Synuclein gamma (Sncg) or downregulation of Proline Dehydrogenase 1 (Prodh). However, we also identified changes in local protein abundance having potentially beneficial effects such as upregulation of Caprin1 or downregulation of GABA transporter 1 (Gat1). Conclusions Paracrine cerebral IL-6 at early stages induces changes in motor system connectivity and the proteome after asymptomatic CCA occlusion. Our results may help to distinguish unfavorable from beneficial IL-6 dependent protein regulations. Focusing on these targets might generate new treatments to improve long-term outcome in patients with carotid artery disease.
Collapse
Affiliation(s)
- Melanie T. C. Kuffner
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan P. Koch
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marieluise Kirchner
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Susanne Mueller
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Janet Lips
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Jeehye An
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Mertins
- Core Unit Proteomics, Berlin Institute of Health at Charité- Universitätsmedizin Berlin, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ulrich Dirnagl
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- QUEST Quality, Ethics, Open Science, Translation, Center for Transforming Biomedical Research, Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
| | - Philipp Boehm-Sturm
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Harms
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Einstein Center for Neuroscience, Berlin, Germany
- Christoph Harms
| | - Christian J. Hoffmann
- Klinik und Hochschulambulanz für Neurologie mit Experimenteller Neurologie, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Christian J. Hoffmann
| |
Collapse
|
43
|
Lian F, Cao C, Deng F, Liu C, Zhou Z. Propofol alleviates postoperative cognitive dysfunction by inhibiting inflammation via up-regulating miR-223-3p in aged rats. Cytokine 2022; 150:155783. [PMID: 34979347 DOI: 10.1016/j.cyto.2021.155783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Postoperative cognitive dysfunction (POCD) affects 15-25% of surgical patients and causes significant morbidity and mortality. This study aims to investigate the mechanism of propofol reducing POCD in aged rats. METHOD Rats in Operate group and Propofol group were anesthetized with isoflurane and propofol, respectively, and then underwent cardiac surgery. Rats in Antagomir group were anesthetized with propofol and underwent cardiac surgery with preoperative injection of miR-223-3p antagomir. Barnes maze and Morris water maze (MWM) were used to test spatial learning and memory of rats. Immunofluorescence was used to detect the level of microglial cell marker IBA1. In addition, qRT-PCR was performed to measure the expression of miR-223-3p and inflammatory factors TNF-α, IL-1β and IL-6. Western blotting was conducted to detect the protein expression of Foxo1, TNF-α, IL-1β and IL-6. RESULT Isoflurane-anesthetized rats undergoing cardiac surgery showed significantly reduced spatial learning and memory, promoted microglia activation, decreased miR-223-3p expression and increased inflammatory response in the hippocampus, while isoflurane-anesthetized rats without surgery showed insignificant changes in these indices. Compared to isoflurane anesthesia, propofol anesthesia exhibited less effect on spatial learning and memory of rats with cardiac surgery and contributed to a relative reduction in activated microglia in the hippocampus, a notable increase in miR-223-3p expression, and a decrease in inflammation. The results were reversed after miR-223-3p antagomir was injected into propofol-anesthetized surgical rats. miR-223-3p negatively regulated Foxo1 to suppress the expression of inflammatory factors. CONCLUSION Propofol reduced inflammation by up-regulating miR-223-3p, thereby reducing POCD in aged rats.
Collapse
Affiliation(s)
- Fang Lian
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Cao Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Chunfang Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhidong Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
44
|
Liu K, Yin Y, Le Y, Ouyang W, Pan A, Huang J, Xie Z, Zhu Q, Tong J. Age-related Loss of miR-124 Causes Cognitive Deficits via Derepressing RyR3 Expression. Aging Dis 2022; 13:1455-1470. [PMID: 36186122 PMCID: PMC9466975 DOI: 10.14336/ad.2022.0204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Kai Liu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Postdoctoral Research Station of Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongjia Yin
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
| | - Yuan Le
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China.
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Central South University School of Basic Medical Sciences, Changsha, Hunan, China.
| | - Zhongcong Xie
- Geriatric Anesthesia Research Unit, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Jianbin Tong, Third Xiangya Hospital, Changsha, Hunan, China, ; Dr. Qubo Zhu, Xiangya School of Pharmaceutical Sciences, Changsha 410013, Hunan, China, .
| | - Jianbin Tong
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Province Key Laboratory of Brain Homeostasis, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Correspondence should be addressed to: Dr. Jianbin Tong, Third Xiangya Hospital, Changsha, Hunan, China, ; Dr. Qubo Zhu, Xiangya School of Pharmaceutical Sciences, Changsha 410013, Hunan, China, .
| |
Collapse
|
45
|
Liu J, Ai P, Sun Y, Yang X, Li C, Liu Y, Xia X, Zheng JC. Propofol Inhibits Microglial Activation via miR-106b/Pi3k/Akt Axis. Front Cell Neurosci 2021; 15:768364. [PMID: 34776870 PMCID: PMC8581742 DOI: 10.3389/fncel.2021.768364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/06/2021] [Indexed: 12/05/2022] Open
Abstract
Propofol is an established intravenous anesthetic agent with potential neuroprotective effects. In this study, we investigated the roles and the underlying mechanisms of propofol in inhibiting the pro-inflammatory responses of microglia. Propofol significantly reduced the messenger RNA (mRNA) levels of Tnf, Nos2, and NF-κB pathway related genes Ticam1, Myd88, Irf3, and Nfkb1 in lipopolysaccharide (LPS)-treated primary microglia. After screening the miRNA profiles in microglia under LPS and propofol treatment conditions, we found propofol abrogated the LPS-induced misexpression of miRNAs including miR-106b, miR-124, miR-185, and miR-9. Perturbation of function approaches suggested miR-106b as the core miRNA that mediated the anti-inflammatory effects of propofol on microglial activation. RNA sequencing (RNA-seq) analysis further identified Pi3k/Akt signaling as one of the most affected pathways after miR-106b perturbation of function. The treatment of Pi3k/Akt signaling agonist 740Y-P elevated miR-106b-reduced Akt phosphorylation and abolished the inhibitory effects of miR-106b on the pro-inflammatory responses of microglia. Our results suggest propofol inhibits microglial activation via miR-106b/Pi3k/Akt axis, shedding light on a novel molecular mechanism of propofol-mediated immunomodulatory effects and implying propofol as potential therapeutics for treating neuroinflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Pu Ai
- Wuxi Clinical College of Anhui Medical University, Hefei, China
| | - Yiyan Sun
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaoyu Yang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
46
|
Wang HQ, Song KY, Feng JZ, Huang SY, Guo XM, Zhang L, Zhang G, Huo YC, Zhang RR, Ma Y, Hu QZ, Qin XY. Caffeine Inhibits Activation of the NLRP3 Inflammasome via Autophagy to Attenuate Microglia-Mediated Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2021; 72:97-112. [PMID: 34478049 DOI: 10.1007/s12031-021-01894-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
The activation of microglia is an important cause of central nervous system (CNS) inflammatory cell infiltration and inflammatory demyelination in experimental autoimmune encephalomyelitis (EAE). Furthermore, the proinflammatory response induced by the NLR family pyrin domain containing 3 (NLRP3) inflammasome can be amplified in microglia after NLRP3 inflammasome activation. Autophagy is closely related to the inflammatory response. Caffeine exerts anti-inflammatory and autophagy-stimulating effects, but the specific mechanism remains unclear. This study examined the mechanism underlying the anti-inflammatory effect of caffeine on EAE. In this study, C57BL/6 mice were immunized to induce EAE and treated with caffeine to observe its effect on prognosis. The effects of caffeine on autophagy and inflammation were also analysed in mouse primary microglia (PM) and the BV2 cell line. The data demonstrated that caffeine reduced the clinical score, the infiltration of inflammatory cells, the demyelination level, and the activation of microglia in EAE mice. Furthermore, caffeine increased the LC3-II/LC3-I levels and decreased the NLRP3 and P62 levels in EAE mice, whereas the autophagy inhibitor 3-methylamine (3-MA) blocked these effects. In vitro, caffeine promoted autophagy by suppressing the mechanistic target of rapamycin (mTOR) pathway and inhibited activation of the NLRP3 inflammasome. However, autophagy-related gene 5 (ATG5)-specific siRNA abolished the anti-inflammatory effect of caffeine treatment in PM and BV2 cells. Taken together, these data suggest that caffeine exerts a newly discovered effect on EAE by reducing NLRP3 inflammasome activation via the induction of autophagy in microglia.
Collapse
Affiliation(s)
- Hui-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Kai-Yi Song
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jin-Zhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Si-Yuan Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiu-Ming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Gang Zhang
- Cerebravascular Disease Department. Number 98, The First People's Hospital of Zunyi, (The third affiliated hospital of Zunyi Medical University), Fenghuang Road, Zunyi, Guizhou Province, 563000, China
| | - Ying-Chao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Rong-Rong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qing-Zhe Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xin-Yue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
47
|
Huang L, Lin L, Fu X, Meng C. Development and validation of a novel survival model for acute myeloid leukemia based on autophagy-related genes. PeerJ 2021; 9:e11968. [PMID: 34447636 PMCID: PMC8364747 DOI: 10.7717/peerj.11968] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is one of the most common blood cancers, and is characterized by impaired hematopoietic function and bone marrow (BM) failure. Under normal circumstances, autophagy may suppress tumorigenesis, however under the stressful conditions of late stage tumor growth autophagy actually protects tumor cells, so inhibiting autophagy in these cases also inhibits tumor growth and promotes tumor cell death. Methods AML gene expression profile data and corresponding clinical data were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, from which prognostic-related genes were screened to construct a risk score model through LASSO and univariate and multivariate Cox analyses. Then the model was verified in the TCGA cohort and GEO cohorts. In addition, we also analyzed the relationship between autophagy genes and immune infiltrating cells and therapeutic drugs. Results We built a model containing 10 autophagy-related genes to predict the survival of AML patients by dividing them into high- or low-risk subgroups. The high-risk subgroup was prone to a poorer prognosis in both the training TCGA-LAML cohort and the validation GSE37642 cohort. Univariate and multivariate Cox analysis revealed that the risk score of the autophagy model can be used as an independent prognostic factor. The high-risk subgroup had not only higher fractions of CD4 naïve T cell, NK cell activated, and resting mast cells but also higher expression of immune checkpoint genes CTLA4 and CD274. Last, we screened drug sensitivity between high- and low-risk subgroups. Conclusion The risk score model based on 10 autophagy-related genes can serve as an effective prognostic predictor for AML patients and may guide for patient stratification for immunotherapies and drugs.
Collapse
Affiliation(s)
- Li Huang
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Lier Lin
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiangjun Fu
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Can Meng
- Department of Hematology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
48
|
Li R, Jiang Q, Zheng Y. Circ_0002984 induces proliferation, migration and inflammation response of VSMCs induced by ox-LDL through miR-326-3p/VAMP3 axis in atherosclerosis. J Cell Mol Med 2021; 25:8028-8038. [PMID: 34169652 PMCID: PMC8358879 DOI: 10.1111/jcmm.16734] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis can result in multiple cardiovascular diseases. Circular RNAs (CircRNAs) have been reported as significant non-coding RNAs in atherosclerosis progression. Dysfunction of vascular smooth muscle cells (VSMCs) is involved in atherosclerosis. However, up to now, the effect of circ_0002984 in atherosclerosis is still unknown. Currently, we aimed to investigate the function of circ_0002984 in VSMCs incubated by oxidized low-density lipoprotein (ox-LDL). Firstly, our findings indicated that the expression levels of circ_0002984 were significantly up-regulated in the serum of atherosclerosis patients and ox-LDL-incubated VSMCs. Loss of circ_0002984 suppressed VSMC viability, cell cycle distribution and migration capacity. Then, we carried out ELISA assay to determine TNF-α and IL-6 levels. The data implied that lack of circ_0002984 obviously repressed ox-LDL-stimulated VSMC inflammation. Meanwhile, miR-326-3p, which was predicted as a target of circ_0002984, was obviously down-regulated in VSMCs treated by ox-LDL. Additionally, after overexpression circ_0002984 in VSMCs, a decrease in miR-326-3p was observed. Subsequently, miR-326-3p was demonstrated to target vesicle-associated membrane protein 3 (VAMP3). Therefore, we hypothesized that circ_0002984 could modulate expression of VAMP3 through sponging miR-326-3p. Furthermore, we confirmed that up-regulation of miR-326-3p rescued the circ_0002984 overexpressing-mediated effects on VMSC viability, migration and inflammation. Additionally, miR-326-3p inhibitor-mediated functions on VSMCs were reversed by knockdown of VAMP3. In conclusion, circ_0002984 mediated cell proliferation, migration and inflammation through modulating miR-326-3p and VAMP3 in VSMCs, which suggested that circ_0002984 might hold great promise as a therapeutic strategy for atherosclerosis.
Collapse
MESH Headings
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cell Movement/physiology
- Cell Proliferation/physiology
- Cells, Cultured
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Lipoproteins, LDL/toxicity
- Male
- MicroRNAs/genetics
- Middle Aged
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- RNA, Circular/genetics
- Signal Transduction
- Vesicle-Associated Membrane Protein 3/genetics
- Vesicle-Associated Membrane Protein 3/metabolism
Collapse
Affiliation(s)
- Ruogu Li
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Qiliang Jiang
- Department of AnesthesiologyShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| | - Yue Zheng
- Department of Cardiovascular SurgeryShanghai Chest HospitalShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
49
|
Dexmedetomidine Ameliorates Postoperative Cognitive Dysfunction via the MicroRNA-381-Mediated EGR1/p53 Axis. Mol Neurobiol 2021; 58:5052-5066. [PMID: 34245441 DOI: 10.1007/s12035-021-02417-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Postoperative cognitive dysfunction (POCD; cognitive change associated with anesthesia and surgery) is one of the most serious long-term postoperative complications that occur in elderly patients. Dexmedetomidine (DEX) has been shown to be beneficial for improving outcomes of postoperative cognitive function. However, the exact mechanism underlying this role requires is yet to be found. The present study aims to determine the pathways involved in the protective effects of DEX against POCD in C57BL/6 J aged mice. DEX was administered after POCD modeling in C57BL/6 J aged mice. The cognitive function was evaluated after DEX treatment using novel object recognition, open field, and Y-maze tests. We also assessed its effects on neuron apoptosis and production of TNF-α and IL-1β in mouse brain tissues as well as expression levels of DNA damage-related proteins p53, p21, and γH2AX. Interactions between early growth response 1 (EGR1) and p53, microRNA (miR)-381, and EGR1 were identified by ChIP and luciferase reporter assays, and gain- and loss-of-function experiments were performed to confirm the involvement of their interaction in POCD. DEX administration attenuated hippocampal neuron apoptosis, neuroinflammation, DNA damage, and cognitive impairment in aged mice. miR-381 targeted EGR1 and disrupted its interaction with p53, leading to a decline in hippocampal neuron apoptosis, DNA damage, neuroinflammation, and cognitive impairment. Furthermore, DEX administration resulted in the enhancement of miR-381 expression and the subsequent inhibition of EGR1/p53 to protect against cognitive impairment in aged mice. Overall, these results indicate that DEX may have a potential neuroprotective effect against POCD via the miR-381/EGR1/p53 signaling, shedding light on the mechanisms involved in neuroprotection in POCD.
Collapse
|
50
|
Xiao T, Wan J, Qu H, Li Y. Tripartite-motif protein 21 knockdown extenuates LPS-triggered neurotoxicity by inhibiting microglial M1 polarization via suppressing NF-κB-mediated NLRP3 inflammasome activation. Arch Biochem Biophys 2021; 706:108918. [PMID: 33992596 DOI: 10.1016/j.abb.2021.108918] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/23/2021] [Accepted: 05/09/2021] [Indexed: 12/21/2022]
Abstract
Tripartite motif-containing 21 (TRIM21) has been confirmed to mediate the production of inflammatory mediators via NF-κB signaling. However, the function of TRIM21 in microglia-mediated neuroinflammation remains unclear. This study aimed to explore the effect of TRIM21 on LPS-activated BV2 microglia and its underlying mechanism. BV2 cells exposed to lipopolysaccharide (LPS) were used to simulated neuroinflammation in vitro. Loss-of-function and gain-of-function of TRIM21 in BV2 cells were used to assess the effect of TRIM21 on LPS-induced neuroinflammation. BV2 microglia and HT22 cells co-culture system were used to investigate whether TRIM21 regulated neuronal inflammation-mediated neuronal death. TRIM21 knockdown triggered the polarization of BV2 cells from M1 to M2 phenotype. Knockdown of TRIM21 reduced the secretion of TNF-α, IL-6, and IL-1β, while increased the content of IL-4 in LPS-treated cells. Knockdown of TRIM21 inhibited the expression of p65 and the binding activity of NF-κB-DNA. Additionally, TRIM21 siRNA eliminated the increase in NLRP3 and cleaved caspase-1 proteins expression and caspase-1 activity induced by LPS. TRIM21 knockdown could resist cytotoxicity induced by activated microglia, including increasing the viability of co-cultured HT22 cells and reducing the emancipation of LDH. Moreover, the increased apoptosis and caspase-3 activity of HT22 neurons induced by activated BV2 cells were blocked by TRIM21 siRNA. Blocking of NF-κB abolished the effect of TRIM21 in promoting the expression of M1 phenotype marker genes. Similarly, the blockade of NF-κB pathway eliminated the promotion of TRIM21 on neurotoxicity induced by neuroinflammation. TRIM21 knockdown suppressed the M1 phenotype polarization of microglia and neuroinflammation-mediated neuronal damage via NF-κB/NLRP3 inflammasome pathway, which suggested that TRIM21 might be a potential therapeutic target for the therapy of central nervous system diseases.
Collapse
Affiliation(s)
- Tao Xiao
- Department of Neurosurgery, The First Affiliated Hospital Of University Of South China, Hunan Province, China
| | - Juan Wan
- Department of Neurology, The First Affiliated Hospital Of University Of South China, Hunan Province, China.
| | - Hongtao Qu
- Department of Neurosurgery, The First Affiliated Hospital Of University Of South China, Hunan Province, China
| | - Yiming Li
- Department of Neurosurgery, The First Affiliated Hospital Of University Of South China, Hunan Province, China
| |
Collapse
|