1
|
Garcia-Maset R, Chu V, Yuen N, Blumgart D, Yoon J, Murray BO, Joseph AA, Rohn JL. Effect of host microenvironment and bacterial lifestyles on antimicrobial sensitivity and implications for susceptibility testing. NPJ ANTIMICROBIALS AND RESISTANCE 2025; 3:42. [PMID: 40399473 PMCID: PMC12095824 DOI: 10.1038/s44259-025-00113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 05/01/2025] [Indexed: 05/23/2025]
Abstract
Bacterial infections remain a major global health issue, with antimicrobial resistance (AMR) worsening the crisis. However, treatment failure can occur even when bacteria show antibiotic susceptibility in diagnostic tests. We explore factors such as phenotypic resilience, bacterial lifestyles such as biofilms, and differences between laboratory tests and real infection sites, highlighting the need for improved platforms to better predict treatment outcomes, and reviewing emerging technologies aimed at improving susceptibility testing.
Collapse
Affiliation(s)
- Ramon Garcia-Maset
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK.
| | - Victoria Chu
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Nicholas Yuen
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Dalia Blumgart
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Jenny Yoon
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Benjamin O Murray
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Amelia A Joseph
- Nottingham University Hospitals NHS Trust, Nottingham, NG5 1PB, UK
| | - Jennifer L Rohn
- Centre for Urological Biology, Department of Renal Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
2
|
Weng L, Cui Y, Jian W, Zhang Y, Pang L, Cao Y, Zhou Y, Liu W, Lin H, Tao Y. Inter-kingdom interactions and environmental influences on the oral microbiome in severe early childhood caries. Microbiol Spectr 2025:e0251824. [PMID: 40243315 DOI: 10.1128/spectrum.02518-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 03/18/2025] [Indexed: 04/18/2025] Open
Abstract
Dental caries arise from intricate interactions among oral microorganisms, impacting ecological stability and disease progression. In this study, we aimed to investigate the microbial diversity and inter-kingdom interactions in severe early childhood caries (S-ECC) and assess the influence of environmental factors such as salivary pH and trace elements. We analyzed 61 children aged 3-4 years with complete deciduous dentition, evaluating salivary pH, buffering capacity, and trace elements (iron, fluoride). We examined the performance of 16S rRNA V1-V9 regions gene and internal transcribed spacer (ITS) primers for bacteria and fungi from plaque and saliva to characterize community compositions and diversity. Findings revealed significant shifts in bacterial diversity in S-ECC saliva samples, marked by decreased diversity and elevated abundance of cariogenic species, particularly Streptococcus mutans. Candida albicans was notably more prevalent in the S-ECC group, implicating its potential role in pathogenesis. Iron and fluoride concentrations showed no significant correlation with microbial community structure. Network analyses uncovered complex intra- and inter-kingdom interactions, underscoring cooperative and competitive dynamics. S-ECC children exhibited higher abundances of bacteria (Streptococcus mutans, Granulicatella, Actinomyces) and fungi (Candida albicans), with specific microbial taxa associated with reduced salivary pH. IMPORTANCE This study illuminates the intricate relationship between bacteria and fungi within the oral microbial community of children, specifically highlighting differences between those with S-ECC and those without caries. Through an extensive analysis of the microbial composition in both saliva and dental plaque, we identified a significant increase in the abundance of specific bacterial taxa (e.g., S. mutans, Granulicatella, Actinomyces) and fungal species (e.g., C. albicans) in the oral cavities of children with S-ECC. This finding underscores the potential role of these microorganisms in the development of caries. Contrary to previous studies that emphasize the importance of iron and fluoride in oral health, our research found no significant correlation between the concentrations of these elements and the composition of oral microbial communities. This result challenges conventional understanding and opens new avenues for future research. Additionally, our findings revealed an association between Veillonella sp., Propionibacterium sp., and Candida sp. and reduced salivary pH. This provides novel insights into the relationship between the oral microenvironment and caries development. The implications of our findings are substantial for the development of prevention and intervention strategies targeting childhood caries. They also underscore the critical need for a deeper exploration of oral microbial interactions and their environmental influences.
Collapse
Affiliation(s)
- Lingjia Weng
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuqi Cui
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenting Jian
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yuwen Zhang
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liangyue Pang
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yina Cao
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Zhou
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wei Liu
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huancai Lin
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ye Tao
- Hospital of Stomatology, SunYat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology SunYat-sen University, Guangzhou, Guangdong, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zhang K, Gao M, Zheng G, Xu P, Fu Y, Qiu L, Yu F, Shen Y, Wang M, Hu X, Sun Y, Zhang L, Pan Y. A Pyrroloquinazoline Analogue Regulated Streptococcus mutans and Streptococcus sanguinis Dual-Species Biofilms. Int Dent J 2025; 75:1420-1430. [PMID: 39794267 PMCID: PMC11976574 DOI: 10.1016/j.identj.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 01/13/2025] Open
Abstract
OBJECTIVE Selective inhibition of cariogenic bacteria is regarded as a potential strategy against caries. To assess the potential of SCH-79797, one novel promising antibiotic, in microbial equilibrium using a dual-species biofilms model of Streptococcus mutans (S. mutans) and Streptococcus sanguinis (S. sanguinis). METHODS Biofilm biomass and metabolic activity were disclosed using the MTT and crystal violet staining methods. Besides, bacteria/exopolysaccharide staining and anthrone method were applied to measure extracellular polysaccharides (EPS) synthesis, while lactic acid measurement was used to assess acid production. Then, quantitative real-time PCR (qRT-PCR) was employed to investigate gene variation related to polysaccharide production and interspecies competition within dual-species biofilm. The dual-species biofilm configuration was mirrored by fluorescence in situ hybridization (FISH). Growth of the planktonic bacteria was reflected by growth curve. Lastly, bacterial cell membranes were visualized by transmission electron microscope (TEM). RESULTS Within dual-species biofilm, SCH-79797 not only abated biomass, metabolic activity, EPS as well as acid generation but also decreased the proportion of opportunistic cariogenic S. mutans. Besides, polysaccharides production and competition-related genes (gtfP, spxB) in S. sanguinis were up-regulated, whereas these associated genes (gtfB, gtfC, gtfD, and nlmD) in S. mutans were down-regulated inside dual-species biofilm which displayed decreased S. mutans ratio. Additionally, SCH-79797 had a selective inhibitory effect on S. mutans rather than S. sanguinis, including biofilm's biomass, metabolic activity, acid and polysaccharides generation, bacterial growth, and cell membrane integrity. CONCLUSIONS SCH-79797 showed regulatory effects on controlling dual-species biofilm ecologically, indicating its potential to be a latent anticaries agent.
Collapse
Affiliation(s)
- Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Mengjia Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gaozhe Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Puxin Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yu Fu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lili Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Dental Emergency, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Fangzheng Yu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Min Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiangyu Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lingjun Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China; Department of Endodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Ji M, Xiong K, Fu D, Chi Y, Wang Y, Yao L, Yang X, Yan Y, Zhu H, Li Y, Ren B, Zou L. The landscape of the microbiome at different stages of root caries. Clin Oral Investig 2025; 29:217. [PMID: 40155488 DOI: 10.1007/s00784-025-06301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
OBJECTIVE To investigate the relationship between microorganisms and root caries, identify core species, and explore their interactions. MATERIALS AND METHODS Thirty patients with different levels of root caries were included. Plaques from superficial (n = 30) and deep root caries (n = 30) and sound root surfaces (n = 30) were collected. Microbial diversity and composition across different stages of root caries were analyzed using 16 S rRNA and 18 S rRNA high-throughput sequencing. Wilcoxon paired comparisons were conducted to minimize individual variations. LefSe analysis was performed to identify stage-specific microbial enrichment. In vitro biofilm models of C. albicans, S. mutans and A. viscosus were established to examine the effects of C. albicans on biofilm formation, virulence factor expression, and metabolic pathway regulation. Fungal transcriptomes were sequenced to explore how fungal species affect bacterial growth and cariogenicity. RESULTS No significant differences in microbial diversity or structure were observed, but relative abundances of some species differed significantly (p < 0.05). LefSe analysis showed that the genus Streptococcus, Actinomyces, Lactobacillus, and Bacillus were enriched in superficial caries, whereas Prevotella was enriched in deep lesions. C. albicans was the predominant fungal species in root plaques and positively correlated with S. mutans and Actinomyces sp. HMT448. C. albicans promoted the growth, biofilm formation, and cariogenicity of S. mutans and A. viscosus via the arginine biosynthesis pathway. CONCLUSION Oral microecology is stable, and species imbalance is a key factor in root caries. Cross-kingdom interactions between S. mutans, A. viscosus, and C. albicans enhance cariogenic biofilms via the arginine biosynthesis pathway, offering insights for clinical treatments of root caries. CLINICAL RELEVANCE Our study revealed the first landscape of the microbiome from different stages of root caries and indicated that targeting the interactions of core species may be a practical way to prevent and treat clinical root caries.
Collapse
Affiliation(s)
- Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Kaixin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yaqi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xueqin Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China.
- Tianfu Jiangxi Laboratory, Chengdu, Sichuan, China.
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Conservation Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Li M, Su Z, Zhu J, Zhen L, Huang X, Luo J, Li J, Yang J, Li J. Clinically Oriented Oral Environment-Triggered Underwater Adhesives for Root Caries Treatment through Dentinal Tubule Occlusion and Remineralization. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16576-16589. [PMID: 40052410 DOI: 10.1021/acsami.4c20161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The application of silk fibroin (SF) hydrogels is often limited by their brittleness; on the other hand, increasing ductility can lead to insufficient strength of the hydrogel. These drawbacks make it difficult to apply to treat root surface caries, which are continuously exudated by crevicular fluid and have special locations and shapes. Herein, we design an underwater adhesive hydrogel with a fluid-solid spontaneous transition triggered by water for root caries treatment. Guanidine hydrochloride (GH), amorphous calcium phosphate nanoparticles (ACP), and tannic acid (TA) are applied to coassemble with SF to form an underwater adhesive hydrogel (STAG). GH as a hydrogen bond dissociator can break the hydrogen bonds between SF and TA and rapidly diffuse in a water environment, thus providing the system with high fluidity and regelation ability. Ca2+ of ACP can chelate with TA to enhance the cohesion of the hydrogel. Hydrogel containing ACP has stronger adhesion strength in lap-shear and tensile tests than hydrogel without ACP and also exhibits better properties in rheological tests. Even if stored in freeze-dried powder form for 90 days, the STAG fluid can be smoothly injected from the needle with only 0.8 N, completely filling the defective area of root caries and solidifying in situ. The formed restorative material can effectively promote tooth remineralization and seal the dentin tubules, which provides a feasible pathway for the treatment of root caries.
Collapse
Affiliation(s)
- Moyan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Comfort Care Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jieyu Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350122, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Mousa HRF, Abiko Y, Washio J, Sato S, Takahashi N. Candida albicans and NCAC species: acidogenic and fluoride-resistant oral inhabitants. J Oral Microbiol 2025; 17:2473938. [PMID: 40052107 PMCID: PMC11884091 DOI: 10.1080/20002297.2025.2473938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/05/2025] [Accepted: 02/19/2025] [Indexed: 03/09/2025] Open
Abstract
Objective Although Candida species are thought to contribute to dental caries, their acid production under anaerobic conditions and susceptibility to fluoride have not been thoroughly studied. We therefore investigated the growth, acid production, and effect of fluoride on Candida species. Methods Aerobic growth, acid production from glucose and its end-products under aerobic and anaerobic conditions, and enolase activity were measured in C. albicans and non-Candida-albicans-Candida (NCAC) species (C. tropicalis, C. parapsilosis, C. maltosa, and C. glabrata), and the effect of fluoride on these abilities was evaluated. Results All Candida species produced acids under aerobic and anaerobic conditions, and acetate and TCA cycle metabolites were detected. However, these organic acids only accounted for 1.9-57.6% of the acids produced. Up to 80 mM fluoride hardly inhibited growth and did not inhibit acid production except for C. glabrata, despite the low 50% inhibitory fluoride concentration of 0.19-0.34 mM for enolase. Conclusion Candida species produced acids under aerobic and anaerobic conditions, indicating their significant cariogenicity. Their growth and acid production were highly fluoride-resistant, whereas their enolase was fluoride-sensitive, suggesting mechanisms for maintaining low intracellular fluoride. The mechanisms underlying the fluoride resistance remain underexplored. Approaches other than fluoride may be needed to control Candida-associated caries.
Collapse
Affiliation(s)
- Haneen Raafat Fathi Mousa
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Pediatric Dentistry and Dental Public Health Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
7
|
Xia Q, Pierson S. HPV Infection and Oral Microbiota: Interactions and Future Implications. Int J Mol Sci 2025; 26:1424. [PMID: 40003891 PMCID: PMC11855562 DOI: 10.3390/ijms26041424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Human papillomavirus (HPV) is a leading cause of mucosal cancers, including the increasing incidence of HPV-related head and neck cancers. The oral microbiota-a diverse community of bacteria, fungi, and viruses-play a critical role in oral and systemic health. Oral microbiota dysbiosis is increasingly linked to inflammation, immune suppression, and cancer progression. Recent studies have highlighted a complex interaction between HPV and oral microbiota, suggesting this interplay influences viral persistence, immune response and the tumor microenvironment. These interactions hold significant implications for disease progression, clinical outcomes, and therapeutic approaches. Furthermore, the oral microbiota has emerged as a promising biomarker for HPV detection and disease progress assessment. In addition, probiotic-based treatments are gaining attention as an innovative approach for preventing or treating HPV-related cancers by modulating the microbial environment. In this review, current research on the interaction between HPV and oral microbiota is provided, their clinical implications are explored, and the future potential for utilizing microbiota for diagnostic and therapeutic innovations in HPV-associated cancers is discussed.
Collapse
Affiliation(s)
- Qingqing Xia
- Department of Clinical Investigation, Brooke Army Medical Center, San Antonio, TX 78234, USA;
| | | |
Collapse
|
8
|
Drejka P, Kula P, Barszczewska-Rybarek I. Novel Quaternary Ammonium Urethane-Dimethacrylates for Copolymers with Low Water Sorption and Solubility. Molecules 2025; 30:769. [PMID: 40005086 PMCID: PMC11858556 DOI: 10.3390/molecules30040769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Six novel urethane-dimethacrylates with quaternary ammonium groups (QAUDMAs) were successfully synthesized from 2-(methacryloyloxy)ethyl-2-hydroxyethylmethylalkylammonium bromide (QAHAMA-n, where n was 8 and 10) and diisocyanate (isophorone diisocyanate (IPDI), 4,4'-methylenedicyclohexyl diisocyanate (CHMDI), and 4,4'-diphenylmethane diisocyanate (MDI)). Their chemical structures were confirmed through nuclear magnetic resonance spectroscopy (NMR) and Fourier transform infrared spectroscopy (FTIR). The refractive index (RI) and density (dm) were also determined. The novel QAUDMAs were compounded with common dental dimethacrylates and subsequently photopolymerized. The resulting copolymers, comprising QAUDMA 40 wt.%, bisphenol A glycerolate dimethacrylate (Bis-GMA) 40 wt.%, and triethylene glycol dimethacrylate (TEGDMA) 20 wt.%, were tested for water sorption (WS) and solubility (SL). The WS and SL values decreased following these orderings based on the diisocyanate: IPDI > CHMDI > MDI for WS, and MDI > CHMDI > IPDI for SL. The WS values ranged from 11.50 to 13.82 µg/mm3, and were significantly lower than the recommended maximum for dental materials, 40 µg/mm3. The SL values that met the recommended maximum, 7.5 µg/mm3, ranged from 2.67 to 6.75 µg/mm3. Only the copolymer having the QAHAMA-8- and MDI-derived QAUDMA had the SL slightly exceeding 7.5 µg/mm3, at 7.89 µg/mm3.
Collapse
Affiliation(s)
| | | | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland; (P.D.); (P.K.)
| |
Collapse
|
9
|
Thu Le H, Luc Phuong TT, Huy GH, Nguyen PV, Nguyen BVG. Investigation of the optimal condition for the growth and biofilm development of Candida albicans on three dental materials. IRANIAN JOURNAL OF MICROBIOLOGY 2025; 17:153-162. [PMID: 40330050 PMCID: PMC12049753 DOI: 10.18502/ijm.v17i1.17813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Background and Objectives Candida albicans as pathogenic fungi cause conditions like oral candidiasis and dental caries. The critical role of biofilms in the pathogenicity of C. albicans necessitates the exploration of conditions that promote their growth and development. Our study aimed to delineate the optimal conditions conducive to the proliferation and biofilm production of C. albicans on prevalent dental materials. Materials and Methods To approximate oral cavity conditions, culture media were enhanced with various glucose concentrations to assess the growth and biofilm-forming capability of the fungus through growth curve analysis and crystal violet assays. Results The findings suggest that YPG medium augmented with 4% glucose presents as an optimal environment for C. albicans growth. Biofilm formation was most effectively promoted in RPMI medium supplemented with the same concentration of glucose. Composite resin was identified as the substrate most susceptible to biofilm development by C. albicans under these conditions. Conclusion This investigation highlights the necessity of accounting for microbial activity and material characteristics in the prevention and management of dental biofilm formation. Our research advances the understanding of in vitro cultivation of C. albicans, simulating the oral milieu more accurately and contributing to enhanced oral health management for individuals utilizing temporary dental fixtures.
Collapse
Affiliation(s)
- Hoai Thu Le
- Center of Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Truong Thi Luc Phuong
- Faculty of Odonto – Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Giang Hoang Huy
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuoc-Vinh Nguyen
- Faculty of Pharmacy, University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Bac Vu Giang Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
10
|
He J, Cheng L. The Oral Microbiome: A Key Determinant of Oral Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:133-149. [PMID: 40111690 DOI: 10.1007/978-3-031-79146-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
As the second largest reservoir of human microbes, the oral cavity is colonized by millions of tiny creatures collectively named as oral microbiome. Species detected in human mouth are diverse, including bacteria, fungi, viruses, and protozoa. Active bidirectional interaction exists between the oral microbiome and the host. Stresses from hosts shape the composition, distribution pattern, and the community behaviors of the oral microbiome, while any changes occurring on the oral microbiome may disrupt its symbiosis relationship with the host and ultimately lead to oral and systemic diseases that jeopardize the host's health. In this chapter, the latest understanding about the role of oral microbiome in common oral diseases, including dental caries, periodontal disease, oral candidiasis, and hyposalivation, is discussed.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Khachatryan LG, Allahbakhsi F, Vadiyan DE, Mohammadian M. Investigating the association between Candida albicans and early childhood dental caries: A comprehensive systematic review and meta-analysis. PLoS One 2024; 19:e0315086. [PMID: 39680595 DOI: 10.1371/journal.pone.0315086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Early childhood caries (ECC) is a significant public health concern affecting children globally. Recent studies suggest a potential association between the presence of Candida albicans (C. albicans) in the oral cavity and the risk of ECC, but findings have been inconsistent. This systematic review and meta-analysis aimed to investigate the association between C. albicans and ECC. METHODS A comprehensive literature search was conducted across databases including PubMed, Web of Science, Cochrane Central Register of Controlled Trials, Embase, Google Scholar, and Scopus. Studies were included if they examined the presence of C. albicans and the occurrence or severity of dental caries in children. Data extraction and quality assessment were performed independently by two reviewers. Statistical analyses, including pooled odds ratios (OR) and 95% confidence intervals (CI), were conducted to synthesize the findings. RESULTS A total of 22 studies, involving 3301 participants, were included in the meta-analysis. The findings revealed a significant association between the presence of C. albicans and an increased likelihood of ECC, with a pooled odds ratio (OR) of 4.42 (95% CI: 3.14-6.24, p < 0.001). Subgroup analyses showed that factors such as geographic region, study design, and detection methods influenced the strength of this association. Studies conducted in Europe reported a stronger association (OR: 10.13, 95% CI: 6.01-17.09) compared to those in Asia (OR: 3.62, 95% CI: 2.53-5.20) and the Americas (OR: 3.98, 95% CI: 1.14-13.87). Case-control studies had a higher pooled OR (5.30, 95% CI: 1.72-16.31) compared to cross-sectional studies (4.30, 95% CI: 2.92-6.33). The odds of ECC in children with C. albicans were 4.08 (95% CI: 2.65-6.27) in dental plaque samples, 9.55 (95% CI: 2.17-42.01) in oral swab samples, and 4.70 (95% CI: 2.44-9.09) in saliva samples. No publication bias was observed based on Begg's test (P-value = 0.612) and Egger's test (P-value = 0.250). CONCLUSIONS The findings provide support for the hypothesis that C. albicans plays a role in the development of ECC. Moving forward, it is essential for future research to concentrate on comprehending the mechanisms that underlie this relationship and to develop specific strategies for prevention.
Collapse
Affiliation(s)
- Lusine G Khachatryan
- Department of Pediatric Diseases, N.F. Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Fatemeh Allahbakhsi
- Department of Cardiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Diana E Vadiyan
- Department of Pediatric, Preventive Dentistry and Orthodontics, Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahdi Mohammadian
- Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Jeong GJ, Khan F, Kim DK, Cho KJ, Tabassum N, Choudhury A, Hassan MI, Jung WK, Kim HW, Kim YM. Marine polysaccharides for antibiofilm application: A focus on biomedical fields. Int J Biol Macromol 2024; 283:137786. [PMID: 39577534 DOI: 10.1016/j.ijbiomac.2024.137786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
Microbial pathogens such as bacteria and fungi form biofilms, which represent substantial hurdles in treating human illness owing to their adaptive resistance mechanism to conventional antibiotics. Biofilm may cause persistent infection in a variety of bodily areas, including wounds, oral cavity, and vaginal canal. Using invasive devices such as implants and catheters contributes significantly to developing healthcare-associated infections because they offer an ideal surface for biofilm formation. Marine organisms produce a variety of polysaccharides, which have recently attracted worldwide attention due to their biochemical features, various applications, and advantageous properties such as bioactivity, biodegradability, and biocompatibility. Because of their antimicrobial and antibiofilm features, several polysaccharides such as chitosan, fucoidan, carrageenan, alginate, and hyaluronic acid have been used to treat infected wounds as well as ophthalmic, oral, and vaginal infections. In addition, marine polysaccharides are currently employed as coatings on medical devices and implant materials, alone or in combination with other bioactive substances or nanomaterials, to protect the materials' undertones from microbial contamination. This review discussed the recent advancements in marine polysaccharides and their derivatives as a therapeutic potential against biofilm-associated diseases. The potential obstacles in the scalability of their production, clinical translation, and/or regulatory hurdles have also been discussed.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Do-Kyun Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Arunabh Choudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
13
|
Wang Y, Li J, Chen R, Xu Q, Wang D, Mao C, Xiang Z, Wu G, Yu Y, Li J, Zheng Y, Chen K. Emerging concepts in mucosal immunity and oral microecological control of respiratory virus infection-related inflammatory diseases. Microbiol Res 2024; 289:127930. [PMID: 39427450 DOI: 10.1016/j.micres.2024.127930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/22/2024] [Accepted: 10/06/2024] [Indexed: 10/22/2024]
Abstract
Oral microecological imbalance is closely linked to oral mucosal inflammation and is implicated in the development of both local and systemic diseases, including those caused by viral infections. This review examines the critical role of the interleukin (IL)-17/helper T cell 17 (Th17) axis in regulating immune responses within the oral mucosa, focusing on both its protective and pathogenic roles during inflammation. We specifically highlight how the IL-17/Th17 pathway contributes to dysregulated inflammation in the context of respiratory viral infections. Furthermore, this review explores the potential interactions between respiratory viruses and the oral microbiota, emphasizing how alterations in the oral microbiome and increased production of proinflammatory factors may serve as early, non-invasive biomarkers for predicting the severity of respiratory viral infections. These findings provide insights into novel diagnostic approaches and therapeutic strategies aimed at mitigating respiratory disease severity through monitoring and modulating the oral microbiome.
Collapse
Affiliation(s)
- Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ruyi Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Qiuyi Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Di Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Chenxi Mao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ziyi Xiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Guangshang Wu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Ying Yu
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310063, China
| | - Jianhua Li
- Zhejiang Key Laboratory of Public Health Detection and Pathogenesis Research, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
14
|
Du Y, Li G, Li X, Jian X, Wang X, Xie Y, Li Z, Zhang Z. Dietary Immunoglobulin Y by Targeting Both GbpB and GtfB Enhances the Anticaries Effect in Rats. Int Dent J 2024; 74:1298-1305. [PMID: 38797634 PMCID: PMC11551561 DOI: 10.1016/j.identj.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
OBJECTIVE The purpose of this work was to develop an anti-CAT-SYI immunoglobulin Y (IgY) antibody that targeted both GtfB (glucosyltransferase B) and GbpB (glucan-binding protein B) and test its anticaries properties in rats. METHODS A new CAT-SYI fusion gene was created utilising functional DNA fragments from the GtfB and GbpB genes. The recombinant antigens, comprising the fused CAT-SYI antigen, GtfB, and GbpB, were expressed and purified using a prokaryotic expression and purification system. The purified recombinant antigens were utilised to immunise laying hens against particular IgY production. The biological activities of these particular IgY antibodies were then assessed both in vitro and in vivo, including their capacity to suppress biofilm formation and tooth caries. RESULTS Results indicated that these produced IgY antibodies demonstrated a high antibody titer (>0.1 μg/mL) and could precisely recognise and bind to their respective antigens. Furthermore, it was discovered that these specific IgY antibodies successfully bind to Streptococcus mutans and significantly reduce biofilm development. After 8 weeks of ingesting antigen-specific IgY meals, comprising anti-GtfB IgY and anti-GbpB IgY, the severity of dental caries was dramatically reduced in S mutans-infected Sprague-Dawley rats (P < .01). Anti-CAT-SYI IgY therapy significantly reduced tooth cavities by 89.0% in vivo (P < .05) compared to other treatment groups. CONCLUSIONS The anti-CAT-SYI IgY, a multitarget antibody that targets both GtfB and GbpB, displayed excellent inhibitory effects against S mutans, making it a promising targeted method with improved anticaries efficacy and significant application opportunities.
Collapse
Affiliation(s)
- Yunxiao Du
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Guobin Li
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Xinglin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaohong Jian
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Xiaoling Wang
- Department of Gastroenterology, FuShun People's Hospital, Zigong, China
| | - Yongmei Xie
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zaixin Li
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Zhi Zhang
- Department of Biological Engineering, Sichuan University of Science & Engineering, Zigong, China.
| |
Collapse
|
15
|
Wei Y, Zhang Y, Zhuang Y, Tang Y, Nie H, Haung Y, Liu T, Yang W, Yan F, Zhu Y. Veillonella parvula acts as a pathobiont promoting the biofilm virulence and cariogenicity of Streptococcus mutans in adult severe caries. Microbiol Spectr 2024; 12:e0431823. [PMID: 39345197 PMCID: PMC11537095 DOI: 10.1128/spectrum.04318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/11/2024] [Indexed: 10/01/2024] Open
Abstract
Adult severe caries (ASC) brings severe oral dysfunction and treatment difficulties to patients, and yet no clear pathogenic mechanism for it has been found. This study is focused on the composition of dental plaque microbiome profiles in order to identify disease-relevant species and to investigate into their interactions with the S. mutans. Samples of dental plaque were collected for metagenomic analysis. The acidification, aciduricity, oxidative stress tolerance, and gtf (glucosyltransferase) gene expression of S. mutans cocultured with V. parvula which was identified as ASC-related dominant bacterium. The biofilm formation and extracellular exopolysaccharide (EPS) synthesis of dual-strain were analyzed with scanning electron microscopy (SEM), crystal violet (CV) staining, live/dead bacterial staining, and confocal laser scanning microscopy (CLSM). Furthermore, rodent model experiments were performed to validate the in vivo cariogenicity of the dual-species biofilm. The most significantly abundant taxon found associated with ASC was V. parvula. In vitro experiments found that V. parvula can effectively promote S. mutans mature biofilm formation with enhanced acid resistance, hydrogen peroxide detoxicity, and biofilm virulence. Rodent model experiments revealed that V. parvula was incapable of causing disease on its own, but it significantly heightened the biofilm virulence of S. mutans when being co-infected and augmented the progression, quantity, and severity of dental caries. Our findings demonstrated that V. parvula may act as a synergistic pathobiont to modulate the metabolic activity, spatial structure, and pathogenicity of biofilms of S. mutans in the context of ASC.IMPORTANCEAdult severe caries (ASC), as a special type of acute caries, is rarely reported and its worthiness of further study is still in dispute. Yet studies on the etiology of severe caries in adults have not found a clear pathogenic mechanism for it. Knowledge of the oral microbiota is important for the treatment of dental caries. We discovered that the interaction between V. parvula and S. mutans augments the severity of dental caries in vivo, suggesting V. parvula may act as a synergistic pathobiont exacerbating biofilm virulence of S. mutans in ASC. Our findings may improve the understanding of ASC pathogenesis and are likely to provide a basis for planning appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Wei
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yu Zhang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yuan Zhuang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yifei Tang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Hua Nie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yequan Haung
- Department of Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Ting Liu
- Department of Endodontics, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Weidong Yang
- Department of General Dentistry, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| | - Yanan Zhu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Kashyap B, Padala SR, Kaur G, Kullaa A. Candida albicans Induces Oral Microbial Dysbiosis and Promotes Oral Diseases. Microorganisms 2024; 12:2138. [PMID: 39597528 PMCID: PMC11596246 DOI: 10.3390/microorganisms12112138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024] Open
Abstract
Candida albicans are ubiquitous fungal organisms that colonize the oral cavity of healthy individuals without causing disease. C. albicans is an opportunistic microorganism with several virulent factors that influence the inflammatory process and allow it to invade tissues, evade host defense mechanisms, and release toxins, facilitating proliferation and degradation. At present, increasing emphasis is placed on polymicrobial interactions between C. albicans and various bacterial pathogens. Such interaction is mutually beneficial for both parties: it is competitive and antagonistic. Their complex interaction and colonization in the oral cavity serve as the basis for several oral diseases. The dispersion of C. albicans in saliva and the systemic circulation is noted in association with other bacterial populations, suggesting their virulence in causing disease. Hence, it is necessary to understand fungal-bacterial interactions for early detection and the development of novel therapeutic strategies to treat oral diseases. In this paper, we review the mutualistic interaction of C. albicans in oral biofilm formation and polymicrobial interactions in oral diseases. In addition, C. albicans virulence in causing biofilm-related oral diseases and its presence in saliva are discussed.
Collapse
Affiliation(s)
- Bina Kashyap
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| | | | - Gaganjot Kaur
- Shaheed Kartar Singh Sarabha Dental College & Hospital, Ludhiana 141105, India;
| | - Arja Kullaa
- Institute of Dentistry, University of Eastern Finland, 70211 Kuopio, Finland;
| |
Collapse
|
17
|
Zhu J, Zhang M, Qiu R, Li M, Zhen L, Li J, Luo J, Li J, Wu H, Yang J. Hagfish-inspired hydrogel for root caries: A multifunctional approach including immediate protection, antimicrobial phototherapy, and remineralization. Acta Biomater 2024; 188:117-137. [PMID: 39299624 DOI: 10.1016/j.actbio.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
Root caries is the main cause of oral pain and tooth loss in the elderly. Protecting root lesions from environmental disturbances, resisting pathogens, and facilitating remineralization over time are essential for addressing root caries, but are challenging due to the irregular root surface and the complex oral environment. Hagfish secretes slime when facing danger, which converts into gels upon contact with seawater, suffocating the predators. Inspired by hagfish's defense mechanism, a fluid-hydrogel conversion strategy is proposed to establish a mechanical self-regulating multifunctional platform for root caries treatment. The fluid system (silk fibroin-tannic acid-black phosphorene-urea, ST-BP-U), in which urea disrupts the hydrogen bonds between silk fibroin and tannic acid, can easily spread on the irregular root surface and permeate into dentinal tubules. Upon contact with the surrounding water, urea diffuses, prompting the hydrogel re-formation and creating intimate attachments with micromechanical inlay locks. Meanwhile, BP increases the crosslinking of the re-formed hydrogel network, resulting in reinforced cohesion for robust wet adhesion to the tooth root. This process establishes a structured platform for effective antimicrobial phototherapy and dentin remineralization promotion. This water-responsive fluid-hydrogel conversion system adapts to the irregular root surface in the dynamic wet environment, holding promise for addressing root caries. STATEMENT OF SIGNIFICANCE: Root caries bring a heavy burden to the aging society, but the irregular root surface and dynamic moist oral environment always hinder non-surgical therapeutic effects. Here, we propose a water-responsive fluid-hydrogel conversion strategy aimed at mechanical self-regulation on the irregular and wet root interface to construct a functional structural platform. The liquid system (ST-BP-U) that prebreak intermolecular hydrogen bonds can easily spread on irregular surfaces and dentin tubules. When encountering water, hydrogen bonds re-form, and BP increases the crosslinking of the hydrogel formed in situ. Based on this firm wet-adhesion platform, it provides powerful phototherapy effects and promotes dentin remineralization. This fluid-hydrogel conversion system turns the disadvantages of wet environment into advantages, offering a promising strategy for root caries.
Collapse
Affiliation(s)
- Jieyu Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Min Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Rongmin Qiu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning 530021, China
| | - Moyan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Zhen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Geriatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
18
|
Jeong GJ, Khan F, Tabassum N, Cho KJ, Kim YM. Marine-derived bioactive materials as antibiofilm and antivirulence agents. Trends Biotechnol 2024; 42:1288-1304. [PMID: 38637243 DOI: 10.1016/j.tibtech.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
Microbial infections are major human health issues, and, recently, the mortality rate owing to bacterial and fungal infections has been increasing. In addition to intrinsic and extrinsic antimicrobial resistance mechanisms, biofilm formation is a key adaptive resistance mechanism. Several bioactive compounds from marine organisms have been identified for use in biofilm therapy owing to their structural complexity, biocompatibility, and economic viability. In this review, we discuss recent trends in the application of marine natural compounds, marine-bioinspired nanomaterials, and marine polymer conjugates as possible therapeutic agents for controlling biofilms and virulence factors. We also comprehensively discuss the mechanisms underlying biofilm formation and inhibition of virulence factors by marine-derived materials and propose possible applications of novel and effective antibiofilm and antivirulence agents.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyung-Jin Cho
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
19
|
Ge KX, Jakubovics NS, Quock R, Lam WYH, Chu CH, Yu OY. Preventing proximal enamel caries in neighboring tooth with glass ionomer cement restoration and silver diamine fluoride pretreatment. J Dent 2024; 149:105312. [PMID: 39154833 DOI: 10.1016/j.jdent.2024.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024] Open
Abstract
OBJECTIVE To investigate caries preventive effects of 38 % silver diamine fluoride (SDF) pretreatment on neighboring tooth proximal to glass ionomer cement (GIC), including conventional GIC (CGIC) and resin-modified GIC (RMGIC) restorations in an in vitro model. METHODS HUMAN TOOTH BLOCKS WERE RESTORED WITH: SDF+CGIC (Group 1), CGIC (Group 2), SDF+RMGIC (Group 3) or RMGIC (Group 4). Enamel specimen simulating proximal surface of neighboring tooth was placed in proximity to the restorations. The specimen underwent cariogenic challenge with cross-kingdom biofilm of Streptococcus mutans, Lacticaseibacillus casei and Candida albicans. After cariogenic challenge, the biofilm's growth kinetics, viability, and morphology were evaluated by propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), respectively. The enamel lesion depth, surface morphology and crystal characteristics were determined by micro-computed tomography (micro-CT), SEM and X-ray diffraction (XRD), respectively. RESULTS PMA-qPCR demonstrated lower microbial growth in Group 1 and 3 compared with Group 2 and 4 (p < 0.05). CLSM showed the dead-to-live ratio in Groups 1-4 were 1.15±0.12, 0.53±0.13, 1.10±0.24 and 0.63±0.10, respectively (Group 1,3 > 2,4, p < 0.05). SEM revealed Groups 1 and 3 had scattered biofilm whereas Group 2 and 4 had confluent biofilm. Micro-CT showed the enamel lesion depths (µm) were 98±9, 126±7, 103±6 and 128±7 for Group 1 to 4, respectively (Group 1,3 < 2,4, p < 0.05). SEM revealed oriented and ordered enamel prismatic patterns in Group 1 and 3, not in Group 2 and 4. XRD showed the reflections of hydroxyapatite in Groups 1 and 3 were sharper than Groups 2 and 4. CONCLUSION SDF pretreatment enhances the preventive effect of GIC on proximal enamel surface on neighboring tooth through inhibiting cariogenic biofilm, reducing enamel demineralization and promoting enamel remineralization. CLINICAL SIGNIFICANCE SDF pretreatment of GIC restorations can help prevent caries on neighboring teeth, particular for patients with high caries risk.
Collapse
Affiliation(s)
- Kelsey Xingyun Ge
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special administrative regions of China
| | - Nicholas Stephen Jakubovics
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special administrative regions of China; School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Ryan Quock
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special administrative regions of China; University of Texas School of Dentistry at Houston, Houston, TX, USA
| | - Walter Yu-Hang Lam
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special administrative regions of China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special administrative regions of China
| | - Ollie Yiru Yu
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong Special administrative regions of China.
| |
Collapse
|
20
|
Wei W, Sun J, Ji Z, Hu J, Jiang Q. Gingipain and oncostatin M synergistically disrupt kidney tight junctions in periodontitis-associated acute kidney injury. J Periodontol 2024; 95:867-879. [PMID: 38963713 DOI: 10.1002/jper.24-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by rapid renal decline. Periodontitis, a chronic oral inflammatory disease, is increasingly associated with renal dysfunction. Although periodontitis is recognized as a contributor to kidney damage, the mechanisms linking it to AKI remain unclear. METHODS This study explored the effects of Porphyromonas gingivalis (P. gingivalis) W83-infected periodontitis on AKI in C57BL/6J mice, using ischemia-reperfusion injury 55 days post-infection. Gingipain inhibitors, KYT-1 and KYT-36, were applied. Detection of P. gingivalis was performed using quantitative real-time polymerase chain reaction (qRT-PCR) and PCR, while transcriptome sequencing, qRT-PCR, immunohistochemistry, and immunofluorescence staining assessed renal damage. In vitro, HK-2 cells were exposed to P. gingivalis at a multiplicity of infection of 10 for 48 h, with inhibition by gingipain or oncostatin M (OSM). Disruption of tight junctions (TJs) was quantified using qRT-PCR, transepithelial electrical resistance, and cell counting kit-8 assays. RESULTS Periodontitis worsened AKI, linked to P. gingivalis infection and renal TJ disruption in the kidney. P. gingivalis infection activated OSM expression, which correlated positively with gingipain. Significantly, OSM and gingipain might collaboratively contribute to the damage of renal TJs, with the reduced expression of TJ proteins. Suppressing gingipain activity presented itself as a protective strategy against the destruction of TJs and the attendant worsening of AKI due to periodontitis. CONCLUSIONS Our study enhances the understanding of the interplay between periodontitis and AKI, highlighting the harmful impact of P. gingivalis in AKI.
Collapse
Affiliation(s)
- Wei Wei
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Sun
- Department of Periodontology, Central Laboratory, Jinan Key Laboratory of Oral Tissue Regeneration, Jinan Stomatological Hospital, Jinan, China
| | - Zhaoxin Ji
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Hu Y, Ren B, Cheng L, Deng S, Chen Q. Candida species in periodontitis: A new villain or a new target? J Dent 2024; 148:105138. [PMID: 38906455 DOI: 10.1016/j.jdent.2024.105138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
OBJECTIVES Recent research indicated that fungi might have a role in periodontitis alongside traditional periodontal pathogens. This state-of-the-art narrative review explores current concepts on the involvement of Candida species in periodontitis, and suggests the potential for ecological management of this disease. DATA, SOURCES AND STUDY SELECTION A literature search was conducted for a narrative review on Web of Science, PubMed, Medline and Scopus about periodontitis associated with Candida species. Published articles, including case reports, case series, observational and interventional clinical trials, and critical appraisals of the literature were retrieved and reviewed. CONCLUSIONS Several factors predispose individuals to periodontitis associated with Candida species. These include systemic diseases that lead to immunosuppression and oral environment changes such as cigarette smoking. While a consistent significant increase in the detection rate of Candida species in patients with periodontitis has not been universally observed, there is evidence linking Candida species to the severity of periodontitis and their potential to worsen the condition. Candida species may participate in the development of periodontitis in various ways, including cross-kingdom interactions with periodontal pathogens, changes in the local or systemic environment favoring the virulence of Candida species, and interactions between Candida-bacteria and host immunity. CLINICAL SIGNIFICANCE Mechanical plaque control is the most common treatment for periodontitis, but its effectiveness may be limited, particularly when dealing with systemic risk factors. Understanding the specific role of Candida in periodontitis illuminates innovative approaches for managing the ecological balance in periodontal health.
Collapse
Affiliation(s)
- Yao Hu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China; State Key Laboratory of Oral Diseases & West China School of Stomatology & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Li G, Liu Y, Zhang M, Ning J, Wu L, Jian L, Wu H, Cheng X. Veillonella parvula promotes root caries development through interactions with Streptococcus mutans and Candida albicans. Microb Biotechnol 2024; 17:e14547. [PMID: 39160430 PMCID: PMC11333197 DOI: 10.1111/1751-7915.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
Root caries is a subtype of dental caries that predominantly impacts older adults. The occurrence and progression of root caries are associated with the homeostasis of dental plaque biofilm, and microbial synergistic and antagonistic interactions in the biofilm play a significant role in maintaining the oral microecological balance. The objective of the current study was to investigate the role of Veillonella parvula in the microbial interactions and the pathogenesis of root caries. The analysis of clinical samples from patients with/without root caries revealed that Veillonella and V. parvula were abundant in the saliva of patients with root caries. More importantly, a significantly increased colonization of V. parvula was observed in root carious lesions. Further in vitro biofilm and animal study showed that V. parvula colonization increased the abundance and virulence of Streptococcus mutans and Candida albicans, leading to the formation of a polymicrobial biofilm with enhanced anti-stress capacity and cariogenicity, consequently exacerbating the severity of carious lesions. Our results indicate the critical role of V. parvula infection in the occurrence of root caries, providing a new insight for the etiological investigation and prevention of root caries.
Collapse
Affiliation(s)
- Guo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduSichuanChina
| | - Yuqiu Liu
- Department of Oral MedicineSuining Central HospitalSuiningSichuanChina
| | - Mengdie Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduSichuanChina
| | - Jia Ning
- Department of General Dentistry, School & Hospital of StomatologyTianjin Medical UniversityTianjinChina
| | - Linrui Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduSichuanChina
| | - Lixiang Jian
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduSichuanChina
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduSichuanChina
| | - Xingqun Cheng
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
23
|
Dimopoulou E, Baysan A. Effect of topical applications containing surface pre-reacted glass-ionomer filler on dental hard tissues-A systematic review. J Dent 2024; 147:104904. [PMID: 38442802 DOI: 10.1016/j.jdent.2024.104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVES The objective of this systematic review was to assess the efficacy of topical applications containing surface pre-reacted glass-ionomer filler on dental hard tissues. DATA SOURCES A comprehensive literature search was conducted in PubMed, MEDLINE, Embase, Scopus, ClinicalTrials.gov, Lilacs and Cochrane Central Register of Controlled Trials (until 15.08.2022). Google and Open Grey were used to search for grey literature and handsearching was conducted. STUDY SELECTION Clinical and in vitro studies conducted on human adult teeth were considered eligible without date and language restrictions. The electronic database generated 2,488 results. In total, 227 studies were found to be relevant from which 71 duplicates were removed. Title and abstract screening were then conducted, and a total of 33 studies met the inclusion criteria were assessed for full text screening. Two authors concluded that 11 studies satisfied the eligibility criteria. In vitro studies were evaluated using an accepted quality assessment tool for dental studies. Cochrane risk of bias tool was used for quality assessment of clinical randomised studies, whilst ROBINS-I tool was used for non-randomised studies. RESULTS Nine in vitro and only two non-randomised clinical trials were reported to meet the eligibility criteria. Results were grouped and analysed separately according to the study design. Different modes of surface pre-reacted glass-ionomer filler delivery were reported in the included studies. Three studies tested the effect of surface pre-reacted glass-ionomer filler containing toothpastes, whilst three studies investigated the effect of polishing pastes with surface pre-reacted glass-ionomer filler, three studies used eluates as surface pre-reacted glass-ionomer filler delivery method and two studies reported the effect of the coatings. The effect of those vehicles was tested on enamel, dentine or oral biofilm. Each study was analysed individually, and heterogeneity was detected among in vitro and clinical studies. Half of the in vitro studies were medium risk, whilst three were low and two studies presented with high risk. In clinical trials, outcome, confounding, selection biases were reported. Meta-analysis was therefore unable to be carried out. CONCLUSION Regardless of the mode of delivery and type of studies, all included studies demonstrated the efficacy of surface pre-reacted glass-ionomer filler containing topical applications to inhibit demineralisation of dental hard tissues at a dose dependant manner. Antimicrobial properties towards cariogenic species were also reported. CLINICAL SIGNIFICANCE Surface pre-reacted glass-ionomer filler containing topical applications may serve as potential caries preventive and cariostatic tools. The systematic review registered in PROSPERO, International prospective register of systematic reviews, No. CRD42022347130.
Collapse
Affiliation(s)
- Eleni Dimopoulou
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Aylin Baysan
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
24
|
Sun Y, Chen Y, Du Q, Zhang J, Xu M, Zheng G, Zhou W, Zhou X, Qiu L, Pan Y, Zhang K. Fluoride-resistant Streptococcus mutans within cross-kingdom biofilms support Candida albicans growth under fluoride and attenuate the in vitro anti-caries effect of fluorine. Front Microbiol 2024; 15:1399525. [PMID: 39035442 PMCID: PMC11257928 DOI: 10.3389/fmicb.2024.1399525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024] Open
Abstract
Fluoride-resistant Streptococcus mutans (S. mutans) might affect the ecological balance of biofilms in the presence of fluoride. We used a S. mutans and Candida albicans (C. albicans) cross-kingdom biofilm model to investigate whether fluoride-resistant S. mutans in biofilms would support C. albicans growth under fluoride stress and attenuate the in vitro anti-caries effect of fluorine. The impact of fluoride-resistant S. mutans on formation of cross-kingdom biofilms by S. mutans and C. albicans in the presence of fluoride was investigated in vitro using the crystal violet staining assay. Biofilm constitution was determined using colony-forming unit (CFU) counts and fluorescent in situ hybridization (FISH). Extracellular polysaccharide (EPS) generation in biofilms was determined by EPS/bacterial dying and water-insoluble polysaccharide detection. Acid production and demineralization were monitored using pH, lactic acid content, and transversal microradiography (TMR). The gene expression of microorganisms in the cross-kingdom biofilm was measured using qRT-PCR. Our results showed that both C. albicans and fluoride-resistant S. mutans grew vigorously, forming robust cross-kingdom biofilms, even in the presence of sodium fluoride (NaF). Moreover, fluoride-resistant S. mutans-containing cross-kingdom biofilms had considerable cariogenic potential for EPS synthesis, acid production, and demineralization ability in the presence of NaF than fluoride-sensitive S. mutans-containing biofilms. Furthermore, the gene expression of microorganisms in the two cross-kingdom biofilms changed dissimilarly in the presence of NaF. In summary, fluoride-resistant S. mutans in cross-kingdom biofilms supported C. albicans growth under fluoride and might attenuate the anti-caries potential of fluorine by maintaining robust cross-kingdom biofilm formation and cariogenic virulence expression in vitro in the presence of NaF.
Collapse
Affiliation(s)
- Yan Sun
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanhan Chen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Qian Du
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Muxin Xu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gaozhe Zheng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wen Zhou
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterial, Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xinxuan Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lili Qiu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yihuai Pan
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Keke Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
25
|
Li S, Wang Y, Xu G, Xu Y, Fu C, Zhao Q, Xu L, Jia X, Zhang Y, Liu Y, Qiao J. The combination of allicin with domiphen is effective against microbial biofilm formation. Front Microbiol 2024; 15:1341316. [PMID: 38873153 PMCID: PMC11169630 DOI: 10.3389/fmicb.2024.1341316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Background Microorganisms in biofilms are particularly difficult to control because of their increased survival and antibiotic resistance. Allicin and domiphen were employed to inhibit the microbial growth and biofilm formation of Staphylococcus aureus, Escherichia coli, and Candida albicans strains. Methods Broth microdilution method and checkerboard assay were conducted to determine the efficacy of allicin combined with domiphen against S. aureus, E. coli, and C. albicans. Microbial biofilm formation was measured using the crystal violet staining method and fluorescence microscopy. And the total viable count of the biofilm cells on material surface after the treatment with antimicrobial reagents was calculated with the plate count technique. Results The two drugs showed synergistic effects against the pathogens with a fractional bactericidal concentration of less than 0.38. The combination of 64 μg/mL allicin with 1 μg/mL domiphen dispersed over 50% of the biofilm mass of S. aureus, E. coli, and C. albicans. In addition, the drug combination reduced the total viable counts of E. coli and C. albicans biofilm cells on stainless steel and polyethylene surfaces by more than 102 CFU/mL. Conclusion The combination of allicin and domiphen is an effective strategy for efficiently decreasing biofilms formation on various industrial materials surfaces.
Collapse
Affiliation(s)
- Shang Li
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yutong Wang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Geweirong Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuqing Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Cuiyan Fu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Quanlin Zhao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Linjie Xu
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Xinzhou Jia
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yumeng Zhang
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiaju Qiao
- Department of Biotechnology, School of Life Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
26
|
Sulyanto RM, Beall CJ, Ha K, Montesano J, Juang J, Dickson JR, Hashmi SB, Bradbury S, Leys EJ, Edgerton M, Ho SP, Griffen AL. Fungi and bacteria occupy distinct spatial niches within carious dentin. PLoS Pathog 2024; 20:e1011865. [PMID: 38805482 PMCID: PMC11161102 DOI: 10.1371/journal.ppat.1011865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/07/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
The role of bacteria in the etiology of dental caries is long established, while the role of fungi has only recently gained more attention. The microbial invasion of dentin in advanced caries especially merits additional research. We evaluated the fungal and bacterial community composition and spatial distribution within carious dentin. Amplicon 16S rRNA gene sequencing together with quantitative PCR was used to profile bacterial and fungal species in caries-free children (n = 43) and 4 stages of caries progression from children with severe early childhood caries (n = 32). Additionally, healthy (n = 10) and carious (n = 10) primary teeth were decalcified, sectioned, and stained with Grocott's methenamine silver, periodic acid Schiff (PAS) and calcofluor white (CW) for fungi. Immunolocalization was also performed using antibodies against fungal β-D-glucan, gram-positive bacterial lipoteichoic acid, gram-negative endotoxin, Streptococcus mutans, and Candida albicans. We also performed field emission scanning electron microscopy (FESEM) to visualize fungi and bacteria within carious dentinal tubules. Bacterial communities observed included a high abundance of S. mutans and the Veillonella parvula group, as expected. There was a higher ratio of fungi to bacteria in dentin-involved lesions compared to less severe lesions with frequent preponderance of C. albicans, C. dubliniensis, and in one case C. tropicalis. Grocott's silver, PAS, CW and immunohistochemistry (IHC) demonstrated the presence of fungi within carious dentinal tubules. Multiplex IHC revealed that fungi, gram-negative, and gram-positive bacteria primarily occupied separate dentinal tubules, with rare instances of colocalization. Similar findings were observed with multiplex immunofluorescence using anti-S. mutans and anti-C. albicans antibodies. Electron microscopy showed monomorphic bacterial and fungal biofilms within distinct dentin tubules. We demonstrate a previously unrecognized phenomenon in which fungi and bacteria occupy distinct spatial niches within carious dentin and seldom co-colonize. The potential significance of this phenomenon in caries progression warrants further exploration.
Collapse
Affiliation(s)
- Rosalyn M. Sulyanto
- Department of Dentistry, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Clifford J. Beall
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Kasey Ha
- Department of Dentistry, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Joseph Montesano
- Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Jason Juang
- Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John R. Dickson
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shahr B. Hashmi
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Seth Bradbury
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pediatric Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Eugene J. Leys
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Mira Edgerton
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, New York, United States of America
| | - Sunita P. Ho
- Preventive and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, United States of America
| | - Ann L. Griffen
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
- Division of Pediatric Dentistry, College of Dentistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
27
|
Defta CL, Albu CC, Albu ŞD, Bogdan-Andreescu CF. Oral Mycobiota: A Narrative Review. Dent J (Basel) 2024; 12:115. [PMID: 38668027 PMCID: PMC11049401 DOI: 10.3390/dj12040115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Numerous studies have proven the important role of the oral microbiota in health and disease. The dysfunctionality of the oral microbiota, known as dysbiosis, is incriminated in dental caries, periodontal disease, oral infectious diseases, oral cancer, and systemic disease. The lesser-known component of the oral microbiota, the mycobiota, is now assiduously investigated. Recent technological developments have helped foster the identification of new fungal species based on genomic research. Next-generation sequencing has expanded our knowledge about the diversity, architecture, and relationships of oral microorganisms within the oral cavity. The mycobiome structure and relationships with the bacteriome have been studied to identify a mycobiotic signature. This review aimed to emphasize the latest knowledge of the oral mycobiome.
Collapse
Affiliation(s)
- Carmen Liliana Defta
- Department of Microbiology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Cristina-Crenguţa Albu
- Department of Genetics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ştefan-Dimitrie Albu
- Department of Periodontology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | |
Collapse
|
28
|
Zhao D, Li MH, Pan T, Guo J, Li J, Shi C, Wang N, Huang H, Wang C, Yang G. Preventive and Therapeutic Potential of Streptococcus cristatus CA119 in Experimental Periodontitis in Rats. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10254-y. [PMID: 38607584 DOI: 10.1007/s12602-024-10254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Periodontitis is an inflammatory condition of the oral cavity caused by a mixed infection of various bacteria, which not only severely affects the alveolar bone and connective tissues but also displays potential correlations with distal intestinal inflammation. In this study, we aimed to elucidate the therapeutic effects of Streptococcus cristatus CA119 on experimental periodontitis in rats and its impact on intestinal morphology. The results demonstrate that CA119 is capable of colonizing the oral cavity and exerting antagonistic effects on Porphyromonas gingivalis and Fusobacterium nucleatum, thus leading to a significant reduction in the oral pathogen load. Following CA119 intervention, there was a significant alleviation of weight loss in rats induced by periodontitis (P < 0.001). CA119 also regulated the expression of IL-6 (P < 0.05), IL-1β (P < 0.001), IL-18 (P < 0.001), COX-2 (P < 0.001), iNOS (P < 0.001), and MCP-1 (P < 0.01) in the gingival tissue. Additionally, CA119 reduced oxidative stress levels in rats and enhanced their antioxidant capacity. Microcomputed tomography (micro-CT) and histological analysis revealed that CA119 significantly reduced alveolar bone loss and reversed the downregulation of OPG/RANKL (P < 0.001). Furthermore, CA119 exhibited a significant protective effect against intestinal inflammation induced by periodontal disease and improved the colonic morphology in rats. In conclusion, this study demonstrates the role of CA119 as a potential oral probiotic in the prevention and treatment of experimental periodontitis, underscoring the potential of probiotics as a complementary approach to traditional periodontal care.
Collapse
Affiliation(s)
- Dongyu Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Han Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Tianxu Pan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Jialin Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Junyi Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunwei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Nan Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Haibin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chunfeng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Guilian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Jilin Agricultural University, Changchun, China.
- Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
29
|
Álvarez S, Morales J, Tiozzo-Lyon P, Berrios P, Barraza V, Simpson K, Ravasio A, Monforte Vila X, Teuschl-Woller A, Schuh CMAP, Aguayo S. Microfabrication-based engineering of biomimetic dentin-like constructs to simulate dental aging. LAB ON A CHIP 2024; 24:1648-1657. [PMID: 38291999 DOI: 10.1039/d3lc00761h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Human dentin is a highly organized dental tissue displaying a complex microarchitecture consisting of micrometer-sized tubules encased in a mineralized type-I collagen matrix. As such, it serves as an important substrate for the adhesion of microbial colonizers and oral biofilm formation in the context of dental caries disease, including root caries in the elderly. Despite this issue, there remains a current lack of effective biomimetic in vitro dentin models that facilitate the study of oral microbial adhesion by considering the surface architecture at the micro- and nanoscales. Therefore, the aim of this study was to develop a novel in vitro microfabricated biomimetic dentin surface that simulates the complex surface microarchitecture of exposed dentin. For this, a combination of soft lithography microfabrication and biomaterial science approaches were employed to construct a micropitted PDMS substrate functionalized with mineralized type-I collagen. These dentin analogs were subsequently glycated with methylglyoxal (MGO) to simulate dentin matrix aging in vitro and analyzed utilizing an interdisciplinary array of techniques including atomic force microscopy (AFM), elemental analysis, and electron microscopy. AFM force-mapping demonstrated that the nanomechanical properties of the biomimetic constructs were within the expected biological parameters, and that mineralization was mostly predominated by hydroxyapatite deposition. Finally, dual-species biofilms of Streptococcus mutans and Candida albicans were grown and characterized on the biofunctionalized PDMS microchips, demonstrating biofilm-specific morphologic characteristics and confirming the suitability of this model for the study of early biofilm formation under controlled conditions. Overall, we expect that this novel biomimetic dentin model could serve as an in vitro platform to study oral biofilm formation or dentin-biomaterial bonding in the laboratory without the need for animal or human tooth samples in the future.
Collapse
Affiliation(s)
- Simon Álvarez
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jose Morales
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Tiozzo-Lyon
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Berrios
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Barraza
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Kevin Simpson
- Department of Physics, Faculty of Physical and Mathematical Sciences, Universidad de Chile, Santiago, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
30
|
Luo S, Shao R, Hong Y, Zhang T, Zhou Q, Zhou Q, Rao F, Zhao X, Dong Y, Zhu R, Ling P, Cui G, Guan Z, Luo P, He Y, Qi X, Liao J, Hong W. Identifying the oral microbiome of adolescents with and without dental fluorosis based on full-length 16S rRNA gene sequencing. Front Microbiol 2024; 15:1296753. [PMID: 38380100 PMCID: PMC10876846 DOI: 10.3389/fmicb.2024.1296753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
Dental fluorosis, resulting from long-term environmental exposure to fluoride, is prevalent among diverse populations worldwide. Severe fluorosis not only compromises the aesthetic appeal of teeth but also impairs their functionality. This study aims to investigate the oral microbiome in dental fluorosis and the health individuals of adolescents living in the endemic fluorosis area of Guizhou, China through full-length 16S rDNA sequencing. Fourty-six individuals meet the sampling criteria, and we divided these samples into the following groups: a healthy group (H = 23) and a dental fluorosis group (F = 23), and two subgroups of Miao ethnicity: a healthy Miao group (Hm = 13) and a dental fluorosis Miao group (Fm = 15). A total of 660,389 high-quality sequences were obtained, and 12,007 Amplicon Sequence Variants (ASVs) were identified, revealing significant variations in oral microbiome between Fm and Hm groups. The composition of oral microbiota was similar between the H and F groups. At the genus level, Pseudopropionibacterium and at the species level, Streptococcus oralis_subsp.dentisani_clade_058 were less abundant in group F than in group H (P < 0.05). Further analysis revealed that the abundance of Capnocytophaga gingivalis and Kingella denitrificans was significantly lower in Fm fluorosis patients than in the Hm group (P < 0.05). Based on the LEfSe analysis, the potential core biomarkers in the oral of Fm fluorosis patients were identified at different taxonomic levels, ranging from phylum to species. These include Gammaproteobacteria, Prevotella sp_HMT_304, Gemella sanguinis, and Gracilibacteria_(GN02). Network analysis revealed that the microbiota in the fluorosis group exhibited more complex interactions with each other than the healthy group. Notably, within the Hm group, the potential biomarkers Capnocytophaga gingivalis and Kingella denitrificans exhibited a positive correlation. Finally, we employed PICRUSt2 analysis to explore the abundance clustering of the top 30 functional units in each sample, and we found that the metabolic pathway compositions of the four groups were similar. In summary, our findings suggest that the microbial composition of plaque in Hm patients with dental fluorosis is significantly altered, and we identified the potential marker microorganisms that contribute to these changes.
Collapse
Affiliation(s)
- Shanshan Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruirui Shao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Yue Hong
- He Guantun Town Health Center in Qixingguan District, Bijie, Guizhou, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Qingshuai Zhou
- Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Qian Zhou
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Fengqing Rao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingxing Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Yangting Dong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Ruiyu Zhu
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ping Ling
- Pediatric Intensive Care Unit, Guiyang Maternal and Child Health Care Hospital, Guiyang, Guizhou, China
| | - Guzhen Cui
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Luo
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| | - Jian Liao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and School/Hospital of Stomatology Guizhou Medical University, Guiyang, Guizhou, China
- Collaborative Innovation Center for Preventionand Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, China
| |
Collapse
|
31
|
O'Connell LM, Mann AE, Osagie E, Akhigbe P, Blouin T, Soule A, Obuekwe O, Omoigberale A, Burne RA, Coker MO, Richards VP. Supragingival mycobiome of HIV-exposed-but-uninfected children reflects a stronger correlation with caries-free-associated taxa compared to HIV-infected or uninfected children. Microbiol Spectr 2023; 11:e0149123. [PMID: 37874172 PMCID: PMC10715047 DOI: 10.1128/spectrum.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Globally, caries is among the most frequent chronic childhood disease, and the fungal component of the microbial community responsible is poorly studied despite evidence that fungi contribute to increased acid production exacerbating enamel demineralization. HIV infection is another global health crisis. Perinatal HIV exposure with infection are caries risk factors; however, the caries experience in the context of perinatal HIV exposure without infection is less clear. Using high-throughput amplicon sequencing, we find taxonomic differences that become pronounced during late-stage caries. Notably, we show a stronger correlation with health-associated taxa for HIV-exposed-but-uninfected children when compared to unexposed and uninfected children. This aligns with a lower incidence of caries in primary teeth at age 6 or less for exposed yet uninfected children. Ultimately, these findings could contribute to improved risk assessment, intervention, and prevention strategies such as biofilm disruption and the informed design of pro-, pre-, and synbiotic oral therapies.
Collapse
Affiliation(s)
- Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Thomas Blouin
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ashlyn Soule
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ozoemene Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Augustine Omoigberale
- Department of Child Health, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
32
|
Cui C, Mei L, Wang D, Jia P, Zhou Q, Liu W. A self-stabilized and water-responsive deliverable coenzyme-based polymer binary elastomer adhesive patch for treating oral ulcer. Nat Commun 2023; 14:7707. [PMID: 38001112 PMCID: PMC10673908 DOI: 10.1038/s41467-023-43571-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oral ulcer can be treated with diverse biomaterials loading drugs or cytokines. However, most patients do not benefit from these materials because of poor adhesion, short-time retention in oral cavity and low drug therapeutic efficacy. Here we report a self-stabilized and water-responsive deliverable coenzyme salt polymer poly(sodium α-lipoate) (PolyLA-Na)/coenzyme polymer poly(α-lipoic acid) (PolyLA) binary synergistic elastomer adhesive patch, where hydrogen bonding cross-links between PolyLA and PolyLA-Na prevents PolyLA depolymerization and slow down the dissociation of PolyLA-Na, thus allowing water-responsive sustainable delivery of bioactive LA-based small molecules and durable adhesion to oral mucosal wound due to the adhesive action of PolyLA. In the model of mice and mini-pig oral ulcer, the adhesive patch accelerates the healing of the ulcer by regulating the damaged tissue inflammatory environment, maintaining the stability of oral microbiota, and promoting faster re-epithelialization and angiogenesis. This binary synergistic patch provided a therapeutic strategy to treat oral ulcer.
Collapse
Affiliation(s)
- Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Li Mei
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Danyang Wang
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Pengfei Jia
- Department of Stomatology, Qingdao University, Qingdao, 266021, China
| | - Qihui Zhou
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
33
|
Delaney C, Alapati S, Alshehri M, Kubalova D, Veena CLR, Abusrewil S, Short B, Bradshaw D, Brown JL. Investigating the role of Candida albicans as a universal substrate for oral bacteria using a transcriptomic approach: implications for interkingdom biofilm control? APMIS 2023; 131:601-612. [PMID: 37170476 DOI: 10.1111/apm.13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/21/2023] [Indexed: 05/13/2023]
Abstract
Candida albicans is frequently identified as a colonizer of the oral cavity in health and has recently been termed a "keystone" commensal due to its role on the bacterial communities. However, the role that C. albicans plays in such interactions is not fully understood. Therefore, this study aimed to identify the relationship between C. albicans and bacteria associated with oral symbiosis and dysbiosis. To do this, we evaluated the ability of C. albicans to support the growth of the aerobic commensal Streptococcus gordonii and the anaerobic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis in the biofilm environment. RNA-Sequencing with the Illumina platform was then utilized to identify C. albicans gene expression and functional pathways involved during such interactions in dual-species and a 4-species biofilm model. Results indicated that C. albicans was capable of supporting growth of all three bacteria, with a significant increase in colony counts of each bacteria in the dual-species biofilm (p < 0.05). We identified specific functional enrichment of pathways in our 4-species community as well as transcriptional profiles unique to the F. nucleatum and S. gordonii dual-species biofilms, indicating a species-specific effect on C. albicans. Candida-related hemin acquisition and heat shock protein mediated processes were unique to the organism following co-culture with anaerobic and aerobic bacteria, respectively, suggestive that such pathways may be feasible options for therapeutic targeting to interfere with these fungal-bacterial interactions. Targeted antifungal therapy may be considered as an option for biofilm destabilization and treatment of complex communities. Moving forward, we propose that further studies must continue to investigate the role of this fungal organism in the context of the interkingdom nature of oral diseases.
Collapse
Affiliation(s)
- Christopher Delaney
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Susanth Alapati
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Muhanna Alshehri
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Dominika Kubalova
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Chandra Lekha Ramalingham Veena
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Sumaya Abusrewil
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | - Bryn Short
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| | | | - Jason L Brown
- Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Glasgow Biofilm Research Network (www.glasgowbiofilms.ac.uk), Glasgow, UK
| |
Collapse
|
34
|
Katrak C, Garcia BA, Dornelas-Figueira LM, Nguyen M, Williams RB, Lorenz MC, Abranches J. Catalase produced by Candida albicans protects Streptococcus mutans from H 2O 2 stress-one more piece in the cross-kingdom synergism puzzle. mSphere 2023; 8:e0029523. [PMID: 37607054 PMCID: PMC10597455 DOI: 10.1128/msphere.00295-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Co-infection with Streptococcus mutans and Candida albicans is associated with dental caries, and their co-cultivation results in enhanced biofilm matrix production that contributes to increased virulence and caries risk. Moreover, the catalase-negative S. mutans demonstrates increased oxidative stress tolerance when co-cultivated in biofilms with C. albicans, a catalase-producing yeast. Here, we sought to obtain mechanistic insights into the increased H2O2 tolerance of S. mutans when co-cultivated with clinical isolates of Candida glabrata, Candida tropicalis, and C. albicans. Additionally, the C. albicans SC5314 laboratory strain, its catalase mutant (SC5314Δcat1), and S. mutans UA159 and its glucosyltransferase B/C mutant (UA159ΔgtfB/C) were grown as single- and dual-species biofilms. Time-kill assays revealed that upon acute H2O2 challenge, the survival rates of S. mutans in dual-species biofilms with the clinical isolates and C. albicans SC5314 were greater than when paired with SC5314Δcat1 or as a single-species biofilm. Importantly, this protection was independent of glucan production through S. mutans GtfB/C. Transwell assays and treatment with H2O2-pre-stimulated C. albicans SC5314 supernatant revealed that this protection is contact-dependent. Biofilm stability assays with sublethal H2O2 or peroxigenic Streptococcus A12 challenge resulted in biomass reduction of single-species S. mutans UA159 and dual-species with SC5314Δcat1 biofilms compared to UA159 biofilms co-cultured with C. albicans SC5314. S. mutans oxidative stress genes were upregulated in single-species biofilms when exposed to H2O2, but not when S. mutans was co-cultivated with C. albicans SC5314. Here, we uncovered a novel, contact-dependent, synergistic interaction in which the catalase of C. albicans protects S. mutans against H2O2. IMPORTANCE It is well established that co-infection with the gram-positive caries-associated bacterium Streptococcus mutans and the yeast pathobiont Candida albicans results in aggressive forms of caries in humans and animal models. Together, these microorganisms form robust biofilms through enhanced production of extracellular polysaccharide matrix. Further, co-habitation in a biofilm community appears to enhance these microbes' tolerance to environmental stressors. Here, we show that catalase produced by C. albicans protects S. mutans from H2O2 stress in a biofilm matrix-independent manner. Our findings uncovered a novel synergistic trait between these two microorganisms that could be further exploited for dental caries prevention and control.
Collapse
Affiliation(s)
- Callahan Katrak
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bruna A. Garcia
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Department of Restorative Dental Sciences, University of Florida College of Dentistry, Gainesville, Florida, USA
| | | | - Mary Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Robert B. Williams
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA
| | - Michael C. Lorenz
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, Texas, USA
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| |
Collapse
|
35
|
Yun SE, Choi BBR, Nam SH, Kim GC. Antimicrobial Effects of Edible Mixed Herbal Extracts on Oral Microorganisms: An In Vitro Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1771. [PMID: 37893489 PMCID: PMC10608150 DOI: 10.3390/medicina59101771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: The oral cavity is inhabited by pathogenic bacteria, whose growth can be inhibited by synthetic oral drugs, including antibiotics and other chemical compounds. Natural antimicrobial substances that elicit fewer negative side effects may serve as alternatives to synthetic agents for long-term use. Thus, the aim of this study was to evaluate the effects of edible mixed herbal extracts on the growth of oral pathogenic bacteria. Materials and Methods: The yield of each herbal extract was as follows: 5% Schizonepeta tenuifolia Briq (STB), 10.94% Mentha piperascens (MP), 5.47% Acanthopanax sessiliflorus Seem (AS), and 10.66% Glycyrrhiza uralensis (GU). The herbal extracts used included 0.5 mg/mL STB, 1.5 mg/mL MP, 1.5 mg/mL AS, and 2.0 mg/mL GU. Antimicrobial tests, morphological analyses (using scanning electron microscopy), microbial surface hydrophobicity measurements, and oral malodor reduction tests were performed using each extract. Statistical analyses were performed with IBM® SPSS® (version 24), using paired t-tests. Results: The mixed herbal extracts significantly inhibited the growth of Streptococcus mutans, Enterococcus faecalis, Candida albicans, and Porphyromonas gingivalis compared to the control (p < 0.001). Scanning electron microscopy results further revealed altered cellular morphology in the groups treated with the mixed herbal extracts. Additionally, the hydrophobicity assay results showed that the mixed herbal extracts reduced the oral adhesion capacities of bacteria (p < 0.001). Administration of the mixed herbal extracts also reduced the levels of volatile sulfur compounds, the main contributors to oral malodor (p < 0.001). Conclusions: Edible mixed herbal extracts can effectively eliminate oral pathogens and may be useful for improving oral health. The herbal extracts used were effective against all species of oral pathogens studied in this report.
Collapse
Affiliation(s)
- Se-Eun Yun
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Byul-Bo ra Choi
- Corporate Affiliated Research Institute, Feagle Co., Ltd., Yangsan 50561, Republic of Korea; (S.-E.Y.); (B.-B.r.C.)
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Republic of Korea;
| | - Gyoo-Cheon Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
36
|
Wang XL, Xu HW, Liu NN. Oral Microbiota: A New Insight into Cancer Progression, Diagnosis and Treatment. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:535-547. [PMID: 37881320 PMCID: PMC10593652 DOI: 10.1007/s43657-023-00124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 10/27/2023]
Abstract
The polymorphic microbiome has been defined as one of the "Hallmarks of Cancer". Extensive studies have now uncovered the role of oral microbiota in cancer development and progression. Bacteria, fungi, archaea, and viruses in the oral cavity interact dynamically with the oral microenvironment to maintain the oral micro-ecological homeostasis. This complex interaction is influenced by many factors, such as maternal transmission, personal factors and environmental factors. Dysbiosis of oral microbiota can disturbed this host-microbiota interaction, leading to systemic diseases. Numerous studies have shown the potential associations between oral microbiota and a variety of cancers. However, the underlying mechanisms and therapeutic insights are still poorly understood. In this review, we mainly focus on the following aspects: (1) the factors affect oral microbiota composition and function; (2) the interaction between microenvironment and oral microbiota; (3) the role of multi-kingdom oral microbiota in human health; (4) the potential underlying mechanisms and therapeutic benefits of oral microbiota against cancer. Finally, we aim to describe the impact of oral microbiota on cancer progression and provide novel therapeutic insights into cancer prevention and treatment by targeting oral microbiota.
Collapse
Affiliation(s)
- Xiu-Li Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Hua-Wen Xu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025 China
| |
Collapse
|
37
|
Gilbert Klaczko C, Alkhars N, Zeng Y, Klaczko M, Gill A, Kopycka-Kedzierawski D, Jusko T, Sohn M, Xiao J, Gill S. The Oral Microbiome and Cross-Kingdom Interactions during Pregnancy. J Dent Res 2023; 102:1122-1130. [PMID: 37431832 PMCID: PMC10552463 DOI: 10.1177/00220345231176459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
Pregnancy initiates a temporary transition in the maternal physiological state, with a shift in the oral microbiome and a potential increase in frequency of oral diseases. The risk of oral disease is higher among populations of Hispanic and Black women and those with lower socioeconomic status (low SES), demonstrating a need for intervention within these high-risk populations. To further our understanding of the oral microbiome of high-risk pregnant women, we characterized the oral microbiome in 28 nonpregnant and 179 pregnant low-SES women during their third trimester living in Rochester, New York. Unstimulated saliva and supragingival plaque samples were collected cross-sectionally, followed by assessment of the bacterial (16S ribosomal RNA) and fungal (18S ITS) microbiota communities. Trained and calibrated dentists performed oral examinations to determine the number of decayed teeth and plaque index. Initially, plaque from 28 nonpregnant women and 48 pregnant women were compared; these data showed significant differences in bacterial abundances based on pregnancy status. To further our understanding of the oral microbiome within the pregnant population, we next examined the oral microbiome within this population based on several variables. Streptococcus mutans, Streptococcus oralis, and Lactobacillus were associated with a greater number of decayed teeth. The composition of fungal communities differed between plaque and saliva, demonstrating 2 distinct "mycotypes" that were represented by a greater abundance of Candida in plaque and Malassezia in saliva. Veillonella rogosae, a common oral bacterium, was negatively associated with both plaque index and salivary Candida albicans colonization by culture data. This was further emphasized by in vitro inhibition of C. albicans by V. rogosae. Identification of interactions between the bacterial or fungal oral communities revealed that V. rogosae was positively associated with the oral commensal Streptococcus australis and negatively with the cariogenic Lactobacillus genus, suggesting V. rogosae as a potential biomarker of a noncariogenic oral microbiome.
Collapse
Affiliation(s)
- C. Gilbert Klaczko
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Translational Biomedical Science Program, Clinical and Translational Science Institute, University of Rochester School of Medicine & Dentistry, USA
| | - N. Alkhars
- Translational Biomedical Science Program, Clinical and Translational Science Institute, University of Rochester School of Medicine & Dentistry, USA
- Department of General Dental Practice, Faculty of Dentistry, Kuwait University, Kuwait
| | - Y. Zeng
- Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M.E. Klaczko
- Chemistry Department, University of Rochester, Rochester, NY, USA
| | - A.L. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - D.T. Kopycka-Kedzierawski
- Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - T.A. Jusko
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - M.B. Sohn
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - J. Xiao
- Eastman Institute for Oral Health, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - S.R. Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
38
|
Das A, Patro S, Simnani FZ, Singh D, Sinha A, Kumari K, Rao PV, Singh S, Kaushik NK, Panda PK, Suar M, Verma SK. Biofilm modifiers: The disparity in paradigm of oral biofilm ecosystem. Biomed Pharmacother 2023; 164:114966. [PMID: 37269809 DOI: 10.1016/j.biopha.2023.114966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023] Open
Abstract
A biofilm is a population of sessile microorganisms that has a distinct organized structure and characteristics like channels and projections. Good oral hygiene and reduction in the prevalence of periodontal diseases arise from minimal biofilm accumulation in the mouth, however, studies focusing on modifying the ecology of oral biofilms have not yet been consistently effective. The self-produced matrix of extracellular polymeric substances and greater antibiotic resistance make it difficult to target and eliminate biofilm infections, which lead to serious clinical consequences that are often lethal. Therefore, a better understanding is required to target and modify the ecology of biofilms in order to eradicate the infection, not only in instances of oral disorders but also in terms of nosocomial infections. The review focuses on several biofilm ecology modifiers to prevent biofilm infections, as well as the involvement of biofilm in antibiotic resistance, implants or in-dwelling device contamination, dental caries, and other periodontal disorders. It also discusses recent advances in nanotechnology that may lead to novel strategies for preventing and treating infections caused by biofilms as well as a novel outlook to infection control.
Collapse
Affiliation(s)
- Antarikshya Das
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Swadheena Patro
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Khushbu Kumari
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Patnala Vedika Rao
- KIIT School of Medical Sciences, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sarita Singh
- BVG Life Sciences Limited, Sagar Complex, Old Pune-Mumbai Road, Chinchwad, Pune 411034, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
| | - Mrutyunjay Suar
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| | - Suresh K Verma
- KIIT School of Dental Sciences, KIIT University, Bhubaneswar 751024, Odisha, India.
| |
Collapse
|
39
|
Zhang K, Sun IG, Liao B, Yang Y, Ma H, Jiang A, Chen S, Guo Q, Ren B. Streptococcus mutans sigX-inducing peptide inhibits the virulence of Candida albicans and oral candidiasis through the Ras1-cAMP-Efg1 pathway. Int J Antimicrob Agents 2023; 62:106855. [PMID: 37211262 DOI: 10.1016/j.ijantimicag.2023.106855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023]
Abstract
Oral candidiasis is the most common fungal infectious disease in the human oral cavity, and Candida albicans is the major pathogenic agent. Increasing drug resistance and the lack of new types of antifungals greatly increase the challenges for treating fungal infections. Targeting hyphal transition provides a promising strategy to inhibit the virulence of C. albicans and overcome drug resistance. This study aimed to investigate the effects and mechanisms of sigX-inducing peptide (XIP), a quorum-sensing signal peptide secreted by Streptococcus mutans, on C. albicans hyphal development and biofilm formation in vitro and oropharyngeal candidiasis in vivo. XIP significantly inhibited C. albicans yeast-to-hypha transition and biofilm formation in a dose-dependent manner from 0.01 to 0.1 µM. XIP significantly downregulated expression of genes from the Ras1-cAMP-Efg1 pathway (RAS1, CYR1, TPK2, EFG1 and UME6), a key pathway to regulate C. albicans hyphal development. Importantly, XIP reduced the levels of key molecules cAMP and ATP from this pathway, while the addition of exogenous cAMP and overexpression of RAS1 restored the hyphal development inhibited by XIP. XIP also lost its hyphal inhibitory effects on ras1Δ/Δ and efg1Δ/Δ strains. These results further confirmed that XIP inhibited hyphal development through downregulation of the Ras1-cAMP-Efg1 pathway. A murine oropharyngeal candidiasis model was employed to evaluate the therapeutic effects of XIP on oral candidiasis. XIP effectively reduced the infected epithelial area, fungal burden, hyphal invasion and inflammatory infiltrates. These results revealed the antifungal effects of XIP, and highlighted that XIP can be a potential antifungal peptide against C. albicans infection.
Collapse
Affiliation(s)
- Kaiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ivy Guofang Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yichun Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huangshui Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Aiming Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Orthodontics Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Hu X, Wang H, Yu B, Yu J, Lu H, Sun J, Sun Y, Zou Y, Luo H, Zeng Z, Liu S, Jiang Y, Wu Z, Ren Z. Oral Fungal Alterations in Patients with COVID-19 and Recovered Patients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205058. [PMID: 37119437 PMCID: PMC10323652 DOI: 10.1002/advs.202205058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
The oral bacteriome, gut bacteriome, and gut mycobiome are associated with coronavirus disease 2019 (COVID-19). However, the oral fungal microbiota in COVID-19 remains unclear. This article aims to characterize the oral mycobiome in COVID-19 and recovered patients. Tongue coating specimens of 71 COVID-19 patients, 36 suspected cases (SCs), 22 recovered COVID-19 patients, 36 SCs who recovered, and 132 controls from Henan are collected and analyzed using internal transcribed spacer sequencing. The richness of oral fungi is increased in COVID-19 versus controls, and beta diversity analysis reveals separate fungal communities for COVID-19 and control. The ratio of Ascomycota and Basidiomycota is higher in COVID-19, and the opportunistic pathogens, including the genera Candida, Saccharomyces, and Simplicillium, are increased in COVID-19. The classifier based on two fungal biomarkers is constructed and can distinguish COVID-19 patients from controls in the training, testing, and independent cohorts. Importantly, the classifier successfully diagnoses SCs with positive specific severe acute respiratory syndrome coronavirus 2 immunoglobulin G antibodies as COVID-19 patients. The correlation between distinct fungi and bacteria in COVID-19 and control groups is depicted. These data suggest that the oral mycobiome may play a role in COVID-19.
Collapse
Affiliation(s)
- Xiaobo Hu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Haiyu Wang
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Bo Yu
- Henan Key Laboratory of Ion‐beam BioengineeringSchool of Agricultural SciencesZhengzhou UniversityZhengzhou455004P. R. China
| | - Jia Yu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Junyi Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Ying Sun
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yawen Zou
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Hong Luo
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Zhaohai Zeng
- Department of Infectious DiseasesGuangshan County People's HospitalGuangshan CountyXinyangHenan465450P. R. China
| | - Shanshuo Liu
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| | - Yan Jiang
- Department of Neurologythe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseaseNational Clinical Research Center for Infectious DiseasesDepartment of Infectious Diseasesthe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003P. R. China
| | - Zhigang Ren
- Department of Infectious Diseasesthe First Affiliated Hospital of Zhengzhou University#1 Jianshe East RoadZhengzhou450052P. R. China
- Gene Hospital of Henan ProvincePrecision Medicine Centerthe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052P. R. China
- Jinan Microecological Biomedicine Shandong LaboratoryJinan250000P. R. China
| |
Collapse
|
41
|
Bao J, Huang X, Zeng Y, Wu TT, Lu X, Meng G, Ren Y, Xiao J. Dose-Dependent Inhibitory Effect of Probiotic Lactobacillus plantarum on Streptococcus mutans- Candida albicans Cross-Kingdom Microorganisms. Pathogens 2023; 12:848. [PMID: 37375538 PMCID: PMC10301334 DOI: 10.3390/pathogens12060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Dental caries is one of the most common chronic diseases worldwide. Streptococcus mutans and Candida albicans are two major pathogens associated with dental caries. Several recent studies revealed that Lactobacillus plantarum inhibits S. mutans and C. albicans in biofilms and in a rodent model of dental caries. The aim of this study was to investigate the dose-dependent effect of L. plantarum against S. mutans and C. albicans in a planktonic model that simulated a high-caries-risk clinical condition. Mono-, dual-, and multi-species models were utilized, with five doses of L. plantarum (ranging from 1.0 × 104 to 1.0 × 108 CFU/mL). Real-time PCR was used to assess the expression of the virulence genes of C. albicans and S. mutans and the genes of L. plantarum. Student's t-tests and one-way ANOVA, followed by post hoc tests, were employed to compare the cell viability and gene expression among groups. A dose-dependent inhibition on C. albicans and S. mutans was observed with increased dosages of L. plantarum. L. plantarum at 108 CFU/mL demonstrated the highest antibacterial and antifungal inhibitory effect in the dual- and multi-species models. Specifically, at 20 h, the growth of C. albicans and S. mutans was suppressed by 1.5 and 5 logs, respectively (p < 0.05). The antifungal and antibacterial effects were attenuated in lower doses of L. plantarum (104-107 CFU/mL). The expression of C. albicans HWP1 and ECE 1 genes and S. mutans lacC and lacG genes were significantly downregulated with an added 108 CFU/mL of L. plantarum (p < 0.05). The addition of 108 CFU/mL L. plantarum further inhibited the hyphae or pseudohyphae formation of C. albicans. In summary, L. plantarum demonstrated dose-dependent antifungal and antibacterial effects against C. albicans and S. mutans. L. plantarum emerged as a promising candidate for the creation of novel antimicrobial probiotic products targeting dental caries prevention. Further research is warranted to identify the functional metabolites produced by L. plantarum at different dosages when interacting with C. albicans and S. mutans.
Collapse
Affiliation(s)
- Jianhang Bao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
- School of Stomatology, Henan University, Zhengzhou 450046, China
| | - Xinyan Huang
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
- School of Stomatology, Henan University, Zhengzhou 450046, China
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
| | - Tong Tong Wu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Xingyi Lu
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gina Meng
- School of Arts and Science, University of Rochester, Rochester, NY 14627, USA
| | - Yanfang Ren
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (J.B.)
| |
Collapse
|
42
|
Li Y, Huang S, Du J, Wu M, Huang X. Current and prospective therapeutic strategies: tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm. Front Cell Infect Microbiol 2023; 13:1106231. [PMID: 37249973 PMCID: PMC10213903 DOI: 10.3389/fcimb.2023.1106231] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
Candida albicans (C. albicans) is the most frequent strain associated with cross-kingdom infections in the oral cavity. Clinical evidence shows the co-existence of Streptococcus mutans (S. mutans) and C. albicans in the carious lesions especially in children with early childhood caries (ECC) and demonstrates the close interaction between them. During the interaction, both S. mutans and C. albicans have evolved a complex network of regulatory mechanisms to boost cariogenic virulence and modulate tolerance upon stress changes in the external environment. The intricate relationship and unpredictable consequences pose great therapeutic challenges in clinics, which indicate the demand for de novo emergence of potential antimicrobial therapy with multi-targets or combinatorial therapies. In this article, we present an overview of the clinical significance, and cooperative network of the cross-kingdom interaction between S. mutans and C. albicans. Furthermore, we also summarize the current strategies for targeting cross-kingdom biofilm.
Collapse
Affiliation(s)
- Yijun Li
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
- Department of Endodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Shan Huang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jingyun Du
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Minjing Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
43
|
Zhang Q, Shan B, Xu X, Mao B, Tang X, Zhao J, Zhang H, Cui S, Chen W. Lactiplantibacillus Plantarum CCFM8724 Reduces the Amounts of Oral Pathogens and Alters the Oral Microbiota in Children With Dental Caries: a Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2023; 42:361-370. [PMID: 35512770 DOI: 10.1080/07315724.2022.2043200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective Early childhood caries (ECC) is closely related to the disorders of oral microbiota. Probiotics antagonize pathogenic bacteria and regulate the composition of the microbiota. We aimed to investigate the effects of Lactiplantibacillus plantarum CCFM8724 on Streptococcus mutans, Candida albicans, and oral microbiota of patients.Methods Children with ECC aged 3‒6 years were randomly divided into probiotic and placebo groups in the double-blind controlled trial. The intervention and washout periods were 28 days and 14 days, respectively. On days 1 and 28, dental plaques were collected. The effects of L. plantarum CCFM8724 on the oral microbiota of patients were investigated by sequencing the V3-V4 region of 16S rDNA. On days 1, 14, 28 and 42, qPCR was used to investigate the effect of L. plantarum CCFM8724 on the amounts of S. mutans and C. albicans in the saliva of children with ECC.Results L. plantarum CCFM8724 significantly reduced the amounts of S. mutans and C. albicans in saliva of children with ECC (p < 0.01). After consumption of L. plantarum CCFM8724, the abundance of Firmicutes, Granulicatella and Gemella increased, whereas the abundance of Proteobacteria, Neisseria, Bifidobacterium and Catonella decreased. Conclusion: Our results emphasize that probiotics could play a beneficial role in the prevention and treatment of ECC in children from an oral microecological perspective.
Collapse
Affiliation(s)
- Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Baokun Shan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xianyin Xu
- Department of Stomatology, Wuxi Children's Hospital, Wuxi, Jiangsu, P.R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu, P.R. China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
44
|
Niu Y, Zhang C, Sun Y, Dong L, Si Y, Yang J, Zhu P, Yang F. Symbiotic relationship between Prevotella denticola and Streptococcus mutans enhances virulence of plaque biofilms. Arch Oral Biol 2023; 151:105714. [PMID: 37141746 DOI: 10.1016/j.archoralbio.2023.105714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
OBJECTIVES This study aimed to explore that whether interactions between Prevotella denticola and Streptococcus mutans could promote the establishment of hypervirulent biofilms on teeth surface and eventually influence the occurrence and development of caries. DESIGN Based on single-species biofilms of either P. denticola or S. mutans, and dual-species biofilms of both bacteria, we compared the virulence properties associated with cariogenicity in vitro, including carbohydrate metabolism and acid productivity, synthesis of extracellular polysaccharides, biomass and architecture of biofilms, level of enamel demineralization and expression of virulence genes associated with carbohydrate metabolism and adhesion in S. mutans. RESULTS The data demonstrated that, compared to single-species of above two taxa, dual-species produced lactate by metabolizing carbohydrates at a higher level during the observation period. Moreover, dual-species biofilms accrued more biomass and exhibited more dense microcolonies and abundant extracellular matrix. And it's noticeable that the level of enamel demineralization in dual-species biofilms was more augmented than that of single-species. In addition, the presence of P. denticola induced the expression of virulence genes gtfs and gbpB in S. mutans. CONCLUSIONS Symbiotic relationship between P. denticola and S. mutans enhances caries-associated virulence of plaque biofilms, which might provide new strategies for effective prevention and treatment of caries.
Collapse
Affiliation(s)
- Yufen Niu
- Stomatology Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China; School of Stomatology, Dalian Medical University, Dalian, China
| | - Chunyan Zhang
- Stomatology Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yanfei Sun
- Stomatology Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lei Dong
- Stomatology Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China; School of Stomatology, Dalian Medical University, Dalian, China
| | - Yuan Si
- Stomatology Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Jiazhen Yang
- Department of Pediatric Dentistry, Qingdao Stomatological Hospital, Qingdao, China
| | - Pengfei Zhu
- Single-Cell Center, CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Fang Yang
- Stomatology Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China.
| |
Collapse
|
45
|
Wijesinghe GK, Nobbs AH, Bandara HMHN. Cross-kingdom Microbial Interactions Within the Oral Cavity and Their Implications for Oral Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023. [DOI: 10.1007/s40588-023-00191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Abstract
Purpose of Review
This review serves to highlight the cross-kingdom interactions that can occur within the human oral cavity between fungus Candida albicans and oral bacteria, and their impact on the delicate balance between oral health and disease.
Recent Findings
A growing number of physical, chemical, and metabolic networks have been identified that underpin these cross-kingdom interactions. Moreover, these partnerships are often synergistic and can modulate microbial burden or virulence. This, in turn, can drive the onset or progression of oral diseases such as dental caries, periodontitis, denture-associated stomatitis, and oral cancer.
Summary
The impact of cross-kingdom interactions on the cellular, biochemical, and communal composition of oral microbial biofilms is increasingly clear. With growing insight into these processes at the molecular level, so this knowledge can be used to better inform the development of novel strategies to manipulate the oral microbiota to promote oral health and combat oral disease.
Collapse
|
46
|
Villhauer A, Zhu M, Shi W, Xie XJ, Hughes P, Lesch A, Weber-Gasparoni K, Kolker J, Drake D, Banas JA. Role of mutans streptococci, acid tolerant bacteria and oral Candida species in predicting the onset of early childhood caries. FRONTIERS IN DENTAL MEDICINE 2023; 4:991746. [PMID: 38188893 PMCID: PMC10768932 DOI: 10.3389/fdmed.2023.991746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Aim Early childhood caries is the most common chronic infectious disease in children in the United States. This study, which is part of a larger, longitudinal study exploring oral microbiological components of caries development in children, reports on the impact of total mutans streptococci (MS), total acid tolerant bacteria and Candida species on the development of dental caries in a subset of these children. Of particular interest was the relationship between caries development and co-colonization of mutans streptococci and Candida species. Methods Children between the ages of 12 and 47 months displaying no evidence of dental caries were recruited for a longitudinal study (n = 130). Twelve age- and gender-matched pairs were selected. In each pair, one child developed caries during the study, and one did not. Whole mouth plaque samples were collected by swab at baseline and every 6 months thereafter for a duration of 18 months and spiral plated for microbial counts (CFU/ml). Cut-offs based on percent of total cultivable flora were designated for all microbial measures. A scoring system designated the Plaque Microbial Index (PMI) was developed for use in statistical analyses to assess potential predictive factors for caries risk assessment. Results Children who developed caries were significantly more likely to harbor higher percentages of acid tolerant bacteria (p = 0.003), MS (p < 0.001) and have Candida species present (p < 0.001) at ≥1 visit leading up to caries onset. Mean PMI scores derived from the aforementioned microbial measures, were higher for caries active children than caries free children (p = 0.000147). Co-colonization of MS and Candida species was significantly associated with caries development (p < 0.001) and detection of both at the same visit had a 100% positive predictive value and 60% negative predictive value for caries development. Conclusion In children who developed caries, there was a statistically significant association with the percent of total flora that was acid tolerant, the percent of MS, the presence of Candida and co-colonization of MS and Candida species. Combining these microbial measures into PMI scores further delineated children who developed caries from those who remained caries-free. These microbiological measures show potential as predictive factors and risk assessment tools for caries development.
Collapse
Affiliation(s)
- Alissa Villhauer
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Min Zhu
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Wei Shi
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Xian Jin Xie
- Division of Biostatistics and Computational Biology, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Pamella Hughes
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Amy Lesch
- Department of Pediatric Dentistry, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Karin Weber-Gasparoni
- Department of Pediatric Dentistry, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Justine Kolker
- Department of Operative Dentistry, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - David Drake
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| | - Jeffrey A. Banas
- Iowa Institute for Oral Health Research, University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA, United States
| |
Collapse
|
47
|
Crivello G, Fracchia L, Ciardelli G, Boffito M, Mattu C. In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050904. [PMID: 36903781 PMCID: PMC10004855 DOI: 10.3390/nano13050904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/02/2023]
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed.
Collapse
Affiliation(s)
- G. Crivello
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - L. Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, Largo Donegani 2, 28100 Novara, Italy
| | - G. Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - M. Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - C. Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
48
|
High-Throughput Sequencing of Oral Microbiota in Candida Carriage Sjögren's Syndrome Patients: A Pilot Cross-Sectional Study. J Clin Med 2023; 12:jcm12041559. [PMID: 36836095 PMCID: PMC9964208 DOI: 10.3390/jcm12041559] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND This study sought to characterize the saliva microbiota of Candida carriage Sjögren's syndrome (SS) patients compared to oral candidiasis and healthy patients by high-throughput sequencing. METHODS Fifteen patients were included, with five Candida carriage SS patients (decayed, missing, and filled teeth (DMFT) score 22), five oral candidiasis patients (DMFT score 17), and five caries active healthy patients (DMFT score 14). Bacterial 16S rRNA was extracted from rinsed whole saliva. PCR amplification generated DNA amplicons of the V3-V4 hypervariable region, which were sequenced on an Illumina HiSeq 2500 sequencing platform and compared and aligned to the SILVA database. Taxonomy abundance and community structure diversity was analyzed using Mothur software v1.40.0. RESULTS A total of 1016/1298/1085 operational taxonomic units (OTUs) were obtained from SS patients/oral candidiasis patient/healthy patients. Treponema, Lactobacillus, Streptococcus, Selenomonas, and Veillonella were the primary genera in the three groups. The most abundant significantly mutative taxonomy (OTU001) was Veillonella parvula. Microbial diversity (alpha diversity and beta diversity) was significantly increased in SS patients. ANOSIM analyses revealed significantly different microbial compositional heterogeneity in SS patients compared to oral candidiasis and healthy patients. CONCLUSION Microbial dysbiosis differs significantly in SS patients independent of oral Candida carriage and DMFT.
Collapse
|
49
|
Yang H, Ma Y, Xie X, Wang H, Li X, Fang D, Bai Y. Candida albicans enriched in orthodontic derived white spot lesions and shaped focal supragingival bacteriome. Front Microbiol 2023; 14:1084850. [PMID: 36760510 PMCID: PMC9902512 DOI: 10.3389/fmicb.2023.1084850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
White spot lesions (WSLs) are common enamel infectious diseases in fixed orthodontic treatment, which might attribute to the dysbiosis of oral microbiome. However, the correlation of Candida albicans with oral bacteriome in WSLs still remains unrevealed. This study investigated the carriage of C. albicans and how it shaped the bacterial community in disease or healthy supragingival plaque, to explore the potential role of interkingdom interaction in orthodontic WSLs. In this study, 31 patients with WSLs (WSLs) and 23 healthy patients (Health) undergoing fixed orthodontic treatment were enrolled. The supragingival microbiota in both groups were determined using 16S rRNA gene sequencing. Colonization and abundance of C. albicans in the plaque were determined via culture-dependent and -independent methods. Among WSLs patients, the correlation of C. albicans and bacteriome was analyzed under QIIME2-based bioinformatics and Spearman's correlation coefficient. The raw reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: SRP404186). Significant differences in microbial diversity as well as composition were observed between WSLs and Health groups. Leptotrichia remarkably enriched in the WSLs group, while Neisseria and Cardiobacterium significantly enriched in the Health group. In addition, 45% of WSLs patients were C. albicans carriers but none in patients without WSLs. Among all WSLs patients, beta diversity and microbial composition were distinguished between C. albicans carriers and non-carriers. In C. albicans carriers, Corynebacterium matruchotii and Streptococcus mutans significantly enriched whereas Saccharibacteria_TM7_G-1 significantly depleted. The abundance of C. albicans was positively associated with bacteria such as Streptococcus mutans, while the negative correlation was detected between C. albicans and several bacteria such as Cardiobacterium hominis and Streptococcus sanguinis. Our study elucidated the distinguished supragingival plaque microbiome between orthodontic patients with and without WSLs. C. albicans frequently existed and enriched in orthodontic derived WSLs. The carriage of C. albicans shape plaque bacterial community in demineralized lesions and might play roles in WSLs pathogenesis.
Collapse
|
50
|
雷 紫, 林 永, 李 雨, 周 学. [Research Progress in Niacinamide in the Prevention and Treatment of Mouth and Systemic Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:14-19. [PMID: 36647637 PMCID: PMC10409037 DOI: 10.12182/20230160105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 01/18/2023]
Abstract
Nicotinamide (NAM) is the amide form of niacin and one of the precursors of nicotinamide adenine dinucleotide (NAD +). NAM can be used as a dietary supplement or clinical therapeutic drug to replenish NAD + levels in the human body and participate in key bodily functions such as cellular metabolism and DNA repair. NAM has the advantage of low cost, wide availability, and sound biosafety. It also has multiple biological functions, including antibacterial effect, anti-inflammatory effect, and modulation of cellular immunity, producing significant ameliorative effects on skin and neurodegenerative diseases. However, most studies on NAM are still at the laboratory stage. Herein we reviewed the role and mechanism of NAM in the prevention and treatment of oral and systemic diseases, explored its potential as clinical therapeutic medication, provided some basis and references for the clinical application of nicotinamide in the prevention and treatment of various diseases, and discussed its prospects for future research and application.
Collapse
Affiliation(s)
- 紫雪 雷
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 永旺 林
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 雨庆 李
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|