1
|
Ji L, Chen Y, Chen X. Circular RNA Circ_0002762 promotes cell migration and invasion in cervical squamous cell carcinoma via activating RelA/nuclear factor kappa B (Nf-kB) signalling pathway. RNA Biol 2025; 22:1-13. [PMID: 40083243 PMCID: PMC11934174 DOI: 10.1080/15476286.2025.2478539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025] Open
Abstract
Cervical cancer is a leading cause of cancer-related deaths, with cervical squamous cell carcinoma (CSCC) accounting for a majority of cases. Circular RNAs (circRNAs) have been repeatedly suggested as crucial effectors in modulating the development of multiple malignancies. The expression of circ_0002762 was predicted to be high in CSCC tissues in GEO dataset, but the functional role and underlying regulatory mechanism of circ_0002762 in CSCC was unclear. By series of functional assays and mechanism assays, supported by bioinformatics analysis, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis and western blot assays, we identified that circ_0002762 aberrantly up-regulated in CSCC, promoting CSCC cell migration and invasion. Mechanically, circ_0002762 was transcriptionally activated by Fork head box A1 (FOXA1). Moreover, the involvement of nuclear factor kappa B (NF-kB) signalling in circ_0002762 regulation mechanism in CSCC cells was ascertained. Additionally, circ_0002762, predominantly accumulated in cell cytoplasm, was proved to recruit Mov10 RISC complex RNA helicase (MOV10) to enhance RelA mRNA stability, thus affecting CSCC cell migration and invasion. In summary, FOXA1-mediated circ_0002762 up-regulation could enhance the migratory and invasive abilities of CSCC cells via the MOV10/RelA/NF-kB pathway.
Collapse
Affiliation(s)
- Lei Ji
- Department of Obstetrics and Gynecology, Yancheng First People’s Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoping Chen
- Department of Obstetrics and Gynecology, Yancheng First People’s Hospital of Jiangsu Province, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Zhu Y, Wang Q, Zheng Y, Chen N, Kou L, Yao Q. Microenvironment responsive nanomedicine for acute pancreatitis treatment. Colloids Surf B Biointerfaces 2025; 251:114633. [PMID: 40112593 DOI: 10.1016/j.colsurfb.2025.114633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/26/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Acute pancreatitis (AP) is an acute inflammation of the pancreas, which is considered a prevalent gastrointestinal emergency characterized by rapid progression and significant mortality. Currently available medications primarily serve as adjunctive therapies, yielding suboptimal therapeutic outcomes. Consequently, there remains a dearth of specific and efficient treatment modalities for AP. In recent years, nanomedicine-based treatment strategies have exhibited significant potential as drug therapy approaches for pancreatitis. The distinctive features of the AP microenvironment encompass aberrant activation of pancreatic enzymes, oxidative stress induced by elevated reactive oxygen species levels, and excessive production of pro-inflammatory cytokines; these factors offer promising targeted sites for early diagnosis and treatment using nanomedicine. This article comprehensively delineates the pathological microenvironmental characteristics associated with AP while highlighting the application of microenvironment-responsive strategies in nanodrug delivery systems for its treatment, thereby providing insights into future prospects.
Collapse
Affiliation(s)
- Yixuan Zhu
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yaoyao Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Nuo Chen
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou 325035, China
| | - Longfa Kou
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Qing Yao
- Wenzhou Municipal KeyLaboratory of Pediatric Pharmacy, Department of Pharmacy, The Second AffiliatedHospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
3
|
Liu H, Xue H, Guo Q, Xue X, Yang L, Zhao K, Liu Y. Ferroptosis meets inflammation: A new frontier in cancer therapy. Cancer Lett 2025; 620:217696. [PMID: 40189012 DOI: 10.1016/j.canlet.2025.217696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by lipid peroxidation, has emerged as a critical player in cancer pathogenesis. Concurrently, inflammation, a key biological response to tissue injury or infection, significantly influences cancer development and progression. The interplay between ferroptosis and inflammation represents a promising yet underexplored area of research. This review synthesizes recent advances in understanding the molecular mechanisms governing their interaction, emphasizing how ferroptosis triggers inflammatory responses and how inflammatory mediators, such as TNF-α, regulate ferroptosis through iron metabolism and lipid peroxidation pathways. Key molecular targets within the ferroptosis-inflammation axis, including GPX4, ACSL4, and the NF-κB signaling pathway, offer therapeutic potential for cancer treatment. By modulating these targets, it may be possible to enhance ferroptosis and fine-tune inflammatory responses, thereby improving therapeutic outcomes. Additionally, this review explores the broader implications of targeting the ferroptosis-inflammation interplay in disease treatment, highlighting opportunities for developing innovative strategies to combat cancer. By bridging the gap in current knowledge, this review provides a comprehensive resource for researchers and clinicians, offering insights into the therapeutic potential of this intricate biological relationship.
Collapse
Affiliation(s)
- Hu Liu
- Department of Oncology Surgery, Shanghai Mengchao Hospital, Shanghai University, Shanghai, 202800, China
| | - Hui Xue
- Department of Oncology Surgery, Shanghai Mengchao Hospital, Shanghai University, Shanghai, 202800, China
| | - Qian Guo
- Department of Rhinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xutong Xue
- Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Lixue Yang
- Department of Oncology Surgery, Shanghai Mengchao Hospital, Shanghai University, Shanghai, 202800, China.
| | - Kaijun Zhao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Yu'e Liu
- Boston Children's Hospital, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
4
|
Gu T, Raval R, Bashkin Z, Zhou C, Ko S, Kong N, Hong S, Bhaskara A, Shah S, Joshi A, Thellakal S, Rim K, Marimuthu A, Venkatesan S, Wang E, Li S, Jayabalan A, Tao A, Fang Y, Xia L, Chui A, Shu E, Zhang T, Chen Z, Njoo E. Synthesis, antiproliferative activity, and biological profiling of C-19 trityl and silyl ether andrographolide analogs in colon cancer and breast cancer cells. Bioorg Med Chem Lett 2025; 121:130163. [PMID: 40043819 DOI: 10.1016/j.bmcl.2025.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/08/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Andrographolide, a labdane diterpenoid isolated from Andrographis paniculata, putatively functions through covalent inhibition of NF-κB, a transcription factor that modulates tumor survival and metastasis. Previous studies have found that functionalization of the C-19 hydroxyl alters the primary mode of action from inhibition of NF-κB to the modulation of the Wnt1/β-catenin signaling pathway. Here, we synthesized a series of twelve C-19 trityl and silyl ether analogs, including three novel substituted trityl analogs and four novel substituted silyl analogs of andrographolide. MTT assays revealed cell line selectivity between colorectal and breast cancer cells, which is consistent with known mechanisms of β-catenin-driven cell proliferation in colorectal cancer cell lines. Most compounds exhibited cell line specific antiproliferative activity in HCT-116 and HT-29 colorectal cancer cell lines. Specifically, within 24 h, C-19 analogs of andrographolide exhibit far more limited antiproliferative activity in MCF-7 breast cancer cells compared to HCT-116, HT-29, and MDA-MB-231 cells. Through in vitro TNF-α-dependent NF-κB reporter and Wnt1-dependent luciferase reporter assays, we observed that several analogs generally exhibit greater inhibitory activity compared to andrographolide. Fluorescence imaging demonstrated that cells treated with andrographolide and its C-19 analogs retained similar distributions of active β-catenin, but notable differences in antiproliferative potency upon co-delivery with GSK-3β inhibitor CHIR99021 indicate that several lead compounds exhibit attenuated biological activity selectively in HT-29 cells. Collectively, this work indicates that modest structural modifications at C-19 of andrographolide can have profound implications for its biological activity in mechanisms connected to its anticancer activity.
Collapse
Affiliation(s)
- Tiffany Gu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Rushika Raval
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Zachary Bashkin
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Carina Zhou
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Sanghyuk Ko
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Natalie Kong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Seoyeon Hong
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aditya Bhaskara
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samarth Shah
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Aditi Joshi
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Samahith Thellakal
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Kaitlyn Rim
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Anushree Marimuthu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Srishti Venkatesan
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Emma Wang
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Sophia Li
- Department of Computer Science & Engineering, Aspiring Scholars Directed Research Program, USA
| | - Aditi Jayabalan
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Alice Tao
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Yilin Fang
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Lorelei Xia
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Aidan Chui
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Emily Shu
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA
| | - Tracy Zhang
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Zhan Chen
- Department of Biological and Life Sciences, Aspiring Scholars Directed Research Program, USA
| | - Edward Njoo
- Department of Chemistry, Aspiring Scholars Directed Research Program, USA.
| |
Collapse
|
5
|
Zhu P, Ren Y, Wei C, Luo J, Wu D, Ye X, Donlao N, Tian J. Compounds from sea buckthorn and their application in food: A review. Food Chem 2025; 476:143428. [PMID: 39986072 DOI: 10.1016/j.foodchem.2025.143428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Sea buckthorn is a fruit rich in many bioactive compounds and shows the benefits of antioxidant, anti-inflammatory, anti-obesity, hepatoprotective, anti-tumor, and immunomodulatory properties, etc. The main bioactive compounds extracted and characterized in sea buckthorn are polyphenols, carotenoids, and functional lipids, which could provide health benefits by scavenging free radicals, regulating enzyme activities, and modulating signaling pathways, etc. Although there are many studies focused on the values of sea buckthorn, a comprehensive review on its chemical composition, functional mechanism and food application are still lacking. Thus, this paper aims to review the bioactive compounds in sea buckthorn, their underlying mechanisms for health benefits, as well as the applications in health food development. Particularly, the potential value of sea buckthorn and the novel technologies applied in previous studies are also discussed to improve its use for human health.
Collapse
Affiliation(s)
- Peiyi Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Yanming Ren
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Changqing Wei
- Food College, Shihezi University, Shihezi 832000, China
| | - Jingjing Luo
- Agricultural Science Research Institute of Baiyang City, Tacheng 834601, China
| | - Dan Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Natthawuddhi Donlao
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jinhu Tian
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Modern Agriculture Joint Research Center, Wuxi 214117, China.
| |
Collapse
|
6
|
Zhu YS, Shah SAA, Yang BY, Fan SS, He L, Sun YR, Shang WB, Qian Y, Zhang X. Gen-17, a beta-methyl derivative of Genipin, attenuates LPS-induced ALI by regulating Keap1-Nrf2/HO-1 and suppressing NF-κB and MAPK-dependent signaling pathways. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167770. [PMID: 40037266 DOI: 10.1016/j.bbadis.2025.167770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND AND OBJECTIVE Acute lung injury (ALI) represents a complicated and debilitating pulmonary disorder for which therapeutic options are currently limited. Genipin is an aglycone derived from the geniposide, the most abundant iridoid glucoside constituent of Gardenia jasminoides Ellis, and has demonstrated beneficial effects in ALI. The objective of this study was to investigate the protective effect of Gen-17, a beta-methyl derivative of genipin, against ALI in vitro and in vivo, and explore its mechanism of action. METHODS In this study, we prepared a beta-methyl derivative of genipin, Gen-17, and assessed the antioxidative and anti-inflammatory effects of Gen-17 in LPS-induced murine macrophages and ALI in mice, and explored the mechanism of action of Gen-17. In an in vivo model, the impact of Gen-17 on lipopolysaccharide (LPS)-induced ALI in mice was investigated by assessing pro-inflammatory cytokine levels, lung histology, edema, and vascular and alveolar barrier integrity, and in an in vitro model, murine macrophages-Raw 264.7 cells were used to establish a cell model of inflammation and oxidative stress by incubating with LPS. Keap1-Nrf2/HO-1, NF-κB and MAPK signaling pathways related factors were tested in vitro and in vivo to explore the possible mechanism of Gen-17. RESULTS The study showed that administration of Gen-17 conferred protection against LPS-induced ALI in mice, characterized by the mitigation of histological lung tissue alterations, reduction in lung edema, diminished protein content in bronchoalveolar lavage fluid, attenuation of inflammatory cell infiltration, and a decrease in cytokine secretion. Furthermore, Gen-17 exhibited the capacity to inhibit the nuclear factor-kappa B (NF-κB) and extracellular signal-regulated kinase (ERK) in the context of LPS-induced lung injury. In vitro, research findings revealed that Gen-17 demonstrated notable efficacy in reducing oxidative stress and inflammation in RAW 264.7 cells induced by LPS. Its central mechanism of action revolved around enhancing the antioxidant defense pathway, mediated through nuclear factor erythroid 2-related factor 2 (Nrf2). Consequently, this intervention repressed the release of pro-inflammatory mediators initiated by LPS, along with the modulation of the mitogen-activated protein kinase (MAPK) signaling pathway. CONCLUSION Gen-17 demonstrates the ability to mitigate oxidative stress and inflammation in the context of LPS-induced ALI via modulation of the MAPK, NF-κBp65, and Keap1/Nrf2/heme oxygenase-1 (HO-1) pathways. As such, it emerges as a promising and novel therapeutic candidate for treating ALI.
Collapse
Affiliation(s)
- Yu-Shan Zhu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Syed Alfakhar Ali Shah
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Bi-Ying Yang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Su-Su Fan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Lei He
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Ya-Ru Sun
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China
| | - Wen-Bin Shang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China.
| | - Yiyi Qian
- Department of Pharmacy, Fuwai Yunnan Cardiovascular Hospital, Kunming, China.
| | - Xuan Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products/Yunnan College of Modern Biomedical Industry, Kunming Medical University, Kunming, China.
| |
Collapse
|
7
|
Askarizadeh F, Butler AE, Kesharwani P, Sahebkar A. Regulatory effect of curcumin on CD40:CD40L interaction and therapeutic implications. Food Chem Toxicol 2025; 200:115369. [PMID: 40043936 DOI: 10.1016/j.fct.2025.115369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Accepted: 03/02/2025] [Indexed: 04/21/2025]
Abstract
Natural compounds have garnered significant attention as potential therapeutic agents due to their inherent properties. Their notable qualities, including safety, efficacy, favorable pharmacokinetic properties, and heightened effectiveness against certain diseases, particularly inflammatory conditions, make them particularly appealing. Among these compounds, curcumin has attracted considerable interest for its unique therapeutic properties and has therefore been extensively studied as a potential therapeutic agent for treating various diseases. Curcumin exhibits diverse anti-inflammatory, antioxidant, and antimicrobial effects. Curcumin's immune system regulatory ability has made it a promising compound for treatment of various inflammatory diseases, such as psoriasis, atherosclerosis, asthma, colitis, IBD, and arthritis. Among the signaling pathways implicated in these conditions, the CD40 receptor together with its ligand, CD40L, are recognized as central players. Studies have demonstrated that the interaction between CD40 and CD40L interaction acts as the primary mediator of the immune response in inflammatory diseases. Numerous studies have explored the impact of curcumin on the CD40:CD40L pathway, highlighting its regulatory effects on this inflammatory pathway and its potential therapeutic use in related inflammatory conditions. In this review, we will consider the evidence concerning curcumin's modulatory effects in inflammatory disease and its potential therapeutic role in regulating the CD40:CD40L pathway.
Collapse
Affiliation(s)
- Fatemeh Askarizadeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Men X, Chiou WC, Li X, Li Q, Chen X, Zhang K, Jiang X, Chen S. Klotho senses mechanical stimuli and modulates tension-induced osteogenesis. Bone 2025; 195:117464. [PMID: 40118264 DOI: 10.1016/j.bone.2025.117464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Delicate external mechanosensing, efficient intracellular mechanotransduction and effective alveolar bone remodeling lay the foundation of orthodontic tooth movement (OTM). Periodontal ligament stem cells (PDLSCs) are thought to be the primary cells that withstand mechanical stimuli and respond to biomechanical signals during orthodontic treatment. Nevertheless, the cellular and molecular mechanisms of orthodontic force-induced mechanosignaling and osteogenesis in PDLSCs still remain unclear. In the present study, we hypothesize that the ageing suppressor, Klotho, is correlated with orthodontic force-triggered mechanical signaling cascades, further contributing to alveolar bone remodeling. This study reveals that Klotho expression is notably upregulated via cytoskeletal-nuclei-mediated epigenetic modifications, consistent with osteogenic differentiation on the tension side during OTM. Additionally, Klotho deficiency undermines tensile force-induced new bone formation in NFκB- and PI3K/Akt-dependent manners. Notably, RNA sequencing (RNA-seq) results and targeted force application experiments unveil that Klotho not only functions as a downstream effector of external stress but also acts as an upstream regulator in mechanical signaling for the first time. In summary, we identify the indispensable role of Klotho in mechanotransduction and alveolar bone formation, which provide a latent target of linking cell senescence to mechanical force in future studies and offer novel insights into orthodontic force-induced tooth movement and bone remodeling.
Collapse
Affiliation(s)
- Xinrui Men
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Cho Chiou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xingjian Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qiming Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kaiwen Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Zhang Y, Guan Y, Dai M, Yang Y, Yang F. Microcystin-LR induces lung injury in mice through the NF-κB/NLRP3 pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:385-394. [PMID: 39773316 DOI: 10.1080/15287394.2024.2443525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Microcystin-LR (MC-LR) a cyclic toxin produced by cyanobacterial species is known to exert detrimental effects on various organs, including lung. Several investigators demonstrated that MC-LR exerts pulmonary toxicity, but the underlying mechanisms remain unclear. This study aimed to investigate whether exposure to MC-LR-induced lung inflammation and examine the underlying mechanisms. Thirty specific pathogen-free (SPF) male mice were allocated into control and MC-LR treatment groups. Mice were intraperitoneally injected with physiological saline or MC-LR (20 μg/kg) daily for a total of 21 days. Our findings indicated that exposure to MC-LR-produced histopathological changes in lung tissue, including thickening of alveolar walls and inflammatory infiltration. MC-LR was found to upregulate mRNA expression levels of pro-inflammatory cytokines TNFα, IL-6, IL-1β, and IL-18. Further, MC-LR significantly elevated the expression levels of proteins associated with the NF-κB/NLRP3 pathway p-NF-κB, NLRP3, Caspase-1, ASC. The activation of NF-κB/NLRP3 pathway further promoted the release of inflammatory cytokine IL-1β and cleavage of pyroptosis-associated GSDMD protein. These findings indicate that MC-LR may induce lung inflammation by promoting cell pyroptosis via the activation of the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Yin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Guan
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Manni Dai
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yue Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- The Department of Public Health, The Central Hospital of Shaoyang, Shaoyang, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, China
| |
Collapse
|
10
|
Li Y, Gong S, Yan K, Shi Z, Bao Y, Ning K. Artery tertiary lymphoid organs in atherosclerosis: A review. Life Sci 2025; 369:123549. [PMID: 40058576 DOI: 10.1016/j.lfs.2025.123549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
Atherosclerosis (AS) is the common pathological basis for many cardiovascular diseases. Initial investigations into AS predominantly centered on endothelial immune responses associated with plaque formation. However, recent studies increasingly underscore the salutary immune modulation occurring on the aorta adventitia as the atheromatous plaque progresses. The immune responses extend from the intima of the vessel to the adventitia, and the artery tertiary lymphoid organ (ATLO) assumes a major immune role in advanced stages of AS, according to available studies conducted on ApoE-/- mice. In this review, we collate the history of studies on the participation of ATLOs in immunity to AS, detailing its structure, classification, cellular composition, and formation mechanisms. We elucidate the distinct roles of ATLO components in immune regulation, emphasizing unique features such as territorial organization, T cell-driven autoimmunity, and the T follicular helper-germinal center B cell axis, which distinguish ATLOs from conventional lymphoid responses. Furthermore, based on the latest research, we propose that ATLOs cooperate with the nervous system to regulate the progression of AS. Moreover, we highlight that aging has a great impact on the deterioration of AS and this impact is related to ATLOs. We conclude by suggesting that a focus on ATLOs is important for the clinical management of AS, and we offer a perspective for further research on ATLO and suggest whether it will be beneficial or detrimental to ATLOs.
Collapse
Affiliation(s)
- Yanni Li
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Sihe Gong
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Kaijie Yan
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Zhonghong Shi
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China
| | - Yimin Bao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China.
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 1200 Cailun Road, Shanghai 201203, China; Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Room 359, Nashville, TN 37232, United States.
| |
Collapse
|
11
|
Krishnamoorthy GP, Glover AR, Untch BR, Sigcha-Coello N, Xu B, Vukel D, Liu Y, Tiedje V, Pineda JMB, Berman K, Tamarapu PP, Acuña-Ruiz A, Saqcena M, de Stanchina E, Boucai L, Ghossein RA, Knauf JA, Abdel-Wahab O, Bradley RK, Fagin JA. RBM10 loss promotes metastases by aberrant splicing of cytoskeletal and extracellular matrix mRNAs. J Exp Med 2025; 222:e20241029. [PMID: 39992626 PMCID: PMC11849553 DOI: 10.1084/jem.20241029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/11/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon inclusion events included vinculin (VCL), tenascin C (TNC), and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse HrasG12V/Rbm1OKO thyrocytes develop metastases that are reversed by RBM10 expression or by combined knockdown of VCL, CD44, and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusion in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFκB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
Collapse
Affiliation(s)
- Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R. Glover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R. Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nickole Sigcha-Coello
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Vukel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasanna P. Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Acuña-Ruiz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A. Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
12
|
Shuai F, Yin Y, Yao Y, Deng L, Wen Y, Zhao H, Han X. A nucleoside-based supramolecular hydrogel integrating localized self-delivery and immunomodulation for periodontitis treatment. Biomaterials 2025; 316:123024. [PMID: 39705922 DOI: 10.1016/j.biomaterials.2024.123024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Periodontitis is a highly prevalent oral disease characterized by bacterial-induced hyperactivation of the host immune system, leading to a sustained inflammatory response and osteoclastic activity, which ultimately results in periodontal destruction. In this work, an immunomodulatory supramolecular hydrogel for the topical treatment of periodontitis was synthesized using a simple one-pot method. This phenylboronate ester-based 8AGPB hydrogel exhibited excellent stability, self-healing properties, injectability, and biocompatibility. During degradation, the 8AGPB hydrogel releases immunomodulatory agent 8-aminoguanosine (8AG), which regulates MAPK and NF-κB signaling pathways by modulation of second messengers in macrophages. In combination with 1,4-phenylenediboronic acid (PBA), which possesses antioxidant properties, 8AG effectively inhibits ROS production and oxidative damage in LPS-stimulated macrophages, lowering the M1/M2 macrophage polarization ratio and reducing the secretion of pro-inflammatory factors. In an experimental periodontitis model using C57BL/6 mice, periodontal injection of the 8AGPB hydrogel reduced inflammatory infiltration and osteoclastic activity through immunomodulation and inhibition of osteoclast differentiation, thereby ameliorating periodontal destruction during periodontitis progression. Overall, the 8AGPB supramolecular hydrogel, serving as an injectable self-delivery platform for 8AG, may represent a promising novel strategy for periodontitis treatment and offer insights for the development of future topical anti-inflammatory systems.
Collapse
Affiliation(s)
- Fangyuan Shuai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yijia Yin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yufei Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Lanzhi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
13
|
Wu Y, Jia N, Sun J, Liao W, Xu J, Chen W, Zhao C. The roles of algal polysaccharides in modulating tumor immune microenvironment. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156610. [PMID: 40085993 DOI: 10.1016/j.phymed.2025.156610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Polysaccharides from algae provide a range of biology and health benefits. Lately, there has been a significant interest in how algal polysaccharides affect the immune microenvironment around tumors. PURPOSE To elucidate the subtle interactions between algal polysaccharides and the tumor immune microenvironment to further understand the medicinal potential of algal polysaccharides. STUDY DESIGN To give a summary of the sources, bioactivities and characteristics of the tumor immune microenvironment of algal polysaccharides, and to analyze alteration of the immunological milieu surrounding tumors by algal polysaccharides and their potential as immunomodulators of chemotherapeutic agents. METHODS Search popular academic search engines using selected keywords for articles ending before September 2024 using selected keywords Google Scholar, PubMed, ScienceDirect, Scopus, Web of Science, Springer, and official websites. RESULTS Algal polysaccharides can fight tumors by changing how immune cells work and affecting inflammation in different ways. Moreover, algal polysaccharides have shown promise in mitigating the adverse effects associated with conventional cancer treatments, such as chemotherapy. Algal polysaccharides, through their immunomodulatory effects, can alleviate some of these side effects, leading to an enhanced overall treatment outcome. CONCLUSION As research continues to uncover the underlying mechanisms of their antitumor effects, algal polysaccharides are poised to become a vital component in the development of novel cancer treatments, providing new hope for patients and advancing the field of oncology.
Collapse
Affiliation(s)
- Yinfeng Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Nan Jia
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingyu Sun
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Wei Liao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Weichao Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
14
|
Xu H, Wang T, Yang Y. BPIFA1 inhibits periodontitis by regulating the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization. Arch Oral Biol 2025; 173:106190. [PMID: 39970751 DOI: 10.1016/j.archoralbio.2025.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Periodontitis is a chronic inflammatory disease characterized by tissue destruction and oxidative stress, primarily driven by the imbalance of immune responses. Bactericidal/permeability-increasing fold-containing family A member 1 (BPIFA1) has emerged as a key modulator of inflammation and immune homeostasis. OBJECTIVES This study investigates the role of BPIFA1 in periodontitis by focusing on its regulatory effects on the NF-κB/IκB signaling pathway and macrophage M1/M2 polarization. METHODS Saliva and periodontal tissue samples were collected from 20 periodontitis patients and 20 healthy volunteers. BPIFA1 expression was analyzed using qRT-PCR and Western blot. In vivo studies were conducted in wild-type and BPIFA1-knockout (KO) mice, where periodontitis was induced via ligature placement and LPS injections. Oxidative stress markers (ROS, MDA, SOD), inflammatory cytokines (TNF-α, IL-6), and macrophage polarization markers (iNOS, CD86, Arg-1, CD206) were quantified. NF-κB pathway activation was assessed through Western blot analysis. RESULTS BPIFA1 expression was significantly reduced in periodontitis patients and BPIFA1-KO mice. Loss of BPIFA1 resulted in increased oxidative stress, heightened NF-κB activation, and an imbalance in macrophage polarization, with increased M1 (pro-inflammatory) and decreased M2 (anti-inflammatory) macrophages. Additionally, BPIFA1 deficiency promoted Th17 differentiation and suppressed Treg cells, exacerbating periodontal inflammation. CONCLUSION BPIFA1 plays a critical role in inhibiting periodontitis progression by regulating the NF-κB/IκB signaling pathway and restoring macrophage M1/M2 balance. These findings highlight BPIFA1 as a potential therapeutic target for periodontitis management.
Collapse
Affiliation(s)
- Hongyan Xu
- Department of Stomatology, Shaanxi Provincial People's Hospital, China
| | - Tao Wang
- Department of Stomatology, Shaanxi Provincial People's Hospital, China
| | - Ying Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, China.
| |
Collapse
|
15
|
Pawlak M, Kałuzińska-Kołat Ż, Pasieka ZW, Kołat D, Płuciennik E. The critical role of COL1A1 revealed by integrated bioinformatics analysis of differentially-expressed genes in colorectal cancer and inflammatory bowel disease. Comput Biol Med 2025; 190:110116. [PMID: 40179807 DOI: 10.1016/j.compbiomed.2025.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE There is an urgent need to identify biomarkers of tumorigenesis for colitis-associated cancer (CAC) as early cancer detection remains crucial for patients with inflammatory bowel disease (IBD). This in silico study examines the relationship between IBD and CAC, with particular regard to differentially-expressed genes (DEGs). METHODS Integrated bioinformatics tools and public databases were employed. Data from GEO (GSE102133, GSE48958, GSE9348, GSE83687, GSE138202) were processed using GEOexplorer. DEGs were then functionally annotated with DAVID, SRplot, and integrated analysis via Metascape. Validation used Oncopression and Human Protein Atlas. Survival analysis employed GEPIA2. miRNA interactions were studied via miRTargetLink 2.0. Immune infiltration was analyzed with TIMER 2.0. COL1A1 expression and mutations were examined using cBioPortal, Kaplan-Meier plotter, and DNA methylation was analyzed using MethSurv. Correlation of COL1A1 gene promoter methylation with tissue type and clinical data was performed using the UALCAN database. The ROC analysis of COL1A1 was conducted in the R environment. RESULTS Our analysis identified three potential hub genes (ICAM1, LAMC1, and COL1A1), which are overexpressed in IBD and cancer tissues compared to normal tissue, and hence may play a role in CAC. Furthermore, patients with lower COL1A1 expression had longer disease-free survival (p = 0.01) than those with higher expression. Therefore, this gene was chosen for further analysis and identified as the most crucial. CONCLUSION COL1A1 reveals significant immunohistochemistry, mutations, and methylation data. Further studies involving machine learning and clinical data are required to validate the results.
Collapse
Affiliation(s)
- Martyna Pawlak
- Department of Biomedical Sciences, Faculty of Medicine, Medical University of Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Functional Genomics, Medical University of Lodz, Poland; Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Poland
| | - Zbigniew W Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Poland
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Poland; Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Poland
| | | |
Collapse
|
16
|
Long Y, Liu J, Wang Y, Guo H, Cui G. The complex effects of miR-146a in the pathogenesis of Alzheimer's disease. Neural Regen Res 2025; 20:1309-1323. [PMID: 39075895 PMCID: PMC11624861 DOI: 10.4103/nrr.nrr-d-23-01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by cognitive dysfunction and behavioral abnormalities. Neuroinflammatory plaques formed through the extracellular deposition of amyloid-β proteins, as well as neurofibrillary tangles formed by the intracellular deposition of hyperphosphorylated tau proteins, comprise two typical pathological features of Alzheimer's disease. Besides symptomatic treatment, there are no effective therapies for delaying Alzheimer's disease progression. MicroRNAs (miR) are small, non-coding RNAs that negatively regulate gene expression at the transcriptional and translational levels and play important roles in multiple physiological and pathological processes. Indeed, miR-146a, a NF-κB-regulated gene, has been extensively implicated in the development of Alzheimer's disease through several pathways. Research has demonstrated substantial dysregulation of miR-146a both during the initial phases and throughout the progression of this disorder. MiR-146a is believed to reduce amyloid-β deposition and tau protein hyperphosphorylation through the TLR/IRAK1/TRAF6 pathway; however, there is also evidence supporting that it can promote these processes through many other pathways, thus exacerbating the pathological manifestations of Alzheimer's disease. It has been widely reported that miR-146a mediates synaptic dysfunction, mitochondrial dysfunction, and neuronal death by targeting mRNAs encoding synaptic-related proteins, mitochondrial-related proteins, and membrane proteins, as well as other mRNAs. Regarding the impact on glial cells, miR-146a also exhibits differential effects. On one hand, it causes widespread and sustained inflammation through certain pathways, while on the other hand, it can reverse the polarization of astrocytes and microglia, alleviate neuroinflammation, and promote oligodendrocyte progenitor cell differentiation, thus maintaining the normal function of the myelin sheath and exerting a protective effect on neurons. In this review, we provide a comprehensive analysis of the involvement of miR-146a in the pathogenesis of Alzheimer's disease. We aim to elucidate the relationship between miR-146a and the key pathological manifestations of Alzheimer's disease, such as amyloid-β deposition, tau protein hyperphosphorylation, neuronal death, mitochondrial dysfunction, synaptic dysfunction, and glial cell dysfunction, as well as summarize recent relevant studies that have highlighted the potential of miR-146a as a clinical diagnostic marker and therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Yunfan Long
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiajia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guohong Cui
- Department of Neurology, Shanghai No. 9 People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Jiang Q, Chen Z, Jiang J, Chen Q, Lan H, Zhu J, Mao W. The role of cGAS-STING in remodeling the tumor immune microenvironment induced by radiotherapy. Crit Rev Oncol Hematol 2025; 209:104658. [PMID: 39956501 DOI: 10.1016/j.critrevonc.2025.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025] Open
Abstract
The activation of the cGAS-STING pathway occurs when tumor cell DNA is damaged by ionizing radiation. Once triggered, this pathway reshapes the tumor immune microenvironment by promoting the maturation, activation, polarization, and immune-killing capacity of immune cells, as well as by inducing the release of interferons and the expression of immune-related genes. In addition, the gut microbiota and various mechanisms of programmed cell death interact with the cGAS-STING pathway, further influencing its function in remodeling the immune microenvironment after radiotherapy. Therefore, investigating the mechanisms of the cGAS-STING pathway in reshaping the tumor immune microenvironment post-radiotherapy can not only optimize the efficacy of combined radiotherapy and immunotherapy but also provide new research directions and potential targets for cancer treatment.
Collapse
Affiliation(s)
- Qingyu Jiang
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Zhejiang Chinese Medical University, Hangzhou 310053, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Zhiheng Chen
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Jin Jiang
- Department of Oncology, Affiliated Hospital of Jiaxing University, The First Hospital of Jiaxing, Jiaxing 31400, China
| | - Qianping Chen
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Huiyin Lan
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China
| | - Ji Zhu
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| | - Wei Mao
- Department of Radiation Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310000, China; Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310000, China; Zhejiang Key Laboratory of Radiation Oncology, Hangzhou 310000, China.
| |
Collapse
|
18
|
Guan Y, Ruan J, Tan P, Qian S, Zhou S, Zhang A, Fu Y, Zhao S, Ran Y, Feng X, Wang Y, Wu X, Zhang B, Ji W, Wu L, Guo X. Hesperidin alleviates endothelial cell inflammation and apoptosis of Kawasaki disease through inhibiting the TLR4/IĸBα/NF-ĸB pathway. Chem Biol Interact 2025; 411:111445. [PMID: 39987982 DOI: 10.1016/j.cbi.2025.111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Kawasaki Disease (KD) is an acute and self-limiting vasculitis of unknown etiology that mainly occurs in infancy and can lead to vascular endothelial injury. Hesperidin (HES) is an economical dietary biological flavonoid with anti-oxidant, anti-inflammatory, and anti-apoptotic pharmacological effects. The main objective of this study was to investigate the protective effects of HES on KD, and try to elucidate the underlying mechanism. The Candida albicans water-soluble fraction (CAWS) was used to induce coronary arteritis of KD mouse model in vivo, and tumor necrosis factor α (TNF-α) was employed to induce human umbilical vein endothelial cell (HUVEC) injury of KD cell model in vitro to investigate the anti-inflammatory and anti-apoptotic effects of HES on KD. Our in vivo results showed that HES significantly reduced coronary artery injury in KD mice by alleviating pericoronary inflammatory infiltration and tissue fibrosis, inhibiting inflammatory cytokines and chemokine expressions, and decreasing vascular endothelial cell apoptosis. Our in vitro study confirmed that HES had the opposite ability of the NF-κB agonist NF-ĸB activator 1 (ACT1) to significantly alleviate the inflammatory response, CellROX level, and apoptosis by decreasing BAX/BCL-2 and Cleaved Caspase-3 levels as well as reducing TUNEL positive cells and the ratio of flow cytometric apoptotic cells in TNF-α induced HUVECs. The further mechanism study based on bioinformatics analysis and western blotting demonstrated that HES could protect against vascular inflammation and cell apoptosis of KD through inhibiting the TLR4/IĸBα/NF-ĸB pathway, suggesting that HES may be a promising therapeutic candidate for KD.
Collapse
Affiliation(s)
- Yuting Guan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinghua Ruan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Pingping Tan
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Songwei Qian
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Size Zhou
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ao Zhang
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuchong Fu
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuhui Zhao
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Ran
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing Feng
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yijia Wang
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinlei Wu
- Zhejiang-Ireland Joint Laboratory for Precision Diagnosis and Treatment of Valvular Heart Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, China
| | - Bing Zhang
- Engineering Research Center of Techniques and Instruments for Diagnosis and Treatment of Congenital Heart Disease, Institute of Developmental and Regenerative Medicine, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weiping Ji
- Department of General Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, China; Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Lianpin Wu
- Zhejiang-Ireland Joint Laboratory for Precision Diagnosis and Treatment of Valvular Heart Diseases, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, China.
| | - Xiaoling Guo
- Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, The Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
19
|
Li HD, Zheng JY, Tan KW, Su JX, Chen W, Pang RK, Wu GL, Qiu YH, Li XX, Cai YF, Zhang SJ. Salvianolic acid B (SalB) improves high-fat diet (HFD)-caused cognitive impairment in mice by modulating the Trem2/Dap12 pathway in vivo and in vitro. Int Immunopharmacol 2025; 153:114461. [PMID: 40101423 DOI: 10.1016/j.intimp.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Salvianolic acid B (SalB), which extracted from Salvia miltiorrhiza Bunge (Labiatae), is a traditional Chinese medicine. SalB is widely used in nervous system diseases. This study evaluated the protective effect of SalB on high-fat diet (HFD)-induced cognitive impairment and its mechanisms in vivo and in vitro. The behavior tests demonstrated that SalB alleviated motor skills and learning capacity in HFD mice. Animal experiments have confirmed that SalB reduced the mRNA expression of inflammatory markers and the Trem2/Dap12 pathway in HIP. Furthermore, SalB inhibited the microglia Trem2/Dap12 pathway in HIP. In vivo, palmitic acid (PA) was used to intervene in BV2 cells to construct an inflammatory. SalB reduced the mRNA expression of inflammatory markers and inhibited the Trem2/Dap12 pathway in BV2 cells. In conclusion, SalB treatment may serve as a possible therapy for cognitive impairment induced by HFD.
Collapse
Affiliation(s)
- Hong-Dan Li
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Kai-Wen Tan
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Jin-Xun Su
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Wei Chen
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| |
Collapse
|
20
|
Yan R, Yuan Y, Shi C, Li Y, Li Y, Wang W, Yang L. Kanglexin attenuates spinal cord injury by modulating pyroptosis and polarization via the PKA/NF-κB signaling pathway. Int Immunopharmacol 2025; 153:114401. [PMID: 40101425 DOI: 10.1016/j.intimp.2025.114401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/16/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Neuroinflammation is essential for intricate pathophysiologic mechanisms after spinal cord injury (SCI). Increasing evidence suggests that anthraquinones possess anti-inflammatory properties in central nervous system (CNS) disorders. However, the effects of Kanglexin (Klx), a novel synthetic anthraquinone compound, on SCI remain unknown. METHODS C57BL/6 mice were utilized to establish a contused SCI model to explore the in vivo neuroprotective and inflammatory modulatory effects of Klx. An inflammation model was also created in vitro using BV2 cells. Neuroprotective effects were assessed by evaluating motor function and neuropathologic alterations. Inflammation modulation was analyzed through markers of polarization and pyroptosis, with further mechanistic insights obtained via transcriptome sequencing. RESULTS Klx facilitated the recovery of hindlimb locomotor function and improved neuronal survival after SCI. Both in vitro and in vivo assays revealed that Klx inhibited NLRP3 inflammasome-induced pyroptosis. In addition, Klx promoted the polarization of microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype. Mechanistically, Klx enhanced PKA phosphorylation and suppressed NF-κB and IκBα phosphorylation, thereby reducing NF-κB nuclear translocation. CONCLUSION Klx demonstrated neuroprotective and inflammation-modulating effects on SCI, suggesting that it might offer a promising therapeutic alternative for SCI.
Collapse
Affiliation(s)
- Rongbao Yan
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ye Yuan
- Department of Pharmacy (The University Key Laboratory of Drug Research, Heilongjiang Province), The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ce Shi
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China; Joint Key Laboratory of Endemic Diseases(Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University), Harbin Medical University, Harbin Medical University, Harbin, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin Medical University, Harbin, China; Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin, China.
| | - Yang Li
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Wenbo Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China; NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Key Laboratory of Hepatosplenic Surgery of Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Luo L, Yang X, Zhao H, Wang L, Li W, Zhang Y. High expression of ITGB3 ameliorates asthma by inhibiting epithelial-mesenchymal transformation through suppressing the activation of NF-kB pathway. Sci Rep 2025; 15:13837. [PMID: 40263524 DOI: 10.1038/s41598-025-98842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/15/2025] [Indexed: 04/24/2025] Open
Abstract
Integrin β3 (ITGB3) has been identified as an asthma-associated gene; however, its molecular mechanisms remain poorly understood. Epithelial-mesenchymal transition (EMT) is a critical driver of airway remodeling in asthma, which underpins disease progression. This study aimed to elucidate the role of ITGB3 in asthma pathogenesis by investigating its regulation of EMT. Asthma models were established in vivo using C57BL/6 mice and in vitro with A549 cells, both exposed to house dust mite (HDM) extract. The effects of HDM and ITGB3 modulation on cellular viability, apoptosis, and inflammatory cytokines (IL-4, IL-5, IL-13) were assessed in cultured cells and murine lungs. EMT was evaluated via western blot analysis of E-cadherin, N-cadherin, and vimentin expression. The NF-κB pathway was examined by quantifying phosphorylated p65 and IkBa levels. Lung tissue pathology and ITGB3 expression were assessed using hematoxylin and eosin (H&E) staining and immunohistochemistry. Results demonstrated that HDM exposure reduced A549 cell viability, increased cytotoxicity, apoptosis, and pro-inflammatory cytokine production, while promoting EMT. ITGB3 knockdown exacerbated these effects, whereas ITGB3 overexpression mitigated them. Furthermore, HDM activated the NF-κB pathway, an effect reversed by ITGB3 overexpression. In HDM-challenged cells, NF-κB activation via an agonist counteracted the protective effects of ITGB3 overexpression on apoptosis, inflammation, and EMT. Notably, ITGB3 overexpression suppressed inflammation, EMT, and pathological remodeling in asthmatic mice. Collectively, our findings reveal that ITGB3 exerts protective effects in asthma by inhibiting EMT through suppression of the NF-κB signaling pathway, thereby identifying ITGB3 as a potential therapeutic target for asthma management.
Collapse
Affiliation(s)
- Lu Luo
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China
| | - Xiaoshan Yang
- Department of Rheumatology And Immunology, Binzhou People's Hospital, Binzhou, China
| | - Haitao Zhao
- Department of Hematology, Binzhou People's Hospital, Binzhou, China
| | - Lingling Wang
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China
| | - Wengang Li
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China
| | - Yan Zhang
- Department of Emergency, Jinan Children's Hospital, No.23976, Jingshi Road, Jinan, 250022, Shandong, China.
| |
Collapse
|
22
|
Shang Y, Liang Y, Zhang B, Wu W, Peng Y, Wang J, Zhang M, Niu C. Periostin-mediated activation of NF-κB signaling promotes tumor progression and chemoresistance in glioblastoma. Sci Rep 2025; 15:13955. [PMID: 40263417 DOI: 10.1038/s41598-025-92969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive form of diffuse glioma, characterized by high lethality. Temozolomide (TMZ)-based chemotherapy is a standard treatment for GBM, but development of chemoresistance poses a significant therapeutic challenge. Despite advances in understanding GBM biology, the mechanisms driving TMZ resistance remain unclear. Identifying vital molecular players involved in this resistance is crucial for developing new therapies. Our results indicated that periostin (POSTN) was significantly upregulated in GBM cell lines and patient samples, correlating with poorer clinical outcomes. POSTN overexpression enhanced GBM cell proliferation, migration, invasion, and chemoresistance, while lentiviral suppression of POSTN significantly reduced these behaviors. In vivo, bioluminescence imaging further confirmed the enhanced tumor growth associated with POSTN overexpression. Bioinformatics analysis was performed to explore the underlying molecular mechanism. The results revealed a strong correlation between POSTN and epithelial-mesenchymal transition (EMT) process and the tumor necrosis factor α (TNFα)-NF-κB signaling pathway. Moreover, exogenous POSTN silencing reduced IκB-kinase α (IKKα) phosphorylation, thereby decreasing NF-κB expression by limiting IκBα degradation. Collectively, our study demonstrated that POSTN-induced activation of NF-κB signaling and EMT processes promoted the malignancy and chemoresistance of GBM, suggesting that POSTN may serve as a reliable prognostic biomarker and potential therapeutic target for GBM.
Collapse
Affiliation(s)
- Yu Shang
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Yuxia Liang
- Department of Physical Examination, The First Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710061, Shaanxi, China
| | - Beichen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yihao Peng
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Jin Wang
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Ming Zhang
- Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Chen Niu
- PET-CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
- Future Technology Institute, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
- Department of Information, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
23
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
24
|
Wang Y, Wang L, Zhang H, Ren P, Cheng X, Hong F, Liu J, Zhang R, Zhao J, Gou D. Immunostimulatory effects mechanism of polysaccharide extracted from Acanthopanax senticosus on RAW 264.7 cells through activating the TLR/MAPK/NF-κB signaling pathway. Sci Rep 2025; 15:13440. [PMID: 40251266 PMCID: PMC12008293 DOI: 10.1038/s41598-025-97423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/04/2025] [Indexed: 04/20/2025] Open
Abstract
Acanthopanax senticosus is a unique wild resource in Northeast China. Its main active ingredient is a polysaccharide, which has a prominent immunomodulatory effect. In this study, the purified polysaccharide component of Acanthopanax senticosus leaves(ASPS-A1) with strong immunomodulatory activity was isolated by column chromatography, and its structure and properties were characterized by HPGPC, and FT-IR. Results showed that ASPS-A1 is mainly composed of α- 1,4-D-GalA, α- 1,5-L-Ara, and β- 1,4-D-Gal. RT-qPCR experiments and RNA-seq analysis were used to study the immunoregulatory mechanism of ASPS-A1. The results showed that ASPS-A1 could significantly up-regulate the levels of cytokines iNOS, IL- 1β, IL- 6, and TNF-α activated macrophages through MAPK, NF-κB, and Toll-like receptor signaling pathways. Inhibitory experiments further confirmed that ASPS-A1 promotes the expression of iNOS, TNF-α, and IL- 6 via the TLR4 receptor, and TNF-α and IL- 1β via the TLR2 receptor. In order to identify the target of ASPS-A1, molecular docking experiments were conducted. The results demonstrated that ASPS-A1 could bind to both TLR4 and TLR2, forming stable complexes with the cavities on the protein surface through hydrogen bonding and hydrophobic interaction. The docking scores indicated that ASPS-A1 could regulate the immune response through TLR2 and TLR4 signaling pathways, with a particularly strong interaction with TLR4. In summary, this study screened and characterized the most immunoreactive components of Acanthopanax senticosus polysaccharide, disclosed the immunomodulatory mechanism of ASPS-A1, and furnished a research basis for its potential application as a natural immune enhancer.
Collapse
Affiliation(s)
- Yufan Wang
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Lei Wang
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Hanwen Zhang
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Peirou Ren
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Xiaowen Cheng
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Fandi Hong
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Jiaxin Liu
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun, 130103, China
| | - Ruining Zhang
- Agriculture College, Yanbian University, Yanbian, 133002, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, No.8326 Weixing Street, Changchun, 130022, China.
| |
Collapse
|
25
|
Wang L, Li Y, He Y, Fang Y, Mimuro H, Midgley AC, Yoshida S. Macropinocytosis regulates cytokine expression through Erk signaling in LPS-stimulated macrophages. Cell Struct Funct 2025; 50:103-113. [PMID: 40058796 DOI: 10.1247/csf.25008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Macropinocytosis, a type of large-scale endocytosis process, is induced in macrophages by extracellular stimuli, including lipopolysaccharide (LPS). In addition to uptake function, emerging evidence supports a link between macropinocytosis and LPS-induced signal transduction. Following LPS stimulation, membrane ruffles are induced to form cup-like structures known as macropinocytic cups, a necessary precursory step for macropinocytosis. We have recently shown that Akt is activated at the cups and is an upstream regulator of the Iκ-B/NF-κB pathway implicated in the production of IL-1α and IL-6. Here, we further investigated the molecular mechanisms and show that the macropinocytic cups also regulated the Ras/Mek/Erk/c-Fos pathway to modulate IL-1β expression independently of the Akt pathway. In addition, we observed that the cup-dependent Akt pathway downregulated the expression of IL-10, in which the activation of the Erk pathway was critical. Taken together, we propose that macropinocytic cups separately modulate the Akt and Erk pathways in cytokine expression.Key words: macropinocytosis, Erk, IL-1β, IL-10.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Yanan Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Yuxin He
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Yuchen Fang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
| | - Hitomi Mimuro
- Division of Genome-Wide Infectious Microbiology, Research Center for GLOBAL and LOCAL Infectious Diseases, Oita University
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University
| | - Sei Yoshida
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University
- Nankai International Advanced Research Institute
| |
Collapse
|
26
|
Monzani R, Gagliardi M, Saverio V, Clemente N, Monzani A, Rabbone I, Nigrelli F, Pellizzaro S, Ferrario E, Saettone S, Pagano N, De Leo L, Lim D, Sblattero D, Corazzari M. Gliadin-dependent UPR induction directly triggers the expression of TG2 and pro-inflammatory cytokines, dysregulates intestinal permeability, and reduces CFTR expression in intestinal epithelial cells of celiac disease patients. Biol Direct 2025; 20:55. [PMID: 40247380 PMCID: PMC12007252 DOI: 10.1186/s13062-025-00644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disorder that primarily affects the gut of genetically predisposed individuals and is triggered by gliadin peptides (PT) produced by the digestion of gluten. Although inappropriate activation of the immune system is thought to be the main trigger of CD, the interaction between PT and intestinal epithelial cells (IECs) remains a key step. Recently, the possible involvement of ER stress in the pathogenesis of CD has been pointed out, although its role is still largely unclear. Therefore, discovering the molecular mechanism(s) activated in IECs exposed to PT represents a unique opportunity to better understand the disease and define new potential therapeutic targets. METHODS In this study we used three different experimental set-ups: intestinal biopsies from CD patients and non-CD control subjects, an in vitro model, based on human CaCo-2 cells, and an ex vivo model, based on our recently described mouse gut-ex-vivo system (GEVS), with the latter two systems were studied after stimulation with gliadin peptides (PT). To understand the signaling pathways involved we monitor the expression of a number of proteins by qPCR, Western blotting, IF, ELISA or a combination of tests. Specifically, we have analyzed the level of CD, ER stress, tissue permeability, and inflammation markers. RESULTS Indeed, our study demonstrated a prompt induction of the transcription factors ATF4, ATF6 and XBP1 in IECs upon PT exposure. Thus, the upregulation of TG2 and downregulation of CFTR were prevented by ER stress inhibition/buffering by a pharmacological chaperone, also leading to restored physiological expression of OCL, CLD-2 and CLD-15, while preventing the expression of IFNγ, IL-15 and IL-17 A. CONCLUSION Overall, our analysis has highlighted the key role of ER stress in the pathogenesis of CD and identified the chemical chaperones as a new potential valuable therapeutic treatment for CD patients.
Collapse
Affiliation(s)
- Romina Monzani
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Valentina Saverio
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Nausicaa Clemente
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Alice Monzani
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- Division of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Francesca Nigrelli
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Samuele Pellizzaro
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Emanuele Ferrario
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Silvia Saettone
- Gastroenterology Unit, Department of Oncological and Specialty Medicine, University Hospital Maggiore della Carità, Novara, Italy
| | - Nico Pagano
- Gastroenterology Unit, Department of Oncological and Specialty Medicine, University Hospital Maggiore della Carità, Novara, Italy
| | - Luigina De Leo
- Institute for Maternal and Child Health, I.R.C.C.S. Burlo Garofolo, Trieste, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, Trieste, 34127, Italy
| | - Marco Corazzari
- Department of Health Sciences, School of Medicine, Center for Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy.
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
27
|
Heppell C, Subramanian A, Adderley NJ, Nirantharakumar K, Denniston AK, Pavesio C, Braithwaite T. Comprehensive Update on Multiple Sclerosis-Associated Uveitis and New Epidemiological Insights from the United Kingdom. Ocul Immunol Inflamm 2025:1-13. [PMID: 40238829 DOI: 10.1080/09273948.2025.2491567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
Multiple sclerosis (MS)-associated uveitis is characterised most frequently by bilateral intermediate uveitis with peripheral vascular leakage or panuveitis. The interesting association between these autoimmune diseases, which develop in two immune-privileged sites, places some undifferentiated uveitis patients at heightened risk of demyelination and clinical MS precipitation from the use of licensed anti-tumour necrosis factor α (TNFα) biologic therapy. However, their association may also open novel treatment avenues, considering the rapidly expanding arsenal of highly effective MS disease-modifying therapies. Here, we offer new data on MS-uveitis from the first national population-representative matched case-control and cohort study, using IQVIA medical research data (IMRD-UK), a primary care database of 11 million people. Amongst 25 thousand uveitis cases, patients with (any) uveitis are nearly three times more likely than matched controls to develop MS by 15 years follow-up (adjusted Hazard 2.7 (95% CI 2.1-3.6, p < 0.001)), but the proportion of MS-uveitis is low overall (0.72%, 180/24,895 uveitis cases). What tools might enhance MS risk stratification in uveitis patients in the future? In this comprehensive narrative review, we summarise primary observational data informing our epidemiological understanding of the association between MS and uveitis, and its variable clinical presentations, to highlight the state of play, and the important questions that remain in MS-uveitis.
Collapse
Affiliation(s)
- Cara Heppell
- Ophthalmology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | | | - Nicola J Adderley
- Department of Applied Health Sciences, University of Birmingham, Birmingham, UK
- Department of Applied Health Research, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, UK
| | - Krishnarajah Nirantharakumar
- Department of Applied Health Sciences, University of Birmingham, Birmingham, UK
- Department of Applied Health Research, National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, UK
- Health Data Research United Kingdom (HDRUK), London, UK
| | - Alastair K Denniston
- Health Data Research United Kingdom (HDRUK), London, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Carlos Pavesio
- Uveitis Department, Moorfields Eye Hospital and UCL, London, UK
| | - Tasanee Braithwaite
- Ophthalmology, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Ophthalmology, King's Health Partners Centre for Translational Medicine, London, UK
- School of Population and Lifecourse Sciences and School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
28
|
Chen Y, Jiang L, Zhang L, Chi H, Wang Q. Immune microenvironment and molecular mechanisms in endometrial cancer: implications for resistance and innovative treatments. Discov Oncol 2025; 16:532. [PMID: 40237942 PMCID: PMC12003227 DOI: 10.1007/s12672-025-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
This review provides a systematic overview of the molecular mechanisms of endometrial cancer and its drug resistance, particularly involving the aberrant activation of some key signaling pathways. These molecular mechanisms significantly affect the therapeutic outcome of endometrial cancer by promoting tumor cell proliferation, anti-apoptosis, and drug resistance. The article also analyzes the critical role of the immune microenvironment in cancer drug resistance, focusing on the impact of immune cells, immune checkpoints, and hypoxic metabolic reprogramming on anticancer therapies. In recent years, immunotherapy and individualized therapy have shown promising clinical outcomes, especially in advanced endometrial cancer. This article summarizes recent advances in related therapeutic strategies and proposes emerging therapeutic strategies by targeting key pathways and modulating the immune microenvironment to overcome drug resistance and improve patient prognosis.
Collapse
Affiliation(s)
- Yijia Chen
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Lanyue Zhang
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, 646000, China.
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
29
|
Song Y, Ren X, Xiong J, Wang W, Zhao Q, Chang J, Yu B. Ubiquitin-Specific Protease 7 (USP7) as a Promising Therapeutic Target for Drug Discovery: From Mechanisms to Therapies. J Med Chem 2025. [PMID: 40237780 DOI: 10.1021/acs.jmedchem.5c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Protein ubiquitination is a reversible post-translational modification regulated by ubiquitin-conjugating and deubiquitinating enzymes (DUBs). Ubiquitin-specific protease 7 (USP7), a well-characterized DUB, plays multifaceted roles in various cellular processes, making it a promising therapeutic target. The plasticity of its catalytic domain and unique allosteric regulation by substrates or external or intramolecular factors facilitate the identification of highly selective USP7 inhibitors. These inhibitors can engage distinct ubiquitin-binding sites through covalent or non-covalent mechanisms. Despite its therapeutic promise, no USP7 inhibitors have entered clinical trials, underscoring the urgent need for novel therapeutics. Here we provide a crystallographic and functional landscape of USP7's multilayer regulation and analyze the structure-activity relationship of inhibitors by chemotypes. Additionally, we explore USP7's roles in diseases and discuss the challenges in USP7-targeted drug discovery and future directions for therapeutic development. This Perspective aims to provide a systematic overview of USP7, from its regulatory mechanisms to its therapeutic potential.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangli Ren
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinbo Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qianyan Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
30
|
Chen MX, Chen Y, Fu R, Wang JY, Liu SY, Shen TB. Cytomegalovirus infection initiates inflammatory bowel disease by activating a positive MyD88/NF-κB feedback loop in allogeneic skin transplantation mice. Virol J 2025; 22:101. [PMID: 40241182 PMCID: PMC12001603 DOI: 10.1186/s12985-025-02725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Infection with the cytomegalovirus (CMV) is common. Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract. CMV infection is involved in IBD pathogenesis. The abnormal activation of myeloid differentiation factor 88 (MyD88)/nuclear factor- kappa B (NF-κB) signaling, which results in inflammatory cytokine overexpression, is an important factor in IBD pathogenesis. The present study aimed to examine the effect of CMV infection on NF-κB activation and its role in IBD pathogenesis. Since BALB/c rather than C57BL/6 mice belong to the murine CMV (MCMV) susceptible strain, allogeneic skin transplantation was conducted between MyD88 (+/+) or MyD88-knockout Myd88 (-/-) BALB/c (recipient) mice and C57BL/6 (donor) mice. Thereafter, the immune function of the recipient mice was reduced by immunosuppressant cyclosporine, which is meaningful in the pathogenesis of IBD caused by MCMV in immunocompromised mice. MCMV strain K181-eGFP (eGFP K181) or hMIEP-eGFP K181 (knockout MCMV IE1-3 promoter) was used to infect MyD88 (+/+) BALB/c mice while eGFP K181 was also used to infect MyD88 (-/-) BALB/c mice on day 14 post allogeneic skin transplantation. MCMV DNA was detected via nested polymerase chain reaction. Hematoxylin-Eosin staining was used to assess colon necrosis and inflammatory cell infiltration. The serum levels of tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, IL-8, IL-12, flagellin, lipopolysaccharide, and myeloperoxidase were detected by ELISA and immune reaction. Immunoblots were applied to measure protein levels. eGFP K181 infection significantly induced colon permeability, necrosis, inflammatory cell infiltration, and inflammation in allogeneic skin transplantation mice. hMIEP-eGFP K181 infection significantly inhibited colon permeability, necrosis, inflammatory cell infiltration, and inflammation compared with eGFP K181 infection in allogeneic skin transplantation mice. Moreover, the MyD88-dependent NF-κB signaling pathway was involved in the pathogenesis of eGFP K181-induced colon permeability and inflammation in allogeneic skin transplantation mice. Our findings highlight the importance of CMV infection and the Myd88/NF-κB signaling pathway in IBD and might provide a new direction for the development of drugs for IBD.
Collapse
Affiliation(s)
- Ming-Xian Chen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, China
- Institute of Integrated Chinese and Western Medicine on Spleen-Stomach Diseases, Zhejiang Province Academy of Traditional Chinese Medicine, Hangzhou, 310012, China
| | - Yu Chen
- Laboratory Animal Center, Zhejiang Province Academy of Traditional Chinese Medicine, Hangzhou, 310007, China
| | - Rui Fu
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, China
| | - Jie-Yi Wang
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, China
| | - Sai-Yue Liu
- Department of Adverse Drug Reaction Monitoring, Zhejiang Province Center of Adverse Drug Reaction Monitoring, No. 39, Yile Road, Mr, Hangzhou, 310012, China.
| | - Tang-Biao Shen
- Department of Gastroenterology, Tongde Hospital of Zhejiang Province, No. 234, Gucui Road, Hangzhou, 310012, China.
| |
Collapse
|
31
|
Gao Y, Li C, Zhang X, Yao D, Zhang Y. MiR-214 inhibits NF-κB pathway activation to alleviate lipopolysaccharide-induced mastitis by targeting TRAF1. Theriogenology 2025; 237:76-84. [PMID: 39983331 DOI: 10.1016/j.theriogenology.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/09/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Mastitis in dairy cows is defined by inflammation of mammary tissue, and represents a significant challenge in the dairy industry. The microRNA miR-214 is recognized as a key endogenous regulatory molecule with a critical role in inflammatory diseases. However, its involvement in the regulation of mastitis remains unclear. This study, investigated the role of miR-214 in dairy mastitis and explored its therapeutic potential. It was observed that miR-214 expression was reduced in an in vivo lipopolysaccharide (LPS)-induced mouse mastitis model and an in vitro LPS-induced bovine mammary epithelial cell (bMEC) inflammation model. The miR-214 mimic was found to suppress the expression of inflammatory cytokines IL-1β, TNF-α, and IL-6. Furthermore, the miR-214 mimic inhibited nuclear factor-κB (NF-κB) pathway activation in LPS-induced bMECs. Dual-luciferase reporter assay results confirmed that miR-214 targeted tumor necrosis factor receptor-associated factor 1 (TRAF1) to inhibit its expression. Silencing TRAF1 in bMECs reduced LPS-induced expression of inflammatory cytokines and NF-κB pathway activation. Conversely, TRAF1 overexpression negated the inhibitory effects of miR-214 on LPS-induced inflammatory cytokines expression and NF-κB pathway activation in bMECs. Additionally, in the in vivo LPS-induced mouse mastitis model, miR-214 alleviated pathological damage and decreased inflammatory cytokines expression in mammary tissue. These findings suggest that miR-214 inhibits NF-κB activation by downregulating TRAF1 expression thereby mitigating LPS-induced inflammatory responses. This study highlights a potential novel approach for the treatment of mastitis in dairy cows.
Collapse
Affiliation(s)
- Yujin Gao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Cheng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Xijun Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Dan Yao
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, China
| | - Yong Zhang
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China.
| |
Collapse
|
32
|
Wu S, Luo Y, Wei F, Li Y, Fan J, Chen Y, Zhang W, Li X, Xu Y, Chen Z, Xia C, Hu M, Li P, Gu Q. Lactic acid bacteria target NF-κB signaling to alleviate gastric inflammation. Food Funct 2025; 16:3101-3119. [PMID: 40152095 DOI: 10.1039/d4fo06308b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Helicobacter pylori (H. pylori) infection and the resulting gastric inflammation are major contributors to gastric cancer development. Probiotics, particularly Lactobacillus, are promising for their anti-inflammatory potential, yet their exact mechanisms in inhibiting H. pylori-induced inflammation are unclear. In our previous study, Lactiplantibacillus plantarum ZJ316 (L. plantarum ZJ316) demonstrated strong anti-inflammatory effects against H. pylori infection in vivo, but its precise mechanisms were not fully understood. Here, we aimed to investigate how L. plantarum ZJ316 inhibits the inflammatory response to H. pylori infection. Our results demonstrated that L. plantarum ZJ316 effectively reduced the expression of pro-inflammatory cytokines in H. pylori-infected AGS cells. Mechanistically, L. plantarum ZJ316 inhibited the NF-κB signaling pathway by preventing the degradation of IκBα, suppressing p65 phosphorylation, and blocking the nuclear translocation of phosphorylated p65. Treatment with the NF-κB inhibitor BAY 11-7082 further decreased tumor necrosis factor-α (TNF-α), interleukin-8 (IL-8), and interleukin-1β (IL-1β) levels, confirming the inhibitory effect of L. plantarum ZJ316 on the NF-κB pathway. In H. pylori-infected mice, oral administration of L. plantarum ZJ316 significantly alleviated inflammatory cell infiltration, reduced TNF-α and pepsinogen II (PGII) levels, and increased interleukin-10 (IL-10) levels in serum. A comparative metagenomic analysis of the gastric microbiota revealed a decrease in Prevotella and Desulfovibrio, alongside an increase in Ligilactobacillus and Akkermansia, supporting the protective effects of L. plantarum ZJ316 and correlating with their decreased inflammatory response. In summary, administration of L. plantarum ZJ316 demonstrated robust anti-inflammatory effects against H. pylori infection by suppressing NF-κB signaling and promoting favorable changes in the gastric microbiota composition. Therefore, L. plantarum ZJ316 holds promise as a novel functional food for protecting the body against H. pylori infection.
Collapse
Affiliation(s)
- Shiying Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yuenuo Luo
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Fangtong Wei
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiayi Fan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Yongqiang Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Wenjie Zhang
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Xuelong Li
- Hangzhou Helixinjian Industry Co., Ltd, No. 48 Zijinghua Road, Gudang Street, Xihu District, Hangzhou, Zhejiang 310050, China
| | - Yang Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ziqi Chen
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Mingyang Hu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
33
|
Tan WL, Yu X, Jia J, Chen RY, Xu XX, Liang LQ, Ruan YY, Wang FF, Chen YT, Peng YL, Peng J, Shi M, Tang L, Guo B, Wang YY. Alpha-lipoamide prevents acute kidney injury in mouse by inhibiting renal tubular epithelial cell pyroptosis. Biochem Pharmacol 2025; 237:116942. [PMID: 40228634 DOI: 10.1016/j.bcp.2025.116942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/28/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Acute kidney injury (AKI) is a critical condition marked by a sudden decline in kidney function, frequently resulting in high morbidity and mortality. Renal ischemia-reperfusion injury (IRI) is a leading cause of AKI, characterized by reactive oxygen species (ROS) release, cell death, and inflammation. Alpha-lipoamide (ALM), a neutral derivative of lipoic acid, is recognized for its antioxidant and organ-protective properties. Prior research indicates that ALM mitigates diabetic nephropathy by decreasing ROS. This study examines ALM's protective role in a mouse model of IRI-induced AKI and its mechanisms using mouse renal tubular epithelial cells (mRTECs). Mice were subjected to IRI by renal artery occlusion for 30 min, followed by reperfusion, and treated with ALM (100 or 200 mg/kg) for three days before surgery. In vitro, mRTECs were exposed to hypoxia/reoxygenation injury, with ALM (200 μM) applied to assess oxidative stress. ALM significantly decreased serum creatinine levels, neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury marker-1 (KIM-1), mitigated kidney injury, and reduced both ROS and Malondialdehyde(MDA) content. ALM increased glutathione (GSH) levels and upregulated SIRT1 expression. This resulted in the deacetylation of the NF-κB p65 subunit, facilitating its nuclear export, suppressing NF-κB signaling, and reducing the expression of the inflammatory marker NLRP3. ALM decreased the levels of pyroptosis-related proteins (Caspase-1, GSDMD, and IL-1β), which in turn suppressed IL-6 secretion and macrophage infiltration. These findings suggest that ALM reduces inflammation and pyroptosis-associated proteins by promoting the upregulation of SIRT1, ultimately preventing IRI-mediated renal tubular epithelial cell damage and inflammation.
Collapse
Affiliation(s)
- Wan-Lin Tan
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Xiong Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Jing Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Rong-Yu Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Xiao-Xiao Xu
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Lu-Qun Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Yuan-Yuan Ruan
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Fang-Fang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Yu-Ting Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Yu-Lin Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Jin Peng
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Mingjun Shi
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China
| | - Lei Tang
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou 550025 China.
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China.
| | - Yuan-Yuan Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Guizhou Medical University, Guizhou 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research On Common Chronic Diseases, Guizhou Medical University, Anshun, Guizhou 561113, China.
| |
Collapse
|
34
|
Ejtehadifar M, Zahedi S, Gameiro P, Cabeçadas J, Rodriguez MS, da Silva MG, Beck HC, Matthiesen R, Carvalho AS. Proteome alterations in peripheral immune cells of DLBCL patients and evidence of cancer extracellular vesicles involvement. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167842. [PMID: 40222457 DOI: 10.1016/j.bbadis.2025.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive disease and a frequent form of non-Hodgkin lymphoma. Given the primary localization of DLBCL and the effect of tumors on the systemic immune response, we investigated the proteome of DLBCL patients' and healthy donors (HDs') peripheral immune cells (PICs). Since the ubiquitin-proteasome system has a vital role in proteome regulation and immune cells' functions, this study also explores the potential impact of DLBCL secretome on the polyubiquitination level in PICs. PICs from DLBCL patients and HDs were isolated and analyzed by mass spectrometry-based proteomics. The analysis resulted in 135 down and 51 upregulated proteins (adjusted p-value <0.05). Unsupervised principal component analysis revealed distinct proteomic profiles between DLBCL and HDs. Functional enrichment analysis for comparison between DLBCL and HDs-PICs proteome identified immune-related pathways such as innate immune system, specifically neutrophil degranulation, Fcγ receptor-dependent phagocytosis, and JAK-STAT signaling after IL-12 stimulation as downregulated. Proteomics analysis of DLBCL-PICs also showed dysregulation of proteostasis factors. This prompted the investigation of the effect of tumor secretome on viability and polyubiquitination level in mononuclear immune cells. Therefore, human HD peripheral blood mononuclear cells (PBMCs) were cultured in the presence of DLBCL cell line-derived soluble factors, small-EVs, and large-EVs in vitro. Our results revealed that exposure of mainly small-EVs, and large-EVs to HD PBMCs increased the polyubiquitination in PBMCs and decreased PIC viability. These findings suggest impaired immune responses in DLBCL-PICs, with tumor secretome-inducing polyubiquitination and reduced PIC viability.
Collapse
Affiliation(s)
- Mostafa Ejtehadifar
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sara Zahedi
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Paula Gameiro
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - José Cabeçadas
- Instituto Português de Oncologia, Departament of Hematology, Lisbon, Portugal
| | - Manuel S Rodriguez
- Laboratoire de Chimie de Coordination (LCC) - UPR 8241 CNRS, UMR 152 Pharma-Dev, Université de Toulouse, IRD, UPS, 31400 and BMolecular, Centre Pierre Potiers, 31100 Toulouse, France
| | | | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense C, Denmark
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal.
| |
Collapse
|
35
|
Yu L, Tian D, Su Z, Zhang L, Jie L, Guo S, Zhu W, Zhang N, Wang P. Mechanical stress overload promotes NF-κB/NLRP3-mediated osteoarthritis synovitis and fibrosis through Piezo1. Cell Signal 2025; 132:111786. [PMID: 40221068 DOI: 10.1016/j.cellsig.2025.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Mechanical stress is a pivotal factor in the development of knee osteoarthritis (KOA). Piezo1, an innovative mechanosensitive ion channel, plays a key role in detecting variations in mechanical stress and transforming them into electrical signals. This research focuses on examining how Piezo1 influences synovial inflammation and fibrosis induced by mechanical stress in KOA, as well as delving into the potential underlying mechanisms. In vivo, pathological changes and immunohistochemical staining were conducted on both normal and overexercise rat synovial tissues to analyze the expression of Piezo1 and the NF-κB/NLRP3 pathways. In vitro utilized a cell stretcher to replicate the mechanical conditions seen in KOA. Levels of pro-inflammatory cytokines and fibrosis-related markers were assessed to investigate the impact of Piezo1 on mechanical stress in fibroblast-like synoviocytes (FLS). Subsequently, following cell stretching interventions, the effects on synovial inflammation and fibrosis were observed with the use of the Piezo1 inhibitor GsMTx4 or the NLRP3 inhibitor MCC950. Mechanical stress significantly promoted the activation of Piezo1, increased the phosphorylation ratio of p65, and elevated the levels of NLRP3, caspase-1, ASC, GSDMD, IL-1β, IL-18, IL-6, and TNF-α. Both in vitro and in vivo, mechanical stress also promoted the occurrence and development of synovial fibrosis, with significant increases in the expression levels of fibrosis-related markers. Under mechanical stress overload, upregulation of Piezo1 can promote the secretion of pro-inflammatory cytokines and the fibrotic process in synovium through the NF-κB/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Likai Yu
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Di Tian
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zishan Su
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Li Zhang
- Orthopedics of traditional Chinese Medicine, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu, China
| | - Lishi Jie
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Shaobo Guo
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Wenhui Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Nongshan Zhang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| | - Peimin Wang
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine/ Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
36
|
Hu S, Wang M. Identification of a deubiquitinating gene-related signature in ovarian cancer using integrated transcriptomic analysis and machine learning framework. Discov Oncol 2025; 16:510. [PMID: 40208475 PMCID: PMC11985714 DOI: 10.1007/s12672-025-02267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Ovarian carcinoma represents an aggressive malignancy with poor prognosis and limited therapeutic efficacy. While deubiquitinating (DUB) genes are known to regulate crucial cellular processes and cancer progression, their specific roles in ovarian carcinoma remain poorly understood. METHODS We conducted an integrated analysis of single-cell RNA sequencing and bulk transcriptome data from public databases. DUB genes were identified through Genecard database. Using the Seurat package, we performed cell clustering and differential expression analysis. Cell-cell communications were analyzed using CellChat. A DUB-related risk signature (DRS) was developed using machine learning approaches through integration of GEO and TCGA datasets. The prognostic value and immune characteristics of the signature were systematically evaluated. RESULTS Our analysis revealed eight distinct cell subtypes in the tumor microenvironment, including epithelial, fibroblast, myeloid, and Treg cells. DUB-high cells were predominantly found in Treg and myeloid populations, exhibiting elevated expression of tumor-related pathways and enhanced cell-cell communication networks, particularly between fibroblasts and myeloid cells. Conversely, DUB-low cells were enriched in epithelial populations with reduced immune activity. The DRS model demonstrated robust prognostic value across multiple independent cohorts. High-risk patients, as classified by the DRS, showed significantly poorer survival outcomes and distinct immune infiltration patterns compared to low-risk patients. CONCLUSION This study provides comprehensive insights into DUB gene expression patterns across different cell populations in ovarian carcinoma. The established DRS model offers a promising tool for risk stratification and may guide personalized therapeutic strategies. Our findings highlight the potential role of DUB genes in modulating the tumor immune microenvironment and patient outcomes in ovarian carcinoma.
Collapse
Affiliation(s)
- Suwan Hu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengting Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
37
|
Xun Y, Chen G, Tang G, Zhang C, Zhou S, Fong TL, Chen Y, Xiong R, Wang N, Feng Y. Traditional Chinese medicine and natural products in management of hepatocellular carcinoma: Biological mechanisms and therapeutic potential. Pharmacol Res 2025; 215:107733. [PMID: 40209965 DOI: 10.1016/j.phrs.2025.107733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Hepatocellular carcinoma (HCC), originating from hepatocytes, is the most common type of primary liver cancer. HCC imposes a significant global health burden with high morbidity and mortality, making it a critical public concern. Surgical interventions, including hepatectomy and liver transplantation, are pivotal in achieving long-term survival for patients with HCC. Additionally, ablation therapy, endovascular interventional therapy, radiotherapy, and systemic anti-tumor therapies are commonly employed. However, these treatment modalities are often associated with considerable challenges, including high postoperative recurrence rates and adverse effects. Traditional Chinese medicine (TCM) and natural products have been utilized for centuries as a complementary approach in managing HCC and its complications, demonstrating favorable clinical outcomes. Various bioactive compounds derived from TCM and natural products have been identified and purified, and their mechanisms of action have been extensively investigated. This review aims to provide a comprehensive and up-to-date evaluation of the clinical efficacy of TCM, natural products and their active constituents in the treatment and management of HCC. Particular emphasis is placed on elucidating the potential molecular mechanisms and therapeutic targets of these agents, including their roles in inhibiting HCC cell proliferation, inducing apoptosis and pyroptosis, suppressing tumor invasion and metastasis, and restraining angiogenesis within HCC tissues.
Collapse
Affiliation(s)
- Yunqing Xun
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Shichen Zhou
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Tung-Leong Fong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yue Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ruogu Xiong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong.
| |
Collapse
|
38
|
Cui J, Li H, Zhang T, Lin F, Chen M, Zhang G, Feng Z. Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway. Front Pharmacol 2025; 16:1548073. [PMID: 40260389 PMCID: PMC12009910 DOI: 10.3389/fphar.2025.1548073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Oxidative stress refers to an imbalance between oxidative capacity and antioxidant capacity, leading to oxidative damage to proteins, lipids, and DNA, which can result in cell senescence or death. It is closely associated with the occurrence and development of various diseases, including cardiovascular diseases, nephropathy, malignant tumors, neurodegenerative diseases, hypertension, diabetes, and inflammatory diseases. Curcumin is a natural polyphenol compound of β-diketone, which has a wide range of pharmacological activities such as anti-inflammatory, antibacterial, anti-oxidative stress, anti-tumor, anti-fibrosis, and hypolipidemic, demonstrating broad research and development value. It has a wide range of biological targets and can bind to various endogenous biomolecules. Additionally, it maintains the redox balance primarily by scavenging ROS, enhancing the activity of antioxidant enzymes, inhibiting lipid peroxidation, and chelating metal ions. This paper systematically describes the antioxidative stress mechanisms of curcumin from the perspective of signaling pathways, focusing on the Keap1-Nrf2/ARE, NF-κB, NOX, MAPK and other pathways. The study also discusses potential pathway targets and the complex crosstalk among these pathways, aiming to provide insights for further research on curcumin's antioxidant mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Jie Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
39
|
Yang C, Fu C, Wang M, Zheng J, Gao Y, Zhu H, Li H, Li D, Guo L, Yu B, Dai Q. Recombinant Antithrombin Alleviated Pulmonary Injury and Inflammation in LPS-Induced ARDS by Inhibiting IL17a/NF-κB Signaling. Immunotargets Ther 2025; 14:433-449. [PMID: 40226836 PMCID: PMC11988198 DOI: 10.2147/itt.s502925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Background Recombinant antithrombin (rAT) has been shown to protect lungs from ARDS and modulate immune responses, but its anti-inflammatory mechanisms remain unclear. This study aimed to explore the immunomodulatory effects and mechanisms of rAT in LPS-induced ARDS mice. Methods ARDS mouse model was established by intraperitoneally administration of 20 mg/kg LPS. After 3 hours of LPS administration, rAT or PBS was injected intravenously. Lung injury, alveolar permeability, serum inflammatory cytokines, immune cell infiltration in lung tissue, and the proportion of Th17 were assessed 36 hours after rAT administration. The functional roles of the differential expressed genes (DEGs), obtained from LPS-induced ARDS mice treated with or without rAT, were analyzed by GO, KEGG and GSEA enrichment analysis. The activation of NF-κB and NLRP3 inflammasome was evaluated by Western blot and immunofluorescence staining. Results We found that rAT alleviated lung injury, reduced pulmonary permeability, decreased serum inflammatory cytokines, and suppressed immune cell infiltration and NLRP3 inflammasome activation. Moreover, rAT decreased the proportion of Th17 cells in lung tissues and peripheral blood, downregulated IL17a expression, and inhibited NF-κB signaling pathway in lung tissues. Additionally, the administration of IL-17A diminished the efficacy of rAT in mitigating lung injury, suppressing the immune response, and inhibiting the activation of the NF-κB signaling pathway in LPS-induced ARDS mice. Conclusion The findings of this study suggest that rAT alleviates lung injury and suppresses inflammatory responses by inhibiting the IL17a/NF-κB signaling axis, suggesting that rAT may serve as a potential therapeutic agent for mitigating pulmonary inflammation and improving the prognosis of ARDS induced by sepsis. Furthermore, this study provides important research data and theoretical basis for the clinical translation and application of rAT.
Collapse
Affiliation(s)
- Chen Yang
- Department of Anesthesia, the Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Cong Fu
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Mengxue Wang
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Junbo Zheng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Yang Gao
- Department of Critical Care Medicine, The Sixth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, People’s Republic of China
| | - Huiting Zhu
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Haoxuan Li
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Dongxu Li
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lichen Guo
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Bing Yu
- Department of Cell Biology, Navy Medical University, Shanghai, People’s Republic of China
| | - Qingqing Dai
- Department of Critical Care Medicine, The Obstetrics & Gynecology Hospital of Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
40
|
Guo J, Wang K, Sun Q, Liu J, Zheng J. Targeting B4GALT3 in BMSCs-EVs for Therapeutic Control of HCC via NF-κB pathway inhibition. Cell Biol Toxicol 2025; 41:67. [PMID: 40186771 PMCID: PMC11972216 DOI: 10.1007/s10565-025-10013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Examining the communications in the tumor microenvironment (TME) specific to hepatocellular carcinoma (HCC), this exploration looks into the role played by beta-1,4-Galactosyltransferase III (B4GALT3) in bone marrow mesenchymal stromal cell-derived extracellular vesicles (BMSCs-EVs) regarding the NF-κB pathway and the triggering of cancer-associated fibroblasts (CAF). Through a multidisciplinary approach combining transcriptome sequencing, bioinformatic analysis, and various experimental models, the involvement of B4GALT3 in regulating CAF activity by modulating NF-κB signaling was brought to light in our study. The outcomes suggest that targeting B4GALT3 could impede HCC cell migration and invasion, promote apoptosis, and dampen tumor progression and metastasis, offering novel insights into potential therapeutic strategies for combating HCC.
Collapse
Affiliation(s)
- Juncheng Guo
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Kaiqiong Wang
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Qigang Sun
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jun Liu
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China
| | - Jinfang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, No.19 Xinhua Road, Xiuying District, Haikou, 570311, Hainan Province, China.
| |
Collapse
|
41
|
Tausch S, Villinger C, Alexe G, Urban DJ, Shen M, Jahn D, Vischedyk J, Scheich S, Serve H, Hall MD, Stegmaier K, Oellerich T, Cremer A. Inflammatory signaling pathways play a role in SYK inhibitor resistant AML. Sci Rep 2025; 15:11673. [PMID: 40188268 PMCID: PMC11972322 DOI: 10.1038/s41598-025-96660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/31/2025] [Indexed: 04/07/2025] Open
Abstract
Trials have shown promising clinical activity of the selective SYK inhibitor entospletinib in patients with high expressing HOXA9/MEIS1 acute leukemias. As the development of resistance mechanisms is a common problem in the use of targeted drugs, we performed a chemical library screen to identify drug sensitivities in SYK inhibitor resistant AML cells. We identified that SYK inhibitor resistant cells displayed an increased sensitivity to glucocorticoids. Glucocorticoids are potent immunosuppressants which work in part by inhibiting the transcription of cytokine genes. RNA sequencing of entospletinib resistant cells revealed a strong enrichment of inflammatory response and TNFα signaling via NF-κB gene sets in comparison to naive cells. Naive AML cells treated with entospletinib showed a strong downregulation of the same gene sets which were upregulated in the resistant state. Our data suggest that inflammatory signaling pathways play a role in entospletinib resistant AML cells.
Collapse
MESH Headings
- Humans
- Syk Kinase/antagonists & inhibitors
- Syk Kinase/metabolism
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Signal Transduction/drug effects
- Drug Resistance, Neoplasm/drug effects
- Protein Kinase Inhibitors/pharmacology
- Cell Line, Tumor
- Inflammation/metabolism
- NF-kappa B/metabolism
Collapse
Affiliation(s)
- Sarah Tausch
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Christina Villinger
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Gabriela Alexe
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel J Urban
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Min Shen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Dominique Jahn
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Jonas Vischedyk
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
| | - Sebastian Scheich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Matthew D Hall
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Harvard Medical School, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas Oellerich
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany
| | - Anjali Cremer
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Theodor-Stern Kai 7, 60594, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Frankfurt am Main, Germany.
| |
Collapse
|
42
|
Cao J, Zhang X, Guo J, Wu J, Lin L, Lin X, Mu J, Huang T, Zhu M, Ma L, Zhou W, Jiang X, Wang X, Feng S, Gu Z, Gao JQ. An engineering-reinforced extracellular vesicle-integrated hydrogel with an ROS-responsive release pattern mitigates spinal cord injury. SCIENCE ADVANCES 2025; 11:eads3398. [PMID: 40173229 PMCID: PMC11963969 DOI: 10.1126/sciadv.ads3398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
The local delivery of mesenchymal stem cell-derived extracellular vesicles (EVs) via hydrogel has emerged as an effective approach for spinal cord injury (SCI) treatment. However, achieving on-demand release of EVs from hydrogel to address dynamically changing pathology remains challenging. Here, we used a series of engineering methods to further enhance EVs' efficacy and optimize their release pattern from hydrogel. Specifically, the pro-angiogenic, neurotrophic, and anti-inflammatory effects of EVs were reinforced through three-dimensional culture and dexamethasone (Dxm) encapsulation. Then, the prepared Dxm-loaded 3EVs (3EVs-Dxm) were membrane modified with ortho-dihydroxy groups (-2OH) and formed an EV-integrated hydrogel (3EVs-Dxm-Gel) via the cross-link with phenylboronic acid-modified hyaluronic acid and tannic acid. The phenylboronic acid ester in 3EVs-Dxm-Gel enabled effective immobilization and reactive oxygen species-responsive release of EVs. Topical injection of 3EVs-Dxm-Gel in SCI rats notably mitigated injury severity and promoted functional recovery, which may offer opportunities for EV-based therapeutics in central nervous system injury.
Collapse
Affiliation(s)
- Jian Cao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xunqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Guo
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingmin Lin
- Department of Rehabilitation Medicine of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xurong Lin
- Department of Rehabilitation Medicine of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiafu Mu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchen Huang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Manning Zhu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lan Ma
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weihang Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinchi Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuhua Wang
- Department of Rehabilitation Medicine of First Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shiqing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
| | - Jian-Qing Gao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321002, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
43
|
Huang W, Chen ZA, Li QY, Huang CF, Lin YX, Lan YM, Zhang ZP, Jiang YF, Qin QW, Sun HY. EXOC8 of Epinephelus coioides involved in SGIV infection via innate immunity and apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105368. [PMID: 40189122 DOI: 10.1016/j.dci.2025.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
The exocyst complex (EXOC) plays a major role in the extracellular secretion of organisms. In this study, EXOC8, a member of the EXOC family, was characterized from Epinephelus coioides,an important economical important fish in southern China and Southeast Asia, and its role response to viral infection was explored. The full length of E. coioides EXOC8 is 3091 bp including a 2061 bp open reading frame (ORF) encoding 686 amino acids, with a molecular mass of 79037.42 Da. The mRNA of E. coioides EXOC8 can be detected in all of the tissues examined with different levels. E. coioides EXOC8 is distributed in the cytoplasm. The expression of E. coioides EXOC8 was up-regulated during Singapore grouper iridovirus (SGIV) infection, an important pathogen of E. coioides. Overexpressing E. coioides EXOC8 significantly promoted the formation of cytopathic effects (CPE) caused by SGIV infection and the expressions of SGIV key genes MCP, VP19, LITAF and ICP18; but significantly inhibited the activities of NF-κB/AP-1 promoter, apoptosis induced by SGIV, and the expressions of inflammatory factors (IL-6,IL-8, IL-1β and TNF-α) in E. coioides. The results demonstrated that E. coioides EXOC8 may be involved in SGIV infection, providing a theoretical basis for clearing the mechanisms of viral infection in fish.
Collapse
Affiliation(s)
- Wei Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zi-An Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qi-Yin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Cui-Fen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yun-Xiang Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yin-Mei Lan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Ze-Peng Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Feng Jiang
- Department of Laboratory, Jining No.1 People's Hospital, Shandong, 272111, PR China.
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
44
|
Liu X, Zhu J, Li C, Tong C, Zhao C, Lin X, Wang Y, Alinejad T, Wu H, Chen G, Li L. Alleviation of obesity cardiomyopathy by Fisetin through the inhibition of NF-κB/MAPK signaling. Int Immunopharmacol 2025; 151:114319. [PMID: 39983421 DOI: 10.1016/j.intimp.2025.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/25/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Obesity cardiomyopathy, an important complication of obesity, is characterized by chronic inflammation that infiltrates the heart continuously. Elevated levels of free fatty acids (FFAs) in obese patients can activate the nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways in the heart, triggering inflammatory responses that lead to myocardial hypertrophy and fibrosis. Fisetin, a natural flavonoid, possesses strong anti-inflammatory and antioxidant properties. Therefore, we hypothesized whether Fisetin could alleviate obesity-induced cardiac inflammation by inhibiting the NF-κB and MAPK signaling pathways. We evaluated the effects of Fisetin treatment on obesity cardiomyopathy both in vitro and in vivo, and the results showed that Fisetin significantly inhibited palmitic acid (PA)-induced levels of myocardial pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1β). This effect was dependent on the inhibition of the NF-κB and MAPK signaling pathways. Additionally, in C57BL/6J mice fed a high-fat diet (HFD), Fisetin was found to reduce cardiac inflammation, myocardial hypertrophy, and fibrosis by inhibiting the NF-κB and MAPK signaling pathways. In conclusion, we discovered that Fisetin can regulate cardiac inflammation by inhibiting the NF-κB and MAPK signaling pathways, thereby treating obesity cardiomyopathy and offering a new candidate drug for its therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinwei Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chen Tong
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Zhao
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Xinru Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yunjie Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tahereh Alinejad
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyan Wu
- Department of Pulmonary and Critical Care Medicine, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Gaozhi Chen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Liyi Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Whenzhou Medical University, Whenzhou, Zhejiang, China.
| |
Collapse
|
45
|
Mohamed AR, Georgey HH, Aidy EA, Al-Shafie TA, Elnagar MR, Ali MA, Elblehi SS, Alzahrani AYA, Mousa MHA. Unveiling the potential of xanthines, discovery of potential 7-benzyl-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione derivatives with antifibrotic activity for liver injury. Bioorg Chem 2025; 160:108441. [PMID: 40199013 DOI: 10.1016/j.bioorg.2025.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
A new series of xanthine-based derivatives were designed, synthesized, and investigated to achieve promising antifibrotic and antioxidant agents for management of liver injury. Structure-based optimizations of the methylxanthine-based KMUP-1 (IX) were performed for inhibiting NF-κB activation pathway. All the newly designed xanthine derivatives 3, 4, 5, 6a-d, 7a-d, and 9a-d were in vitro screened for the antioxidant activity using the DPPH method. Compounds 4 and 5 showed the highest antioxidant activity with an IC50 of 28.02 and 36.02 μM, respectively. Compounds 9c and 9d retained a promising interception of the NF-κB activation pathway in molecular docking simulations within I-κB kinase α (IKKα) crystal structure (PDB ID: 5EBZ). Subsequently, compounds 9c and 9d were evaluated for their in vivo antifibrotic and chemoprotective activity using CCl4-induced hepatic fibrosis rat model. Compounds 9c and 9d successfully ameliorated liver fibrosis, as evidenced by the improved liver histopathological examination and liver enzyme activity levels. Compounds 9c and 9d were evaluated for their effects on mRNA expression levels of key genes involved in liver fibrosis via real-time PCR assays. Compound 9c exhibited a greater inhibitory effect on the expression levels of NF-κB and HIF-1α and a more pronounced stimulation of Nrf2 than compound 9d. Moreover, all the new xanthine derivatives were screened for the cytotoxic activity against the NCI tumor cell lines. Compounds 9c and 9d revealed a non-significant cytotoxic activity against all the assayed tumor cell lines, which indicate their selectivity for the antifibrotic activity. While compounds 6a and 6c displayed promising selective activity against melanoma SK-MEL-5 cell line (GI = 125.6, 90.3 %, respectively), and breast T-47D cell line (GI =87.8, 80.6 %, respectively). The utilized design approach unveiled the versatility of xanthine scaffold to deliver potential antioxidant, liver antifibrotic and chemoprotective agents, along with anticancer candidates via structure modification and optimization.
Collapse
Affiliation(s)
- Abdalla R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo 11829, Egypt.
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Esraa A Aidy
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute (NCI), Cairo University, Cairo 11796, Egypt
| | - Tamer A Al-Shafie
- Department of Oral Biology (Biochemistry), Faculty of Dentistry, Pharos University in Alexandria (PUA), Alexandria 21648, Egypt
| | - Mohamed R Elnagar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11823, Egypt; Department of Pharmacology, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mennatallah A Ali
- Pharmacology and Toxicology Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria 22758, Egypt
| | - Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science, King Khalid University, Mohail Assir 61421, Saudi Arabia
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 19346, Egypt
| |
Collapse
|
46
|
Tokumasu M, Sato A, Ito-Kureha T, Yamamoto M, Ohmine N, Semba K, Inoue JI, Yamamoto T. Tob negatively regulates NF-κB activation in breast cancer through its association with the TNF receptor complex. Cancer Gene Ther 2025:10.1038/s41417-025-00897-6. [PMID: 40169858 DOI: 10.1038/s41417-025-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/23/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
NF-κB mediates transcriptional regulation crucial to many biological functions, and elevated NF-κB activity leads to autoimmune and inflammatory diseases, as well as cancer. Since highly aggressive breast cancers have few therapeutic molecular targets, clarification of key molecular mechanisms of NF-κB signaling would facilitate the development of more effective therapy. In this report, we show that Tob, a member of the Tob/BTG family of antiproliferative proteins, acts as a negative regulator of the NF-κB signal in breast cancer. Studies with 35 human breast cancer cell lines reveal that Tob expression is negatively correlated with NF-κB activity. Analysis of The Cancer Genome Atlas (TCGA) database of clinical samples reveals an inverse correlation between Tob expression and NF-κB activity. Tob knockdown in human breast cancer cells promoted overactivation of NF-κB upon TNF-α treatment, whereas overexpression of Tob inhibited TNF-α stimulation-dependent NF-κB activation. Mechanistically, Tob associates with the TNF receptor complex I and consequently inhibits RIPK1 polyubiquitylation, leading to possible prevention of overwhelming activation of NF-κB.
Collapse
Affiliation(s)
- Miho Tokumasu
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Department of Immunology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan.
| | - Atsuko Sato
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Taku Ito-Kureha
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Nao Ohmine
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Jun-Ichiro Inoue
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
47
|
Jin M, Mengfan LV, Yu H, Cheng J, Zhang Y, Zhai Y, Feng H. Neem leaf extract alleviates LPS/D-GalN induced acute hepatitis in mice through its anti-inflammatory effects and activation of autophagy. Mol Immunol 2025; 180:33-43. [PMID: 39999524 DOI: 10.1016/j.molimm.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 01/19/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Acute hepatitis, characterized by rapid onset and high mortality, can result from infections, toxins, and other factors. However, current treatment options have significant side effects, necessitating further research into alternative therapies. This study investigated the extraction method of neem extract and found that its ethanolic extract effectively reduced mortality and decreased ALT and AST levels in mice serum, improving liver pathology. HPLC analysis identified azadirachtin and nimbolide in the extract. It also downregulated NF-κB, NLRP3, and p62 levels, while upregulating Lc3B and Atg5 levels. Experiments in Atg5 knockout mice showed that the absence of Atg5 weakened the extract's efficacy in reducing liver damage and inflammation and affected the extent of NLRP3 protein downregulation. However, it did not affect the extract's ability to reduce NF-κB. Overall, the ethanolic extract of neem leaves primarily modulates the inflammatory response through the NF-κB signaling pathway. The extract's efficacy in reducing NLRP3 is associated with autophagy. These discoveries offer a new theoretical basis for the role of neem in treating acute hepatitis.
Collapse
Affiliation(s)
- Meiyu Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Urology, People's Hospital of Longhua, Shenzhen 518109, China.
| | - L V Mengfan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Hao Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jiaqi Cheng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yibo Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yaxin Zhai
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Haihua Feng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
48
|
Hosseini Y, Niknejad A, Sabbagh Kashani A, Gholami M, Roustaie M, Mohammadi M, Momtaz S, Atkin SL, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. NLRP3 inflammasomes pathway: a key target for Metformin. Inflammopharmacology 2025; 33:1729-1760. [PMID: 40042723 DOI: 10.1007/s10787-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 (NLRP3) is a signaling pathway that is involved in inflammatory cascades, cell survival and the immune response. NLRP3 is activated by cellular damage, oxidative stress, and other factors that stimulate the immune system. Stimulation of NLRP3 induces inflammatory reactions and the production of inflammatory cytokines. These inflammatory mediators are implicated in several diseases. Metformin (MET) is an anti-hyperglycemia agent that is extensively used in clinical practice worldwide due to its high efficiency, safety profile, and affordable price. MET is the only member of biguanide class that is used in clinical practice and a potent AMP-activated protein kinase (AMPK) agonist with proven anti-inflammatory characteristics. Due to its anti-inflammatory properties, MET is considered to be effective against diseases that have an inflammatory background, and the NLRP3 pathway is involved in the pathophysiology of these disorders. In this review, we have evaluated the evidence if MET can affect this pathway and its utility for future therapeutic approaches.
Collapse
Affiliation(s)
- Yasamin Hosseini
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Gholami
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaie
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
49
|
Xu S, Yang B, Yu W, Gao Y, Cai H, Wang Z. TREM2 as a Therapeutic Target in Atherosclerosis. Cell Biol Int 2025; 49:305-316. [PMID: 39891588 DOI: 10.1002/cbin.12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Atherosclerosis is driven by the expansion of cholesterol-loaded foamy macrophages in the arterial intima. Single-cell RNA sequencing has recently revealed the transcriptional landscape of macrophages in these atherosclerotic plaques and uncovered a population of foamy cell-like myeloid cells expressing triggering receptor expressed on myeloid cells-2 (TREM2)-TREM2hi macrophages. Fundamental research has brought essential insight into the significance of TREM2 for foam macrophage survival and atherosclerosis progression, making TREM2 as a therapeutic target in atherosclerosis possible. This review retraces TREM2's winding route from pure knowledge to therapeutic interventions, as well as the potential feasibility of its clinical application for atherosclerosis.
Collapse
Affiliation(s)
- Siting Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Bo Yang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wenhua Yu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yun Gao
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Honghua Cai
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
50
|
Hassan EA, Abdelnaser A, Ibrahim S, Yousef EH, Mosallam AM, Zayed SE. 5H Pyrolo(3,4-b)Pyrazin-5,7-(6H)-dione 6-(N-Chitosanimide nanoparticle) composite nano silver and encapsulation in γ-cyclodextrin: Synthesis, molecular docking, and biological evaluation for thyroid cancer treatment. Int J Biol Macromol 2025; 304:140859. [PMID: 39947539 DOI: 10.1016/j.ijbiomac.2025.140859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/14/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Thyroid cancer is rapidly increasing worldwide, with some patients facing poor prognosis and recurrence despite current treatments. Chitosan-based nanoparticles have exhibited exciting antitumor efficacy both in vitro and in vivo, which indicates that there is vast scope of clinical application. This study develops a anhydride-modified chitosan and anhydride-modified chitosan‑silver nanoparticles, encapsulated in γ-cyclodextrin to help drug delivery by safe way and enhance thyroid cancer therapy. METHODS 5H pyrolo(3,4-b)pyrazin-5,7-(6H)-dione-6-(N-chitosanimide nanoparticle(composite constructed with nano silver (B1) was prepared and the optimized formula was further investigated regarding FT-IR, X-RD, SEM and TEM. Furthermore, it was encapsulated in γ-CD, and an in vivo study was conducted to investigate its anticancer activity. The binding affinities of 2,3-Pyrazinedicarboxylic anhydride to inhibitor of kappa B kinase beta (IKK-β) was demonstrated by molecular docking. RESULTS SEM and TEM revealed that Ag NPs were mostly uniformly incorporated into the 5H pyrolo(3,4-b)pyrazin-5,7-(6H)-dione 6-(N-chitosanimide nanoparticle, while FT-IR and X-RD findings verified the formation of 5H pyrolo(3,4-b)pyrazin-5,7-(6H)-dione-6-(N-chitosanimide nanoparticle)/composite constructed with nano silver and encapsulated in γ-CD (B2). γ-CD encapsulation induced a significant enhancement in pyrazine thyroid antitumor activity in xenografic model. CONCLUSION B2 could be considered a promising formula for suppression of thyroid cancer by modulating NF-κB signaling pathway, and hence, future studies could be planned to transfer our formula to the clinical field.
Collapse
Affiliation(s)
- Entesar A Hassan
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Amira Abdelnaser
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Samar Ibrahim
- Department of Clinical Pharmacy & Pharmacy Practice, Faculty of Pharmacy, Galala University, Ataka, Egypt
| | - Eman H Yousef
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt.
| | - Ahmed M Mosallam
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Salem E Zayed
- Department of Chemistry, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|