1
|
Xing L, Xu J, Gong M, Liu Y, Li X, Meng L, Du R, Zhou Y, Ouyang Z, Liu X, Tao S, Cao Y, Liu C, Gao F, Han R, Shen H, Dong Y, Xu Y, Li T, Chen H, Zhao Y, Fan B, Sui L, Feng S, Liu J, Liu D, Wu X. Targeted disruption of PRC1.1 complex enhances bone remodeling. Nat Commun 2025; 16:4294. [PMID: 40341537 PMCID: PMC12062457 DOI: 10.1038/s41467-025-59638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Polycomb repressive complexes (PRCs) are pivotal epigenetic regulators that preserve cell identity by restricting transcription responses to sub-threshold extracellular signals. Their roles in osteoblast function and bone formation remain unclear. Here in aging osteoblasts, we found marked activation of PRC1.1 complex, with KDM2B acting as a chromatin-binding factor and BCOR and PCGF1 enabling histone H2A monoubiquitylation (H2AK119ub1). Osteoblast-specific Kdm2b inactivation significantly enhances bone remodeling under steady-state conditions and in scenarios of bone loss. This enhancement is attributed to H2AK119ub1 downregulation and subsequent Wnt signaling derepression. Furthermore, we developed a small molecule termed iBP, that specifically inhibits the interaction between BCOR and PCGF1, thereby suppressing PRC1.1 activity. Notably, iBP administration promotes bone formation in mouse models of bone loss. Therefore, our findings identify PRC1.1 as a critical epigenetic brake on bone formation and demonstrate that therapeutic targeting of this complex enhances Wnt pathway activation, offering a promising strategy against skeletal deterioration.
Collapse
Affiliation(s)
- Liangyu Xing
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Jinxin Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihan Gong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Yunzhi Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xuanyuan Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Lingyu Meng
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruyue Du
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhou
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Zhaoguang Ouyang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Xu Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Shaofei Tao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Yuxin Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Chunyi Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Feng Gao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Ruohui Han
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Dong
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Li
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - He Chen
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Zhao
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Baoyou Fan
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Sui
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Shiqing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Dayong Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Endodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, China.
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
- Department of Cell Biology, Tianjin Medical University, Tianjin, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
2
|
Jin Y, Huang X, Wang Z, Kouken B, Wang Q, Wang L. Isoleucyl-tRNA synthetase 2 promotes pancreatic ductal adenocarcinoma proliferation and metastasis by stabilizing β-catenin. Genes Dis 2025; 12:101382. [PMID: 40092487 PMCID: PMC11907448 DOI: 10.1016/j.gendis.2024.101382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/30/2024] [Accepted: 06/22/2024] [Indexed: 03/19/2025] Open
Abstract
Isoleucyl-tRNA synthetase 2 (IARS2), originally regarded as an enzyme ligating isoleucine to the corresponding tRNA, has been identified as an oncogene recently. However, its function in pancreatic ductal adenocarcinoma (PDAC) remains to be discovered. Here we explored the biological role of IARS2 in PDAC. Up-regulated IARS2 was found in PDAC tissues and cell lines. Kaplan-Meier survival analysis indicated a worse prognosis in patients with high IARS2 expression. CCK-8, EdU, and colony formation assays showed IARS2 overexpression enhanced PDAC proliferation, which was reduced by IARS2 knockdown. Meanwhile, IARS2 down-regulation inhibited PDAC metastasis by impeding epithelial-mesenchymal transition. These results were also supported by subcutaneous xenograft and metastasis assays in vivo. To figure out underlying mechanisms, differential and enrichment analyses were conducted and the WNT signaling pathway was discovered. Our results demonstrated that there was no significant relationship between the WNT signaling pathway key factor CTNNB1 and IARS2 at the transcription level. However, cycloheximide assays showed that IARS2 reduced the β-catenin degradation rate. IARS2 inhibited the phosphorylation of β-catenin at the Ser33/37 site and regulated downstream targets of WNT signaling including c-MYC, c-JUN, and MMP7. The enhancement of proliferation and metastasis caused by IARS2 could be reversed by MSAB, an agent that promotes β-catenin degradation. In summary, IARS2 facilitates PDAC proliferation and metastasis by stabilizing β-catenin, which leads to WNT/β-catenin activation. IARS2 serves as an underlying prognosis marker and a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
| | | | - Zhuoxin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Berik Kouken
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200001, China
| |
Collapse
|
3
|
Dreyer TJ, Keen JAC, Wells LM, Hopkinson M, Orriss IR, Holdsworth G, Pitsillides AA, Roberts SJ. Porcupine inhibition is a promising pharmacological treatment for severe sclerosteosis pathologies. Bone Res 2025; 13:44. [PMID: 40189599 PMCID: PMC11973224 DOI: 10.1038/s41413-025-00406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/22/2025] [Accepted: 01/30/2025] [Indexed: 04/09/2025] Open
Abstract
Sclerosteosis, an ultra-rare disorder characterised by high bone mass (HBM) and skeletal overgrowth, leads to facial paralysis, hearing loss and raised intracranial pressure, which is currently managed only through high-risk surgery. Sclerosteosis is caused by SOST mutations and loss of functional sclerostin, a protein that suppresses osteogenesis by antagonising Wnt/β-catenin signalling. Herein, using in vitro and in vivo approaches, we explore whether LGK974, another potent Wnt inhibitor that targets porcupine (PORCN, Wnt-specific acyltransferase), is a promising sclerosteosis therapeutic. In vitro assays showed that 100 nmol/L LGK974 significantly reduced osteoblast alkaline phosphatase (ALP) activity/mineralisation, decreased Wnt/osteoblast marker (Axin2, Runx2 and Ocn) expression, and downregulated ossification and the Wnt signalling pathway, without affecting osteoclast numbers/resorption. To assess in vivo effects, 6-week-old male and female Sost deficient (Sost-/-) mice received LGK974 for 4 weeks and right hindlimbs were subjected to 20 N peak loading to assess mechanoadaptive interactions. µCT revealed significant reductions in vertebral trabecular number and lower cortical bone volume in loaded and non-loaded tibiae in male and female LGK974-treated Sost-/- mice. Interestingly, the target engagement biomarker Axin2 was only significantly reduced in male vertebrae, which may indicate differences in male and female response to LGK974. This study also shows that PORCN inhibition may effectively limit characteristic HBM and skeletal overgrowth in sclerosteosis patients at sites with severe pathology.
Collapse
Affiliation(s)
- Timothy J Dreyer
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Jacob A C Keen
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Leah M Wells
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Mark Hopkinson
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Isabel R Orriss
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | | | - Andrew A Pitsillides
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - Scott J Roberts
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK.
| |
Collapse
|
4
|
Ovejero D, Garcia-Giralt N, Patiño-Salazar JD, Rabionet R, Nogués X. Focal dermal hypoplasia: a probable underrecognized low bone mass disorder secondary to aberrant Wnt signaling. Osteoporos Int 2025; 36:555-559. [PMID: 39847063 DOI: 10.1007/s00198-024-07382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/29/2024] [Indexed: 01/24/2025]
Abstract
A 29-year-old Spanish Caucasian man, without relevant family history, was attended in our unit due to an undiagnosed skeletal dysplasia associated with low bone mass and several fragility fractures throughout his childhood and adolescence. DXA exams throughout his life showed very low BMD values; currently, his spinal and femoral neck T-scores were - 4.3 and - 3.5, respectively. Blood and urinary tests were normal. Other relevant features included right hand and foot syndactyly, aplasia cutis, right hemibody hypoplasia, vertebral malformations, abnormal-looking humerii, and Asperger's syndrome among others. Whole exome sequencing retrieved a highly probable pathogenic variant in the PORCN gene p.(Arg296Pro) in mosaicism. PORCN mutations cause focal dermal hypoplasia (FDH), an X-linked ultra-rare ecto-mesodermal disorder characterized by several of the findings the patient presented. However, low BMD has not been classically associated with the disease. Noteworthy, PORCN is key for canonical Wnt signaling. Literature scrutiny has yielded other cases of FDH with skeletal fragility during childhood. In addition, preclinical studies with PORCN inhibitors, currently under development as an antitumoral therapy, have shown rapid detrimental effects on bone mass. Collectively, these findings indicate that FDH is probably an underrecognized monogenic cause of low bone mass due to defective Wnt signaling.
Collapse
Affiliation(s)
- Diana Ovejero
- Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain.
| | - Natalia Garcia-Giralt
- Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
| | - Juan David Patiño-Salazar
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, Universitat de Barcelona, CIBERER, IBUB, IRSJD, Barcelona, Spain
| | - Xavier Nogués
- Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain
- Internal Medicine Service, Hospital del Mar de Barcelona, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
5
|
Gharpure M, Vyavahare S, Asante DM, Chen J, Zhong R, Cooley MA, Deak F, Lu XY, Isales CM, Fulzele S. Sex-specific transcriptomic profiling reveals key players in bone loss associated with Alzheimer's disease. GeroScience 2025:10.1007/s11357-025-01535-7. [PMID: 39875754 DOI: 10.1007/s11357-025-01535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is frequently associated with musculoskeletal complications, including sarcopenia and osteoporosis, which substantially impair patient quality of life. Despite these clinical observations, the molecular mechanisms linking AD to bone loss remain insufficiently explored. In this study, we examined the femoral bone microarchitecture and transcriptomic profiles of APP/PS1 transgenic mouse models of AD to elucidate the disease's impact on bone pathology and identify potential gene candidates associated with bone deterioration. We performed micro-computed tomography (microCT) and RNA transcriptome analysis on the femoral bone of these mice. We observed a significant reduction in bone microstructure in both male and female APP/PS1 mice compared to their wild-type counterparts. Transcriptomic analysis of femoral bone tissue revealed substantial differential gene expression between AD mice and controls. Specifically, APP/PS1 mice exhibited differential expression in 289 protein-coding genes across both sexes. Notably, in female APP/PS1 mice, 664 genes were differentially expressed, with key genes such as Shh, Efemp1, Arg1, EphA2, Irx1, and PORCN potentially implicated in bone loss. In male APP/PS1 mice, 787 genes were differentially expressed, with Sel1l, Ffar4, Hspa1a, AMH, WFS1, and CLIC1 emerging as notable candidates in the context of bone deterioration. Gene Ontology (GO) enrichment analysis further revealed distinct sex-specific gene pathways between male and female APP/PS1 mice, underscoring the differential molecular underpinnings of bone pathology in AD. This study identifies novel sex-specific genes in the APP/PS1 mouse model and proposes potential therapeutic targets to mitigate bone loss in AD patients.
Collapse
Affiliation(s)
- Mohini Gharpure
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA
| | - Sagar Vyavahare
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA
| | - Diana M Asante
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Jie Chen
- Division of Biostatistics, Data Science, Augusta University, Augusta, GA, USA
| | - Roger Zhong
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Ferenc Deak
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Xin-Yun Lu
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, GA, USA
- Department of Neuroscience & Regenerative Medicine, Augusta, GA, 30912, USA
| | - Sadanand Fulzele
- Division of Endocrinology, Department of Medicine, Augusta University, Augusta, GA, USA.
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.
- Department of Neuroscience & Regenerative Medicine, Augusta, GA, 30912, USA.
- Center for Healthy Aging, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
6
|
Goyal A, Murkute SL, Bhowmik S, Prasad CP, Mohapatra P. Belling the "cat": Wnt/β-catenin signaling and its significance in future cancer therapies. Biochim Biophys Acta Rev Cancer 2024; 1879:189195. [PMID: 39413855 DOI: 10.1016/j.bbcan.2024.189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
The WNT/β-catenin is among one of the most extensively studied cellular signaling pathways involved in the initiation and progression of several deadly cancers. It is now understood that the WNT/β-catenin signaling, during tumor progression operates in a very complex fashion beyond the earlier assumed simple WNT 'On' or 'Off' mode as it recruits numerous WNT ligands, receptors, transcriptional factors and also cross-talks with other signaling molecules including the noncanonical WNT regulators. WNT/β-catenin signaling molecules are often mutated in different cancers which makes them very challenging to inhibit and sometimes ranks them among the undruggable targets. Furthermore, due to the evolutionary conservation of this pathway, inhibiting WNT/β-catenin has caused significant toxicity in normal cells. These challenges are reflected in clinical trial data, where the use of WNT/β-catenin inhibitors as standalone treatments remains limited. In this review, we have highlighted the crucial functional associations of diverse WNT/β-catenin signaling regulators with cancer progression and the phenotypic switching of tumor cells. Next, we have shed light on the roles of WNT/β-catenin signaling in drug resistance, clonal evolution, tumor heterogeneity, and immune evasion. The present review also focuses on various classes of routine and novel WNT/β-catenin therapeutic regimes while addressing the challenges associated with targeting the regulators of this complex pathway. In the light of multiple case studies on WNT/β-catenin inhibitors, we also highlighted the challenges and opportunities for future clinical trial strategies involving these treatments. Additionally, we have proposed strategies for future WNT/β-catenin-based drug discovery trials, emphasizing the potential of combination therapies and AI/ML-driven prediction approaches. Overall, here we showcased the opportunities, possibilities, and potentialities of WNT/β-catenin signaling modulatory therapeutic regimes as promising precision cancer medicines for the future.
Collapse
Affiliation(s)
- Akansha Goyal
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Satyajit Laxman Murkute
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Sujoy Bhowmik
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Purusottam Mohapatra
- Department of Biotechnology, NIPER Guwahati, Sila Katamur, Changsari, 781101 Kamrup, Assam, India.
| |
Collapse
|
7
|
Spigel DR, Wang JS, Pronk L, Muskens B, Teufel M, Bashir B, Burris H. A phase I dose escalation study of the LRP5 antagonist BI 905681 in patients with advanced and metastatic solid tumors. ESMO Open 2024; 9:103730. [PMID: 39617535 DOI: 10.1016/j.esmoop.2024.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND The Wnt pathway is involved in proliferation and tissue homeostasis. Aberrant activation promotes cancer cell proliferation and survival. Inhibition of the low-density lipoprotein receptor-related protein 5/6 (LRP5/6) coreceptors that regulate Wnt signaling could prevent cancer cell proliferation. BI 905681 is a novel LRP5 antagonist that has demonstrated potent in vivo antitumor activity. PATIENTS AND METHODS This was a phase I, dose escalation study (NCT04147247) evaluating BI 905681 in patients with advanced solid tumors over two dosing schedules (schedule A: every 3 weeks, 3-week cycles and schedule B: every 2 weeks, 4-week cycles). The primary endpoint was the maximum tolerated dose (MTD) of BI 905681 and the number of patients experiencing adverse events (AEs). Other endpoints were pharmacokinetics, pharmacodynamics, and efficacy. RESULTS As a result of difficulties enrolling patients, the trial was terminated early and the MTD for schedule A could not be determined. Twenty-one patients received BI 905681 over five dose cohorts (schedule A: 1.0, 2.5, 5.0, 7.0, and 8.5 mg/kg). No patients received schedule B. No dose-limiting toxicities (DLTs) were reported during the MTD evaluation period. However, during the entire treatment period, two patients (9.5%) experienced a DLT of grade 1 C-telopeptide increase in the 5.0 and 8.5 mg/kg dose cohorts. The most frequent treatment-related AEs were diarrhea (23.8%), vomiting (23.8%), nausea (19.0%), and infusion-related reactions (IRRs; 14.3%). Despite premedication to mitigate IRRs, one patient experienced a grade 2 IRR. The pharmacokinetic profiles of BI 905681 were biphasic, with a rapid distribution phase in the beginning followed by a slower elimination phase. The objective response rate was 0%; 5 (23.8%) and 14 patients (66.7%) had a best overall response of stable disease and progressive disease, respectively. CONCLUSION BI 905681 has minimal efficacy in an unselected patient population and was generally well tolerated.
Collapse
Affiliation(s)
- D R Spigel
- Sarah Cannon Research Institute, Nashville
| | - J S Wang
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, USA
| | - L Pronk
- Boehringer Ingelheim España S.A., Madrid, Spain
| | - B Muskens
- Venn Life Sciences ED, Breda, the Netherlands
| | - M Teufel
- Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield
| | - B Bashir
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, USA.
| | - H Burris
- Sarah Cannon Research Institute, Nashville
| |
Collapse
|
8
|
Zhao Y, Qin C, Lin C, Li Z, Zhao B, Li T, Zhang X, Wang W. Pancreatic ductal adenocarcinoma cells reshape the immune microenvironment: Molecular mechanisms and therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189183. [PMID: 39303859 DOI: 10.1016/j.bbcan.2024.189183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a digestive system malignancy characterized by challenging early detection, limited treatment alternatives, and generally poor prognosis. Although there have been significant advancements in immunotherapy for hematological malignancies and various solid tumors in recent decades, with impressive outcomes in recent preclinical and clinical trials, the effectiveness of these therapies in treating PDAC continues to be modest. The unique immunological microenvironment of PDAC, especially the abnormal distribution, complex composition, and variable activation states of tumor-infiltrating immune cells, greatly restricts the effectiveness of immunotherapy. Undoubtedly, integrating data from both preclinical models and human studies helps accelerate the identification of reliable molecules and pathways responsive to targeted biological therapies and immunotherapies, thereby continuously optimizing therapeutic combinations. In this review, we delve deeply into how PDAC cells regulate the immune microenvironment through complex signaling networks, affecting the quantity and functional status of immune cells to promote immune escape and tumor progression. Furthermore, we explore the multi-modal immunotherapeutic strategies currently under development, emphasizing the transformation of the immunosuppressive environment into an anti-tumor milieu by targeting specific molecular and cellular pathways, providing insights for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Xiangyu Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100023, PR China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing 100023, PR China; National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing 100023, PR China.
| |
Collapse
|
9
|
Zhao X, Ma Y, Luo J, Xu K, Tian P, Lu C, Song J. Blocking the WNT/β-catenin pathway in cancer treatment:pharmacological targets and drug therapeutic potential. Heliyon 2024; 10:e35989. [PMID: 39253139 PMCID: PMC11381626 DOI: 10.1016/j.heliyon.2024.e35989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The WNT/β-catenin signaling pathway plays crucial roles in tumorigenesis and relapse, metastasis, drug resistance, and tumor stemness maintenance. In most tumors, the WNT/β-catenin signaling pathway is often aberrantly activated. The therapeutic usefulness of inhibition of WNT/β-catenin signaling has been reported to improve the efficiency of different cancer treatments and this inhibition of signaling has been carried out using different methods including pharmacological agents, short interfering RNA (siRNA), and antibodies. Here, we review the WNT-inhibitory effects of some FDA-approved drugs and natural products in cancer treatment and focus on recent progress of the WNT signaling inhibitors in improving the efficiency of chemotherapy, immunotherapy, gene therapy, and physical therapy. We also classified these FDA-approved drugs and natural products according to their structure and physicochemical properties, and introduced briefly their potential mechanisms of inhibiting the WNT signaling pathway. The review provides a comprehensive understanding of inhibitors of WNT/β-catenin pathway in various cancer therapeutics. This will benefit novel WNT inhibitor development and optimal clinical use of WNT signaling-related drugs in synergistic cancer therapy.
Collapse
Affiliation(s)
- Xi Zhao
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Yunong Ma
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| | - Jiayang Luo
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Kexin Xu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Peilin Tian
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Cuixia Lu
- Medical Scientific Research Center, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Jiaxing Song
- China Medical College of Guangxi University, Guangxi University, Nanning, 530004, China
| |
Collapse
|
10
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
11
|
Lin W, Chow SKH, Cui C, Liu C, Wang Q, Chai S, Wong RMY, Zhang N, Cheung WH. Wnt/β-catenin signaling pathway as an important mediator in muscle and bone crosstalk: A systematic review. J Orthop Translat 2024; 47:63-73. [PMID: 39007034 PMCID: PMC11245956 DOI: 10.1016/j.jot.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/21/2024] [Accepted: 06/02/2024] [Indexed: 07/16/2024] Open
Abstract
Background The interaction between muscle and bone is shown to be clinically important but the underlying mechanisms are largely unknown. The canonical Wnt/β-catenin signaling pathway is reported to be involved in muscle-bone crosstalk, but its detailed function remains unclear. This systematic review aims to investigate and elucidate the role of the Wnt/β-catenin signaling pathways in muscle-bone crosstalk. Methods We conducted a literature search on the Web of Science, PubMed, EBSCO and Embase with keywords "Wnt*", "bone*" and "muscle*". A systematic review was completed according to the guideline of preferred reporting items of systematic reviews and meta-analyses (PRISMA). Data synthesis included species (human, animal or cell type used), treatments involved, outcome measures and key findings with respect to Wnts. Results Seventeen papers were published from 2007 to 2021 and were extracted from a total of 1529 search results in the databases of Web of Science (468 papers), PubMed (457 papers), EBSCO (371) and Embase (233). 12 Wnt family members were investigated in the papers, including Wnt1, Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt8a, Wnt8b, Wnt9a, Wnt10a, Wnt10b and Wnt16. Many studies showed that muscles were able to increase or decrease osteogenesis of bone, while bone increased myogenesis of muscle through Wnt/β-catenin signaling pathways. Wnt3a, Wnt4 and Wnt10b were shown to play important roles in the crosstalk between muscle and bone. Conclusions Wnt3a, Wnt4 and Wnt10b are found to play important mediatory roles in muscle-bone crosstalk. The role of Wnt4 was mostly found to regulate muscle from the bone side. Whilst the role of Wnt10b during muscle ageing was proposed, current evidence is insufficient to clarify the specific role of Wnt/β-catenin signaling in the interplay between sarcopenia and osteoporosis. More future studies are required to investigate the exact regulatory roles of Wnts in muscle-bone crosstalk in musculoskeletal disease models such as sarcopenia and osteoporosis. Translational potential of this article The systematic review provides an extensive overview to reveal the roles of Wnt/β-catenin signaling pathways in muscle-bone crosstalk. These results provide novel research directions to further understand the underlying mechanism of sarcopenia, osteoporosis, and their crosstalk, finally helping the future development of new therapeutic interventions.
Collapse
Affiliation(s)
- Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Department of Rehabilitation Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Chaoran Liu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong Special Administrative Region of China
| |
Collapse
|
12
|
Kim EJ, Kim KH, Kim HY, Lee DJ, Li S, Ngoc Han M, Jung HS. Harnessing the dental cells derived from human induced pluripotent stem cells for hard tissue engineering. J Adv Res 2024; 61:119-131. [PMID: 37619933 PMCID: PMC11258659 DOI: 10.1016/j.jare.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/02/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023] Open
Abstract
INTRODUCTION Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non-cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell-based therapies. OBJECTIVES We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal-derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues. METHODS For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix. RESULTS These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth. CONCLUSION Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies.
Collapse
Affiliation(s)
- Eun-Jung Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Ka-Hwa Kim
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | | | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Shujin Li
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Mai Ngoc Han
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| | - Han-Sung Jung
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
| |
Collapse
|
13
|
Han R, Yang J, Zhu Y, Gan R. Wnt signaling in gastric cancer: current progress and future prospects. Front Oncol 2024; 14:1410513. [PMID: 38952556 PMCID: PMC11216096 DOI: 10.3389/fonc.2024.1410513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Levels of the Wnt pathway components are abnormally altered in gastric cancer cells, leading to malignant cell proliferation, invasion and metastasis, poor prognosis and chemoresistance. Therefore, it is important to understand the mechanism of Wnt signaling pathway in gastric cancer. We systematically reviewed the molecular mechanisms of the Wnt pathway in gastric cancer development; and summarize the progression and the challenges of research on molecular agents of the Wnt pathway.
Collapse
Affiliation(s)
- Ruyue Han
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingying Zhu
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Runliang Gan
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
14
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
15
|
Lung H, Wentworth KL, Moody T, Zamarioli A, Ram A, Ganesh G, Kang M, Ho S, Hsiao EC. Wnt pathway inhibition with the porcupine inhibitor LGK974 decreases trabecular bone but not fibrosis in a murine model with fibrotic bone. JBMR Plus 2024; 8:ziae011. [PMID: 38577521 PMCID: PMC10994528 DOI: 10.1093/jbmrpl/ziae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/06/2024] Open
Abstract
G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.
Collapse
Affiliation(s)
- Hsuan Lung
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Dentistry, Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Zuckerberg San Francisco General Hospital, San Francisco, CA 94143, United States
| | - Tania Moody
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Ariane Zamarioli
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Orthopaedics and Anesthesiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo (SP) 14049-900, Brazil
| | - Apsara Ram
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Gauri Ganesh
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Misun Kang
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Sunita Ho
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Edward C Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
16
|
Hsu SH, Tsai YL, Wang YT, Shen CH, Hung YH, Chen LT, Hung WC. RNF43 Inactivation Enhances the B-RAF/MEK Signaling and Creates a Combinatory Therapeutic Target in Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304820. [PMID: 38225722 DOI: 10.1002/advs.202304820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/31/2023] [Indexed: 01/17/2024]
Abstract
RING finger 43 (RNF43), a RING-type E3 ubiquitin ligase, is a key regulator of WNT signaling and is mutated in 6-10% of pancreatic tumors. However, RNF43-mediated effects remain unclear, as only a few in vivo substrates of RNF43 are identified. Here, it is found that RNF43-mutated pancreatic cancer cells exhibit elevated B-RAF/MEK activity and are highly sensitive to MEK inhibitors. The depletion of RNF43 in normal pancreatic ductal cells also enhances MEK activation, suggesting that it is a physiologically regulated process. It is confirmed that RNF43 ubiquitinates B-RAF at K499 to promote proteasome-dependent degradation, resulting in reduced MEK activity and proliferative ability in cancer cells. In addition, phosphorylation of B-RAF at T491 suppresses B-RAF ubiquitination by decreasing the interaction between RNF43 and B-RAF. Mutations at K499 in B-RAF are identified in various cancer types. MEK and WNT inhibitors synergistically suppress the growth of RNF43-mutated pancreatic cancer cells in vitro and in vivo. Collectively, the research reveals a novel mechanism by which RNF43 inhibits B-RAF/MEK signaling to suppress tumor growth and provide a new strategy for the treatment of RNF43-inactivated pancreatic cancer.
Collapse
Affiliation(s)
- Shih-Han Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Ya-Li Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
| | - Yu-Hsuan Hung
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 804, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan, 704, Taiwan
- Department of Pharmacy, College of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tong University, Hsinchu, 300, Taiwan
| |
Collapse
|
17
|
Peña-Oyarzún D, Flores T, Torres VA, Quest AFG, Lobos-González L, Kretschmar C, Contreras P, Maturana-Ramírez A, Criollo A, Reyes M. Inhibition of PORCN Blocks Wnt Signaling to Attenuate Progression of Oral Carcinogenesis. Clin Cancer Res 2024; 30:209-223. [PMID: 37812478 DOI: 10.1158/1078-0432.ccr-23-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/12/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is commonly preceded by potentially malignant lesions, referred to as oral dysplasia. We recently reported that oral dysplasia is associated with aberrant activation of the Wnt/β-catenin pathway, due to overexpression of Wnt ligands in a Porcupine (PORCN)-dependent manner. Pharmacologic inhibition of PORCN precludes Wnt secretion and has been proposed as a potential therapeutic approach to treat established cancers. Nevertheless, there are no studies that explore the effects of PORCN inhibition at the different stages of oral carcinogenesis. EXPERIMENTAL DESIGN We performed a model of tobacco-induced oral cancer in vitro, where dysplastic oral keratinocytes (DOK) were transformed into oral carcinoma cells (DOK-TC), and assessed the effects of inhibiting PORCN with the C59 inhibitor. Similarly, an in vivo model of oral carcinogenesis and ex vivo samples derived from patients diagnosed with oral dysplasia and OSCC were treated with C59. RESULTS Both in vitro and ex vivo oral carcinogenesis approaches revealed decreased levels of nuclear β-catenin and Wnt3a, as observed by immunofluorescence and IHC analyses. Consistently, reduced protein and mRNA levels of survivin were observed after treatment with C59. Functionally, treatment with C59 in vitro resulted in diminished cell migration, viability, and invasion. Finally, by using an in vivo model of oral carcinogenesis, we found that treatment with C59 prevented the development of OSCC by reducing the size and number of oral tumor lesions. CONCLUSIONS The inhibition of Wnt ligand secretion with C59 represents a feasible treatment to prevent the progression of early oral lesions toward OSCC.
Collapse
Affiliation(s)
- Daniel Peña-Oyarzún
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Physiology Department, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Interdisciplinary Center for Research in Territorial Health of the Aconcagua Valley (CIISTe Aconcagua), School of Medicine, Faculty of Medicine, San Felipe Campus, Universidad de Valparaiso, Chile
| | - Tania Flores
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Research Centre in Dental Science (CICO), Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Universidad de Chile, Santiago, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Catalina Kretschmar
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Andrea Maturana-Ramírez
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Criollo
- Institute for Research in Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Montserrat Reyes
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
18
|
Dev A, Vachher M, Prasad CP. β-catenin inhibitors in cancer therapeutics: intricacies and way forward. Bioengineered 2023; 14:2251696. [PMID: 37655825 PMCID: PMC10478749 DOI: 10.1080/21655979.2023.2251696] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
β-catenin is an evolutionary conserved, quintessential, multifaceted protein that plays vital roles in cellular homeostasis, embryonic development, organogenesis, stem cell maintenance, cell proliferation, migration, differentiation, apoptosis, and pathogenesis of various human diseases including cancer. β-catenin manifests both signaling and adhesive features. It acts as a pivotal player in intracellular signaling as a component of versatile WNT signaling cascade involved in embryonic development, homeostasis as well as in carcinogenesis. It is also involved in Ca2+ dependent cell adhesion via interaction with E-cadherin at the adherens junctions. Aberrant β-catenin expression and its nuclear accumulation promote the transcription of various oncogenes including c-Myc and cyclinD1, thereby contributing to tumor initiation, development, and progression. β-catenin's expression is closely regulated at various levels including its stability, sub-cellular localization, as well as transcriptional activity. Understanding the molecular mechanisms of regulation of β-catenin and its atypical expression will provide researchers not only the novel insights into the pathogenesis and progression of cancer but also will help in deciphering new therapeutic avenues. In the present review, we have summarized the dual functions of β-catenin, its role in signaling, associated mutations as well as its role in carcinogenesis and tumor progression of various cancers. Additionally, we have discussed the challenges associated with targeting β-catenin molecule with the presently available drugs and suggested the possible way forward in designing new therapeutic alternatives against this oncogene.
Collapse
Affiliation(s)
- Arundhathi Dev
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Vachher
- Department of Biochemistry, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Laboratory), DR BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
He A, Tian S, Kopper O, Horan DJ, Chen P, Bronson RT, Sheng R, Wu H, Sui L, Zhou K, Tao L, Wu Q, Huang Y, Shen Z, Han S, Chen X, Chen H, He X, Robling AG, Jin R, Clevers H, Xiang D, Li Z, Dong M. Targeted inhibition of Wnt signaling with a Clostridioides difficile toxin B fragment suppresses breast cancer tumor growth. PLoS Biol 2023; 21:e3002353. [PMID: 37943878 PMCID: PMC10635564 DOI: 10.1371/journal.pbio.3002353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/27/2023] [Indexed: 11/12/2023] Open
Abstract
Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.
Collapse
Affiliation(s)
- Aina He
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Oded Kopper
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Daniel J. Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Roderick T. Bronson
- Rodent Histopathology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ren Sheng
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hao Wu
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Lufei Sui
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Kun Zhou
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Liang Tao
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Quan Wu
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
- Central Laboratory of Medical Research Centre, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| | - Yujing Huang
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Zan Shen
- Department of Oncology, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Sen Han
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Xueqing Chen
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hong Chen
- Department of Vascular Biology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Xi He
- Kirby Neurobiology Center, Boston Children’s Hospital, Department of Neurology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexander G. Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Barnhill, Indianapolis, United States of America
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, California, United States of America
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
20
|
Diegel CR, Kramer I, Moes C, Foxa GE, McDonald MJ, Madaj ZB, Guth S, Liu J, Harris JL, Kneissel M, Williams BO. Inhibiting WNT secretion reduces high bone mass caused by Sost loss-of-function or gain-of-function mutations in Lrp5. Bone Res 2023; 11:47. [PMID: 37612291 PMCID: PMC10447437 DOI: 10.1038/s41413-023-00278-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023] Open
Abstract
Proper regulation of Wnt signaling is critical for normal bone development and homeostasis. Mutations in several Wnt signaling components, which increase the activity of the pathway in the skeleton, cause high bone mass in human subjects and mouse models. Increased bone mass is often accompanied by severe headaches from increased intracranial pressure, which can lead to fatality and loss of vision or hearing due to the entrapment of cranial nerves. In addition, progressive forehead bossing and mandibular overgrowth occur in almost all subjects. Treatments that would provide symptomatic relief in these subjects are limited. Porcupine-mediated palmitoylation is necessary for Wnt secretion and binding to the frizzled receptor. Chemical inhibition of porcupine is a highly selective method of Wnt signaling inhibition. We treated three different mouse models of high bone mass caused by aberrant Wnt signaling, including homozygosity for loss-of-function in Sost, which models sclerosteosis, and two strains of mice carrying different point mutations in Lrp5 (equivalent to human G171V and A214V), at 3 months of age with porcupine inhibitors for 5-6 weeks. Treatment significantly reduced both trabecular and cortical bone mass in all three models. This demonstrates that porcupine inhibition is potentially therapeutic for symptomatic relief in subjects who suffer from these disorders and further establishes that the continued production of Wnts is necessary for sustaining high bone mass in these models.
Collapse
Affiliation(s)
- Cassandra R Diegel
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Ina Kramer
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Charles Moes
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Gabrielle E Foxa
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Mitchell J McDonald
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Zachary B Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA
| | - Sabine Guth
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Jun Liu
- Oncology, Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | - Jennifer L Harris
- Oncology, Novartis Institutes for Biomedical Research, San Diego, CA, 92121, USA
| | - Michaela Kneissel
- Diseases of Aging and Regenerative Medicine, Novartis Institutes for Biomedical Research, CH-4002, Basel, Switzerland
| | - Bart O Williams
- Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave., NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
21
|
Zhang Q, Yang J, Hu N, Liu J, Yu H, Pan H, Chen D, Ruan C. Small-molecule amines: a big role in the regulation of bone homeostasis. Bone Res 2023; 11:40. [PMID: 37482549 PMCID: PMC10363555 DOI: 10.1038/s41413-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/25/2023] Open
Abstract
Numerous small-molecule amines (SMAs) play critical roles in maintaining bone homeostasis and promoting bone regeneration regardless of whether they are applied as drugs or biomaterials. On the one hand, SMAs promote bone formation or inhibit bone resorption through the regulation of key molecular signaling pathways in osteoblasts/osteoclasts; on the other hand, owing to their alkaline properties as well as their antioxidant and anti-inflammatory features, most SMAs create a favorable microenvironment for bone homeostasis. However, due to a lack of information on their structure/bioactivity and underlying mechanisms of action, certain SMAs cannot be developed into drugs or biomaterials for bone disease treatment. In this review, we thoroughly summarize the current understanding of SMA effects on bone homeostasis, including descriptions of their classifications, biochemical features, recent research advances in bone biology and related regulatory mechanisms in bone regeneration. In addition, we discuss the challenges and prospects of SMA translational research.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Yang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Juan Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Yu
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, 518102, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
22
|
Xu X, Zhao L, Terry PD, Chen J. Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs). Cells 2023; 12:1400. [PMID: 37408234 PMCID: PMC10216952 DOI: 10.3390/cells12101400] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/02/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
Mesenchymal stem cells derived from bone marrow (BM-MSCs) can differentiate into adipocytes and osteoblasts. Various external stimuli, including environmental contaminants, heavy metals, dietary, and physical factors, are shown to influence the fate decision of BM-MSCs toward adipogenesis or osteogenesis. The balance of osteogenesis and adipogenesis is critical for the maintenance of bone homeostasis, and the interruption of BM-MSCs lineage commitment is associated with human health issues, such as fracture, osteoporosis, osteopenia, and osteonecrosis. This review focuses on how external stimuli shift the fate of BM-MSCs towards adipogenesis or osteogenesis. Future studies are needed to understand the impact of these external stimuli on bone health and elucidate the underlying mechanisms of BM-MSCs differentiation. This knowledge will inform efforts to prevent bone-related diseases and develop therapeutic approaches to treat bone disorders associated with various pathological conditions.
Collapse
Affiliation(s)
- Xinyun Xu
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ling Zhao
- Department of Nutrition, The University of Tennessee, Knoxville, TN 37996, USA
| | - Paul D. Terry
- Department of Medicine, Graduate School of Medicine, The University of Tennessee, Knoxville, TN 37920, USA;
| | - Jiangang Chen
- Department of Public Health, The University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
23
|
Pećina-Šlaus N, Aničić S, Bukovac A, Kafka A. Wnt Signaling Inhibitors and Their Promising Role in Tumor Treatment. Int J Mol Sci 2023; 24:ijms24076733. [PMID: 37047705 PMCID: PMC10095594 DOI: 10.3390/ijms24076733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In a continuous search for the improvement of antitumor therapies, the inhibition of the Wnt signaling pathway has been recognized as a promising target. The altered functioning of the Wnt signaling in human tumors points to the strategy of the inhibition of its activity that would impact the clinical outcomes and survival of patients. Because the Wnt pathway is often mutated or epigenetically altered in tumors, which promotes its activation, inhibitors of Wnt signaling are being intensively investigated. It has been shown that knocking down specific components of the Wnt pathway has inhibitory effects on tumor growth in vivo and in vitro. Thus, similar effects are expected from the application of Wnt inhibitors. In the last decades, molecules acting as inhibitors on the pathway’s specific molecular levels have been identified and characterized. This review will discuss the inhibitors of the canonical Wnt pathway, summarize knowledge on their effectiveness as therapeutics, and debate their side effects. The role of the components frequently mutated in various tumors that are principal targets for Wnt inhibitors is also going to be brought to the reader’s attention. Some of the molecules identified as Wnt pathway inhibitors have reached early stages of clinical trials, and some have only just been discovered. All things considered, inhibition of the Wnt signaling pathway shows potential for the development of future therapies.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
24
|
Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells 2023; 12:990. [PMID: 37048063 PMCID: PMC10093220 DOI: 10.3390/cells12070990] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Collapse
Affiliation(s)
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Michael Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
25
|
Tabernero J, Van Cutsem E, Garralda E, Tai D, De Braud F, Geva R, van Bussel MTJ, Fiorella Dotti K, Elez E, de Miguel MJ, Litwiler K, Murphy D, Edwards M, Morris VK. A Phase Ib/II Study of WNT974 + Encorafenib + Cetuximab in Patients With BRAF V600E-Mutant KRAS Wild-Type Metastatic Colorectal Cancer. Oncologist 2023; 28:230-238. [PMID: 36811382 PMCID: PMC10020809 DOI: 10.1093/oncolo/oyad007] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/01/2022] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND WNT974 is a small molecule inhibitor of Wnt signaling that specifically inhibits porcupine O-acyltransferase. This phase Ib dose--escalation study evaluated the maximum tolerated dose of WNT974 in combination with encorafenib and cetuximab in patients with BRAF V600E-mutant metastatic colorectal cancer with RNF43 mutations or RSPO fusions. PATIENTS AND METHODS Patients received once-daily encorafenib and weekly cetuximab, in addition to once-daily WNT974, in sequential dosing cohorts. In the first cohort, patients received 10-mg WNT974 (COMBO10), which was reduced in subsequent cohorts to 7.5-mg (COMBO7.5) or 5-mg (COMBO5) after dose-limiting toxicities (DLTs) were observed. Primary endpoints were incidence of DLTs and exposure to WNT974 and encorafenib. Secondary endpoints were anti-tumor activity and safety. RESULTS Twenty patients were enrolled (COMBO10, n = 4; COMBO7.5, n = 6; COMBO5, n = 10). DLTs were observed in 4 patients, including grade 3 hypercalcemia (COMBO10, n = 1; COMBO7.5, n = 1), grade 2 dysgeusia (COMBO10, n = 1), and lipase increased (COMBO10, n = 1). A high incidence of bone toxicities (n = 9) was reported, including rib fracture, spinal compression fracture, pathological fracture, foot fracture, hip fracture, and lumbar vertebral fracture. Serious adverse events were reported in 15 patients, most frequently bone fracture, hypercalcemia, and pleural effusion. The overall response rate was 10% and disease control rate 85%; most patients achieved stable disease as their best response. CONCLUSION Concerns surrounding the safety and lack of preliminary evidence of improved anti-tumor activity of WNT974 + encorafenib + cetuximab, compared with previous encorafenib + cetuximab data, ultimately led to study discontinuation. Phase II was not initiated. TRIAL REGISTRATION ClinicalTrials.gov, NCT02278133.
Collapse
Affiliation(s)
- Josep Tabernero
- Vall d’Hebron Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), UVic-UCC, IOB-Quiron, Barcelona, Spain
| | - Eric Van Cutsem
- University Hospitals Gasthuisberg Leuven and KU Leuven, Leuven, Belgium
| | - Elena Garralda
- START Madrid, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - David Tai
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore
| | | | - Ravit Geva
- Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Mark T J van Bussel
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Elena Elez
- Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | - Van Karlyle Morris
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
26
|
Chua K, Sim AYL, Yeo EYM, Bin Masroni MS, Naw WW, Leong SM, Lee KW, Lim HJ, Virshup DM, Lee VKM. ETC-159, an Upstream Wnt inhibitor, Induces Tumour Necrosis via Modulation of Angiogenesis in Osteosarcoma. Int J Mol Sci 2023; 24:ijms24054759. [PMID: 36902186 PMCID: PMC10003732 DOI: 10.3390/ijms24054759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
There is an increasing urgency in the search for new drugs to target high-grade cancers such as osteosarcomas (OS), as these have limited therapeutic options and poor prognostic outlook. Even though key molecular events leading to tumorigenesis are not well understood, it is widely agreed that OS tumours are Wnt-driven. ETC-159, a PORCN inhibitor that inhibits the extracellular secretion of Wnt, has recently progressed on to clinical trials. In vitro and in vivo murine and chick chorioallantoic membrane xenograft models were established to examine the effect of ETC-159 on OS. Consistent with our hypothesis, we noted that ETC-159 treatment not only resulted in markedly decreased β-catenin staining in xenografts, but also increased tumour necrosis and a significant reduction in vascularity-a hereby yet undescribed phenotype following ETC-159 treatment. Through further understanding the mechanism of this new window of vulnerability, therapies can be developed to potentiate and maximize the effectiveness of ETC-159, further increasing its clinical utility for the treatment of OS.
Collapse
Affiliation(s)
- Kenon Chua
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore 169608, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore 169857, Singapore
| | - Arthur Yi Loong Sim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Eric Yew Meng Yeo
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Muhammad Sufyan Bin Masroni
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Wah Wah Naw
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Sai Mun Leong
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Kee Wah Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, MD10, 4 Medical Drive, Singapore 117594, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Victor Kwan Min Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Level 3 NUH Main Building, 5 Lower Kent Ridge Road, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-6772-4381
| |
Collapse
|
27
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Du W, Menjivar RE, Donahue KL, Kadiyala P, Velez-Delgado A, Brown KL, Watkoske HR, He X, Carpenter ES, Angeles CV, Zhang Y, Pasca di Magliano M. WNT signaling in the tumor microenvironment promotes immunosuppression in murine pancreatic cancer. J Exp Med 2023; 220:e20220503. [PMID: 36239683 PMCID: PMC9577101 DOI: 10.1084/jem.20220503] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 01/16/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is associated with activation of WNT signaling. Whether this signaling pathway regulates the tumor microenvironment has remained unexplored. Through single-cell RNA sequencing of human pancreatic cancer, we discovered that tumor-infiltrating CD4+ T cells express TCF7, encoding for the transcription factor TCF1. We conditionally inactivated Tcf7 in CD4 expressing T cells in a mouse model of pancreatic cancer and observed changes in the tumor immune microenvironment, including more CD8+ T cells and fewer regulatory T cells, but also compensatory upregulation of PD-L1. We then used a clinically available inhibitor of Porcupine, a key component of WNT signaling, and observed similar reprogramming of the immune response. WNT signaling inhibition has limited therapeutic window due to toxicity, and PD-L1 blockade has been ineffective in PDA. Here, we show that combination targeting reduces pancreatic cancer growth in an experimental model and might benefit the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenting Du
- Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI
| | | | - Padma Kadiyala
- Immunology Program, University of Michigan, Ann Arbor, MI
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
| | | | | | - Xi He
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI
| | - Eileen S. Carpenter
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI
| | - Christina V. Angeles
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Marina Pasca di Magliano
- Department of Surgery, University of Michigan, Ann Arbor, MI
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
29
|
Chen Y, Chen M, Deng K. Blocking the Wnt/β‑catenin signaling pathway to treat colorectal cancer: Strategies to improve current therapies (Review). Int J Oncol 2022; 62:24. [PMID: 36579676 PMCID: PMC9854240 DOI: 10.3892/ijo.2022.5472] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumor types occurring in the digestive system. The incidence of CRC has exhibits yearly increases and the mortality rate among patients with CRC is high. The Wnt/β‑catenin signaling pathway, which is associated with carcinogenesis, is abnormally activated in CRC. Most patients with CRC have adenomatous polyposis coli mutations, while half of the remaining patients have β‑catenin gene mutations. Therefore, targeting the Wnt/β‑catenin signaling pathway for the treatment of CRC is of clinical value. In recent years, with in‑depth research on the Wnt/β‑catenin signaling pathway, inhibitors have been developed that are able to suppress or hinder the development and progression of CRC. In the present review, the role of the Wnt/β‑catenin signaling pathway in CRC is summarized, the research status on Wnt/β‑catenin pathway inhibitors is outlined and potential targets for inhibition of this pathway are presented.
Collapse
Affiliation(s)
- Yuxiang Chen
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mo Chen
- Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Department of Gerontology, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, Sichuan 610041, P.R. China,Professor Mo Chen, Department of Gerontology, Tibetan Chengdu Branch Hospital of West China Hospital, Sichuan University, 20 Ximianqiao Cross Street, Chengdu, Sichuan 610041, P.R. China, E-mail:
| | - Kai Deng
- Department of Gastroenterology and Hepatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China,The Laboratory of Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Kai Deng, Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
30
|
Zhao M, Chen G, Zhang S, Chen B, Wu Z, Zhang C. A bioactive poly(ether-ether-ketone) nanocomposite scaffold regulates osteoblast/osteoclast activity for the regeneration of osteoporotic bone. J Mater Chem B 2022; 10:8719-8732. [PMID: 36239238 DOI: 10.1039/d2tb01387h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Due to the lower regeneration capacity of the osteoporotic bone, the treatment of osteoporotic defects is extremely challenging in clinics. In this study, strontium-doped bioactive glass nanoparticles loaded with sodium alendronate (ALN), namely A-SrBG, were incorporated into the poly(ether-ether-ketone) matrix to fabricate a bioactive composite scaffold (ASP), which was expected to both inhibit bone resorption and promote bone regeneration. The results showed that such a composite scaffold with interconnected macropores (200-400 μm) could release Ca2+, Sr2+, and ALN in vitro. The proliferation, alkaline phosphatase (ALP) activity, expression of osteogenesis-related genes, and formation of calcified nodules of rat bone marrow stromal cells (rBMSCs) were clearly evidenced, and the reduction in the proliferation, tartrate-resistant acid phosphatase (TRAP) activity, cell fusion, and expression of osteoclastogenesis-related genes of osteoclasts was observed as well. In the presence of the ASP scaffold, enhanced osteogenesis along with inhibiting osteoclastogenesis was observed by modulating the osteoprotegerin (OPG)/receptor activator for nuclear factor κB ligand (RANKL) ratio. The efficacy of the composite scaffold in the regeneration of osteoporotic critical-sized cranial defect in a rat model was evaluated. Therefore, the bioactive composite scaffold with excellent biocompatibility and osteogenic potential could be a promising material for the repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Mengen Zhao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Guo Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Shixiong Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Bin Chen
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Zhaoying Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
31
|
Kim NH, Kwon M, Jung J, Chae HB, Lee J, Yoon YJ, Moon IS, Lee HK, Namkung W, Stankovic KM, Lee SA, Lee JD, Park SA. Celastrol suppresses the growth of vestibular schwannoma in mice by promoting the degradation of β-catenin. Acta Pharmacol Sin 2022; 43:2993-3001. [PMID: 35478244 PMCID: PMC9622805 DOI: 10.1038/s41401-022-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/02/2022] [Indexed: 11/08/2022]
Abstract
Vestibular schwannoma (VS), one of characteristic tumors of neurofibromatosis type 2 (NF2), is an intracranial tumor that arises from Schwann cells of the vestibular nerve. VS results in hearing loss, tinnitus, dizziness, and even death, but there are currently no FDA-approved drugs for treatment. In this study, we established a high-throughput screening to discover effective compounds that could inhibit the viability of VS cells. Among 1019 natural products from the Korea Chemical Bank screened, we found that celastrol, a pentacyclic triterpene derived from a Tripterygium Wilfordi plant, exerted potent inhibitory effect on the viability of VS cells with an IC50 value of 0.5 µM. Celastrol (0.5, 1 µM) dose-dependently inhibited the proliferation of primary VS cells derived from VS patients. Celastrol also inhibited the growth, and induced apoptosis of two other VS cell lines (HEI-193 and SC4). Aberrant activation of Wnt/β-catenin signaling has been found in VS isolated from clinically defined NF2 patients. In HEI-193 and SC4 cells, we demonstrated that celastrol (0.1, 0.5 μM) dose-dependently inhibited TOPFlash reporter activity and protein expression of β-catenin, but not mRNA level of β-catenin. Furthermore, celastrol accelerated the degradation of β-catenin by promoting the formation of the β-catenin destruction complex. In nude mice bearing VS cell line SC4 allografts, administration of celastrol (1.25 mg · kg-1 · d-1, i.p. once every 3 days for 2 weeks) significantly suppressed the tumor growth without showing toxicity. Collectively, this study demonstrates that celastrol can inhibit Wnt/β-catenin signaling by promoting the degradation of β-catenin, consequently inhibiting the growth of VS.
Collapse
Affiliation(s)
- Na Hui Kim
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Minji Kwon
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jiwoo Jung
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Hyo Byeong Chae
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Jiwoo Lee
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Yeo-Jun Yoon
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, 03722, Republic of Korea
| | - In Seok Moon
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, 03722, Republic of Korea
| | - Ho K Lee
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Wan Namkung
- College of Pharmacy and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Konstantina M Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Se A Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Jong Dae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea.
| | - Sin-Aye Park
- Department of ICT Environmental Health System, Graduate School, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
- Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
32
|
Flanagan DJ, Woodcock SA, Phillips C, Eagle C, Sansom OJ. Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition. Pharmacol Ther 2022; 238:108179. [PMID: 35358569 PMCID: PMC9531712 DOI: 10.1016/j.pharmthera.2022.108179] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Gastrointestinal cancers are responsible for more cancer deaths than any other system of the body. This review summarises how Wnt pathway dysregulation contributes to the development of the most common gastrointestinal cancers, with a particular focus on the nature and frequency of upstream pathway aberrations. Tumors with upstream aberrations maintain a dependency on the presence of functional Wnt ligand, and are predicted to be tractable to inhibitors of Porcupine, an enzyme that plays a key role in Wnt secretion. We summarise available pre-clinical efficacy data from Porcupine inhibitors in vitro and in vivo, as well as potential toxicities and the data from early phase clinical trials. We appraise the rationale for biomarker-defined targeted approaches, as well as outlining future opportunities for combination with other therapeutics.
Collapse
Affiliation(s)
- Dustin J Flanagan
- Cancer Research UK Beatson Institute, Glasgow, UK; Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | | | | | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
33
|
Wu SC, Kim A, Gu Y, Martinez DI, Zocchi L, Chen CC, Lopez J, Salcido K, Singh S, Wu J, Nael A, Benavente CA. UHRF1 overexpression promotes osteosarcoma metastasis through altered exosome production and AMPK/SEMA3E suppression. Oncogenesis 2022; 11:51. [PMID: 36068209 PMCID: PMC9448786 DOI: 10.1038/s41389-022-00430-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Loss-of-function mutations at the retinoblastoma (RB1) gene are associated with increased mortality, metastasis, and poor therapeutic outcome in several cancers, including osteosarcoma. However, the mechanism(s) through which RB1 loss worsens clinical outcome remains understudied. Ubiquitin-like with PHD and Ring Finger domains 1 (UHRF1) has been identified as a critical downstream effector of the RB/E2F signaling pathway that is overexpressed in various cancers. Here, we determined the role and regulatory mechanisms of UHRF1 in rendering osteosarcoma cells more aggressive. Higher UHRF1 expression correlated with malignancy in osteosarcoma cell lines, clinical samples, and genetically engineered mouse models. Gain- and loss-of-function assays revealed that UHRF1 has cell-intrinsic and extrinsic functions promoting cell proliferation, migration, invasion, angiogenesis, and metastasis. UHRF1 overexpression induced angiogenesis by suppressing AMPK activation and Semaphorin 3E (SEMA3E) expression. Further, UHRF1-mediated migration and metastasis resulted, at least in part, through altered expression of extracellular vesicles and their cargo, including urokinase-type plasminogen activator (uPA). Novel osteosarcoma genetically engineered mouse models confirmed that knocking out Uhrf1 considerably decreased metastasis and reversed the poorer survival associated with Rb1 loss. This presents a new mechanistic insight into RB1 loss-associated poor prognosis and novel oncogenic roles of UHRF1 in the regulation of angiogenesis and exosome secretion, both critical for osteosarcoma metastasis. This provides substantial support for targeting UHRF1 or its downstream effectors as novel therapeutic options to improve current treatment for osteosarcoma.
Collapse
Affiliation(s)
- Stephanie C Wu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Yijun Gu
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Daniel I Martinez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Loredana Zocchi
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Claire C Chen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Jocelyne Lopez
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Kelsey Salcido
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Sarah Singh
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Ali Nael
- Department of Pathology, University of California, Irvine, CA, 92697, USA
- Department of Pathology, Children's Hospital of Orange County, Orange, CA, 92868, USA
| | - Claudia A Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
34
|
Phillips C, Bhamra I, Eagle C, Flanagan E, Armer R, Jones CD, Bingham M, Calcraft P, Edmenson Cook A, Thompson B, Woodcock SA. The Wnt Pathway Inhibitor RXC004 Blocks Tumor Growth and Reverses Immune Evasion in Wnt Ligand-dependent Cancer Models. CANCER RESEARCH COMMUNICATIONS 2022; 2:914-928. [PMID: 36922934 PMCID: PMC10010340 DOI: 10.1158/2767-9764.crc-21-0095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 05/16/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.
Collapse
Affiliation(s)
| | - Inder Bhamra
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Catherine Eagle
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Eimear Flanagan
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | - Richard Armer
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom
| | | | - Matilda Bingham
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Concept Life Sciences Ltd, Manchester, United Kingdom
| | - Peter Calcraft
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Analytical Development, Flu-BPD, AstraZeneca PLC, Manchester, United Kingdom
| | - Alicia Edmenson Cook
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,Oncology Cell Therapy, GlaxoSmithKline PLC, London, United Kingdom
| | - Ben Thompson
- Redx Oncology Ltd, Redx Pharma PLC; Cheshire, United Kingdom.,In Vitro, RxCelerate Ltd, Cambridge, United Kingdom
| | | |
Collapse
|
35
|
Raeisi M, Saberivand M, Velaei K, Aghaei N, Rahimi-Farsi N, Kharrati-Shishavan H, Hassanzadeh D, Mehdizadeh A. Porcn as a novel therapeutic target in cancer therapy: A review. Cell Biol Int 2022; 46:1979-1991. [PMID: 35971741 DOI: 10.1002/cbin.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Wingless-related integration site (Wnt) signaling is one of the main oncogenic pathways in different malignancies. Therefore, targeting this pathway has been considered an exciting strategy in cancer treatment. Porcn is among the central enzymes in this pathway that has recently been considered for cancer-targeted therapy. As a membrane-bound O-acyltransferase, Porcn plays a critical role in wnt ligand palmitoylation and its subsequent secretion. In addition to Porcn's role in stem cell signaling and differentiation, recent findings have shown its role in developing and progressing colorectal, pancreatic, liver, head, and neck cancers. Developed small molecule inhibitors have also opened a promising window toward cancer treatment strategies. In this review, the structure and biological role of Porcn in different cancer-related signaling pathways and inhibitors used for inhibiting this enzyme are discussed.
Collapse
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saberivand
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Aghaei
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Sajjad Hospital, Tabriz, Iran
| | | | | | - Davoud Hassanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Wu CWK, Reid M, Leedham S, Lui RN. The emerging era of personalized medicine in advanced colorectal cancer. J Gastroenterol Hepatol 2022; 37:1411-1425. [PMID: 35815339 PMCID: PMC7617119 DOI: 10.1111/jgh.15937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a genetically heterogeneous disease with its pathogenesis often driven by varying genetic or epigenetic alterations. This has led to a substantial number of patients developing chemoresistance and treatment failure, resulting in a high mortality rate for advanced disease. Deep molecular analysis has allowed for the discovery of key intestinal signaling pathways which impacts colonic epithelial cell fate, and the integral role of the tumor microenvironment on cancer growth and dissemination. Through transitioning pre-clinical knowledge in research into clinical practice, many potential druggable targets within these pathways have been discovered in the hopes of overcoming the roadblocks encountered by conventional therapies. A personalized approach tailoring treatment according to the histopathological and molecular features of individual tumors can hopefully translate to better patient outcomes, and reduce the rate of recurrence in patients with advanced CRC. Herein, the latest understanding on the molecular science behind CRC tumorigenesis, and the potential treatment targets currently at the forefront of research are summarized.
Collapse
Affiliation(s)
- Claudia WK Wu
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Madeleine Reid
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Leedham
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rashid N Lui
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Tanton H, Sewastianik T, Seo HS, Remillard D, Pierre RS, Bala P, Aitymbayev D, Dennis P, Adler K, Geffken E, Yeoh Z, Vangos N, Garbicz F, Scott D, Sethi N, Bradner J, Dhe-Paganon S, Carrasco RD. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. SCIENCE ADVANCES 2022; 8:eabm3108. [PMID: 35486727 PMCID: PMC9054024 DOI: 10.1126/sciadv.abm3108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Dysregulated Wnt/β-catenin signaling is implicated in the pathogenesis of many human cancers, including colorectal cancer (CRC), making it an attractive clinical target. With the aim of inhibiting oncogenic Wnt activity, we developed a high-throughput screening AlphaScreen assay to identify selective small-molecule inhibitors of the interaction between β-catenin and its coactivator BCL9. We identified a compound that consistently bound to β-catenin and specifically inhibited in vivo native β-catenin/BCL9 complex formation in CRC cell lines. This compound inhibited Wnt activity, down-regulated expression of the Wnt/β-catenin signature in gene expression studies, disrupted cholesterol homeostasis, and significantly reduced the proliferation of CRC cell lines and tumor growth in a xenograft mouse model of CRC. This study has therefore identified a specific small-molecule inhibitor of oncogenic Wnt signaling, which may have value as a probe for functional studies and has important implications for the development of novel therapies in patients with CRC.
Collapse
Affiliation(s)
- Helen Tanton
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tomasz Sewastianik
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,, Warsaw, Poland
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - David Remillard
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Roodolph St. Pierre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Pratyusha Bala
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Daulet Aitymbayev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Peter Dennis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Keith Adler
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ezekiel Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zoe Yeoh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nicholas Vangos
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Filip Garbicz
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine,, Warsaw, Poland
| | - David Scott
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Nilay Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Gastrointestinal Cancer Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - James Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ruben D. Carrasco
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Shi W, Zhang X, Bian L, Dai Y, Wang Z, Zhou Y, Yu S, Zhang Z, Zhao P, Tang H, Wang Q, Lu X. Alendronate crosslinked chitosan/polycaprolactone scaffold for bone defects repairing. Int J Biol Macromol 2022; 204:441-456. [PMID: 35151707 DOI: 10.1016/j.ijbiomac.2022.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/31/2022]
Abstract
Here, we evaluated osteogenic differentiation in vitro and new bone formation in vivo using an alendronate-loaded chitosan/polycaprolactone scaffold (CS/PCL) in rats with a critical-sized calvarial defect. Through the action of genipin, which has a crosslinking function, alendronate (AL) was anchored throughout the CS/PCL composite scaffold (CS/PCL@AL) to form an AL sustained release system. We demonstrated that CS/PCL@AL scaffolds significantly enhanced the osteogenic differentiation of ectomesenchymal stem cells (EMSCs) in vitro. Additionally, we explored the possible molecular mechanism of CS/PCL@AL scaffolds in the osteogenic differentiation of EMSCs. This composite scaffold exerted two positive effects on EMSC osteogenic differentiation: 1) the CS/PCL@AL scaffold enhanced EMSC osteogenic differentiation by upregulating bone morphogenetic protein 2, interleukin 10 and laminin expression; and 2) the CS/PCL@AL scaffold promoted the osteogenic differentiation of EMSCs by activating the yes-associated protein (YAP) signaling pathway. YAP and its downstream target transglutaminase are crucial mediators in the osteogenic differentiation of EMSCs. Finally, micro-computed tomography analyses and histology results suggested that the CS/PCL@AL scaffold exhibited a superior capacity to accelerate new and mature bone formation in skull bone defects in Sprague-Dawley rats. This simple and low-cost technology may represent a promising strategy to construct an efficient delivery system to repair bone defects.
Collapse
Affiliation(s)
- Wentao Shi
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Lu Bian
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Yao Dai
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China
| | - Yanjun Zhou
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Shuang Yu
- Engineering Research Center of Knitting Technology, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, PR China
| | - Peng Zhao
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China
| | - Hong Tang
- Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 214122, PR China
| | - Qing Wang
- Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 214122, PR China; Affiliated Wuxi Clinical Medicine, Nantong University, Wuxi, Jiangsu Province 214122, PR China.
| | - Xiaojie Lu
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, PR China; Jiangnan University Brain Institute, Wuxi, Jiangsu Province 214122, PR China.
| |
Collapse
|
39
|
Miyahira AK, Zarif JC, Coombs CC, Flavell RR, Russo JW, Zaidi S, Zhao D, Zhao SG, Pienta KJ, Soule HR. Prostate cancer research in the 21st century; report from the 2021 Coffey-Holden prostate cancer academy meeting. Prostate 2022; 82:169-181. [PMID: 34734426 PMCID: PMC8688282 DOI: 10.1002/pros.24262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 02/03/2023]
Abstract
INTRODUCTION The 2021 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Prostate Cancer Research in the 21st Century," was held virtually, from June 24-25, 2021. METHODS The CHPCA Meeting is organized by the Prostate Cancer Foundation as a unique discussion-oriented meeting focusing on critical topics in prostate cancer research envisioned to bridge the next major advances in prostate cancer biology and treatment. The 2021 CHPCA Meeting was virtually attended by 89 investigators and included 31 talks over nine sessions. RESULTS Major topic areas discussed at the meeting included: cancer genomics and sequencing, functional genomic approaches to studying mediators of plasticity, emerging signaling pathways in metastatic castration resistant prostate cancer, Wnt signaling biology and the challenges of targeted therapy, clonal hematopoiesis, neuroendocrine cell plasticity and antitumor immunity, cancer immunotherapy and its synergizers, and imaging the tumor microenvironment and metabolism. DISCUSSION This meeting report summarizes the research presented at the 2021 CHPCA Meeting. We hope that publication of this knowledge will accelerate new understandings and the development of new biomarkers and treatments for prostate cancer.
Collapse
Affiliation(s)
| | - Jelani C. Zarif
- Department of Oncology, Johns Hopkins University School of Medicine and The Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Catherine C. Coombs
- Department of Medicine, Division of Hematology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA
| | - Joshua W. Russo
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
| | - Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Di Zhao
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Shuang G. Zhao
- Department of Human Oncology, Carbone Cancer Center, University of Wisconsin, Madison, WI
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD
| | | |
Collapse
|
40
|
Doi T, Hojo H, Ohba S, Obayashi K, Endo M, Ishizaki T, Katoh A, Kouji H. Involvement of activator protein-1 family members in β-catenin and p300 association on the genome of PANC-1 cells. Heliyon 2022; 8:e08890. [PMID: 35198763 PMCID: PMC8841382 DOI: 10.1016/j.heliyon.2022.e08890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/26/2021] [Accepted: 01/29/2022] [Indexed: 12/03/2022] Open
Abstract
Wnt/β-catenin is believed to regulate different sets of genes with different coactivators, cAMP response element-binding protein (CREB)-binding protein (CBP) or p300. However, the factors that determine which coactivators act on a particular promoter remain elusive. ICG-001 is a specific inhibitor for β-catenin/CBP but not for β-catenin/p300. By taking advantage of the action of ICG-001, we sought to investigate regulatory mechanisms underlying β-catenin coactivator usage in human pancreatic carcinoma PANC-1 cells through combinatorial analysis of chromatin immunoprecipitation-sequencing and RNA-sequencing. CBP and p300 preferentially bound to regions with the TCF motif alone and with both the TCF and AP-1 motifs, respectively. ICG-001 increased β-catenin binding to regions with both the TCF and AP-1 motifs, flanking the genes induced by ICG-001, concomitant with the increments of the p300 and AP-1 component c-JUN binding. Taken together, AP-1 possibly coordinates β-catenin coactivator usage in PANC-1 cells. These results would further our understanding of the canonical Wnt/β-catenin signaling divergence.
Collapse
Affiliation(s)
- Tomomitsu Doi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
- Corresponding author.
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shinsuke Ohba
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588, Japan
| | - Kunie Obayashi
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Motoyoshi Endo
- Department of Molecular Biology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, 807-8555, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Akira Katoh
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
| | - Hiroyuki Kouji
- Translational Chemical Biology Laboratory, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama, Yufu, Oita, 879-5593, Japan
- Oita University Institute of Advanced Medicine, Inc., 17-20, Higashi Kasuga-machi, Oita-city, Oita, 870-0037, Japan
| |
Collapse
|
41
|
Lawson LY, Brodt MD, Migotsky N, Chermside-Scabbo CJ, Palaniappan R, Silva MJ. Osteoblast-Specific Wnt Secretion Is Required for Skeletal Homeostasis and Loading-Induced Bone Formation in Adult Mice. J Bone Miner Res 2022; 37:108-120. [PMID: 34542191 PMCID: PMC8770559 DOI: 10.1002/jbmr.4445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/03/2023]
Abstract
Wnt signaling is critical to many aspects of skeletal regulation, but the importance of Wnt ligands in the bone anabolic response to mechanical loading is not well established. Recent transcriptome profiling studies by our laboratory and others show that mechanical loading potently induces genes encoding Wnt ligands, including Wnt1 and Wnt7b. Based on these findings, we hypothesized that mechanical loading stimulates adult bone formation by inducing Wnt ligand expression. To test this hypothesis, we inhibited Wnt ligand secretion in adult (5 months old) mice using a systemic (drug) and a bone-targeted (conditional gene knockout) approach, and subjected them to axial tibial loading to induce lamellar bone formation. Mice treated with the Wnt secretion inhibitor WNT974 exhibited a decrease in bone formation in non-loaded bones as well as a 54% decline in the periosteal bone formation response to tibial loading. Next, osteoblast-specific Wnt secretion was inhibited by dosing 5-month-old Osx-CreERT2; WlsF/F mice with tamoxifen. Within 1 to 2 weeks of Wls deletion, skeletal homeostasis was altered with decreased bone formation and increased resorption, and the anabolic response to loading was reduced 65% compared to control (WlsF/F ). Together, these findings show that Wnt ligand secretion is required for adult bone homeostasis, and furthermore establish a role for osteoblast-derived Wnts in mediating the bone anabolic response to tibial loading. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lisa Y. Lawson
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Michael D. Brodt
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Nicole Migotsky
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| | - Christopher J. Chermside-Scabbo
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramya Palaniappan
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
| | - Matthew J. Silva
- Department of Orthopaedic Surgery and Musculoskeletal Research Center, Washington University School of Medicine, Saint Louis, MO, United States
- Department of Biomedical Engineering, Washington University, Saint Louis, MO, United States
| |
Collapse
|
42
|
Do M, Wu CCN, Sonavane PR, Juarez EF, Adams SR, Ross J, Rodriguez Y Baena A, Patel C, Mesirov JP, Carson DA, Advani SJ, Willert K. A FZD7-specific Antibody-Drug Conjugate Induces Ovarian Tumor Regression in Preclinical Models. Mol Cancer Ther 2022; 21:113-124. [PMID: 34667113 PMCID: PMC8742765 DOI: 10.1158/1535-7163.mct-21-0548] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
Although WNT signaling is frequently dysregulated in solid tumors, drugging this pathway has been challenging due to off-tumor effects. Current clinical pan-WNT inhibitors are nonspecific and lead to adverse effects, highlighting the urgent need for more specific WNT pathway-targeting strategies. We identified elevated expression of the WNT receptor Frizzled class receptor 7 (FZD7) in multiple solid cancers in The Cancer Genome Atlas, particularly in the mesenchymal and proliferative subtypes of ovarian serous cystadenocarcinoma, which correlate with poorer median patient survival. Moreover, we observed increased FZD7 protein expression in ovarian tumors compared with normal ovarian tissue, indicating that FZD7 may be a tumor-specific antigen. We therefore developed a novel antibody-drug conjugate, septuximab vedotin (F7-ADC), which is composed of a chimeric human-mouse antibody to human FZD7 conjugated to the microtubule-inhibiting drug monomethyl auristatin E (MMAE). F7-ADC selectively binds human FZD7, potently kills ovarian cancer cells in vitro, and induces regression of ovarian tumor xenografts in murine models. To evaluate F7-ADC toxicity in vivo, we generated mice harboring a modified Fzd7 gene where the resulting Fzd7 protein is reactive with the human-targeting F7-ADC. F7-ADC treatment of these mice did not induce acute toxicities, indicating a potentially favorable safety profile in patients. Overall, our data suggest that the antibody-drug conjugate approach may be a powerful strategy to combat FZD7-expressing ovarian cancers in the clinic.
Collapse
Affiliation(s)
- Myan Do
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Christina C N Wu
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Pooja R Sonavane
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Edwin F Juarez
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Jason Ross
- Department of Global Creative Studio, Illumina, Inc., San Diego, California
| | | | - Charmi Patel
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Jill P Mesirov
- Department of Medicine, University of California San Diego, La Jolla, California.,Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Dennis A Carson
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Science, University of California San Diego, La Jolla, California
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
43
|
Larasati Y, Boudou C, Koval A, Katanaev VL. Unlocking the Wnt pathway: Therapeutic potential of selective targeting FZD 7 in cancer. Drug Discov Today 2021; 27:777-792. [PMID: 34915171 DOI: 10.1016/j.drudis.2021.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/09/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
The Wnt signaling is of paramount pathophysiological importance. Despite showing promising anticancer activities in pre-clinical studies, current Wnt pathway inhibitors face complications in clinical trials resulting from on-target toxicity. Hence, the targeting of pathway component(s) that are essential for cancer but dispensable for normal physiology is key to the development of a safe Wnt signaling inhibitor. Frizzled7 (FZD7) is a Wnt pathway receptor that is redundant in healthy tissues but crucial in various cancers. FZD7 modulates diverse aspects of carcinogenesis, including cancer growth, metastasis, maintenance of cancer stem cells, and chemoresistance. In this review, we describe state-of-the-art knowledge of the functions of FZD7 in carcinogenesis and adult tissue homeostasis. Next, we overview the development of small molecules and biomolecules that target FZD7. Finally, we discuss challenges and possibilities in developing FZD7-selective antagonists.
Collapse
Affiliation(s)
- Yonika Larasati
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Vladimir L Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland; School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia.
| |
Collapse
|
44
|
Parsons MJ, Tammela T, Dow LE. WNT as a Driver and Dependency in Cancer. Cancer Discov 2021; 11:2413-2429. [PMID: 34518209 DOI: 10.1158/2159-8290.cd-21-0190] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
Collapse
Affiliation(s)
- Marie J Parsons
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas E Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, New York. .,Department of Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
45
|
Kahn M. Taking the road less traveled - the therapeutic potential of CBP/β-catenin antagonists. Expert Opin Ther Targets 2021; 25:701-719. [PMID: 34633266 PMCID: PMC8745629 DOI: 10.1080/14728222.2021.1992386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
AREAS COVERED This perspective discusses the challenges of targeting the Wnt signaling cascade, the safety, efficacy, and therapeutic potential of specific CBP/β-catenin antagonists and a rationale for the pleiotropic effects of CBP/β-catenin antagonists beyond Wnt signaling. EXPERT OPINION CBP/β-catenin antagonists can correct lineage infidelity, enhance wound healing, both normal and aberrant (e.g. fibrosis) and force the differentiation and lineage commitment of stem cells and cancer stem cells by regulating enhancer and super-enhancer coactivator occupancy. Small molecule CBP/β-catenin antagonists rebalance the equilibrium between CBP/β-catenin versus p300/β-catenin dependent transcription and may be able to treat or prevent many diseases of aging, via maintenance of our somatic stem cell pool, and regulating mitochondrial function and metabolism involved in differentiation and immune cell function.
Collapse
Affiliation(s)
- Michael Kahn
- Department of Molecular Medicine, City of Hope, Beckman Research Institute, 1500 East Duarte Road Flower Building, Duarte, CA, USA
| |
Collapse
|
46
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 378] [Impact Index Per Article: 94.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
47
|
Yan Y, Zhang Y, Li M, Zhang Y, Zhang X, Zhang X, Xu Y, Wei W, Wang J, Xu X, Song Q, Zhao C. C644-0303, a small-molecule inhibitor of the Wnt/β-catenin pathway, suppresses colorectal cancer growth. Cancer Sci 2021; 112:4722-4735. [PMID: 34431598 PMCID: PMC8586673 DOI: 10.1111/cas.15118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β‐catenin signaling pathway plays an important role in tissue homeostasis, and its malignant activation is closely related to the occurrence and development of many cancers, especially colorectal cancer with adenomatous polyposis coli (APC) and CTNNB1 mutations. By applying a TCF/lymphoid‐enhancing factor (LEF) luciferase reporter system, the high‐throughput screening of 18 840 small‐molecule compounds was performed. A novel scaffold compound, C644‐0303, was identified as a Wnt/β‐catenin signaling inhibitor and exhibited antitumor efficacy. It inhibited both constitutive and ligand activated Wnt signals and its downstream gene expression. Functional studies showed that C644‐0303 causes cell cycle arrest, induces apoptosis, and inhibits cancer cell migration. Moreover, transcription factor array indicated that C644‐0303 could suppress various tumor‐promoting transcription factor activities in addition to Wnt/β‐catenin. Finally, C644‐0303 suppressed tumor spheroidization in a 3‐dimensional cell culture model and inhibited xenograft tumor growth in mice. In conclusion, we report a novel structural small molecular inhibitor targeting the Wnt/β‐catenin signaling pathway that has therapeutic potential for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yu Yan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Mengyuan Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xinxin Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiaonan Zhang
- Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuting Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wei Wei
- School of Life Science, Lanzhou University, Lanzhou, China
| | - Jie Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
48
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
49
|
Goswami VG, Patel BD. Recent updates on Wnt signaling modulators: a patent review (2014-2020). Expert Opin Ther Pat 2021; 31:1009-1043. [PMID: 34128760 DOI: 10.1080/13543776.2021.1940138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Introduction: Wnt signaling is a signal transduction pathway that plays a vital role in embryonic development and normal tissue preservation. Dysfunction of it gives rise to various diseases like cancer, Alzheimer's, metabolic and skeletal disorders, kidney and liver disease, etc. Thus, targeting Wnt pathway can be a potential approach to design and develop novel therapeutic classes.Areas covered: Authors provided an overview of Wnt modulators from 2014 to 2020. Different heterocyclic scaffolds and their pharmacology from a total of 104 PCT applications have been summarized.Expert opinion: The scientific community is working extensively to bring first in the class molecule to the market which targets Wnt pathway. Lorecivivint, Wnt inhibitor, for the treatment of knee Osteoarthritis and SM-04554, Wnt activator, for the treatment of androgenetic alopecia are currently under Phase III. Other molecules, LGK-974, RXC-004, ETC-159, CGX-1321, PRI-724, CWP-232291 and BC-2059 are also under different stages of clinical development for the treatment of cancer. Antibody based Wnt modulator, OTSA101-DTPA-90Y is currently under Phase I for the treatment of Relapsed or Refractory Synovial Sarcoma while OMP-18R5 is under Phase I for Metastatic Breast Cancer. Ongoing preclinical/clinical trials will define the role of the Wnt pathway in different therapeutic areas and open new opportunities.
Collapse
Affiliation(s)
- Vishalgiri G Goswami
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| | - Bhumika D Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
50
|
Jing Z, Wang C, Wen S, Jin Y, Meng Q, Liu Q, Wu J, Sun H, Liu M. Phosphocreatine Promotes Osteoblastic Activities in H 2O 2-Induced MC3T3-E1 Cells by Regulating SIRT1/FOXO1/PGC-1α Signaling Pathway. Curr Pharm Biotechnol 2021; 22:609-621. [PMID: 33198615 DOI: 10.2174/1389201021999201116160247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Osteoporosis, characterized by bone loss, usually occurs with the increased bone resorption and decreased bone formation. H2O2-induced MC3T3-E1 cells are commonly used for the study of osteoblastic activities, which play a crucial role in bone formation. OBJECTIVE This study aimed to investigate the effects of Phosphocreatine (PCr) on the osteoblastic activities in H2O2-induced MC3T3-E1 cells and elaborate on the possible molecular mechanism. METHODS The Osteoprotegerin (OPG)/Receptor Activator of NF-κB Ligand (RANKL) ratio and osteogenic markers were detected to investigate the effects of PCr on osteoblastic activities, and the osteoblastic apoptosis was detected using Hochest staining. Moreover, oxidative stress, Adenosine Triphosphate (ATP) generation and the expression of Sirtuin 1 (SIRT1), Forkhead Box O 1 (FOXO1) and Peroxisome Proliferator-Activated Receptor Γ Coactivator-1α (PGC-1α) were also examined to uncover the possible molecular mechanism in H2O2-induced MC3T3-E1 cells. RESULT The results showed that PCr promoted the osteoblastic differentiation by increasing the expression levels of osteogenic markers of Alkaline Phosphatase (ALP) and Runt-related transcription factor 2 (Runx2), as well as increased the OPG/RANKL ratio and suppressed the osteoblastic apoptosis in H2O2-induced MC3T3-E1 cells. Moreover, treatment with PCr suppressed reactive oxygen species (ROS) over-generation and promoted the ATP production as well as increased the PGC-1α, FOXO1 and SIRT1 protein expression levels in H2O2-induced MC3T3-E1 cells. CONCLUSION PCr treatment could promote osteoblastic activities via suppressing oxidative stress and increasing the ATP generation in H2O2-induced MC3T3-E1 cells. In addition, the positive effects of PCr on osteoblasts might be regulated by SIRT1/FOXO1/ PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Zheng Jing
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shijie Wen
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Mozhen Liu
- Department of Orthopedics, First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|