1
|
Das J, Pal S, Negi A, Sundharam SS, Yadav A, Subramanian S, Sinha SK, Samanta J, Krishnamurthi S. Genomic insights into novel predatory myxobacteria isolated from human feces. Microbiol Spectr 2025:e0214724. [PMID: 40401933 DOI: 10.1128/spectrum.02147-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/19/2025] [Indexed: 05/23/2025] Open
Abstract
Myxobacteria are Gram-negative, spore-forming predatory bacteria isolated from diverse environmental samples that feed on other microbes for their survival and growth. However, no reports of cultured representatives from the human gut have been published to date, although previous investigations have revealed the presence of myxobacterial operational taxonomic units (OTUs) in skin and fecal samples. In this study, three myxobacterial strains designated as O35, O15, and Y35 were isolated and purified from fecal samples of two inflammatory bowel disease (IBD) patients. The 16S rRNA gene sequence analysis and phylogeny identified the strains as Myxococcus spp. belonging to two different clades. Genome-based phylogeny and overall genome-related indices, i.e., average amino acid identity and percentage of conserved proteins, confirmed the heterogeneity within the genus and placed the three strains within two different clades separated at the level of different genera. Digital DNA-DNA hybridization and average nucleotide identity values indicated that they belonged to two novel Myxococcus spp. The analysis of meta-barcoding data from IBD and control cohorts detected OTU lineages closely affiliated to the three novel strains. Based on evidence from detailed structural and functional genomics, we propose the novel species Myxococcus faecalis sp. nov. O35T and a new genus Pseudomyxococcus gen. nov. to accommodate the novel species Pseudomyxococcus flavus sp. nov. Y35T. Overall, these findings provide new information about the occurrence of myxobacteria in the human gut and lay the foundations for a new classification scheme for myxobacterial taxa.IMPORTANCEMyxobacteria have been described from a variety of niches ranging from terrestrial to marine habitats and are known to harbor a diverse portfolio of bioactive molecules. However, to date, there has been no report of isolating culturable representatives from the human gut. This study describes novel myxobacteria from the human gut based on phylogenomics and phenotypic description. The findings are complemented by sequence-based data, wherein operational taxonomic unit (OTU) lineages closely affiliated with the isolated strains have been identified, thus opening a Pandora's box of opportunities for research into the microbial ecology and functional potential of these taxa in the gut ecosystem. Additionally, the study also seeks to establish a new systematic framework, expanding our understanding of myxobacterial taxonomy.
Collapse
Affiliation(s)
- Joyasree Das
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shilpee Pal
- Bioinformatics Centre (BIC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Anu Negi
- Bioinformatics Centre (BIC), CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shiva S Sundharam
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - Amit Yadav
- Bioinformatics Centre (BIC), CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - Srikrishna Subramanian
- Bioinformatics Centre (BIC), CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| | - S K Sinha
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Jayanta Samanta
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection & Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, India
| |
Collapse
|
2
|
Throat S, Bhattacharya S. The Role of RS Type 2 (High-Amylose Maize Starch) in the Inhibition of Colon Cancer: A Comprehensive Review of Short-Chain Fatty Acid (SCFA) Production and Anticancer Mechanisms. Mol Nutr Food Res 2025:e70107. [PMID: 40392033 DOI: 10.1002/mnfr.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/30/2025] [Accepted: 04/29/2025] [Indexed: 05/22/2025]
Abstract
Dietary fiber, especially resistant starch (RS) Type 2 (RS2) found in high-amylose maize starch (HAMS), is vital for gut health and helps prevent colon cancer. In contrast to most nutrients, dietary fiber is not degraded by the intestinal enzymes; it reaches the distal parts of the gut, where it is fermented by the gut microbiota into short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate. SCFAs energize colonocytes, reduce inflammation, and enhance gut immunity. HAMS is absorbed in the colon, where it ferments to create SCFAs that feed good gut flora and have antiinflammatory and antiproliferative effects. RS2 in HAMS modulates gene signaling, activates tumor-suppressor genes like tumor suppressor protein (p53), exhibits antidiabetic, cholesterol-lowering, and antiinflammatory effects. Incorporation of RS2-rich sources enhances gut barriers, decreases colorectal cancer biomarkers, and counteracts the negative impacts of low-fiber Western diets, making HAMS a promising functional food for chronic disease prevention and health promotion.
Collapse
Affiliation(s)
- Siddhi Throat
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| |
Collapse
|
3
|
Wang RX, Zhou HB, Gao JX, Li XH, Bai WF, Wang J, Bai YC, Fan LY, Chang H, Shi SL. Perturbed gut microbiota and serum metabolites are associated with progressive renal fibrosis. Front Med (Lausanne) 2025; 12:1489100. [PMID: 40357302 PMCID: PMC12068064 DOI: 10.3389/fmed.2025.1489100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 03/27/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction The intricate pathogenesis of renal fibrosis necessitates identifying biomarkers at various stages to facilitate targeted therapeutic interventions, which would enhance patient survival rates and significantly improve prognosis. Methods We investigated the changes in gut microbiota and serum metabolites during the early, middle, and late stages of renal fibrosis in rats using 16S rDNA sequencing and UPLC-QTOF/MS-based metabolomics. Results We identified 5, 21, and 14 potential gut microbial markers and 19, 23, and 31 potential metabolic markers in the MOD1, MOD2, and MOD4 groups, respectively. Bifidobacterium was identified as a shared microbial marker between the MOD1 and MOD2 groups; Prevotellaceae_NK3B31_group and Bacteroides were identified as shared microbial markers between the MOD2 and MOD4 groups. The pathways of arachidonic acid metabolism and retinol metabolism were found to play a significant role in the modulation of renal fibrosis at 1, 2, and 4 weeks. Notably, the metabolic biomarkers 8,9-EET and 5(S)-HPETE within these pathways emerged as critical determinants influencing renal fibrosis. Discussion Our findings demonstrated that the severity of renal fibrosis is associated with dysbiosis of the gut microbiota and alterations in serum metabolites.
Collapse
Affiliation(s)
- Run-Xi Wang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hong-Bing Zhou
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jia-Xing Gao
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Xing-Hua Li
- Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Wan-Fu Bai
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Jia Wang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Ying-Chun Bai
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Li-Ya Fan
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Song-Li Shi
- Department of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- Institute of Bioactive Substance and Function of Chinese Materia Medica and Mongolian Medicine, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| |
Collapse
|
4
|
Zhou R, Liu T, Qin Y, Xie J, Zhang S, Xie Y, Lao J, He W, Zeng H, Tang X, Tian X, Qin Y. Polygonatum cyrtonema Hua polysaccharides alleviate muscle atrophy and fat lipolysis by regulating the gut microenvironment in chemotherapy-induced cachexia. Front Pharmacol 2025; 16:1503785. [PMID: 40129936 PMCID: PMC11931129 DOI: 10.3389/fphar.2025.1503785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction: Polygonatum cyrtonema Hua (PC) is an essential herbal medicine in China, known for improving muscle quality and enhancing physical function; its active ingredients are polysaccharides (PCPs). A previous study revealed the anti-atrophy effects of PCPs in cachectic mice. However, whether the effects of PCPs on anti-atrophy are associated with gut microenvironment remain elusive. This research endeavored to assess the medicinal efficacy of PCPs in alleviating muscle atrophy and fat lipolysis and explore the potential mechanisms. Methods: A cancer cachexia model was induced by male C57BL/6 mice bearing Lewis lung tumor cells and chemotherapy. The pharmacodynamics of PCPs (32 and 64 mg/kg/day) was investigated through measurements of tumor-free body weight, gastrocnemius muscle weight, soleus muscle weight, epididymal fat weight, tissue histology analysis, and pro-inflammatory cytokines. Immunohistochemistry and Western blotting assays were further used to confirm the effects of PCPs. 16S rRNA sequencing, LC-MS and GC-MS-based metabolomics were used to analyze the gut microbiota composition and metabolite alterations. Additionally, the agonist of free fatty acid receptor 2 (FFAR2)-a crucial short-chain fatty acid (SCFA) signaling molecule-was used to investigate the role of gut microbiota metabolites, specifically SCFAs, in the treatment of cancer cachexia, with comparisons to PCPs. Results: This study demonstrated that PCPs significantly mitigated body weight loss, restored muscle fiber atrophy and mitochondrial disorder, alleviated adipose tissue wasting, strengthened the intestinal barrier integrity, and decreased the intestinal inflammation in chemotherapy-induced cachexia. Furthermore, the reversal of specific bacterial taxa including Klebsiella, Akkermansia, norank_f__Desulfovibrionaceae, Enterococcus, NK4A214_group, Eubacterium_fissicatena_group, Eubacterium_nodatum_group, Erysipelatoclostridium, Lactobacillus, Monoglobus, Ruminococcus, Odoribacter, and Enterorhabdus, along with alterations in metabolites such as amino acids (AAs), eicosanoids, lactic acid and (SCFAs), contributed to the therapeutic effects of PCPs. Conclusion: Our findings suggest that PCPs can be used as prebiotic drugs targeting the microbiome-metabolomics axis in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng, China
| | - Tingting Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - You Qin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yi Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jia Lao
- The ResGreen Group, Changsha, China
| | - Wei He
- The ResGreen Group, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xueyang Tang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
| | - Yuhui Qin
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
5
|
Liu C, Cheng J, Xie Y, Ouyang K, Qu M, Pan K, Qiu Q. Dynamic Changes in Rumen Microbial Diversity and Community Composition Within Rumen Fluid in Response to Various Storage Temperatures and Preservation Times. Vet Sci 2025; 12:234. [PMID: 40266907 PMCID: PMC11946841 DOI: 10.3390/vetsci12030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 04/25/2025] Open
Abstract
The aim of this study was to investigate the effects of storage temperature and preservation time on the microbial diversity and community composition of rumen fluid. Rumen fluid samples were collected from six Hu sheep fed on a high-forage diet and stored at -80 °C and -20 °C for intervals of 0, 7, 14, 30, 60, 120, and 240 days. DNA was extracted at each time point for 16S rRNA gene sequencing to evaluate the rumen microbial diversity and community composition. The results showed that storage temperature affected only the relative abundance of Proteobacteria, with no substantial impact on alpha-diversity or other microbial groups (p > 0.05), and no significant interaction effects were observed between storage temperature and preservation time (p > 0.05). Alpha-diversity indices such as Chao1, observed species, and PD whole tree showed dynamic changes after 7 days of storage, while the relative abundances of Verrucomicrobiota and Christensenellaceae R-7 group, as well as the energy metabolism metabolic pathway, exhibited significant alterations after 14 days of storage (p < 0.05). Notably, Patescibacteria, Rikenellaceae RC9 gut group, and Veillonellaceae UCG-001 abundances demonstrated significant changes after 240 days of storage (p < 0.05). Both principal coordinates analysis (PCoA) and non-metric multidimensional scaling (NMDS) showed distinct overlaps. This study suggests that storing rumen fluid at -80 °C and -20 °C does not influence rumen microbial diversity and community composition, whereas the storage time significantly impacts these factors, with most differences emerging after 14 days of preservation. Consequently, it is advised that the analysis of microbial diversity and community composition in rumen fluid samples be conducted within 14 days post-collection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qinghua Qiu
- Jiangxi Province Key Laboratory of Animal Nutrition and Feed, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
6
|
Gupta VK, Janda GS, Pump HK, Lele N, Cruz I, Cohen I, Ruff WE, Hafler DA, Sung J, Longbrake EE. Alterations in Gut Microbiome-Host Relationships After Immune Perturbation in Patients With Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200355. [PMID: 39819054 PMCID: PMC11741292 DOI: 10.1212/nxi.0000000000200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND AND OBJECTIVES Gut microbial symbionts have been shown to influence the development of autoimmunity in multiple sclerosis (MS). Emerging research points to an important relationship between the microbial-IgA interface and MS pathophysiology. IgA-secreting B cells are observed in the MS brain, and shifts in gut bacteria-IgA binding have been described in some patients with MS. However, the relationships between the gut microbiome and the host immune response, particularly regarding B-cell-depleting immunomodulation, remain underexplored. This study aimed to evaluate the composition of the gut microbiome in patients with newly diagnosed MS at baseline and after B-cell depletion, using long-read sequencing for enhanced taxonomic resolution. We further aimed to investigate the host/microbiome interface by evaluating microbe/immunoglobulin A relationships. METHODS We collected stool samples from 43 patients with newly diagnosed, untreated MS and 42 matched healthy controls. Nineteen patients with MS initiated anti-CD20 monoclonal antibody treatment and donated additional stool samples after 6 months of treatment. We evaluated the host-microbial interface using bacterial flow cytometry and long-read 16S rRNA gene amplicon sequencing. We used Immune Coating Scores to compare the proportions of bacteria identified in the IgA-coated vs IgA-uncoated bacterial fractions. RESULTS Patients with untreated, newly diagnosed MS showed significant reductions in IgA-bound fecal microbiota compared with controls. Using multiple linear regression models adjusted for potential confounders, we observed significant (p < 0.05) changes in the abundance and prevalence of various strain-level gut bacteria amplicon sequence variants (ASVs) within both total and IgA-coated bacterial fractions. Some changes (e.g., decreased relative abundance of a Faecalibacterium prausnitzii variant in MS) were consistent with previous reports, while others (e.g., increased relative abundance and prevalence of Monoglobus pectinyliticus in MS) were novel. Immune Coating Scores identified subsets of organisms for which normal IgA-coating patterns were disrupted at the onset of MS, as well as those (particularly Akkermansia muciniphila) whose IgA-coating became more aligned with controls after therapy. DISCUSSION This analysis of gut microbial ASVs reveals shifts in taxonomic strains induced by immune modulation in MS.
Collapse
Affiliation(s)
- Vinod K Gupta
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Guneet S Janda
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Heather K Pump
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN
| | - Nikhil Lele
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Isabella Cruz
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - Inessa Cohen
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - William E Ruff
- Yale School of Medicine Department of Neurology, New Haven, CT
| | - David A Hafler
- Yale School of Medicine Department of Neurology, New Haven, CT
- Yale School of Medicine Department of Immunobiology, New Haven, CT
| | - Jaeyun Sung
- Microbiomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic; and
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
7
|
Sun X, Gong Y, Xie T, Fu Z, Lu D, Wei B, Cai Y, Yao W, Shen J. Nanoscale Liposomes Co-Loaded with Irinotecan Hydrochloride and Thalidomide for Colorectal Cancer Synergistic Therapy. Macromol Biosci 2025; 25:e2400478. [PMID: 39704649 DOI: 10.1002/mabi.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Irinotecan hydrochloride (CPT-11) is one of the first-line drugs used in the clinical treatment of colorectal cancer (CRC). However, the concomitant adverse effect of delayed diarrhea has hindered its clinical use. CPT-11 combined with Thalidomide (THA) therapy is considered a palliative strategy. To optimize the synergistic treatment of CPT-11 and THA, co-loaded liposomes are constructed using cholesterol, lecithin, and 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly(ethylene glycol) (DSPE-PEG) as the "immune and gut microbiota regulator." The co-loaded liposomes, which possess good stability, are prepared by the solvent injection method. After the treatment with the co-loaded liposomes, tumor growth in CRC-bearing mice is significantly inhibited. In particular, the co-loaded liposomes demonstrate favorable diarrhea-relieving effects through the modulation of inflammatory cytokines and gut microbiota. These findings suggest that the co-loaded liposomes have great potential as a combined drug-delivery platform for CRC therapy.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zixi Fu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongze Lu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
8
|
Voigt RM, Engen PA, Villanueva M, Bambi SA, Green SJ, Naqib A, Raeisi S, Shaikh M, Hamaker BR, Cantu-Jungles TM, Pridgen SA, Held P, Keshavarzian A. Prebiotics as an adjunct therapy for posttraumatic stress disorder: a pilot randomized controlled trial. Front Neurosci 2025; 18:1477519. [PMID: 39840022 PMCID: PMC11747240 DOI: 10.3389/fnins.2024.1477519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a debilitating disorder characterized by intrusive memories, avoidance, negative thoughts and moods, and heightened arousal. Many patients also report gastrointestinal symptoms. Cognitive behavioral therapy (CBT) is an evidence-based treatment approach for PTSD that successfully reduces symptoms. However, many patients still meet criteria for PTSD after treatment or continue to have symptoms indicating the need for new treatment strategies for PTSD. Patients with PTSD have a disrupted intestinal microbiome (i.e., dysbiosis) which can promote neuroinflammation; thus, modulation of the microbiome could be an alternative or adjunct treatment approach for PTSD. Methods The current study was a 12-week, double-blind, placebo-controlled trial seeking to understand if CBT combined with a microbiota-modifying, prebiotic fiber intervention would beneficially impact clinical outcomes in veterans with PTSD (n = 70). This proof-of-concept, pilot trial was designed to assess: (1) the relationship between severity of PTSD symptoms and microbiota composition and SCFA levels (i.e., acetate, propionate, butyrate), (2) if CBT treatment with a concomitant prebiotic fiber intervention would beneficially impact clinical outcomes in veterans with PTSD, (3) evaluate the feasibility and acceptability of a prebiotic intervention as an adjunct treatment to CBT, and (4) assess the impact of treatment on the intestinal microbiota and stool SCFA (i.e., mechanism). Results This study found that PTSD severity may be associated with reduced abundance of taxa capable of producing the SCFA propionate, and that a subset of individuals with PTSD may benefit from a microbiota-modifying prebiotic intervention. Conclusion This study suggests that targeting the intestinal microbiome through prebiotic supplementation could represent a promising avenue for enhancing treatment outcomes in some individuals with PTSD. Clinical trial registration https://clinicaltrials.gov/, identifier NCT05424146.
Collapse
Affiliation(s)
- Robin M. Voigt
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Michelle Villanueva
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Simona A. Bambi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Stefan J. Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Shohreh Raeisi
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Bruce R. Hamaker
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Thaisa M. Cantu-Jungles
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Sarah A. Pridgen
- Department of Psychiatry and Behavioral Science, Rush University Medical Center, Chicago, IL, United States
| | - Philip Held
- Department of Psychiatry and Behavioral Science, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
9
|
Wu J, Shen S, Cheng H, Pan H, Ye X, Chen S, Chen J. RG-I pectic polysaccharides and hesperidin synergistically modulate gut microbiota: An in vitro study targeting the proportional relationship. Food Chem 2025; 462:141010. [PMID: 39217745 DOI: 10.1016/j.foodchem.2024.141010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, we investigated how different proportions blends of Rhamnogalacturonan-I pectic polysaccharides and hesperidin impact the gut microbiota and metabolites using an in vitro simulated digestion and fermentation model. The results indicated that both of them could modulate the gut microbiota and produce beneficial metabolites. However, their blends in particular proportions (such as 1:1) exhibited remarkable synergistic effects on modulating the intestinal microenvironment, surpassing the effects observed with individual components. Specifically, these blends could benefit the host by increasing short-chain fatty acids production (such as acetate), improving hesperidin bioavailability, producing more metabolites (such as hesperetin, phenolic acids), and promoting the growth of beneficial bacteria. This synergistic and additive effect was inseparable from the role of gut microbiota. Certain beneficial bacteria, such as Blautia, Faecalibacterium, and Prevotella, exhibited strong preferences for those blends, thereby contributing to host health through participating in carbohydrate and flavonoid metabolism.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China; College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Tan F, Liu M, Tie H, Liu B, Zeng X, Dai Z. The effect of Mesona blume straw fermented by Ganoderma lucidum to improve physicochemical, in vitro digestion and gut bacteria of noodles. Food Res Int 2024; 197:115217. [PMID: 39593302 DOI: 10.1016/j.foodres.2024.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/08/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Mesona blume straw (MBS) is a class of high-fiber, low-value Mesona blume's colloid by-products. We investigated the changes in dietary fiber (DF), triterpenoid, and polysaccharide contents of fermented Mesona blume straw (FMBS) by Ganoderma lucidum (GL), we also examined the effect of adding FMBS at different levels (0 %, 5 %, 10 %, and 15 %) on cooking quality, texture, in vitro starch digestibility and in vitro fermentation broth properties and gut bacteria of noodles. The results showed that after fermentation, soluble dietary fiber (SDF) increased by 16.3 % and insoluble dietary fiber (IDF) decreased by 25.67 % in MBS. Adding FMBS at 5 % and 10 % significantly enhanced the cooking quality and texture of noodles while preserving the gluten structure. FMBS limited noodles starch hydrolysis with 24.17 % increase of resistant starch (RS) and 13.6 decrease of predicted glycemic index (pGI). After in vitro fermentation of FMBS noodles, the short-chain fatty acids (SCFAs) levels and relative abundance of probiotics increased. In this study, it was found that the modification of MBS and improvement of noodle quality was significant.
Collapse
Affiliation(s)
- Fuyao Tan
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, 550000, China; Institute of Edible Mushroom, Guizhou University, Guiyang 550025, China
| | - Mingzhu Liu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, 550000, China; Institute of Edible Mushroom, Guizhou University, Guiyang 550025, China
| | - Huaimao Tie
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, 550000, China
| | - Bingji Liu
- Guangxi Lingshan Yufeng Health Foods Co., Ltd., Qinzhou 535000, China
| | - Xuefeng Zeng
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Guizhou Provincial Key Laboratory of Agricultural and Animal Products Storage and Processing, Guiyang, 550000, China; Institute of Edible Mushroom, Guizhou University, Guiyang 550025, China.
| | - Ziru Dai
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou 535011, China; Qinzhou Key Laboratory of Food Flavor Analysis and Control, Beibu Gulf University, Qinzhou 535011, China.
| |
Collapse
|
11
|
Patloka O, Komprda T, Franke G. Review of the Relationships Between Human Gut Microbiome, Diet, and Obesity. Nutrients 2024; 16:3996. [PMID: 39683390 DOI: 10.3390/nu16233996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is a complex disease that increases the risk of other pathologies. Its prevention and long-term weight loss maintenance are problematic. Gut microbiome is considered a potential obesity modulator. The objective of the present study was to summarize recent findings regarding the relationships between obesity, gut microbiota, and diet (vegetable/animal proteins, high-fat diets, restriction of carbohydrates), with an emphasis on dietary fiber and resistant starch. The composition of the human gut microbiome and the methods of its quantification are described. Products of the gut microbiome metabolism, such as short-chain fatty acids and secondary bile acids, and their effects on the gut microbiota, intestinal barrier function and immune homeostasis are discussed in the context of obesity. The importance of dietary fiber and resistant starch is emphasized as far as effects of the host diet on the composition and function of the gut microbiome are concerned. The complex relationships between human gut microbiome and obesity are finally summarized.
Collapse
Affiliation(s)
- Ondřej Patloka
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Tomáš Komprda
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Gabriela Franke
- Department of Food Technology, Mendel University in Brno, 61300 Brno, Czech Republic
| |
Collapse
|
12
|
Machado DT, Dias BDC, Cayô R, Gales AC, Marques de Carvalho F, Vasconcelos ATR. Uncovering new Firmicutes species in vertebrate hosts through metagenome-assembled genomes with potential for sporulation. Microbiol Spectr 2024; 12:e0211324. [PMID: 39283121 PMCID: PMC11536998 DOI: 10.1128/spectrum.02113-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 11/07/2024] Open
Abstract
Metagenome-assembled genomes (MAGs) have contributed to identifying non-culturable microorganisms and understanding their ecological functions. MAGs offer an advantage in investigating sporulation-associated genes, especially given the difficulty of isolating many species residing in the gut microbiota of multiple hosts. Bacterial sporulation is a key survival mechanism with implications for pathogenicity and biotechnology. Here, we investigate MAGs from vertebrate hosts, emphasizing taxonomic identification and identifying sporulation-associated genes in potential novel species within the Firmicutes phylum. We identified potential new species in the classes Clostridia (Borkfalkiaceae, Lachnospiraceae, Monoglobaceae, and Oscillospiraceae families) and Bacilli (Bacillaceae and Erysipelotrichaceae families) through phylogenetic and functional pathway analyses, highlighting their sporulation potential. Our study covers 146 MAGs, 124 of them without refined taxonomic assignments at the family level. We found that Clostridia and Bacilli have unique sporulation gene profiles in the refined family MAGs for cattle, swine, poultry, and human hosts. The presence of genes related to Spo0A regulon, engulfment, and spore cortex in MAGs underscores fundamental mechanisms in sporulation processes in currently uncharacterized species with sporulation potential from metagenomic dark matter. Furthermore, genomic analyses predict sporulation potential based on gene presence, genome size, and metabolic pathways involved in spore formation. We emphasize MAGs covering families not yet characterized through the phylogenetic analysis, and with extensive potential for spore-forming bacteria within Clostridia, Bacilli, UBA4882, and UBA994 classes. These findings contribute to exploring spore-forming bacteria, which provides evidence for novel species diversity in multiple hosts, their adaptive strategies, and potential applications in biotechnology and host health.IMPORTANCESpores are essential for bacterial survival in harsh environments, facilitating their persistence and adaptation. Exploring sporulation-associated genes in metagenome-assembled genomes (MAGs) from different hosts contributes to clinical and biotechnological domains. Our study investigated the extent of genes associated with bacterial sporulation in MAGs from poultry, swine, cattle, and humans, revealing these genes in uncultivated bacteria. We identified potential novel Firmicutes species with sporulation capabilities through phylogenetic and functional analyses. Notably, MAGs belonging to Clostridia, Bacilli, and unknown classes, namely UBA4882 and UBA994, remained uncharacterized at the family level, which raises the hypothesis that sporulation would also be present in these genomes. These findings contribute to our understanding of microbial adaptation and have implications for microbial ecology, underlining the importance of sporulation in Firmicutes across different hosts. Further studies into novel species and their sporulation capability can contribute to bacterial maintenance mechanisms in various organisms and their applications in biotechnology studies.
Collapse
Affiliation(s)
- Douglas Terra Machado
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Beatriz do Carmo Dias
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Rodrigo Cayô
- Laboratory of Environmental Antimicrobial Resistance (LEARN), Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Unidade José Alencar, Centro, Diadema, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Division of Infectious Diseases, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Quitandinha, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Li H, Pan C, Wang F, Li Z, Shahzad K, Huang Y, Zhao W. Multi-omics reveals the effects of dietary supplementation with Bupleuri radix branch powder on gut microbiota and lipid metabolism: insights into gut microbial-muscle interactions. Microbiol Spectr 2024; 12:e0145724. [PMID: 39436132 PMCID: PMC11619355 DOI: 10.1128/spectrum.01457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/23/2024] Open
Abstract
Improving livestock growth and raising the quality of livestock products have attracted much attention owing to the market's growing need for livestock products. Bupleuri Radix branches powder (BR) has a variety of health characteristics, but its effects on ruminant growth and animal product quality are still uncertain. This study explored the effects of BR on growth performance, health status, gut microbiota, and muscle lipid metabolism of Shaanxi fine-wool sheep (SFS), and examined the interaction between gut microbiota and lipid metabolism through correlation analysis. The results indicated that BR can regulate the immune function, intestinal VFAs, and enzyme activity of FSF by improving the gut microbiota, thereby affecting its muscle lipid metabolism. The lipid metabolite TG showed a strong positive correlation with the gut microbes Bacteroides and Fibrobacter, while Phosphatidylethanolamine and Phosphatidyl serine (PE and PS) showed a significant negative correlation with Fibrobacter. The above results indicate that gut microbiota and lipid metabolites interact with each other. BR has the effects of promoting SFS growth, improving body health, and improving meat quality. These findings offer new insights into improve animal growth performance and livestock product quality in modern farming. IMPORTANCE Enhancing livestock growth performance and improving meat quality are important guidelines for the development of the current animal husbandry industry; thus, we explored a comprehensive study of Bupleuri Radix (BR) on growth performance, gut microbiology, and muscle lipid metabolism in Shaanxi fine-wool sheep (SFS). Our research has found that BR could improve the growth performance of SFS and meat quality by affecting gut microbes. This study provides new solutions to improve the economic efficiency of animal husbandry.
Collapse
Affiliation(s)
- Haiyan Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Cheng Pan
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fuqiang Wang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Zengkai Li
- Shenmu Livestock Development Center, Yulin, China
| | - Khuram Shahzad
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Wangsheng Zhao
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
14
|
Marangelo C, Vernocchi P, Del Chierico F, Scanu M, Marsiglia R, Petrolo E, Fucà E, Guerrera S, Valeri G, Vicari S, Putignani L. Stratification of Gut Microbiota Profiling Based on Autism Neuropsychological Assessments. Microorganisms 2024; 12:2041. [PMID: 39458350 PMCID: PMC11510388 DOI: 10.3390/microorganisms12102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Investigations of gut microbiota (GM) play an important role in deciphering disease severity and symptoms. Overall, we stratified 70 ASD patients by neuropsychological assessment, based on Calibrated Severity Scores (CSSs) of the Autism Diagnostic Observation Schedule-Second edition (ADOS-2), Child Behavior Checklist (CBCL) and intelligent quotient/developmental quotient (IQ/DQ) parameters. Hence, metataxonomy and PICRUSt-based KEGG predictions of fecal GM were assessed for each clinical subset. Here, 60% of ASD patients showed mild to moderate autism, while the remaining 40% showed severe symptoms; 23% showed no clinical symptoms, 21% had a risk of behavior problems and 56% had clinical symptoms based on the CBCL, which assesses internalizing problems; further, 52% had no clinical symptoms, 21% showed risk, and 26% had clinical symptoms classified by CBCL externalizing problems. Considering the total CBCL index, 34% showed no clinical symptoms, 13% showed risk, and 52% had clinical symptoms. Here, 70% of ASD patients showed cognitive impairment/developmental delay (CI/DD). The GM of ASDs with severe autism was characterized by an increase in Veillonella, a decrease in Monoglobus pectinilyticus and a higher microbial dysbiosis index (MDI) when compared to mild-moderate ASDs. Patients at risk for behavior problems and showing clinical symptoms were characterized by a GM with an increase of Clostridium, Eggerthella, Blautia, Intestinibacter, Coprococcus, Ruminococcus, Onthenecus and Bariatricus, respectively. Peptidoglycan biosynthesis and biofilm formation KEGGs characterized patients with clinical symptoms, while potential microbiota-activated PPAR-γ-signaling was seen in CI/DD patients. This evidence derived from GM profiling may be used to further improve ASD understanding, leasing to a better comprehension of the neurological phenotype.
Collapse
Affiliation(s)
- Chiara Marangelo
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Pamela Vernocchi
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Federica Del Chierico
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Matteo Scanu
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Riccardo Marsiglia
- Research Unit of Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (C.M.); (P.V.); (F.D.C.); (M.S.); (R.M.)
| | - Emanuela Petrolo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Elisa Fucà
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Silvia Guerrera
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Giovanni Valeri
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (E.P.); (E.F.); (S.G.); (G.V.); or (S.V.)
- Life Sciences and Public Health Department, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiomics and Research Unit of Human Microbiome, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| |
Collapse
|
15
|
Grant ET, Parrish A, Boudaud M, Hunewald O, Hirayama A, Ollert M, Fukuda S, Desai MS. Dietary fibers boost gut microbiota-produced B vitamin pool and alter host immune landscape. MICROBIOME 2024; 12:179. [PMID: 39307855 PMCID: PMC11418204 DOI: 10.1186/s40168-024-01898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Dietary fibers can alter microbial metabolic output in support of healthy immune function; however, the impact of distinct fiber sources and immunomodulatory effects beyond short-chain fatty acid production are underexplored. In an effort to discern the effects of diverse fibers on host immunity, we employed five distinct rodent diets with varying fiber content and source in specific-pathogen-free, gnotobiotic (containing a 14-member synthetic human gut microbiota), and germ-free mice. RESULTS Broad-scale metabolomics analysis of cecal contents revealed that fiber deprivation consistently reduced the concentrations of microbiota-produced B vitamins. This phenomenon was not always explained by reduced biosynthesis, rather, metatranscriptomic analyses pointed toward increased microbial usage of certain B vitamins under fiber-free conditions, ultimately resulting in a net reduction of host-available B vitamins. Broad immunophenotyping indicated that the local gut effector immune populations and activated T cells accumulate in a microbiota-dependent manner. Supplementation with the prebiotic inulin recovered the availability of microbially produced B vitamins and restored immune homeostasis. CONCLUSIONS Our findings highlight the potential to use defined fiber polysaccharides to boost microbiota-derived B vitamin availability in an animal model and to regulate local innate and adaptive immune populations of the host. Video abstract.
Collapse
Affiliation(s)
- Erica T Grant
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Amy Parrish
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, 4365, Esch-Sur-Alzette, Luxembourg
| | - Marie Boudaud
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Yamagata, 997-0052, Japan
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kanagawa, 210-0821, Japan
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-Sur-Alzette, Luxembourg.
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, 5000, Odense, Denmark.
| |
Collapse
|
16
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Dang J, Cai T, Tuo Y, Peng S, Wang J, Gu A, Li J, Ding L, Du S, Wang L. Corn Peptides Alleviate Nonalcoholic Fatty Liver Fibrosis in Mice by Inhibiting NLRP3 Inflammasome Activation and Regulating Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19378-19394. [PMID: 39166383 DOI: 10.1021/acs.jafc.4c04232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
This study aimed to investigate the effects of corn gluten-derived soluble epoxide hydrolase (sEH) inhibitory peptides on nonalcoholic fatty liver fibrosis induced by a high-fat diet and carbon tetrachloride in mice. Mice treated with corn peptides at doses of 500 or 1000 mg/kg/d for 4 weeks exhibited reduced sEH activity in serum and liver, enhanced lipid metabolism, and decreased lipid accumulation and oxidative stress. Corn peptides effectively downregulated the mRNA levels of Pro-IL-1β, Pro-IL-18, NOD-like receptor protein 3 (NLRP3), ASC, Pro-caspase-1, Caspase-1, and GSDMD in the liver. This hepatoprotective effect of corn peptides by inhibiting NLRP3 inflammasome activation was further validated in H2O2-induced HepG2 cells. Moreover, corn peptides restored the composition of the gut microbiota and promoted short-chain fatty acid production. This study provides evidence that corn-derived sEH inhibitory peptides have hepatoprotective activity against nonalcoholic fatty liver fibrosis by suppressing NLRP3 inflammasome activation and modulating gut microbiota.
Collapse
Affiliation(s)
- Jiamin Dang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Yuanrong Tuo
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Siwang Peng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Aiying Gu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Jialu Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Long Ding
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Shuangkui Du
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang, Shaanxi Province 712100, People's Republic of China
| | - Liying Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, Shaanxi Province 712100, People's Republic of China
- Engineering Research Center of Grain and Oil Functionalized Processing, Universities of Shaanxi Province, Xianyang, Shaanxi Province 712100, People's Republic of China
| |
Collapse
|
18
|
Zhang Z, Zhang X, Zhang T, Li J, Renqing C, Baijiu Z, Baima S, Zhaxi W, Nima Y, Zhao W, Song T. Differential gene expression and gut microbiota composition in low-altitude and high-altitude goats. Genomics 2024; 116:110890. [PMID: 38909906 DOI: 10.1016/j.ygeno.2024.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/25/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Previous studies have presented evidence suggesting that altitude exerts detrimental effects on reproductive processes, yet the underlying mechanism remains elusive. Our study employed two distinct goat breeds inhabiting low and high altitudes, and conducted a comparative analysis of mRNA profiles in testis tissues and the composition of gut microbiota. The results revealed a reduced testis size in high-altitude goats. RNA-seq analysis identified the presence of 214 differentially expressed genes (DEGs) in the testis. These DEGs resulted in a weakened immunosuppressive effect, ultimately impairing spermatogenesis in high-altitude goats. Additionally, 16S rDNA amplicon sequencing recognized statistically significant variations in the abundance of the genera Treponema, unidentified_Oscillospiraceae, Desulfovibrio, Butyricicoccus, Dorea, Parabacteroides between the two groups. The collective evidence demonstrated the gut and testis played a synergistic role in causing decreased fertility at high altitudes. Our research provides a theoretical basis for future investigations into the reproductive fitness of male goats.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Xin Zhang
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Tingting Zhang
- Key Discipline Laboratory of National Defense for Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Jingjing Li
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China
| | - Cuomu Renqing
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China; Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang 850009, China
| | - Zhaxi Baijiu
- Cultural Service Center of Maqian Township, Baingoin County, Nagqu, Xizang 852599, China
| | - Sangzhu Baima
- The Service Station of Agricultural and Animal, Husbandry Technical of Baingoin County, Nagqu, Xizang 852599, China
| | - Wangjie Zhaxi
- The Service Station of Agricultural and Animal, Husbandry Technical of Baingoin County, Nagqu, Xizang 852599, China
| | - Yuzhen Nima
- The Service Station of Agricultural and Animal, Husbandry Technical of Baingoin County, Nagqu, Xizang 852599, China
| | - Wangsheng Zhao
- College of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621000, China.
| | - Tianzeng Song
- Institute of Animal Science, Xizang Academy of Agricultural and Animal Husbandry Science, Lhasa, Xizang 850009, China; Key Laboratory of Animal Genetics and Breeding on Xizang Plateau, Ministry of Agriculture and Rural Affairs, Lhasa, Xizang 850009, China.
| |
Collapse
|
19
|
Vega-Abellaneda S, Dopazo C, Yañez F, Soler Z, Xie Z, Canalda-Baltrons A, Pons-Tarín M, Bilbao I, Manichanh C. Microbiome composition recovery after liver transplantation correlates with initial liver disease severity and antibiotics treatment. Am J Transplant 2024; 24:1623-1633. [PMID: 38556088 DOI: 10.1016/j.ajt.2024.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Liver transplantation (LT) is crucial for end-stage liver disease, but it is linked to infection risks. Pathobionts, microorganisms potentially harmful under specific conditions, can cause complications posttransplant. Monitoring such pathogens in fecal samples can be challenging and therefore remains underexplored post-LT. This study aimed to analyze the gut microbiome before and after LT, tracking pathobionts and correlating clinical data. The study involved 17 liver transplant recipients, 17 healthy relatives (spouses), and 13 donors. Gut samples collected pretranplantation and posttransplantation underwent bacterial and fungal profiling through DNA sequencing. Quantitative polymerase chain reaction was used to assess microbial load. Statistical analyses included alpha and beta diversity measures, differential abundance analysis, and correlation tests between microbiome and clinical parameters. Microbiome analysis revealed dynamic changes in diversity posttransplant. Notably, high-severity patients showed persistent and greater dysbiosis during the first months post-LT compared with low-severity patients, partly due to an antibiotic treatment pre-LT. The analysis identified a higher proportion of pathogens such as Escherichia coli/Shigella flexneri in high-severity cases posttransplant. Furthermore, butyrate producers including Roseburia intestinalis, Anaerostipes hadrus, and Eubacterium coprostanoligenes were positively correlated with levels of albumin. This study offers valuable insights into post-LT microbiome changes, shedding light on the need for tailored prophylactic treatment post-LT.
Collapse
Affiliation(s)
- Sara Vega-Abellaneda
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Cristina Dopazo
- Department of HPB Surgery and Transplants, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autónoma de Barcelona, Barcelona, Spain; CIBER of Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisca Yañez
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Zaida Soler
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Zixuan Xie
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aleix Canalda-Baltrons
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Marc Pons-Tarín
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Itxarone Bilbao
- Department of HPB Surgery and Transplants, Vall d'Hebron Hospital Universitari, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autónoma de Barcelona, Barcelona, Spain; CIBER of Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Chaysavanh Manichanh
- Microbiome Lab, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; CIBER of Hepatic and Digestive Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Moriki D, León ED, García-Gamero G, Jiménez-Hernández N, Artacho A, Pons X, Koumpagioti D, Dinopoulos A, Papaevangelou V, Priftis KN, Douros K, Francino MP. Specific Gut Microbiome Signatures in Children with Cow's Milk Allergy. Nutrients 2024; 16:2752. [PMID: 39203888 PMCID: PMC11357501 DOI: 10.3390/nu16162752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Although gut dysbiosis is associated with cow's milk allergy (CMA), causality remains uncertain. This study aimed to identify specific bacterial signatures that influence the development and outcome of the disease. We also investigated the effect of hypoallergenic formula (HF) consumption on the gut microbiome of milk-allergic children. 16S rRNA amplicon sequencing was applied to characterize the gut microbiome of 32 milk-allergic children aged 5-12 years and 36 age-matched healthy controls. We showed that the gut microbiome of children with CMA differed significantly from that of healthy children, regardless of whether they consumed cow's milk. Compared to that of healthy cow's milk consumers, it was depleted in Bifidobacterium, Coprococcus catus, Monoglobus, and Lachnospiraceae GCA-900066575, while being enriched in Oscillibacter valericigenes, Negativibacillus massiliensis, and three genera of the Ruminococcaceae family. Of these, only the Ruminococcaceae taxa were also enriched in healthy children not consuming cow's milk. Furthermore, the gut microbiome of children who developed tolerance and had received an HF was similar to that of healthy children, whereas that of children who had not received an HF was significantly different. Our results demonstrate that specific gut microbiome signatures are associated with CMA, which differ from those of dietary milk elimination. Moreover, HF consumption affects the gut microbiome of children who develop tolerance.
Collapse
Affiliation(s)
- Dafni Moriki
- 3rd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University Hospital, 12462 Athens, Greece
| | - E. Daniel León
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
| | - Gabriel García-Gamero
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
| | - Nuria Jiménez-Hernández
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
| | - Alejandro Artacho
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
| | - Xavier Pons
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
| | - Despoina Koumpagioti
- Department of Nursing, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Argirios Dinopoulos
- 3rd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University Hospital, 12462 Athens, Greece
| | - Vassiliki Papaevangelou
- 3rd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University Hospital, 12462 Athens, Greece
| | - Kostas N. Priftis
- 3rd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University Hospital, 12462 Athens, Greece
| | - Konstantinos Douros
- 3rd Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, “Attikon” University Hospital, 12462 Athens, Greece
| | - M. Pilar Francino
- Department of Genomics and Health, Fundación Para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valencia (FISABIO), 46020 Valencia, Spain
- CIBER en Epidemiología y Salud Pública, 28029 Madrid, Spain
| |
Collapse
|
21
|
Popov IV, Belkassem N, Schrijver R, Chebotareva IP, Chikindas ML, Ermakov AM, Venema K. Modulation of Poultry Cecal Microbiota by a Phytogenic Blend and High Concentrations of Casein in a Validated In Vitro Cecal Chicken Alimentary Tract Model. Vet Sci 2024; 11:377. [PMID: 39195831 PMCID: PMC11358970 DOI: 10.3390/vetsci11080377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/02/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Phytogenic blends (PBs) consist of various bioactive plant-derived compounds that are used as growth promoters for farm animals. Feed additives based on PBs have beneficial effects on farm animals' production performance, health, and overall well-being, as well as positive modulating effects on gut microbiota. In this study, we used a validated in vitro cecal chicken alimentary tract model (CALIMERO-2) to evaluate the effects of a PB (a mix of components found in rosemary, cinnamon, curcuma, oregano oil, and red pepper), alone or in combination with casein (control), on poultry cecal microbiota. Supplementation with the PB significantly increased the abundance of bacteria associated with energy metabolism (Monoglobus) and growth performance in poultry (Lachnospiraceae UCG-010). The PB also decreased the abundance of opportunistic pathogens (Escherichia-Shigella) and, most importantly, did not promote other opportunistic pathogens, which indicates the safety of this blend for poultry. In conclusion, the results of this study show promising perspectives on using PBs as feed additives for poultry, although further in vivo studies need to prove these data.
Collapse
Affiliation(s)
- Igor V. Popov
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Nouhaila Belkassem
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| | - Ruud Schrijver
- Animal Health Concepts BV, 8141 GN Heino, The Netherlands
| | - Iuliia P. Chebotareva
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Michael L. Chikindas
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08901, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Alexey M. Ermakov
- Faculty “Bioengineering and Veterinary Medicine” and Center for Agrobiotechnology, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands; (N.B.); (K.V.)
| |
Collapse
|
22
|
Shang Z, Chen K, Han T, Bu F, Sun S, Zhu N, Man D, Yang K, Yuan S, Fu H. Natural Foraging Selection and Gut Microecology of Two Subterranean Rodents from the Eurasian Steppe in China. Animals (Basel) 2024; 14:2334. [PMID: 39199868 PMCID: PMC11350848 DOI: 10.3390/ani14162334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
As the most abundant group of mammals, rodents possess a very rich ecotype, which makes them ideal for studying the relationship between diet and host gut microecology. Zokors are specialized herbivorous rodents adapted to living underground. Unlike more generalized herbivorous rodents, they feed on the underground parts of grassland plants. There are two species of the genus Myospalax in the Eurasian steppes in China: one is Myospalax psilurus, which inhabits meadow grasslands and forest edge areas, and the other is M. aspalax, which inhabits typical grassland areas. How are the dietary choices of the two species adapted to long-term subterranean life, and what is the relationship of this diet with gut microbes? Are there unique indicator genera for their gut microbial communities? Relevant factors, such as the ability of both species to degrade cellulose, are not yet clear. In this study, we analyzed the gut bacterial communities and diet compositions of two species of zokors using 16S amplicon technology combined with macro-barcoding technology. We found that the diversity of gut microbial bacterial communities in M. psilurus was significantly higher than that in M. aspalax, and that the two species of zokors possessed different gut bacterial indicator genera. Differences in the feeding habits of the two species of zokors stem from food composition rather than diversity. Based on the results of Mantel analyses, the gut bacterial community of M. aspalax showed a significant positive correlation with the creeping-rooted type food, and there was a complementary relationship between the axis root-type-food- and the rhizome-type-food-dominated (containing bulb types and tuberous root types) food groups. Functional prediction based on KEGG found that M. psilurus possessed a stronger degradation ability in the same cellulose degradation pathway. Neutral modeling results show that the gut flora of the M. psilurus has a wider ecological niche compared to that of the M. aspalax. This provides a new perspective for understanding how rodents living underground in grassland areas respond to changes in food conditions.
Collapse
Affiliation(s)
- Zhenghaoni Shang
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Kai Chen
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Tingting Han
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Fan Bu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Shanshan Sun
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Na Zhu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Duhu Man
- College of Agriculture, Hulunbuir University, Hulunbuir 021000, China;
| | - Ke Yang
- Alxa League Meteorological Bureau, Alxa 750300, China;
| | - Shuai Yuan
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| | - Heping Fu
- College of Grassland Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China; (Z.S.); (K.C.); (T.H.); (F.B.); (S.S.); (N.Z.)
- Key Laboratory of Grassland Rodent Ecology and Pest Controlled, Hohhot 010011, China
- Key Laboratory of Grassland Resources, Ministry of Education, Hohhot 010011, China
| |
Collapse
|
23
|
Li W, Guan S, Hu X, Zhao H, Cai J, Li X, Zhang X, Zhu W, Pan X, Li S, Tian J. Lysimachia capillipes Hemsl. saponins ameliorate colorectal cancer in mice via regulating gut microbiota and restoring metabolic profiles. Fitoterapia 2024; 175:105959. [PMID: 38615754 DOI: 10.1016/j.fitote.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/14/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Lysimachia capillipes Hemsl., a traditional Chinese medicine (TCM), is commonly prescribed for its anti-inflammatory and anti-tumor properties. Pharmacological studies have demonstrated that Lysimachia capillipes Hemsl. saponins (LCS) are the primary bioactive component. However, its mechanism for treating colorectal cancer (CRC) is still unknown. Increasing evidence suggests a close relationship between CRC, intestinal flora, and host metabolism. Thus, this study aims to investigate the mechanism of LCS amelioration of CRC from the perspective of the gut microbiome and metabolome. As a result, seven gut microbiotas and fourteen plasma metabolites were significantly altered between the control and model groups. Among them, one gut microbiota genera (Monoglobus) and six metabolites (Ureidopropionic acid, Cytosine, L-Proline, 3-hydroxyanthranilic acid, Cyclic AMP and Suberic acid) showed the most pronounced callback trend after LCS administration. Subsequently, the correlation analysis revealed significant associations between 68 pairs of associated metabolites and gut microbes, with 13 pairs of strongly associated metabolites regulated by the LCS. Taken together, these findings indicate that the amelioration of CRC by LCS is connected to the regulation of intestinal flora and the recasting of metabolic abnormalities. These insights highlight the potential of LCS as a candidate drug for the treatment of CRC.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Shenghong Guan
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Pharmacy Science, Zhejiang University of Technology, Hangzhou 310027, China
| | - Xueli Hu
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Pharmacy Science, Zhejiang Chinese Medical University, Hangzhou 310027, China
| | - Huan Zhao
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310002, China
| | - Jinhong Cai
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China; College of Pharmacy Science, Zhejiang University of Technology, Hangzhou 310027, China
| | - Xiaohan Li
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Xiaoyong Zhang
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Wei Zhu
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Xin Pan
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shouxin Li
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China
| | - Jingkui Tian
- Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310002, China.
| |
Collapse
|
24
|
Huang JK, Wu PH, Chen ZF, Liu PY, Kuo CC, Chuang YS, Lu MZ, Kuo MC, Chiu YW, Lin YT. Identification of Gut Microbiome Signatures Associated with Indole Pathway in Tryptophan Metabolism in Patients Undergoing Hemodialysis. Biomolecules 2024; 14:623. [PMID: 38927027 PMCID: PMC11201546 DOI: 10.3390/biom14060623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024] Open
Abstract
Microbiota tryptophan metabolism and the biosynthesis of indole derivatives play an important role in homeostasis and pathogenesis in the human body and can be affected by the gut microbiota. However, studies on the interplay between gut microbiota and tryptophan metabolites in patients undergoing dialysis are lacking. This study aimed to identify the gut microbiota, the indole pathway in tryptophan metabolism, and significant functional differences in ESRD patients with regular hemodialysis. We performed the shotgun metagenome sequencing of stool samples from 85 hemodialysis patients. Using the linear discriminant analysis effect size (LEfSe), we examined the composition of the gut microbiota and metabolic features across varying concentrations of tryptophan and indole metabolites. Higher tryptophan levels promoted tyrosine degradation I and pectin degradation I metabolic modules; lower tryptophan levels were associated with glutamate degradation I, fructose degradation, and valine degradation modules. Higher 3-indoxyl sulfate concentrations were characterized by alanine degradation I, anaerobic fatty acid beta-oxidation, sulfate reduction, and acetyl-CoA to crotonyl-CoA. Contrarily, lower 3-indoxyl sulfate levels were related to propionate production III, arabinoxylan degradation, the Entner-Doudoroff pathway, and glutamate degradation II. The present study provides a better understanding of the interaction between tryptophan, indole metabolites, and the gut microbiota as well as their gut metabolic modules in ESRD patients with regular hemodialysis.
Collapse
Grants
- MOST 111-2314-B-037-032-MY3 Ministry of Science and Technology, Taiwan
- MOST 111-2314-B-037 -083 -MY3 Ministry of Science and Technology, Taiwan
- KMUH-DK(C)113003 Kaohsiung Medical University Hospital, Taiwan
- KMUH-DK(B)110003-4 Kaohsiung Medical University Hospital, Taiwan
- KMUH112-2M08 Kaohsiung Medical University Hospital, Taiwan
- KMUH112-2R21 Kaohsiung Medical University Hospital, Taiwan
- KMUH112-2R76 Kaohsiung Medical University Hospital, Taiwan
- KMUH111-1M60 Kaohsiung Medical University Hospital, Taiwan
- KMUH111-1R73 Kaohsiung Medical University Hospital, Taiwan
- KMUH110-0M73 Kaohsiung Medical University Hospital, Taiwan
- NHRIKMU-111-I003-2 Kaohsiung Medical University, Taiwan
- NHRIKMU-113-I005 Kaohsiung Medical University, Taiwan
- NYCUKMU-112-I006 Kaohsiung Medical University, Taiwan
- KT112P012 Kaohsiung Medical University, Taiwan
- KT113P006 Kaohsiung Medical University, Taiwan
- S11209 Kaohsiung Medical University, Taiwan
Collapse
Affiliation(s)
- Jih-Kai Huang
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ping-Hsun Wu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Zhao-Feng Chen
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan;
| | - Po-Yu Liu
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Cheng-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan 3500, Taiwan;
| | - Yun-Shiuan Chuang
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Meng-Zhan Lu
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mei-Chuan Kuo
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Wen Chiu
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yi-Ting Lin
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (P.-H.W.); (M.-C.K.); (Y.-W.C.)
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Family Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
25
|
Calvete‐Torre I, Sabater C, Muñoz‐Almagro N, Campelo AB, Moreno FJ, Margolles A, Ruiz L. A methyl esterase from Bifidobacterium longum subsp. longum reshapes the prebiotic properties of apple pectin by triggering differential modulatory capacity in faecal cultures. Microb Biotechnol 2024; 17:e14443. [PMID: 38722820 PMCID: PMC11081426 DOI: 10.1111/1751-7915.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 05/13/2024] Open
Abstract
Pectin structures have received increasing attention as emergent prebiotics due to their capacity to promote beneficial intestinal bacteria. Yet the collective activity of gut bacterial communities to cooperatively metabolize structural variants of this substrate remains largely unknown. Herein, the characterization of a pectin methylesterase, BpeM, from Bifidobacterium longum subsp. longum, is reported. The purified enzyme was able to remove methyl groups from highly methoxylated apple pectin, and the mathematical modelling of its activity enabled to tightly control the reaction conditions to achieve predefined final degrees of methyl-esterification in the resultant pectin. Demethylated pectin, generated by BpeM, exhibited differential fermentation patterns by gut microbial communities in in vitro mixed faecal cultures, promoting a stronger increase of bacterial genera associated with beneficial effects including Lactobacillus, Bifidobacterium and Collinsella. Our findings demonstrate that controlled pectin demethylation by the action of a B. longum esterase selectively modifies its prebiotic fermentation pattern, producing substrates that promote targeted bacterial groups more efficiently. This opens new possibilities to exploit biotechnological applications of enzymes from gut commensals to programme prebiotic properties.
Collapse
Affiliation(s)
- Inés Calvete‐Torre
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| | - Carlos Sabater
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| | - Nerea Muñoz‐Almagro
- Group of Chemistry and Functionality of Carbohydrates and DerivativesInstitute of Food Science Research, CIAL (CSIC‐UAM), Universidad Autónoma de MadridMadridSpain
| | - Ana Belén Campelo
- Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
| | - F. Javier Moreno
- Group of Chemistry and Functionality of Carbohydrates and DerivativesInstitute of Food Science Research, CIAL (CSIC‐UAM), Universidad Autónoma de MadridMadridSpain
| | - Abelardo Margolles
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| | - Lorena Ruiz
- Group of Functionality and Ecology of Beneficial Microorganisms (MicroHealth)Dairy Research Institute of Asturias (IPLA‐CSIC)VillaviciosaAsturiasSpain
- Health Research Institute of Asturias (ISPA)OviedoAsturiasSpain
| |
Collapse
|
26
|
Tomas M, García-Pérez P, Rivera-Pérez A, Patrone V, Giuberti G, Lucini L, Capanoglu E. The addition of polysaccharide gums to Aronia melanocarpa purees modulates the bioaccessibility of phenolic compounds and gut microbiota: A multiomics data fusion approach following in vitro digestion and fermentation. Food Chem 2024; 439:138231. [PMID: 38113658 DOI: 10.1016/j.foodchem.2023.138231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/21/2023]
Abstract
This study aimed to determine how the addition of gellan, guar, locust bean, and xanthan gums affected the polyphenol profile of Aronia melanocarpa puree and the human gut microbiota after in vitro gastrointestinal digestion and large intestine fermentation. The different gums distinctively affected the content and bioaccessibility of phenolics in Aronia puree, as outlined by untargeted metabolomics. The addition of locust bean gum increased the levels of low-molecular-weight phenolics and phenolic acids after digestion. Gellan and guar gums enhanced phenolic acids' bioaccessibility after fermentation. Interactions between digestion products and fecal bacteria altered the composition of the microbiota, with the greatest impact of xanthan. Locust bean gum promoted the accumulation of different taxa with health-promoting properties. Our findings shed light on the added-value properties of commercial gums as food additives, promoting a distinctive increase of polyphenol bioaccessibility and shifting the gut microbiota distribution, depending on their composition and structural features.
Collapse
Affiliation(s)
- Merve Tomas
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Halkali, Istanbul, Turkey
| | - Pascual García-Pérez
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, 36310 Vigo, Spain
| | - Araceli Rivera-Pérez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agrifood Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence (ceiA3), University of Almeria, 04120 Almeria, Spain
| | - Vania Patrone
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gianluca Giuberti
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process - DiSTAS, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
27
|
Gámez-Macías PE, Félix-Soriano E, Samblas M, Sáinz N, Moreno-Aliaga MJ, González-Muniesa P. Intestinal Permeability, Gut Inflammation, and Gut Immune System Response Are Linked to Aging-Related Changes in Gut Microbiota Composition: A Study in Female Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae045. [PMID: 38364863 PMCID: PMC10957128 DOI: 10.1093/gerona/glae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 02/18/2024] Open
Abstract
Aging entails changes at the cellular level that increase the risk of various pathologies. An association between gut microbiota and age-related diseases has also been attributed. This study aims to analyze changes in fecal microbiota composition and their association with genes related to immune response, gut inflammation, and intestinal barrier impairment. Fecal samples of female mice at different ages (2 months, 6 months, 12 months, and 18 months) and gene expression in colon tissue were analyzed. Results showed that the older mice group had a more diverse microbiota than the younger group. Additionally, the abundance of Cyanobacteria, Proteobacteria, Flavobacteriaceae, Bacteroides, Parabacteroides, Prevotellaceae_UCG-001, Akkermansia, and Parabacteroides goldsteinii increased with age. In contrast, there was a notable decline in Clostridiaceae, Lactobacillaceae, Monoglobaceae, Ligilactobacillus, Limosilactobacillus, Mucispirillum, and Bacteroides faecichinchillae. These bacteria imbalances were positively correlated with increased inflammation markers in the colon, including Tnf-α, Ccl2, and Ccl12, and negatively with the expression of tight junction genes (Jam2, Tjp1, and Tjp2), as well as immune response genes (Cd4, Cd72, Tlr7, Tlr12, and Lbp). In conclusion, high levels of diversity did not result in improved health in older mice; however, the imbalance in bacteria abundance that occurs with aging might contribute to immune senescence, inflammation, and leaky gut disease.
Collapse
Affiliation(s)
- Paola Elizabeth Gámez-Macías
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Elisa Félix-Soriano
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Science, and Physiology, University of Navarra, Pamplona, Spain
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Mirian Samblas
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Neira Sáinz
- Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - María Jesús Moreno-Aliaga
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra/Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro González-Muniesa
- Faculty of Pharmacy and Nutrition, Department of Nutrition, Food Science, and Physiology, and Center for Nutrition Research, University of Navarra/Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Olson M, Toffoli S, Vander Wyst KB, Zhou F, Reifsnider E, Petrov ME, Whisner CM. Associations of Infant Feeding, Sleep, and Weight Gain with the Toddler Gut Microbiome. Microorganisms 2024; 12:549. [PMID: 38543600 PMCID: PMC10972346 DOI: 10.3390/microorganisms12030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024] Open
Abstract
This study examines how feeding, sleep, and growth during infancy impact the gut microbiome (GM) in toddlers. The research was conducted on toddlers (n = 36), born to Latina women of low-income with obesity. Their mothers completed retrospective feeding and sleeping questionnaires at 1, 6, and 12 months; at 36 months, fecal samples were collected. Sequencing of the 16S rRNA gene (V4 region) revealed that breastfeeding for at least 1 month and the introduction of solids before 6 months differentiated the GM in toddlerhood (Bray-Curtis, pseudo-F = 1.805, p = 0.018, and pseudo-F = 1.651, p = 0.044, respectively). Sleep had an effect across time; at 1 and 6 months of age, a lower proportion of nighttime sleep (relative to 24 h total sleep) was associated with a richer GM at three years of age (Shannon H = 4.395, p = 0.036 and OTU H = 5.559, p = 0.018, respectively). Toddlers experiencing rapid weight gain from birth to 6 months had lower phylogenetic diversity (Faith PD H = 3.633, p = 0.057). These findings suggest that early life nutrition, sleeping patterns, and growth rate in infancy may influence the GM composition. Further verification of these results with objective sleep data and a larger sample is needed.
Collapse
Affiliation(s)
- Magdalena Olson
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samantha Toffoli
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Kiley B. Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Elizabeth Reifsnider
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA; (E.R.); (M.E.P.)
| | - Megan E. Petrov
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA; (E.R.); (M.E.P.)
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
29
|
Mo Q, Yao H, Wu H, Zhao D. Impact of Environmental Food Intake on the Gut Microbiota of Endangered Père David's Deer: Primary Evidence for Population Reintroduction. Animals (Basel) 2024; 14:728. [PMID: 38473113 DOI: 10.3390/ani14050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 03/14/2024] Open
Abstract
Reintroduction has been successful in re-establishing several endangered wild animals in their historical habitats, including Père David's deer (Elaphurus davidianus). Continuous monitoring of reintroduced individuals is essential for improving the sustainability of ex situ conservation efforts. Despite an increased recognition of the significance of the gut microbiome for animal health, the correlation between diet and the gut microbiome in E. davidianus is unclear. In this study, 15 fresh fecal samples of E. davidianus were collected from Tianjin Qilihai Wetland and the association between dietary and gut microbiota composition was evaluated. Microscopic observations showed that Nymphoides peltata [relative density (RD = 0.3514), Phragmites australis (RD = 0.2662), Setaria viridis (RD = 0.1211), and Typha orientalis (RD = 0.1085) were the main dietary plants in the fecal samples. High-throughput 16S rRNA sequencing showed a predominance of the phyla Firmicutes and Proteobacteria and the genus Psychrobacillus (26.53%) in the gut microbiota. The RD of N. peltata was significantly positively correlated with the abundance of Firmicutes (p = 0.005) and the genus UCG-005 (p = 0.024). This study indicates a close association between food digestion and nutrient intake, providing basic monitoring data for the full reintroduction and recovery of wild E. davidianus.
Collapse
Affiliation(s)
- Qiying Mo
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Hongyu Yao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Dapeng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
30
|
Humińska-Lisowska K, Zielińska K, Mieszkowski J, Michałowska-Sawczyn M, Cięszczyk P, Łabaj PP, Wasąg B, Frączek B, Grzywacz A, Kochanowicz A, Kosciolek T. Microbiome features associated with performance measures in athletic and non-athletic individuals: A case-control study. PLoS One 2024; 19:e0297858. [PMID: 38381714 PMCID: PMC10880968 DOI: 10.1371/journal.pone.0297858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 01/05/2024] [Indexed: 02/23/2024] Open
Abstract
The influence of human gut microbiota on health and disease is now commonly appreciated. Therefore, it is not surprising that microbiome research has found interest in the sports community, hoping to improve health and optimize performance. Comparative studies found new species or pathways that were more enriched in elites than sedentary controls. In addition, sport-specific and performance-level-specific microbiome features have been identified. However, the results remain inconclusive and indicate the need for further assessment. In this case-control study, we tested two athletic populations (i.e. strength athletes, endurance athletes) and a non-athletic, but physically active, control group across two acute exercise bouts, separated by a 2-week period, that measured explosive and high intensity fitness level (repeated 30-s all-out Wingate test (WT)) and cardiorespiratory fitness level (Bruce Treadmill Test). While we did not identify any group differences in alpha and beta diversity or significant differential abundance of microbiome components at baseline, one-third of the species identified were unique to each group. Longitudinal sample (pre- and post-exercise) analysis revealed an abundance of Alistipes communis in the strength group during the WT and 88 species with notable between-group differences during the Bruce Test. SparCC recognized Bifidobacterium longum and Bifidobacterium adolescentis, short-chain fatty acid producers with probiotic properties, species strongly associated with VO2max. Ultimately, we identified several taxa with different baseline abundances and longitudinal changes when comparing individuals based on their VO2max, average power, and maximal power parameters. Our results confirmed that the health status of individuals are consistent with assumptions about microbiome health. Furthermore, our findings indicate that microbiome features are associated with better performance previously identified in elite athletes.
Collapse
Affiliation(s)
- Kinga Humińska-Lisowska
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Kinga Zielińska
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Jan Mieszkowski
- Faculty of Health Sciences, University of Lomza, Lomza, Poland
| | | | - Paweł Cięszczyk
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
| | - Bartosz Wasąg
- Department of Biology and Medical Genetics, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Frączek
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, University School of Physical Education, Cracow, Poland
| | - Anna Grzywacz
- Faculty of Physical Culture, Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Tomasz Kosciolek
- Malopolska Centre of Biotechnology, Jagiellonian University, Cracow, Poland
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
31
|
Kashyap Y, Wang ZJ. Gut microbiota dysbiosis alters chronic pain behaviors in a humanized transgenic mouse model of sickle cell disease. Pain 2024; 165:423-439. [PMID: 37733476 PMCID: PMC10843763 DOI: 10.1097/j.pain.0000000000003034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Pain is the most common symptom experienced by patients with sickle cell disease (SCD) throughout their lives and is the main cause of hospitalization. Despite the progress that has been made towards understanding the disease pathophysiology, major gaps remain in the knowledge of SCD pain, the transition to chronic pain, and effective pain management. Recent evidence has demonstrated a vital role of gut microbiota in pathophysiological features of SCD. However, the role of gut microbiota in SCD pain is yet to be explored. We sought to evaluate the compositional differences in the gut microbiota of transgenic mice with SCD and nonsickle control mice and investigate the role of gut microbiota in SCD pain by using antibiotic-mediated gut microbiota depletion and fecal material transplantation (FMT). The antibiotic-mediated gut microbiota depletion did not affect evoked pain but significantly attenuated ongoing spontaneous pain in mice with SCD. Fecal material transplantation from mice with SCD to wild-type mice resulted in tactile allodynia (0.95 ± 0.17 g vs 0.08 ± 0.02 g, von Frey test, P < 0.001), heat hyperalgesia (15.10 ± 0.79 seconds vs 8.68 ± 1.17 seconds, radiant heat, P < 0.01), cold allodynia (2.75 ± 0.26 seconds vs 1.68 ± 0.08 seconds, dry ice test, P < 0.01), and anxiety-like behaviors (Elevated Plus Maze Test, Open Field Test). On the contrary, reshaping gut microbiota of mice with SCD with FMT from WT mice resulted in reduced tactile allodynia (0.05 ± 0.01 g vs 0.25 ± 0.03 g, P < 0.001), heat hyperalgesia (5.89 ± 0.67 seconds vs 12.25 ± 0.76 seconds, P < 0.001), and anxiety-like behaviors. These findings provide insights into the relationship between gut microbiota dysbiosis and pain in SCD, highlighting the importance of gut microbial communities that may serve as potential targets for novel pain interventions.
Collapse
Affiliation(s)
- Yavnika Kashyap
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
| | - Zaijie Jim Wang
- Departments of Pharmaceutical Sciences and Center for Biomolecular Science, University of Illinois, Chicago, IL, United States
- Department of Neurology & Rehabilitation, and Sickle Cell Center, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois, Chicago, IL 60607, United States
| |
Collapse
|
32
|
Mishra P, Das R, Chaudhary A, Mishra B, Jha R. Effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids, microbial diversity, and metabolic pathways of broiler chickens. Poult Sci 2024; 103:103325. [PMID: 38096670 PMCID: PMC10762467 DOI: 10.1016/j.psj.2023.103325] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
Modern broilers are highly susceptible to environmental and pathogenic threats, leading to gut disorders and poor nutrient utilization if not managed properly. Nutritional programming using several feedstuffs and coproducts to manage gut health has been studied. This study used microalgae as a functional compound and xylanase enzyme in broilers' diets as a strategy to manage gut health. A total of 162 one-day-old unsexed Cobb 500 broiler chicks were randomly assigned to 1 of the 3 dietary treatments: a) corn-soybean meal-based control diet (CON), b) 3% microalgae (MAG), and c) MAG with xylanase enzyme (MAG+XYN). The chicks were reared for 35 days (d) on a floor pen system maintaining standard environment conditions to evaluate the effects of microalgae, with or without xylanase supplementation, on serum immunoglobulins, cecal short-chain fatty acids (SCFA) production, cecal microbial diversity, and metabolic pathways. No significant differences were found for serum immunoglobulin and cecal SCFA among the treatment groups (P > 0.05). Relative microbial abundance at the genus level showed that MAG and MAG+XYN groups had a diverse microbial community on d 3 and d 35. However, no bacterial genus had a significant difference (P > 0.05) in their relative abundance on d 3, but 16 genera showed significant differences (P < 0.05) in their relative abundance among the dietary treatments on d 35. Most of these bacteria were SCFA-producing bacteria. Moreover, MAG and MAG+XYN-fed broilers had better responses than CON groups for metabolic pathways (D-mannose degradation, pectin degradation I and II, β-1-4-mannan degradation, tetrahydrofolate biosynthesis, glutathione biosynthesis, glutathione-peroxide redox reactions, lactate fermentation to propionate, acetate, and hydrogen, etc.) both on d 3 and d 35. The results suggest that using microalgae, with or without xylanase, had no statistical impact on serum immunoglobulins and cecal SCFA production in broilers. However, an improvement in the cecal microbial diversity and metabolic pathways, which are essential indicators of gut health and nutrient utilization, was observed. Most of the improved metabolic pathways were related to fiber utilization and oxidative stress reduction.
Collapse
Affiliation(s)
- Pravin Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Razib Das
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Ajay Chaudhary
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| |
Collapse
|
33
|
Li J, Peng C, Mao A, Zhong M, Hu Z. An overview of microbial enzymatic approaches for pectin degradation. Int J Biol Macromol 2024; 254:127804. [PMID: 37913880 DOI: 10.1016/j.ijbiomac.2023.127804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and β-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Aihua Mao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
34
|
Ma X, Wang W, Cai L, Xiao M, He F, Liu Z, Chen D, Wang Y, Shen L, Gu Y. Analysis of the microbial diversity in takin ( Budorcas taxicolor) feces. Front Microbiol 2023; 14:1303085. [PMID: 38188576 PMCID: PMC10768053 DOI: 10.3389/fmicb.2023.1303085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction The intestinal tract of animals is a complex and dynamic microecosystem that is inextricably linked to the health of the host organism. Takin (Budorcas taxicolor) is a threatened species, and its gut microbiome is poorly understood. Therefore, this study aimed to analyze the microbial community structure and potential pathogens of takin. Methods Takin fecal samples were collected from five sites in a nature reserve to ensure the uniformity of sample collection, determine the effects of different geographical locations on gut microbes, and analyze the differences in microbial communities between sites. Subsequently, high-throughput 16S rDNA gene sequencing was performed to analyze the microbial diversity and potential pathogens in the gut; the findings were verified by isolating and culturing bacteria and metagenomic sequencing. Results and discussion The takin gut microflora consisted mainly of four phyla: Firmicutes (69.72%), Bacteroidota (13.55%), Proteobacteria (9.02%), and Verrucomicrobiota (3.77%), representing 96.07% of all microorganisms. The main genera were UCG-005 (20.25%), UCG-010_unclassified (12.35%), Firmicus_unclassified (4.03%), and Rumino coccsea_unclassified (3.49%), while the main species were assigned to Bacteria_unclassified. Potential pathogens were also detected, which could be used as a reference for the protection of takin. Pseudomonas presented the highest abundance at Shuichiping and may represent the main pathogen responsible for the death of takin at the site. This study provides an important reference for investigating the composition of the bacterial community in the intestine of takin.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weichen Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lijun Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Mei Xiao
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Fang He
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Zhen Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dong Chen
- Sichuan Provincial Center for Animal Disease Prevention and Control, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Limin Shen
- Management Office of Tangjiahe National Nature Reserve, Qingchuan, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
35
|
Li J, Ma G, Xie J, Xu K, Lai H, Li Y, He Y, Yu H, Liao X, Wang X, Li Z, Kong L, Mi B, Shen Y, Tian T, Liu X. Differential Gut Microbiota, Dietary Intakes in Constipation Patients with or without Hypertension. Mol Nutr Food Res 2023; 67:e2300208. [PMID: 37712107 DOI: 10.1002/mnfr.202300208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/31/2023] [Indexed: 09/16/2023]
Abstract
SCOPE Diet and gut microbiota are involved in blood pressure regulations, but few studies have focused on the constipation patients. The study seeks to identify differences in gut microbiota between hypertensive and normotensive subjects in constipation patients, analyzes the relationship between dietary patterns and blood pressure, and explores mediation effects of gut microbiota. METHODS AND RESULTS Gut microbial genera and dietary information of 186 functional constipation participants are characterized by 16S rRNA sequencing and a food frequency questionnaire. The hypertensive subjects shows lower α-diversity and β-diversity of gut microbiota than normotensive (p < 0.05) and 17 differential microbial genera. The dried-beans intake frequency inversely correlated with systolic and diastolic blood pressure after multivariate adjustment (r = -0.273, p-FDR < 0.01; r = -0.251, p-FDR = 0.026, respectively). Logistic regression indicates that the individuals often consumed dried-beans have a lower hypertension risk than those never consumed [OR = 0.137, 95% CI: (0.022, 0.689), p = 0.022]. A marginal mediating effect of the genus Monoglobus is observed for the association between high-fiber dietary pattern and hypertension. CONCLUSION In patients with functional constipation, hypertension-related gut microbial differences are identified. Dried-beans intake is inversely associated with blood pressure, and a genus may potentially mediate the association between high-fiber dietary pattern and hypertension.
Collapse
Affiliation(s)
- Junqi Li
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guoqing Ma
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiawen Xie
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun Xu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Lai
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yunfeng Li
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yafang He
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hang Yu
- Department of Cardiovascular Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinyan Wang
- BYHEALTH Institute of Nutrition & Health, Guangzhou, 510663, China
| | - Zhongxia Li
- BYHEALTH Institute of Nutrition & Health, Guangzhou, 510663, China
| | - Liyun Kong
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baibing Mi
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuan Shen
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Tian
- Department of Nutrition, Xi'an Daxing Hospital, Xi'an, 710016, China
| | - Xin Liu
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, School of Public Health, Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
36
|
Wu Z, He J, Zhang Z, Li J, Zou H, Tan X, Wang Y, Yao Y, Xiong W. Propionic Acid Driven by the Lactobacillus johnsonii Culture Supernatant Alleviates Colitis by Inhibiting M1 Macrophage Polarization by Modulating the MAPK Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14951-14966. [PMID: 37788400 DOI: 10.1021/acs.jafc.3c00278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this study, we investigated the effects of Lactobacillus johnsonii on the mouse colitis model. The results showed that the supernatant of the L. johnsonii culture alleviated colitis and remodeled gut microbiota, represented by an increased abundance of bacteria producing short-chain fatty acids, leading to an increased concentration of propionic acid in the intestine. Further studies revealed that propionic acid inhibited activation of the MAPK signaling pathway and polarization of M1 macrophages. Macrophage clearance assays confirmed that macrophages are indispensable for alleviating colitis through propionic acid. In vitro experiments showed that propionic acid directly inhibited the MAPK signaling pathway in macrophages and reduced M1 macrophage polarization, thereby inhibiting the secretion of pro-inflammatory cytokines. These findings improve our understanding of how L. johnsonii attenuates inflammatory bowel disease (IBD) and provide valuable insights for identifying molecular targets for IBD treatment in the future.
Collapse
Affiliation(s)
- Zhifeng Wu
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinhui He
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyue Zhang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingjing Li
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Huicong Zou
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiang Tan
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuqing Wang
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Yao
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen Xiong
- College of Animal Sciences and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Cao W, Guan S, Yuan Y, Wang Y, Mst Nushrat Y, Liu Y, Tong Y, Yu S, Hua X. The digestive behavior of pectin in human gastrointestinal tract: a review on fermentation characteristics and degradation mechanism. Crit Rev Food Sci Nutr 2023; 64:12500-12523. [PMID: 37665605 DOI: 10.1080/10408398.2023.2253547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Pectin is widely spread in nature and it develops an extremely complex structure in terms of monosaccharide composition, glycosidic linkage types, and non-glycosidic substituents. As a non-digestible polysaccharide, pectin exhibits resistance to human digestive enzymes, however, it is easily utilized by gut microbiota in the large intestine. Currently, pectin has been exploited as a novel functional component with numerous physiological benefits, and it shows a promising prospect in promoting human health. In this review, we introduce the regulatory effects of pectin on intestinal inflammation and metabolic syndromes. Subsequently, the digestive behavior of pectin in the upper gastrointestinal tract is summarized, and then it will be focused on pectin's fermentation characteristics in the large intestine. The fermentation selectivity of pectin by gut bacteria and the effects of pectin structure on intestinal microecology were discussed to highlight the interaction between pectin and bacterial community. Meanwhile, we also offer information on how gut bacteria orchestrate enzymes to degrade pectin. All of these findings provide insights into pectin digestion and advance the application of pectin in human health.
Collapse
Affiliation(s)
- Weichao Cao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuyi Guan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuying Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yuhang Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Yaxian Liu
- Department of Biotechnology and Enzyme Science, University of Hohenheim, Institute of Food Science and Biotechnology, Stuttgart, Germany
| | - Yanjun Tong
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shuhuai Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
38
|
Zhen Y, Xi Z, Nasr SM, He F, Han M, Yin J, Ge L, Chen Y, Wang Y, Wei W, Zhang Y, Wang M. Multi-Omics Reveals the Impact of Exogenous Short-Chain Fatty Acid Infusion on Rumen Homeostasis: Insights into Crosstalk between the Microbiome and the Epithelium in a Goat Model. Microbiol Spectr 2023; 11:e0534322. [PMID: 37439665 PMCID: PMC10433986 DOI: 10.1128/spectrum.05343-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Emerging data have underscored the significance of exogenous supplementation of butyrate in the regulation of rumen development and homeostasis. However, the effects of other short-chain fatty acids (SCFAs), such as acetate or propionate, has received comparatively less attention, and the consequences of extensive exogenous SCFA infusion remain largely unknown. In our study, we conducted a comprehensive investigation by infusion of three SCFAs to examine their respective roles in regulating the rumen microbiome, metabolism, and epithelium homeostasis. Data demonstrated that the infusion of sodium acetate (SA) increased rumen index while also promoting SCFA production and absorption through the upregulation of SCFA synthetic enzymes and the mRNA expression of SLC9A1 gene. Moreover, both SA and sodium propionate infusion resulted in an enhanced total antioxidant capacity, an increased concentration of occludin, and higher abundances of specific rumen bacteria, such as "Candidatus Saccharimonas," Christensenellaceae R-7, Butyrivibrio, Rikenellaceae RC9 gut, and Alloprevotella. In addition, sodium butyrate (SB) infusion exhibited positive effects by increasing the width of rumen papilla and the thickness of the stratum basale. SB infusion further enhanced antioxidant capacity and barrier function facilitated by cross talk with Monoglobus and Incertae Sedis. Furthermore, metabolome and transcriptome data revealed distinct metabolic patterns in rumen contents and epithelium, with a particular impact on amino acid and fatty acid metabolism processes. In conclusion, our data provided novel insights into the regulator effects of extensive infusion of the three major SCFAs on rumen fermentation patterns, antioxidant capacity, rumen barrier function, and rumen papilla development, all achieved without inducing rumen epithelial inflammation. IMPORTANCE The consequences of massive exogenous supplementation of SCFAs on rumen microbial fermentation and rumen epithelium health remain an area that requires further exploration. In our study, we sought to investigate the specific impact of administering high doses of exogenous acetate, propionate, and butyrate on rumen homeostasis, with a particular focus on understanding the interaction between the rumen microbiome and epithelium. Importantly, our findings indicated that the massive infusion of these SCFAs did not induce rumen inflammation. Instead, we observed enhancements in antioxidant capacity, strengthening of rumen barrier function, and promotion of rumen papilla development, which were facilitated through interactions with specific rumen bacteria. By addressing existing knowledge gaps and offering critical insights into the regulation of rumen health through SCFA supplementation, our study holds significant implications for enhancing the well-being and productivity of ruminant animals.
Collapse
Affiliation(s)
- Yongkang Zhen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Zanna Xi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Shaima Mohamed Nasr
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Feiyang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mengli Han
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| | - Junliang Yin
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| | - Ling Ge
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yifei Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yusu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Wenjun Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Yihui Zhang
- Experimental Farm of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi, Xinjiang, People’s Republic of China
| |
Collapse
|
39
|
Yao H, Williams BA, Mikkelsen D, Flanagan BM, Gidley MJ. Composition and functional profiles of human faecal microbiota fermenting plant-based food particles are related to water-holding capacity more than particle size. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
40
|
Yao H, Mo Q, Wu H, Zhao D. How do living conditions affect the gut microbiota of endangered Père David's deer ( Elaphurus davidianus)? Initial findings from the warm temperate zone. PeerJ 2023; 11:e14897. [PMID: 36860766 PMCID: PMC9969852 DOI: 10.7717/peerj.14897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/24/2023] [Indexed: 03/03/2023] Open
Abstract
Reintroduction is an effective strategy in the conservation of endangered species under scientific monitoring. Intestinal flora plays an important role in the envir onmental adaptation of endangered Père David's deer (Elaphurus davidianus). In this study, 34 fecal samples from E. davidianus were collected from different habitats in Tianjin city of China to investigate differences in the intestinal flora under captive and semi-free-ranging conditions. Based on 16S rRNA high-throughput sequencing technology, a total of 23 phyla and 518 genera were obtained. Firmicutes was dominant in all individuals. At the genus level, UCG-005 (13.05%) and Rikenellaceae_RC9_gut_group (8.94%) were dominant in captive individuals, while Psychrobacillus (26.53%) and Pseudomonas (11.33%) were dominant in semi-free-ranging individuals. Alpha diversity results showed that the intestinal flora richness and diversity were significantly (P < 0.001) higher in captive individuals than in semi-free-ranging individuals. Beta diversity analysis also showed a significant difference (P = 0.001) between the two groups. In addition, some age- and sex-related genera such as Monoglobus were identified. In summary, the structure and diversity of intestinal flora showed significant habitat variation. This is the first time an analysis has been undertaken of the structural differences of the intestinal flora in Père David's deer, under different habitats in the warm temperate zone, providing a reference basis for the conservation of endangered species.
Collapse
|
41
|
Wu J, Shen S, Gao Q, Yu C, Cheng H, Pan H, Chen S, Ye X, Chen J. RG-I Domain Matters to the In Vitro Fermentation Characteristics of Pectic Polysaccharides Recycled from Citrus Canning Processing Water. Foods 2023; 12:foods12050943. [PMID: 36900460 PMCID: PMC10000670 DOI: 10.3390/foods12050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Canned citrus is a major citrus product that is popular around the world. However, the canning process discharges large amounts of high-chemical oxygen demand wastewater, which contains many functional polysaccharides. Herein, we recovered three different pectic polysaccharides from citrus canning processing water and evaluated their prebiotic potential as well as the relationship between the RG-I domain and fermentation characteristics using an in vitro human fecal batch fermentation model. Structural analysis showed a large difference among the three pectic polysaccharides in the proportion of the rhamnogalacturonan-I (RG-I) domain. Additionally, the fermentation results showed that the RG-I domain was significantly related to pectic polysaccharides' fermentation characteristics, especially in terms of short-chain fatty acid generation and modulation of gut microbiota. The pectins with a high proportion of the RG-I domain performed better in acetate, propionate, and butyrate production. It was also found that Bacteroides, Phascolarctobacterium, and Bifidobacterium are the main bacteria participating in their degradation. Furthermore, the relative abundance of Eubacterium_eligens_group and Monoglobus was positively correlated with the proportion of the RG-I domain. This study emphasizes the beneficial effects of pectic polysaccharides recovered from citrus processing and the roles of the RG-I domain in their fermentation characteristics. This study also provides a strategy for food factories to realize green production and value addition.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Sihuan Shen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Qiang Gao
- Shandong Huihuang Food Co., Ltd., Linyi 276000, China
| | - Chengxiao Yu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Huan Cheng
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Haibo Pan
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Shiguo Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China
| | - Xingqian Ye
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Jianle Chen
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Fuli Institute of Food Science, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
- Correspondence:
| |
Collapse
|
42
|
Deng Q, Li SQ, Sun XB, Gao DY, Li N, Zhang HE, Wang ZG, Wang JK, Wang Q. Cloning, expression, and characterization of two pectate lyases isolated from the sheep rumen microbiome. Appl Microbiol Biotechnol 2023; 107:677-689. [PMID: 36572830 DOI: 10.1007/s00253-022-12344-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
Pectate lyases (Pels) have a vital function in degradation of the primary plant cell wall and the middle lamella and have been widely used in the industry. In this study, two pectate lyase genes, IDSPel16 and IDSPel17, were cloned from a sheep rumen microbiome. The recombinant enzymes were expressed in Escherichia coli and functionally characterized. Both IDSPel16 and IDSPel17 proteins had an optimal temperature of 60 ℃, and an optimal pH of 10.0. IDSPel16 was relatively stable below 60 °C, maintaining 77.51% residual activity after preincubation at 60 °C for 1 h, whereas IDSPel17 denatured rapidly at 60 °C. IDSPel16 was relatively stable between pH 6.0 and 12.0, after pretreatment for 1 h, retaining over 60% residual activity. IDSPel16 had high activity towards polygalacturonic acid, with a Vmax of 942.90 ± 68.11, whereas IDSPel17 had a Vmax of only 28.19 ± 2.23 μmol/min/mg. Reaction product analyses revealed that IDSPel17 liberated unsaturated digalacturonate (uG2) and unsaturated trigalacturonate (uG3) from the substrate, indicating a typical endo-acting pectate lyase (EC 4.2.2.2). In contrast, IDSPel16 initially generated unsaturated oligogalacturonic acids, then converted these intermediates into uG2 and unsaturated galacturonic acid (uG1) as end products, a unique depolymerization profile among Pels. To the best of our knowledge, the IDSPel16 discovered with both endo-Pel (EC 4.2.2.2) and exo-Pel (EC 4.2.2.9) activities. These two pectate lyases, particularly the relatively thermo- and pH-stable IDSPel16, will be of interest for potential application in the textile, food, and feed industries. KEY POINTS: • Two novel pectate lyase genes, IDSPel16 and IDSPel17, were isolated and characterized from the sheep rumen microbiome. • Both IDSPel16 and IDSPel17 are alkaline pectate lyases, releasing unsaturated digalacturonate and unsaturated trigalacturonate from polygalacturonic acid. • IDSPel16, a bifunctional pectate lyase with endo-Pel (EC 4.2.2.2) and exo-Pel (EC 4.2.2.9) activities, could be a potential candidate for industrial application.
Collapse
Affiliation(s)
- Qian Deng
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shi-Qi Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Bao Sun
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - De-Ying Gao
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nuo Li
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-En Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Zheng-Guang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Kun Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Wang
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, 310058, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
Wang Y, Yu Q, Wang X, Song J, Lambo MT, Huang J, He P, Li Y, Zhang Y. Replacing alfalfa hay with industrial hemp ethanol extraction byproduct and Chinese wildrye hay: Effects on lactation performance, plasma metabolites, and bacterial communities in Holstein cows. Front Vet Sci 2023; 10:1061219. [PMID: 36777679 PMCID: PMC9909549 DOI: 10.3389/fvets.2023.1061219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
This trial was designed to investigate the effects of industrial hemp ethanol extraction byproduct (IHEEB) and Chinese wildrye hay (CWH) replacement of alfalfa hay (AH) on digestibility, and lactation performance, plasma metabolites, ruminal fermentation, and bacterial communities in Holstein dairy cows. Nine healthy multiparous Holstein cows (parity = 3) with similar body weights (584 ± 12.3 kg), days in milk (108 ± 11.4), and milk yields (30 ± 1.93 kg; all mean ± standard deviation) were used in a replicated 3 × 3 Latin square design with 3 periods of 21 d. During each period, each group consumed 1 of 3 diets: (1) 0% IHEEB (0IHEEB); (2) 6.0% IHEEB and 1.7% Chinese wildrye hay (6IHEEB); (3) 10.8% IHEEB and 4.3% Chinese wildrye hay (11IHEEB). The diets in each group were isocaloric and isonitrogenous, with similar contents of concentrate and silage but different ratios of IHEEB and CWH to replace AH. The results showed that increasing the substitute did not affect the total-tract apparent nutrient digestibility. There was no difference in lactation performance of dairy cows fed the three diets, except for the cows' somatic cell count (SCC), which decreased with the increase in the amount of the substitute. Cannabidiol and tetrahydrocannabinol were not detected in milk samples of dairy cows in the different treatment groups. 6IHEEB and 11IHEEB-fed cows showed a linear decrease in total volatile fatty acids (VFA) and butyrate compared to the 0IHEEB cows. Plasma IL-1β content quadratically decreased with feeding IHEEB and CWH, and other blood parameters were unaffected. The rumen fluid's relative abundances of Bacteroidota, Fibrobacterota, and Prevotellaceae quadratically increased, while Firmicutes tended to decrease quadratically as the substitution increased. Feeding IHEEB and CWH linearly increased the relative abundances of Firmicutes, Lachnospiraceae, Monoglobaceae, and Butyricicoccaceae in the feces. As the substitution increased, the cost of dairy farming was reduced. In summary, substituting AH with IHEEB and CWH in diets did not affect the total-tract apparent nutrient digestibility, improved milk composition, and plasma immune indices. It changed the bacterial composition in rumen fluid and feces and improved dairy farming benefits.
Collapse
Affiliation(s)
- Yiqiang Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingyuan Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaolin Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jiamei Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jianguo Huang
- Heilongjiang Wellhope Agri-Tech Co., Ltd., Harbin, China
| | - Ping He
- Harbin Wellhope Trading Co., Ltd., Harbin, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,*Correspondence: Yang Li ✉
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China,Yonggen Zhang ✉
| |
Collapse
|
44
|
Tain YL, Chang CI, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Dietary Resveratrol Butyrate Monoester Supplement Improves Hypertension and Kidney Dysfunction in a Young Rat Chronic Kidney Disease Model. Nutrients 2023; 15:nu15030635. [PMID: 36771342 PMCID: PMC9921181 DOI: 10.3390/nu15030635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic kidney disease (CKD) remains a public health problem. Certain dietary supplements can assist in the prevention of CKD progression. In this regard, resveratrol is a polyphenol and has a potential therapeutic role in alleviating CKD. We previously utilized butyrate in order to improve the bioavailability of resveratrol via esterification and generated a resveratrol butyrate monoester (RBM). In this study, the hypothesis that RBM supplementation is able to protect against kidney dysfunction and hypertension was tested by using an adenine-induced CKD model. For this purpose, three-week-old male Sprague Dawley rats (n = 40) were equally categorized into: group 1-CN (sham control); group 2-CKD (adenine-fed rats); group 3-REV (CKD rats treated with 50 mg/L resveratrol); group 4-MEL (CKD rats treated with 25 mg/L RBM); and group 5-MEH (CKD rats treated with 50 mg/L RBM). At the end of a 12-week period, the rats were then euthanized. The adenine-fed rats displayed hypertension and kidney dysfunction, which were attenuated by dietary supplementation with RBM. The CKD-induced hypertension coincided with: decreased nitric oxide (NO) bioavailability; augmented renal protein expression of a (pro)renin receptor and angiotensin II type 1 receptor; and increased oxidative stress damage. Additionally, RBM and resveratrol supplementation shaped distinct gut microbiota profiles in the adenine-treated CKD rats. The positive effect of high-dose RBM was shown together with an increased abundance of the genera Duncaniella, Ligilactobacillus, and Monoglobus, as well as a decrease in Eubacterium and Schaedierella. Importantly, the mechanism of action of the RBM supplementation may be related to the restoration of NO, rebalancing of the RAS, a reduction in oxidative stress, and alterations to the gut microbiota. Moreover, RBM supplementation shows promise for the purposes of improving CKD outcomes and hypertension. As such, further translation to human studies is warranted.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-975-368-975
| |
Collapse
|
45
|
Qusa MH, Abdelwahed KS, Hill RA, El Sayed KA. S-(-)-Oleocanthal Ex Vivo Modulatory Effects on Gut Microbiota. Nutrients 2023; 15:618. [PMID: 36771326 PMCID: PMC9920009 DOI: 10.3390/nu15030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Compelling evidence points to the critical role of bioactive extra-virgin olive oil (EVOO) phenolics and gut microbiota (GM) interplay, but reliable models for studying the consequences thereof remain to be developed. Herein, we report an optimized ex vivo fecal anaerobic fermentation model to study the modulation of GM by the most bioactive EVOO phenolic S-(-)-oleocanthal (OC), and impacts therefrom, focusing on OC biotransformation in the gut. This model will also be applicable for characterization of GM interactions with other EVOO phenolics, and moreover, for a broadly diverse range of bioactive natural products. The fecal fermentation media and time, and mouse type and gender, were the major factors varied and optimized to provide better understanding of GM-OC interplay. A novel resin entrapment technique (solid-phase extraction) served to selectively entrap OC metabolites, degradation products, and any remaining fraction of OC while excluding interfering complex fecal medium constituents. The effects of OC on GM compositions were investigated via shallow shotgun DNA sequencing. Robust metabolome analyses identified GM bacterial species selectively altered (population numbers/fraction) by OC. Finally, the topmost OC-affected gut bacterial species of the studied mice were compared with those known to be extant in humans and distributions of these bacteria at different human body sites. OC intake caused significant quantitative and qualitative changes to mice GM, which was also comparable with human GM. Results clearly highlight the potential positive health outcomes of OC as a prospective nutraceutical.
Collapse
Affiliation(s)
| | | | | | - Khalid A. El Sayed
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| |
Collapse
|
46
|
Wang L, Wu D, Zhang Y, Li K, Wang M, Ma J. Dynamic distribution of gut microbiota in cattle at different breeds and health states. Front Microbiol 2023; 14:1113730. [PMID: 36876099 PMCID: PMC9978850 DOI: 10.3389/fmicb.2023.1113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Weining cattle is a precious species with high tolerance to cold, disease, and stress, and accounts for a large proportion of agricultural economic output in Guizhou, China. However, there are gaps in information about the intestinal flora of Weining cattle. In this study, high-throughput sequencing were employed to analyze the intestinal flora of Weining cattle (WN), Angus cattle (An), and diarrheal Angus cattle (DA), and explore the potential bacteria associated with diarrhea. We collected 18 fecal samples from Weining, Guizhou, including Weining cattle, Healthy Angus, and Diarrheal Angus. The results of intestinal microbiota analysis showed there were no significant differences in intestinal flora diversity and richness among groups (p > 0.05). The abundance of beneficial bacteria (Lachnospiraceae, Rikenellaceae, Coprostanoligenes, and Cyanobacteria) in Weining cattle were significantly higher than in Angus cattle (p < 0.05). The potential pathogens including Anaerosporobacter and Campylobacteria were enriched in the DA group. Furthermore, the abundance of Lachnospiraceae was very high in the WN group (p < 0.05), which might explain why Weining cattle are less prone to diarrhea. This is the first report on the intestinal flora of Weining cattle, furthering understanding of the relationship between intestinal flora and health.
Collapse
Affiliation(s)
- Lei Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Daoyi Wu
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Yu Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingjin Wang
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| | - Jinping Ma
- Bijie Institute of Animal Husbandry and Veterinary Science, Bijie, China
| |
Collapse
|
47
|
Malan-Müller S, Valles-Colomer M, Palomo T, Leza JC. The gut-microbiota-brain axis in a Spanish population in the aftermath of the COVID-19 pandemic: microbiota composition linked to anxiety, trauma, and depression profiles. Gut Microbes 2023; 15:2162306. [PMID: 36651663 PMCID: PMC9851210 DOI: 10.1080/19490976.2022.2162306] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023] Open
Abstract
The prevalence of anxiety and depression soared following the COVID-19 pandemic. To effectively treat these conditions, a comprehensive understanding of all etiological factors is needed. This study investigated fecal microbial features associated with mental health outcomes (symptoms of anxiety, depression, or posttraumatic stress disorder (PTSD)) in a Spanish cohort in the aftermath of the COVID-19 pandemic. Microbial communities from stool samples were profiled in 198 individuals who completed validated, self-report questionnaires. 16S ribosomal RNA gene V3-4 amplicon sequencing was performed. Microbial diversity and community structure were analyzed, together with relative taxonomic abundance. In our cohort of N=198, 17.17% reported depressive symptoms, 37.37% state anxiety symptoms, 40.90% trait anxiety symptoms, and 8.08% PTSD symptoms, with high levels of comorbidity. Individuals with trait anxiety had lower Simpson's diversity. Fusicatenibacter saccharivorans was reduced in individuals with comorbid PTSD + depression + state and trait anxiety symptoms, whilst an expansion of Proteobacteria and depletion of Synergistetes phyla were noted in individuals with depressive symptoms. The relative abundance of Anaerostipes was positively correlated with childhood trauma, and higher levels of Turicibacter sanguinis and lower levels of Lentisphaerae were found in individuals who experienced life-threatening traumas. COVID-19 infection and vaccination influenced the overall microbial composition and were associated with distinct relative taxonomic abundance profiles. These findings will help lay the foundation for future studies to identify microbial role players in symptoms of anxiety, depression, and PTSD and provide future therapeutic targets to improve mental health outcomes.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Mireia Valles-Colomer
- Department of Cellular Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Tomás Palomo
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| | - Juan C. Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Neurochemistry Research Institute UCM, Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
| |
Collapse
|
48
|
Riezu-Boj JI, Barajas M, Pérez-Sánchez T, Pajares MJ, Araña M, Milagro FI, Urtasun R. Lactiplantibacillus plantarum DSM20174 Attenuates the Progression of Non-Alcoholic Fatty Liver Disease by Modulating Gut Microbiota, Improving Metabolic Risk Factors, and Attenuating Adipose Inflammation. Nutrients 2022; 14:nu14245212. [PMID: 36558371 PMCID: PMC9787191 DOI: 10.3390/nu14245212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease, reaching epidemic proportions worldwide. Targeting the gut-adipose tissue-liver axis by modulating the gut microbiota can be a promising therapeutic approach in NAFLD. Lactiplantibacillus plantarum, a potent lactic-acid-producing bacterium, has been shown to attenuate NAFLD. However, to our knowledge, the possible effect of the Lactiplantibacillus plantarum strain DSM20174 (L.p. DSM20174) on the gut-adipose tissue axis, diminishing inflammatory mediators as fuel for NAFLD progression, is still unknown. Using a NAFLD mouse model fed a high-fat, high-fructose (HFHF) diet for 10 weeks, we show that L.p DSM20174 supplementation of HFHF mice prevented weight gain, improved glucose and lipid homeostasis, and reduced white adipose inflammation and NAFLD progression. Furthermore, 16S rRNA gene sequencing of the faecal microbiota suggested that treatment of HFHF-fed mice with L.p DSM20174 changed the diversity and altered specific bacterial taxa at the levels of family, genus, and species in the gut microbiota. In conclusion, the beneficial effects of L.p DSM20174 in preventing fatty liver progression may be related to modulations in the composition and potential function of gut microbiota associated with lower metabolic risk factors and a reduced M1-like/M2-like ratio of macrophages and proinflammatory cytokine expression in white adipose tissue and liver.
Collapse
Affiliation(s)
- José I. Riezu-Boj
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Tania Pérez-Sánchez
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - María J. Pajares
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Department of Nutrition, Food Sciences, and Physiology, University of Navarra, 31008 Pamplona, Spain
- Center for Nutrition Research, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.I.M.); (R.U.); Tel.: +34-948-425600 (F.I.M.); +34-948-169000 (R.U.)
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- Correspondence: (F.I.M.); (R.U.); Tel.: +34-948-425600 (F.I.M.); +34-948-169000 (R.U.)
| |
Collapse
|
49
|
Effects of Fulvic Acids on Gut Barrier, Microbial Composition, Fecal Ammonia Emission and Growth Performance in Broiler Chickens. J APPL POULTRY RES 2022. [DOI: 10.1016/j.japr.2022.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
50
|
Prebiotic potential of apple pomace and pectins from different apple varieties: Modulatory effects on key target commensal microbial populations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|