1
|
Can I, Siegler EL, Sirpilla OL, Manriquez-Roman C, Yun K, Stewart CM, Feigin JM, Rodriguez ML, Gutierrez-Ruiz OL, Ogbodo EJ, Huynh TN, Kimball BL, Mai LK, Hefazi M, Fonkoua LK, Xia H, Hamaidi I, Alkan B, Sezer F, Ekiz HA, Sakemura RL, Kenderian SS. Differential susceptibility and role for senescence in CART cells based on costimulatory domains. Mol Cancer 2025; 24:172. [PMID: 40495168 PMCID: PMC12150488 DOI: 10.1186/s12943-025-02371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 05/28/2025] [Indexed: 06/16/2025] Open
Abstract
Despite the success of chimeric antigen receptor T (CART) cell therapy in hematological malignancies, durable remissions remain low. Here, we report CART senescence as a potential resistance mechanism in 41BB-costimulated CART cell therapy. To mimic cancer relapse, we utilized an in vitro model with repeated CART cell activation cycles followed by rest periods. Using CD19-targeted CART cells with costimulation via 4-1BB-CD3ζ (BBζ) or CD28-CD3ζ (28ζ), we showed that CART cells undergo functional, phenotypical, and transcriptomic changes of senescence, which is more prominent in BBζ. We then utilized two additional independent strategies to induce senescence through MYC activation and irradiation. Induction of senescence impaired BBζ activity but improved 28ζ activity in preclinical studies. These findings were supported by analyses of independent patient data sets; senescence signatures in CART cell products were associated with non-response to BBζ but with improved clinical outcomes in 28ζ treatment. In summary, our study identifies senescence as a potential mechanism of failure predominantly in 41BB-costimulated CART cells.
Collapse
Affiliation(s)
- Ismail Can
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Elizabeth L Siegler
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Olivia L Sirpilla
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Claudia Manriquez-Roman
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA
| | - Kun Yun
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Carli M Stewart
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Jennifer M Feigin
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Makena L Rodriguez
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Omar L Gutierrez-Ruiz
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Ekene J Ogbodo
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Truc N Huynh
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Brooke L Kimball
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Long K Mai
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Mehrdad Hefazi
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Lionel Kankeu Fonkoua
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Hong Xia
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | | | - Berke Alkan
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - Fatih Sezer
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - H Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Türkiye
| | - R Leo Sakemura
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA
| | - Saad S Kenderian
- T Cell Engineering, Mayo Clinic, Rochester, MN, USA.
- Division of Hematology, Mayo Clinic, 200 First Street S.W, Rochester, MN, 55905, USA.
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA.
- Center for Regenerative Biotherapeutics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Abdulkareem NM, Bhat R, Castillo M, Jung SY, Vasaikar S, Nanda S, Ruiz A, Shea M, Cao W, Veeraraghavan J, Kim HY, Bawa-Khalfe T, Hussain T, Liu X, Gunaratne P, Schiff R, Trivedi MV. Interactions between ADGRF1 (GPR110) and extracellular matrix proteins govern its effects on tumorigenesis in HER2-positive breast cancer. Br J Pharmacol 2025; 182:2524-2541. [PMID: 39965212 DOI: 10.1111/bph.17463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND AND PURPOSE We and others have previously shown that ADGRF1, an adhesion G protein-coupled receptor, is overexpressed and associated with poor survival in many cancers, including human epidermal growth factor receptor-2 (HER2) breast cancer (BC). Also, we have reported the tumour-promoting function of ADGRF1 using preclinical models of HER2+ BC. In this study, we investigated the effect of ADGRF1 overexpression in an orthotopic in vivo model as well as downstream signalling of ADGRF1 in HER2+ BC. EXPERIMENTAL APPROACH We utilized a doxycycline (Dox)-induced ADGRF1 overexpression system in HER2+ BC cell lines and performed various in vitro and in vivo studies. Following ADGRF1 overexpression in the presence/absence of Matrigel, laminin-111 or collagen-IV, we performed the mammosphere assay to assess the tumorigenicity of breast epithelial cells, as well as cAMP/IP1 assays and RNA-sequencing, to understand the receptor function and pharmacology. We conducted cross-linking-aided immunoprecipitation and mass spectrometry to confirm the physical interaction between ADGRF1 and the extracellular matrix proteins present in Matrigel. KEY RESULTS We found that ADGRF1 switched from a tumour-promoting to tumour-suppressive function upon interaction with laminin-111. Interaction of ADGRF1 with laminin-111 resulted in inhibition of Gαs coupling and STAT3 phosphorylation, induction of senescence, increase in HER2 expression, and improvement of sensitivity to anti-HER2 drugs in HER2+ BC. CONCLUSIONS ADGRF1 switches from a tumour-promoting to tumour-suppressive function upon interaction with laminin-111, leading to improvements in sensitivity to anti-HER2 drugs. Leveraging ADGRF1 interactions with laminin-111 may allow the design of novel therapies against ADGRF1 in HER2+ BC.
Collapse
Affiliation(s)
- Noor Mazin Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Micah Castillo
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Suhas Vasaikar
- Clinical Biomarker and Diagnostics, Seagen, Bothell, Washington, USA
| | - Sarmistha Nanda
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Alexis Ruiz
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Martin Shea
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Wangjia Cao
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Jamunarani Veeraraghavan
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, Rockville, Maryland, USA
| | - Tasneem Bawa-Khalfe
- Center for Nuclear Receptors & Cell Signaling, Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Xinli Liu
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
| | - Preethi Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Meghana V Trivedi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas, USA
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Li D, Ma Q. Ubiquitin-specific protease: an emerging key player in cardiomyopathy. Cell Commun Signal 2025; 23:143. [PMID: 40102846 PMCID: PMC11921692 DOI: 10.1186/s12964-025-02123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Protein quality control (PQC) plays a vital role in maintaining normal heart function, as cardiomyocytes are relatively sensitive to misfolded or damaged proteins, which tend to accumulate under pathological conditions. Ubiquitin-specific protease (USP) is the largest deubiquitinating enzyme family and a key component of the ubiquitin proteasome system (UPS), which is a non-lysosomal protein degradation machinery to mediate PQC in cells. USPs regulate the stability or activity of the target proteins that involve intracellular signaling, transcriptional control of inflammation, antioxidation, and cell growth. Recent studies demonstrate that the USPs can regulate fibrosis, lipid metabolism, glucose homeostasis, hypertrophic response, post-ischemic recovery and cell death such as apoptosis and ferroptosis in cardiomyocytes. Since myocardial cell loss is an important component of cardiomyopathy, therefore, these findings suggest that the UPSs play emerging roles in cardiomyopathy. This review briefly summarizes recent literature on the regulatory roles of USPs in the occurrence and development of cardiomyopathy, giving us new insights into the molecular mechanisms of USPs in different cardiomyopathy and potential preventive strategies for cardiomyopathy.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China
| | - Qilin Ma
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan Province, China.
| |
Collapse
|
4
|
Kim JY, Vijayakumar KA, Cho GW. Exploring the impact of methylation aging on acute myeloid leukemia: Insights from the aging clock. Leuk Res 2025; 148:107620. [PMID: 39550906 DOI: 10.1016/j.leukres.2024.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Acute myeloid leukemia (AML) is more commonly diagnosed in adults. Though there are considerable knowledge about the relationship between adult leukemia and aging, it is rarely studies in children as the occurrence of the disease is rare. Additionally, adult and pediatric AML are known to have different etiology. Studies show that in adult AML, methylation aging is accelerated compared to healthy people. However, this association has not been extensively studied in pediatric AML. To investigate potential correlations between pediatric AML and aging, we analyzed methylation aging clock models that leverage DNA methylation patterns and predict epigenetic age. By established knowledge, we observed that the predicted epigenetic age in adult AML cases exceeds the actual chronological age. Similarly, we found that predicted epigenetic age in pediatric AML cases was also higher than chronological age. In addition, we observed significant changes in the CpG probes of the Epi clock, and these changes were observed to be extensive hypomethylation. Based on this, we found that the Epi clock can recognize changes specific to AML. These findings may have implications for strategies to address aging and quality of life after treatment in pediatric AML patients.
Collapse
Affiliation(s)
- Jin-Young Kim
- Department of Biological Science, Chosun University, Gwangju 61452, South Korea
| | - Karthikeyan A Vijayakumar
- Department of Biological Science, Chosun University, Gwangju 61452, South Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, South Korea
| | - Gwang-Won Cho
- Department of Biological Science, Chosun University, Gwangju 61452, South Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, South Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, South Korea.
| |
Collapse
|
5
|
Feng Z, Ou Y, Deng X, Deng M, Yan X, Chen L, Zhou F, Hao L. Deubiquitinase USP10 promotes osteosarcoma autophagy and progression through regulating GSK3β-ULK1 axis. Cell Biosci 2024; 14:111. [PMID: 39218913 PMCID: PMC11367994 DOI: 10.1186/s13578-024-01291-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) are pivotal in maintaining cell homeostasis by regulating substrate protein ubiquitination in both healthy and cancer cells. Ubiquitin-specific protease 10 (USP10) belongs to the DUB family. In this study, we investigated the clinical and pathological significance of USP10 and Unc-51-like autophagy activating kinase 1 (ULK1) in osteosarcoma (OS), as well as the mechanism of USP10 action in ULK1-mediated autophagy and disease progression. RESULTS The analysis of OS and adjacent normal tissues demonstrated that USP10 and ULK1 were significantly overexpressed in OS, and a positive association between their expression and malignant properties was observed. USP10 knockdown in OS cells reduced ULK1 mRNA and protein expression, whereas USP10 overexpression increased ULK1 mRNA and protein expression. In vitro experiments showed that USP10 induced autophagy, cell proliferation, and invasion by enhancing ULK1 expression in OS cell lines. Furthermore, we found that the regulation of ULK1-mediated autophagy, cell proliferation, and invasion in OS by USP10 was dependent on glycogen synthase kinase 3β (GSK3β) activity. Mechanistically, USP10 promoted ULK1 transcription by interacting with and stabilising GSK3β through deubiquitination, which, in turn, increased the activity of the ULK1 promoter, thereby accelerating OS progression. Using a xenograft mouse model, we showed that Spautin-1, a small-molecule inhibitor targeting USP10, significantly reduced OS development, with its anti-tumour activity significantly enhanced when combined with the chemotherapeutic agent cisplatin. CONCLUSION Collectively, we demonstrated that the USP10-GSK3β-ULK1 axis promoted autophagy, cell proliferation, and invasion in OS. The findings imply that targeting USP10 may offer a promising therapeutic avenue for treating OS.
Collapse
Affiliation(s)
- Zuxi Feng
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Yanghuan Ou
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Xueqiang Deng
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China
| | - Minghao Deng
- Nottingham Trent University, Clifton, Nottingham, NG11 8NS, UK
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University Jiangxi Medical College, Nanchang, 330031, China
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Medical Center for Cardiovascular Diseases, Neurological Diseases and Tumors of Jiangxi Province, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
- Laboratory of Translational Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Fan Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Hao
- Departments of Orthopedics, the 2st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330000, Jiangxi Province, China.
| |
Collapse
|
6
|
Wang C, Ni J, Zhai D, Xu Y, Wu Z, Chen Y, Liu N, Du J, Shen Y, Liu G, Yang Y, You L, Hu W. Stress-induced epinephrine promotes hepatocellular carcinoma progression via the USP10-PLAGL2 signaling loop. Exp Mol Med 2024; 56:1150-1163. [PMID: 38689092 PMCID: PMC11148159 DOI: 10.1038/s12276-024-01223-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 05/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with a poor prognosis. Our previous study demonstrated that Pleomorphic adenoma gene like-2 (PLAGL2) was a potential therapeutic target in HCC. However, the mechanisms that lead to the upregulation of PLAGL2 in HCC remain unclear. The present study revealed that stress-induced epinephrine increased the expression of PLAGL2, thereby promoting the progression of HCC. Furthermore, PLAGL2 knockdown inhibited epinephrine-induced HCC development. Mechanistically, epinephrine upregulated ubiquitin-specific protease 10 (USP10) to stabilize PLAGL2 via the adrenergic β-receptor-2-c-Myc (ADRB2-c-Myc) axis. Furthermore, PLAGL2 acted as a transcriptional regulator of USP10, forming a signaling loop. Taken together, these results reveal that stress-induced epinephrine activates the PLAGL2-USP10 signaling loop to enhance HCC progression. Furthermore, PLAGL2 plays a crucial role in psychological stress-mediated promotion of HCC progression.
Collapse
Affiliation(s)
- Chen Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jiaping Ni
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Dongqing Zhai
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yanchao Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, PR China
| | - Zijie Wu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yuyuan Chen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750001, Ningxia, PR China
| | - Juan Du
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, 750001, Ningxia, PR China
| | - Yumeng Shen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Guilai Liu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Linjun You
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, PR China.
- Lingang Laboratory, Shanghai, 200032, PR China.
| |
Collapse
|
7
|
Liu Z, Zhang Y, Li D, Fu J. Cellular senescence in chronic lung diseases from newborns to the elderly: An update literature review. Biomed Pharmacother 2024; 173:116463. [PMID: 38503240 DOI: 10.1016/j.biopha.2024.116463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024] Open
Abstract
The role of cellular senescence in age-related diseases has been fully recognized. In various age-related-chronic lung diseases, the function of alveolar epithelial cells (AECs) is impaired and alveolar regeneration disorders, especially in bronchopulmonary dysplasia,pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), cancer, etc. Except for age-related-chronic lung diseases, an increasing number of studies are exploring the role of cellular senescence in developmental chronic lung diseases, which typically originate in childhood and even in the neonatal period. This review provides an overview of cellular senescence and lung diseases from newborns to the elderly, attempting to draw attention to the relationship between cellular senescence and developmental lung diseases.
Collapse
Affiliation(s)
- Ziyun Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Danni Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
8
|
Song B, Yang P, Zhang S. Cell fate regulation governed by p53: Friends or reversible foes in cancer therapy. Cancer Commun (Lond) 2024; 44:297-360. [PMID: 38311377 PMCID: PMC10958678 DOI: 10.1002/cac2.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
Cancer is a leading cause of death worldwide. Targeted therapies aimed at key oncogenic driver mutations in combination with chemotherapy and radiotherapy as well as immunotherapy have benefited cancer patients considerably. Tumor protein p53 (TP53), a crucial tumor suppressor gene encoding p53, regulates numerous downstream genes and cellular phenotypes in response to various stressors. The affected genes are involved in diverse processes, including cell cycle arrest, DNA repair, cellular senescence, metabolic homeostasis, apoptosis, and autophagy. However, accumulating recent studies have continued to reveal novel and unexpected functions of p53 in governing the fate of tumors, for example, functions in ferroptosis, immunity, the tumor microenvironment and microbiome metabolism. Among the possibilities, the evolutionary plasticity of p53 is the most controversial, partially due to the dizzying array of biological functions that have been attributed to different regulatory mechanisms of p53 signaling. Nearly 40 years after its discovery, this key tumor suppressor remains somewhat enigmatic. The intricate and diverse functions of p53 in regulating cell fate during cancer treatment are only the tip of the iceberg with respect to its equally complicated structural biology, which has been painstakingly revealed. Additionally, TP53 mutation is one of the most significant genetic alterations in cancer, contributing to rapid cancer cell growth and tumor progression. Here, we summarized recent advances that implicate altered p53 in modulating the response to various cancer therapies, including chemotherapy, radiotherapy, and immunotherapy. Furthermore, we also discussed potential strategies for targeting p53 as a therapeutic option for cancer.
Collapse
Affiliation(s)
- Bin Song
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Ping Yang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
| | - Shuyu Zhang
- Laboratory of Radiation MedicineWest China Second University HospitalSichuan UniversityChengduSichuanP. R. China
- The Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanP. R. China
- Laboratory of Radiation MedicineNHC Key Laboratory of Nuclear Technology Medical TransformationWest China School of Basic Medical Sciences & Forensic MedicineSichuan UniversityChengduSichuanP. R. China
| |
Collapse
|
9
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
10
|
Long J, Chen X, Shen Y, Lei Y, Mu L, Wang Z, Xiang R, Gao W, Wang L, Wang L, Jiang J, Zhang W, Lu H, Dong Y, Ding Y, Zhu H, Hong D, Sun YE, Hu J, Liang A. A combinatorial therapeutic approach to enhance FLT3-ITD AML treatment. Cell Rep Med 2023; 4:101286. [PMID: 37951217 PMCID: PMC10694671 DOI: 10.1016/j.xcrm.2023.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/20/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
Internal tandem duplication mutations of the FMS-like tyrosine kinase-3 (FLT3-ITDs) occur in 25%-30% of patients with acute myeloid leukemia (AML) and are associated with dismal prognosis. Although FLT3 inhibitors have demonstrated initial clinical efficacy, the overall outcome of patients with FLT3-ITD AML remains poor, highlighting the urgency to develop more effective treatment strategies. In this study, we reveal that FLT3 inhibitors reduced protein stability of the anti-cancer protein p53, resulting in drug resistance. Blocking p53 degradation with proteasome inhibitors restores intracellular p53 protein levels and, in combination with FLT3-ITD inhibitors, shows superior therapeutic effects against FLT3-ITD AML in cells, mouse models, and patients. These data suggest that this combinatorial therapeutic approach may represent a promising strategy to target FLT3-ITD AML.
Collapse
Affiliation(s)
- Jun Long
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Chen
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichen Lei
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lili Mu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Wang
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Rufang Xiang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenhui Gao
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lining Wang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jieling Jiang
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Zhang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huina Lu
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Dong
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Ding
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Honghu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Jiong Hu
- Department of Hematology, Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Aibin Liang
- Department of Hematology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
11
|
Zhai S, Lin J, Ji Y, Zhang R, Zhang Z, Cao Y, Liu Y, Tang X, Liu J, Liu P, Lin J, Li F, Li H, Shi Y, Fu D, Deng X, Shen B. A microprotein N1DARP encoded by LINC00261 promotes Notch1 intracellular domain (N1ICD) degradation via disrupting USP10-N1ICD interaction to inhibit chemoresistance in Notch1-hyperactivated pancreatic cancer. Cell Discov 2023; 9:95. [PMID: 37714834 PMCID: PMC10504324 DOI: 10.1038/s41421-023-00592-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/28/2023] [Indexed: 09/17/2023] Open
Abstract
The extensively activated Notch signaling pathway in pancreatic cancer cells is important in carcinogenesis, chemoresistance, and recurrence. Targeting this pathway is a promising therapeutic strategy for pancreatic cancer; however, few successful approaches have been reported, and currently used molecular inhibitors of this pathway exhibit limited clinical benefits. In this study, we identified a previously uncharacterized microprotein, Notch1 degradation-associated regulatory polypeptide (N1DARP), encoded by LINC00261. N1DARP knockout accelerated tumor progression and enhanced stem cell properties in pancreatic cancer organoids and LSL-Kras, LSL-Trp53, and Pdx1-Cre (KPC) mice. Mechanistically, N1DARP suppressed canonical and non-canonical Notch1 pathways by competitively disrupting the interaction between N1ICD and ubiquitin-specific peptidase 10 (USP10), thereby promoting K11- and K48-linked polyubiquitination of N1ICD. To evaluate the therapeutic potential of N1DARP, we designed a cell-penetrating stapled peptide, SAH-mAH2-5, with a helical structure similar to that of N1DARP that confers remarkable physicochemical stability. SAH-mAH2-5 interacted with and promoted the proteasome-mediated degradation of N1ICD. SAH-mAH2-5 injection provided substantial therapeutic benefits with limited off-target and systemic adverse effects in Notch1-activated pancreatic cancer models. Taken together, these findings confirm that N1DARP acts as a tumor suppressor and chemosensitizer by regulating USP10-Notch1 oncogenic signaling, and suggest a promising therapeutic strategy targeting the N1DARP-N1ICD interaction in Notch1-activated pancreatic cancer.
Collapse
Affiliation(s)
- Shuyu Zhai
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiewei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuchen Ji
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ronghao Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zehui Zhang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yizhi Cao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yang Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiaomei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayu Lin
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fanlu Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hongzhe Li
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yusheng Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Da Fu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Xiaxing Deng
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
12
|
Zhang N, Wang B, Ma C, Zeng J, Wang T, Han L, Yang M. LINC00240 in the 6p22.1 risk locus promotes gastric cancer progression through USP10-mediated DDX21 stabilization. J Exp Clin Cancer Res 2023; 42:89. [PMID: 37072811 PMCID: PMC10111703 DOI: 10.1186/s13046-023-02654-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/25/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Gastric cancer remains the leading cause of cancer death in the world. It is increasingly evident that long non-coding RNAs (lncRNAs) transcribed from the genome-wide association studies (GWAS)-identified gastric cancer risk loci act as a key mode of cancer development and disease progression. However, the biological significance of lncRNAs at most cancer risk loci remain poorly understood. METHODS The biological functions of LINC00240 in gastric cancer were investigated through a series of biochemical assays. Clinical implications of LINC00240 were examined in tissues from gastric cancer patients. RESULTS In the present study, we identified LINC00240, which is transcribed from the 6p22.1 gastric cancer risk locus, functioning as a novel oncogene. LINC00240 exhibits the noticeably higher expression in gastric cancer specimens compared with normal tissues and its high expression levels are associated with worse survival of patients. Consistently, LINC00240 promotes malignant proliferation, migration and metastasis of gastric cancer cells in vitro and in vivo. Importantly, LINC00240 could interact and stabilize oncoprotein DDX21 via eliminating its ubiquitination by its novel deubiquitinating enzyme USP10, which, thereby, promote gastric cancer progression. CONCLUSIONS Taken together, our data uncovered a new paradigm on how lncRNAs control protein deubiquitylation via intensifying interactions between the target protein and its deubiquitinase. These findings highlight the potentials of lncRNAs as innovative therapeutic targets and thus lay the ground work for clinical translation.
Collapse
Affiliation(s)
- Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Chi Ma
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
- Department of Thyroid Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong Province, Yantai, 264000, China
| | - Jiajia Zeng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Teng Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Province, Jinan, 250117, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
13
|
Ali A, Shafarin J, Muhammad JS, Farhat NM, Hamad M, Soofi A, Hamad M. SCAMP3 promotes breast cancer progression through the c-MYC-β-Catenin-SQSTM1 growth and stemness axis. Cell Signal 2023; 104:110591. [PMID: 36627007 DOI: 10.1016/j.cellsig.2023.110591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/18/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
The cellular trafficking protein secretory-carrier-membrane-protein 3 (SCAMP3) has been previously shown to promote hepatocellular carcinoma, melanoma, glioma and pancreatic adenocarcinoma. Moreover, previous work has shown that SCAMP3 regulates the epidermal growth factor receptor (EGFR) in triple negative breast cancer (TNBC). However, the oncogenic role of SCAMP3 in different molecular subtypes of breast cancer (BRCA) remains largely unknown. In this study, the role of SCAMP3 in different molecular subtypes of BRCA was investigated using in silico, in vitro and in vivo approaches. In silico analysis of BRCA patient samples showed that SCAMP3 is highly overexpressed in different BRCA molecular subtypes, advanced disease grades and lymph node metastatic stages. Depletion of SCAMP3 inhibited BRCA cell growth, stemness, clonogenic potential and migration and promoted autophagy and cellular senescence. The expression of stemness markers CD44 and OCT4A was reduced in SCAMP3-silenced MDA-MB-231 cells. SCAMP3 overexpression promoted cell proliferation, clonogenicity, tumor spheroid formation and migration in vitro and tumor growth in vivo. SCAMP3 promoted epithelial-mesenchymal-transition (EMT) by regulating E-cadherin expression. SCAMP3 enhanced in vivo tumor growth in MDA-MB-231 tumor xenograft mouse model. Mechanistically, SCAMP3 depletion inhibited β-Catenin, c-MYC and SQSTM1 expression, while its overexpression increased the expression of the same oncogenic proteins. Increased SCAMP3 expression associated with increased chemoresistance in BRCA cells while its depletion associated with increased sensitivity to chemotherapy. BRCA patients with high SCAMP3 expression showed poor prognosis, decreased overall survival and relapse free survival relative to counterparts with reduced SCAMP3 expression. These findings suggest that SCAMP3 exerts a wide range of oncogenic effects in different molecular subtypes of BRCA by modulating the c-MYC-β-Catenin-SQSTM1 axis that targets tumor growth, metastasis, stemness and chemoresistance.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Nada Mazen Farhat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Abdul Soofi
- Department of Pathology, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Mawieh Hamad
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
14
|
Yang YC, Zhao CJ, Jin ZF, Zheng J, Ma LT. Targeted therapy based on ubiquitin-specific proteases, signalling pathways and E3 ligases in non-small-cell lung cancer. Front Oncol 2023; 13:1120828. [PMID: 36969062 PMCID: PMC10036052 DOI: 10.3389/fonc.2023.1120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/01/2023] [Indexed: 03/11/2023] Open
Abstract
Lung cancer is one of the most common malignant tumours worldwide, with the highest mortality rate. Approximately 1.6 million deaths owing to lung cancer are reported annually; of which, 85% of deaths occur owing to non-small-cell lung cancer (NSCLC). At present, the conventional treatment methods for NSCLC include radiotherapy, chemotherapy, targeted therapy and surgery. However, drug resistance and tumour invasion or metastasis often lead to treatment failure. The ubiquitin–proteasome pathway (UPP) plays an important role in the occurrence and development of tumours. Upregulation or inhibition of proteins or enzymes involved in UPP can promote or inhibit the occurrence and development of tumours, respectively. As regulators of UPP, ubiquitin-specific proteases (USPs) primarily inhibit the degradation of target proteins by proteasomes through deubiquitination and hence play a carcinogenic or anticancer role. This review focuses on the role of USPs in the occurrence and development of NSCLC and the potential of corresponding targeted drugs, PROTACs and small-molecule inhibitors in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhao-Feng Jin
- School of Psychology, Weifang Medical University, Weifang, China
| | - Jin Zheng
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Li-Tian Ma, ; Jin Zheng,
| |
Collapse
|
15
|
Shen J, Lin X, Dai F, Chen G, Lin H, Fang B, Liu H. Ubiquitin-specific peptidases: Players in bone metabolism. Cell Prolif 2023:e13444. [PMID: 36883930 PMCID: PMC10392067 DOI: 10.1111/cpr.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoporosis is an ageing-related disease, that has become a major public health problem and its pathogenesis has not yet been fully elucidated. Substantial evidence suggests a strong link between overall age-related disease progression and epigenetic modifications throughout the life cycle. As an important epigenetic modification, ubiquitination is extensively involved in various physiological processes, and its role in bone metabolism has attracted increasing attention. Ubiquitination can be reversed by deubiquitinases, which counteract protein ubiquitination degradation. As the largest and most structurally diverse cysteinase family of deubiquitinating enzymes, ubiquitin-specific proteases (USPs), comprising the largest and most structurally diverse cysteine kinase family of deubiquitinating enzymes, have been found to be important players in maintaining the balance between bone formation and resorption. The aim of this review is to explore recent findings highlighting the regulatory functions of USPs in bone metabolism and provide insight into the molecular mechanisms governing their actions during bone loss. An in-deep understanding of USPs-mediated regulation of bone formation and bone resorption will provide a scientific rationale for the discovery and development of novel USP-targeted therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Xiaoning Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Feifei Dai
- School of Medicine, Putian Universtiy, Putian, China
| | - Guoli Chen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Liu
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
16
|
Ye Z, Chen J, Huang P, Xuan Z, Zheng S. Ubiquitin-specific peptidase 10, a deubiquitinating enzyme: Assessing its role in tumor prognosis and immune response. Front Oncol 2022; 12:990195. [PMID: 36248971 PMCID: PMC9554417 DOI: 10.3389/fonc.2022.990195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Ubiquitin-specific peptidase 10 (USP10) is a member of the ubiquitin-specific protease family that removes the ubiquitin chain from ubiquitin-conjugated protein substrates. We performed a literature search to evaluate the structure and biological activity of USP10, summarize its role in tumorigenesis and tumor progression, and discuss how USP10 may act as a tumor suppressor or a tumor-promoting gene depending on its mechanism of action. Subsequently, we elaborated further on these results through bioinformatics analysis. We demonstrated that abnormal expression of USP10 is related to tumorigenesis in various types of cancer, including liver, lung, ovarian, breast, prostate, and gastric cancers and acute myeloid leukemia. Meanwhile, in certain cancers, increased USP10 expression is associated with tumor suppression. USP10 was downregulated in kidney renal clear cell carcinoma (KIRC) and associated with reduced overall survival in patients with KIRC. In contrast, USP10 upregulation was associated with poor prognosis in head and neck squamous cell carcinoma (HNSC). In addition, we elucidated the novel role of USP10 in the regulation of tumor immunity in KIRC and HNSC through bioinformatics analysis. We identified several signaling pathways to be significantly associated with USP10 expression, such as ferroptosis, PI3K/AKT/mTOR, TGF-β, and G2/M checkpoint. In summary, this review outlines the role of USP10 in various forms of cancer, discusses the relevance of USP10 inhibitors in anti-tumor therapies, and highlights the potential function of USP10 in regulating the immune responses of tumors.
Collapse
Affiliation(s)
- Ziqi Ye
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Chen
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zixue Xuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Zixue Xuan, ; Shuilian Zheng,
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Zixue Xuan, ; Shuilian Zheng,
| |
Collapse
|
17
|
Hinds JW, Feris EJ, Wilkins OM, Deary LT, Wang X, Cole MD. S146L in MYC is a context-dependent activating substitution in cancer development. PLoS One 2022; 17:e0272771. [PMID: 36018850 PMCID: PMC9417018 DOI: 10.1371/journal.pone.0272771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/26/2022] [Indexed: 11/19/2022] Open
Abstract
MYC is one of the most dysregulated oncogenes and is thought to be fundamental to tumor formation and/or maintenance in many cancer types. This dominant pro-tumor activity makes MYC an attractive target for cancer therapy. However, MYC is a transcription factor lacking enzymatic activity, and the structure of one of its two domains is unknown e.g., its transactivation domain. Consequently, few direct MYC-targeting therapies have been developed, and none have been successful in the clinic. Nevertheless, significant effort has been devoted to understanding the mechanisms of oncogenic MYC activity with the objective of uncovering novel vulnerabilities of MYC-dependent cancers. These extensive investigations have revealed in detail how MYC translocation, amplification, and other upstream perturbations contribute to MYC activity in cancer. However, missense mutations of the MYC gene have remained relatively understudied for their potential role in MYC-mediated oncogenesis. While the function of several low-frequency mutations in MYC have been described, our understanding of other equally or more frequent mutations is incomplete. Herein, we define the function of a recurrent missense mutation in MYC resulting in the substitution S146L. This mutation enhances the interaction between MYC and its cofactor TRRAP and may enhance oncogenic MYC activity in certain cellular contexts.
Collapse
Affiliation(s)
- John W. Hinds
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Edmond J. Feris
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Owen M. Wilkins
- Center for Quantitative Biology (CQB), Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, Unites States of America
| | - Luke T. Deary
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Xiaofeng Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| | - Michael D. Cole
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire, Unites States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, Unites States of America
| |
Collapse
|
18
|
Li H, Chai L, Ding Z, He H. CircCOL1A2 Sponges MiR-1286 to Promote Cell Invasion and Migration of Gastric Cancer by Elevating Expression of USP10 to Downregulate RFC2 Ubiquitination Level. J Microbiol Biotechnol 2022; 32:938-948. [PMID: 35791074 PMCID: PMC9628928 DOI: 10.4014/jmb.2112.12044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 12/15/2022]
Abstract
Gastric cancers (GC) are generally malignant tumors, occurring with high incidence and threatening public health around the world. Circular RNAs (circRNAs) play crucial roles in modulating various cancers, including GC. However, the functions of circRNAs and their regulatory mechanism in colorectal cancer (CRC) remain largely unknown. This study focuses on both the role of circCOL1A2 in CRC progression as well as its downstream molecular mechanism. Quantitative polymerase chain reaction (qPCR) and western blot were adopted for gene expression analysis. Functional experiments were performed to study the biological functions. Fluorescence in situ hybridization (FISH) and subcellular fraction assays were employed to detect the subcellular distribution. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), RNA pull-down, and immunofluorescence (IF) and immunoprecipitation (IP) assays were used to explore the underlying mechanisms. Our results found circCOL1A2 to be not only upregulated in GC cells, but that it also propels the migration and invasion of GC cells. CircCOL1A2 functions as a competing endogenous RNA (ceRNA) by sequestering microRNA-1286 (miR-1286) to modulate ubiquitin-specific peptidase 10 (USP10), which in turn spurs the migration and invasion of GC cells by regulating RFC2. In sum, CircCOL1A2 sponges miR-1286 to promote cell invasion and migration of GC by elevating the expression of USP10 to downregulate the level of RFC2 ubiquitination. Our study offers a potential novel target for the early diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Hang Li
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China,Corresponding author Phone: +13456888058 Fax: +0571-88303631 E-mail:
| | - Lixin Chai
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China
| | - Zujun Ding
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China
| | - Huabo He
- Gastroenterology and Hepatobiliary Surgery, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015, Zhejiang, P.R.China
| |
Collapse
|
19
|
LIU J, LEUNG CT, LIANG L, WANG Y, CHEN J, LAI KP, TSE WKF. Deubiquitinases in Cancers: Aspects of Proliferation, Metastasis, and Apoptosis. Cancers (Basel) 2022; 14:cancers14143547. [PMID: 35884607 PMCID: PMC9323628 DOI: 10.3390/cancers14143547] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This review summarizes the current DUBs findings that correlate with the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The DUBs were further classified by their biological functions in terms of proliferation, metastasis, and apoptosis. The work provides an updated of the current findings, and could be used as a quick guide for researchers to identify target DUBs in cancers. Abstract Deubiquitinases (DUBs) deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate its activity and stability. They are involved in several cellular functions. In addition to the general biological regulation of normal cells, studies have demonstrated their critical roles in various cancers. In this review, we evaluated and grouped the biological roles of DUBs, including proliferation, metastasis, and apoptosis, in the most common cancers in the world (liver, breast, prostate, colorectal, pancreatic, and lung cancers). The current findings in these cancers are summarized, and the relevant mechanisms and relationship between DUBs and cancers are discussed. In addition to highlighting the importance of DUBs in cancer biology, this study also provides updated information on the roles of DUBs in different types of cancers.
Collapse
Affiliation(s)
- Jiaqi LIU
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Chi Tim LEUNG
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China;
| | - Luyun LIANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Yuqin WANG
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - Jian CHEN
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - Keng Po LAI
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin 541004, China; (J.L.); (L.L.); (Y.W.); (K.P.L.)
| | - William Ka Fai TSE
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895860 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
20
|
Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV, Sinha T, Kurilshikov A, Cenit MC, Jan Bonder M, Franke L, Wijmenga C, Fu J, van der Wijst MGP, Melé M, Lansdorp P, Zhernakova A. Genetic, parental and lifestyle factors influence telomere length. Commun Biol 2022; 5:565. [PMID: 35681050 PMCID: PMC9184499 DOI: 10.1038/s42003-022-03521-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/22/2022] [Indexed: 11/09/2022] Open
Abstract
The average length of telomere repeats (TL) declines with age and is considered to be a marker of biological ageing. Here, we measured TL in six blood cell types from 1046 individuals using the clinically validated Flow-FISH method. We identified remarkable cell-type-specific variations in TL. Host genetics, environmental, parental and intrinsic factors such as sex, parental age, and smoking are associated to variations in TL. By analysing the genome-wide methylation patterns, we identified that the association of maternal, but not paternal, age to TL is mediated by epigenetics. Single-cell RNA-sequencing data for 62 participants revealed differential gene expression in T-cells. Genes negatively associated with TL were enriched for pathways related to translation and nonsense-mediated decay. Altogether, this study addresses cell-type-specific differences in telomere biology and its relation to cell-type-specific gene expression and highlights how perinatal factors play a role in determining TL, on top of genetics and lifestyle.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada
- Repeat Diagnostics Inc, Vancouver, BC, Canada
| | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Sandra Henkelman
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, 197101, Russia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Maria Carmen Cenit
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Microbial Ecology, Nutrition, and Health Research Unit, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980, Paterna-Valencia, Spain
| | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, 69117, Heidelberg, Germany
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G P van der Wijst
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Peter Lansdorp
- Terry Fox Laboratory, British Columbia Cancer Research Center, Vancouver, BC, Canada.
- European Research Institute for the Biology of Ageing, University of Groningen, Groningen, the Netherlands.
- Departments of Hematology and Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
21
|
At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions. Cancers (Basel) 2022; 14:cancers14112745. [PMID: 35681725 PMCID: PMC9179324 DOI: 10.3390/cancers14112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cellular senescence and apoptosis were historically thought of as two distinct cell fate pathways. However, many of the proteins involved are integral to both pathways. In particular, the ability of p53 to regulate both senescence and apoptosis meant it was seen as the decisive factor in these decisions, yet questions remain about its ability to select on its own the most appropriate cell fate according to each situation. Therefore, cell fates are no longer considered fixed endpoints but dynamic states that can be shifted given the right combination of activation and/or inhibitions of cofactors. Abstract When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer.
Collapse
|
22
|
Tao L, Liu X, Jiang X, Zhang K, Wang Y, Li X, Jiang S, Han T. USP10 as a Potential Therapeutic Target in Human Cancers. Genes (Basel) 2022; 13:genes13050831. [PMID: 35627217 PMCID: PMC9142050 DOI: 10.3390/genes13050831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Deubiquitination is a major form of post-translational protein modification involved in the regulation of protein homeostasis and various cellular processes. Deubiquitinating enzymes (DUBs), comprising about five subfamily members, are key players in deubiquitination. USP10 is a USP-family DUB featuring the classic USP domain, which performs deubiquitination. Emerging evidence has demonstrated that USP10 is a double-edged sword in human cancers. However, the precise molecular mechanisms underlying its different effects in tumorigenesis remain elusive. A possible reason is dependence on the cell context. In this review, we summarize the downstream substrates and upstream regulators of USP10 as well as its dual role as an oncogene and tumor suppressor in various human cancers. Furthermore, we summarize multiple pharmacological USP10 inhibitors, including small-molecule inhibitors, such as spautin-1, and traditional Chinese medicines. Taken together, the development of specific and efficient USP10 inhibitors based on USP10’s oncogenic role and for different cancer types could be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Li Tao
- The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou 450008, China;
| | - Xiao Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xinya Jiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Kun Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Yijing Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
| | - Xiumin Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People’s Hospital, Jining Medical University, Jining 272000, China
- Correspondence: (S.J.); (T.H.)
| | - Tao Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China; (X.L.); (X.J.); (K.Z.); (Y.W.)
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, Xinxiang Medical University, Xinxiang 453003, China;
- Correspondence: (S.J.); (T.H.)
| |
Collapse
|
23
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
24
|
Ravi S, Alencar AM, Arakelyan J, Xu W, Stauber R, Wang CCI, Papyan R, Ghazaryan N, Pereira RM. An Update to Hallmarks of Cancer. Cureus 2022; 14:e24803. [PMID: 35686268 PMCID: PMC9169686 DOI: 10.7759/cureus.24803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/03/2022] Open
Abstract
In the last decade, there has been remarkable progress in research toward understanding and refining the hallmarks of cancer. In this review, we propose a new hallmark - "pro-survival autophagy." The importance of pro-survival autophagy is well established in tumorigenesis, as it is related to multiple steps in cancer progression and vital for some cancers. Autophagy is a potential anti-cancer therapeutic target. For this reason, autophagy is a good candidate as a new hallmark of cancer. We describe two enabling characteristics that play a major role in enabling cells to acquire the hallmarks of cancer - "tumor-promoting microenvironment and macroenvironment" and "cancer epigenetics, genome instability and mutation." We also discuss the recent updates, therapeutic and prognostic implications of the eight hallmarks of cancer described by Hanahan et al. in 2011. Understanding these hallmarks and enabling characteristics is key not only to developing new ways to treat cancer efficiently but also to exploring options to overcome cancer resistance to treatment.
Collapse
Affiliation(s)
- Swapna Ravi
- Department of Medicine, St. Luke's Hospital, Duluth, USA
| | - Antonio M Alencar
- Department of Medical Oncology, Hospital Universitário da Universidade Federal do Maranhão, Hospital São Domingos, São Luís, BRA
| | - Jemma Arakelyan
- Department of Oncology/Solid Tumors, Yerevan State Medical University, Hematology Center After Prof. R. Yeolyan, Yerevan, ARM
| | - Weihao Xu
- Department of Business Development, Harbour BioMed, Boston, USA
| | - Roberta Stauber
- Department of Oncology, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, BRA
| | - Cheng-Chi I Wang
- Department of Research and Development, Beltie Bio, Inc, San Diego, USA
| | - Ruzanna Papyan
- Department of Pediatric Oncology and Hematology, Yerevan State Medical University, Pediatric Center and Blood Disorders Center of Armenia, Yerevan, ARM
| | - Narine Ghazaryan
- Department of Molecular Biology, L.A. Orbeli Institute of Physiology National Academy of Sciences, Republic of Armenia (NAS RA) Hematology Center After Prof. R. Yeolyan, Yerevan, ARM
| | - Rosalina M Pereira
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
25
|
Stoczynska-Fidelus E, Węgierska M, Kierasińska A, Ciunowicz D, Rieske P. Role of Senescence in Tumorigenesis and Anticancer Therapy. JOURNAL OF ONCOLOGY 2022; 2022:5969536. [PMID: 35342397 PMCID: PMC8956409 DOI: 10.1155/2022/5969536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/18/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022]
Abstract
Although the role of senescence in many physiological and pathological processes is becoming more identifiable, many aspects of senescence are still enigmatic. A special attention is paid to the role of this phenomenon in tumor development and therapy. This review mainly deals with a large spectrum of oncological issues, beginning with therapy-induced senescence and ending with oncogene-induced senescence. Moreover, the role of senescence in experimental approaches, such as primary cancer cell culture or reprogramming into stem cells, is also beginning to receive further consideration. Additional focus is made on senescence resulting from mitotic catastrophe processes triggered by events occurring during mitosis and jeopardizing chromosomal stability. It has to be also realized that based on recent findings, the basics of senescent cell property interpretation, such as irreversibility of proliferation blockade, can be undermined. It shows that the definition of senescence probably requires updating. Finally, the role of senescence is lately more understandable in the immune system, especially since senescence can diminish the effectiveness of the chimeric antigen receptor T-cell (CAR-T) therapy. In this review, we summarize the current knowledge regarding all these issues.
Collapse
Affiliation(s)
- Ewelina Stoczynska-Fidelus
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Marta Węgierska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Amelia Kierasińska
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Damian Ciunowicz
- Department of Molecular Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| | - Piotr Rieske
- Department of Tumor Biology, Chair of Medical Biology, Medical University of Lodz, Zeligowskiego 7/9 St., 90-752 Lodz, Poland
| |
Collapse
|
26
|
Fakhri S, Zachariah Moradi S, DeLiberto LK, Bishayee A. Cellular senescence signaling in cancer: A novel therapeutic target to combat human malignancies. Biochem Pharmacol 2022; 199:114989. [DOI: 10.1016/j.bcp.2022.114989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/26/2022]
|
27
|
Li M, Tang Y, Zuo X, Meng S, Yi P. Loss of Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) inhibits the progression of ovarian cancer in coordination with ubiquitin-specific protease 10 (USP10). Bioengineered 2022; 13:721-734. [PMID: 34967276 PMCID: PMC8805976 DOI: 10.1080/21655979.2021.2012624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal gynecological malignancies. However, the molecular mechanisms underlying the development of OC remain unclear. Here, we report that loss of Ras GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) inhibits the progression of OC cells. Analysis of databases and clinical specimens showed that G3BP1 is upregulated in OC. The Kaplan-Meier plot results showed that G3BP1 is highly expressed in OC with a poor clinical outcome. Moreover, loss-of-G3BP1 suppresses the proliferation, migration, and invasion of OC cells. Protein-protein interaction network analysis and immunoprecipitation assay showed that ubiquitin-specific protease 10 (USP10) interacts with G3BP1. We next found that USP10 coordinately promotes tumor progression with G3BP1. Moreover, loss of USP10could restore the G3BP1-induced proliferation, migration, and invasion of OC cells. These data indicate that G3BP1 coordinated with USP10 to facilitate the progression of OC cells, and that G3BP1 may become a treatment target for OC.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Silin Meng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Zhang P, Gao K, Zhang L, Sun H, Zhao X, Liu Y, Lv Z, Shi Q, Chen Y, Jiao D, Li Y, Gu W, Wang C. CRL2-KLHDC3 E3 ubiquitin ligase complex suppresses ferroptosis through promoting p14 ARF degradation. Cell Death Differ 2021; 29:758-771. [PMID: 34743205 DOI: 10.1038/s41418-021-00890-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/22/2023] Open
Abstract
The cystine/glutamate antiporter SLC7A11 (commonly known as xCT) functions to import cystine for glutathione biosynthesis, thereby protecting cells from oxidative stress and ferroptosis, a regulated form of non-apoptotic cell death driven by the accumulation of lipid-based reactive oxygen species (ROS). p14ARF, a well-established tumor suppressor, promotes ferroptosis by inhibiting NRF2-mediated SLC7A11 transcription. Here, we demonstrate the crucial role of Cullin 2 RING E3 ligase (CRL2)-KLHDC3 E3 ubiquitin ligase complex in regulating p14ARF protein stability. KLHDC3 acts as a CRL2 adaptor that specifically recognizes a C-terminal degron in p14ARF and triggers p14ARF for ubiquitin-proteasomal degradation. This regulation mode is absent in the murine p14ARF homolog, p19arf which lacks the C-terminal degron. We also show that KLHDC3 suppresses ferroptosis in vitro and supports tumor growth in vivo by relieving p14ARF-mediated suppression of SLC7A11 transcription. Overall, these findings reveal that the protein stability and pro-ferroptotic function of p14ARF are controlled by a CRL2 E3 ubiquitin ligase complex, and suggest that suppression of the p14ARF-NRF2-SLC7A11 regulatory pathway by KLHDC3 overexpression likely contributes to cancer progression.
Collapse
Affiliation(s)
- Pingzhao Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China. .,Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Kun Gao
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Liang Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Huiru Sun
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaying Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yajuan Liu
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Zeheng Lv
- Department of Clinical Laboratory, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qing Shi
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yingji Chen
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongyue Jiao
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yao Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Chenji Wang
- Department of Pathology, School of Basic Medical Sciences, Fudan University Shanghai Cancer Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
29
|
Inhibition of ubiquitin-specific protease 13-mediated degradation of Raf1 kinase by Spautin-1 has opposing effects in naïve and primed pluripotent stem cells. J Biol Chem 2021; 297:101332. [PMID: 34688658 PMCID: PMC8577099 DOI: 10.1016/j.jbc.2021.101332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Embryonic stem cells (ESCs) are progenitor cells that retain the ability to differentiate into various cell types and are necessary for tissue repair. Improving cell culture conditions to maintain the pluripotency of ESCs in vitro is an urgent problem in the field of regenerative medicine. Here, we reveal that Spautin-1, a specific small-molecule inhibitor of ubiquitin-specific protease (USP) family members USP10 and USP13, promotes the maintenance of self-renewal and pluripotency of mouse ESCs in vitro. Functional studies reveal that only knockdown of USP13, but not USP10, is capable of mimicking the function of Spautin-1. Mechanistically, we demonstrate that USP13 physically interacts with, deubiquitinates, and stabilizes serine/threonine kinase Raf1 and thereby sustains Raf1 protein at the posttranslational level to activate the FGF/MEK/ERK prodifferentiation signaling pathway in naïve mouse ESCs. In contrast, in primed mouse epiblast stem cells and human induced pluripotent stem cells, the addition of Spautin-1 had an inhibitory effect on Raf1 levels, but USP13 overexpression promoted self-renewal. The addition of an MEK inhibitor impaired the effect of USP13 upregulation in these cells. These findings provide new insights into the regulatory network of naïve and primed pluripotency.
Collapse
|
30
|
Ou H, Hoffmann R, González‐López C, Doherty GJ, Korkola JE, Muñoz‐Espín D. Cellular senescence in cancer: from mechanisms to detection. Mol Oncol 2021; 15:2634-2671. [PMID: 32981205 PMCID: PMC8486596 DOI: 10.1002/1878-0261.12807] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 01/10/2023] Open
Abstract
Senescence refers to a cellular state featuring a stable cell-cycle arrest triggered in response to stress. This response also involves other distinct morphological and intracellular changes including alterations in gene expression and epigenetic modifications, elevated macromolecular damage, metabolism deregulation and a complex pro-inflammatory secretory phenotype. The initial demonstration of oncogene-induced senescence in vitro established senescence as an important tumour-suppressive mechanism, in addition to apoptosis. Senescence not only halts the proliferation of premalignant cells but also facilitates the clearance of affected cells through immunosurveillance. Failure to clear senescent cells owing to deficient immunosurveillance may, however, lead to a state of chronic inflammation that nurtures a pro-tumorigenic microenvironment favouring cancer initiation, migration and metastasis. In addition, senescence is a response to post-therapy genotoxic stress. Therefore, tracking the emergence of senescent cells becomes pivotal to detect potential pro-tumorigenic events. Current protocols for the in vivo detection of senescence require the analysis of fixed or deep-frozen tissues, despite a significant clinical need for real-time bioimaging methods. Accuracy and efficiency of senescence detection are further hampered by a lack of universal and more specific senescence biomarkers. Recently, in an attempt to overcome these hurdles, an assortment of detection tools has been developed. These strategies all have significant potential for clinical utilisation and include flow cytometry combined with histo- or cytochemical approaches, nanoparticle-based targeted delivery of imaging contrast agents, OFF-ON fluorescent senoprobes, positron emission tomography senoprobes and analysis of circulating SASP factors, extracellular vesicles and cell-free nucleic acids isolated from plasma. Here, we highlight the occurrence of senescence in neoplasia and advanced tumours, assess the impact of senescence on tumorigenesis and discuss how the ongoing development of senescence detection tools might improve early detection of multiple cancers and response to therapy in the near future.
Collapse
Affiliation(s)
- Hui‐Ling Ou
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Reuben Hoffmann
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Cristina González‐López
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| | - Gary J. Doherty
- Department of OncologyCambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusUK
| | - James E. Korkola
- Department of Biomedical EngineeringKnight Cancer InstituteOHSU Center for Spatial Systems BiomedicineOregon Health and Science UniversityPortlandORUSA
| | - Daniel Muñoz‐Espín
- CRUK Cambridge Centre Early Detection ProgrammeDepartment of OncologyHutchison/MRC Research CentreUniversity of CambridgeUK
| |
Collapse
|
31
|
Geng Y, Li L, Liu P, Chen Z, Shen A, Zhang L. TMT-Based Quantitative Proteomic Analysis Identified Proteins and Signaling Pathways Involved in the Response to Xanthatin Treatment in Human HT-29 Colon Cancer Cells. Anticancer Agents Med Chem 2021; 22:887-896. [PMID: 34488591 DOI: 10.2174/1871520621666210901101510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/12/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Xanthatin is a plant-derived bioactive sesquiterpene lactone from the Xanthium strumarium L., and it has been used as a traditional Chinese medicine. Recently, many studies have reported that xanthatin has anticancer activity. However, a comprehensive understanding of the mechanism underlying the antitumor effects of xanthatin is still lacking. OBJECTIVE To systematically and comprehensively identify the underlying mechanisms of xanthatin on cancer cells, quantitative proteomic techniques were performed. METHODS Xanthatin induced HT-29 colon cancer cells death was detected by lactate dehydrogenase (LDH) release cell death assay. Differentially abundant proteins in two groups (control groups and xanthatin treatment groups) of human HT-29 colon cancer cells were identified using tandem mass tag (TMT) quantitative proteomic techniques. All the significant differentially abundant proteins were generally characterized by performing hierarchical clustering, Gene Ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We chose Western blot analysis to validate the candidate proteins in the proteomics results. RESULTS A total of 5637 proteins were identified, of which 397 significantly differentially abundant proteins in the groups were quantified. Based on the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, we found that p53-related signaling played an important role in xanthatin-treated HT-29 colon cancer cells. p53-upregulated modulator of apoptosis (Puma), Sestrin-2 and p14ARF, which were selected from among p53-related signaling proteins, were further validated, and the results were consistent with the tandem mass tag quantitative proteomic results. CONCLUSION We first investigated the molecular mechanism underlying the effects of xanthatin treatment on HT-29 colon cancer cells using tandem mass tag quantitative proteomic methods and provided a global comprehensive understanding of the antitumor effects of xanthatin. However, it is necessary to further confirm the function of the differentially abundant proteins and the potentially associated signaling pathways.
Collapse
Affiliation(s)
- Yadi Geng
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lingli Li
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Ping Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, 230032. China
| | - Zhaolin Chen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Aizong Shen
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| | - Lei Zhang
- Department of Pharmacy, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001. China
| |
Collapse
|
32
|
He Y, Jiang S, Mao C, Zheng H, Cao B, Zhang Z, Zhao J, Zeng Y, Mao X. The deubiquitinase USP10 restores PTEN activity and inhibits non-small cell lung cancer cell proliferation. J Biol Chem 2021; 297:101088. [PMID: 34416231 PMCID: PMC8429974 DOI: 10.1016/j.jbc.2021.101088] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is a key player in tumorigenesis of non–small cell lung cancer (NSCLC) and was recently found to be inactivated by tripartite motif containing 25 (TRIM25)–mediated K63-linked polyubiquitination. However, the deubiquitinase (Dub) coordinate TRIM25 in PTEN ubiquitination is still elusive. In the present study, we found that this K63-linked polyubiquitination could be ablated by the ubiquitin-specific protease 10 (USP10) in a screen against a panel of Dubs. We found using coimmununoprecipitation/immunoblotting that USP10 interacted with PTEN and reduced the K63-linked polyubiquitination of PTEN mediated by TRIM25 in NSCLC cells. Moreover, USP10, but not its inactive C424A deubiquitinating mutant or other Dubs, abolished PTEN from K63-linked polyubiquitination mediated by TRIM25. In contrast to TRIM25, USP10 restored PTEN phosphatase activity and reduced the production of the secondary messenger phosphatidylinositol-3,4,5-trisphosphate, thereby inhibiting AKT/mammalian target of rapamycin progrowth signaling transduction in NSCLC cells. Moreover, USP10 was downregulated in NSCLC cell lines and primary tissues, whereas TRIM25 was upregulated. Consistent with its molecular activity, re-expression of USP10 suppressed NSCLC cell proliferation and migration, whereas knockout of USP10 promoted NSCLC cell proliferation and migration. In conclusion, the present study demonstrates that USP10 coordinates TRIM25 to modulate PTEN activity. Specifically, USP10 activates PTEN by preventing its K63-linked polyubiquitination mediated by TRIM25 and suppresses the AKT/mammalian target of rapamycin signaling pathway, thereby inhibiting NSCLC proliferation, indicating that it may be a potential drug target for cancer treatment.
Collapse
Affiliation(s)
- Yuanming He
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuoyi Jiang
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Chenyu Mao
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hui Zheng
- Institute of Biomedical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Biyin Cao
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zubin Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, China.
| | - Xinliang Mao
- Guangzhou Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Diseases, The Second Affiliated Hospital, Guangdong Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
33
|
Zhou XJ, Li R, Liu X, Qu YQ. Advances in deubiquitinating enzymes in lung adenocarcinoma. J Cancer 2021; 12:5573-5582. [PMID: 34405018 PMCID: PMC8364634 DOI: 10.7150/jca.56532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
The process of ubiquitination and deubiquitination is widely present in the human body's protein reactions and plays versatile roles in multiple diseases. Deubiquitinating enzymes (DUBs) are significant regulators of this process, which cleave the ubiquitin (Ub) moiety from various substrates and maintain protein stability. Lung adenocarcinoma (LUAD) is the most common type of non-small cell lung cancer (NSCLC) and remains refractory to treatment. To elucidate the mechanism of LUAD and advance new therapeutic targets, we review the latest research progress on DUBs in LUAD. We summarize the biological capabilities of these DUBs and further highlight those DUBs that may serve as anticancer target candidates for precision treatment. We also discuss deubiquitinase inhibitors, which are expected to play a role in targeted LUAD therapy.
Collapse
Affiliation(s)
- Xi-Jia Zhou
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Rui Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Xiao Liu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University (Jinan 250012, China)
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital of Shandong University (Jinan 250012, China)
| |
Collapse
|
34
|
Mitochondrial Modulations, Autophagy Pathways Shifts in Viral Infections: Consequences of COVID-19. Int J Mol Sci 2021; 22:ijms22158180. [PMID: 34360945 PMCID: PMC8347486 DOI: 10.3390/ijms22158180] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 01/05/2023] Open
Abstract
Mitochondria are vital intracellular organelles that play an important role in regulating various intracellular events such as metabolism, bioenergetics, cell death (apoptosis), and innate immune signaling. Mitochondrial fission, fusion, and membrane potential play a central role in maintaining mitochondrial dynamics and the overall shape of mitochondria. Viruses change the dynamics of the mitochondria by altering the mitochondrial processes/functions, such as autophagy, mitophagy, and enzymes involved in metabolism. In addition, viruses decrease the supply of energy to the mitochondria in the form of ATP, causing viruses to create cellular stress by generating ROS in mitochondria to instigate viral proliferation, a process which causes both intra- and extra-mitochondrial damage. SARS-COV2 propagates through altering or changing various pathways, such as autophagy, UPR stress, MPTP and NLRP3 inflammasome. Thus, these pathways act as potential targets for viruses to facilitate their proliferation. Autophagy plays an essential role in SARS-COV2-mediated COVID-19 and modulates autophagy by using various drugs that act on potential targets of the virus to inhibit and treat viral infection. Modulated autophagy inhibits coronavirus replication; thus, it becomes a promising target for anti-coronaviral therapy. This review gives immense knowledge about the infections, mitochondrial modulations, and therapeutic targets of viruses.
Collapse
|
35
|
Wei Y, Fu J, Wu W, Ma P, Ren L, Wu J. Estrogen prevents cellular senescence and bone loss through Usp10-dependent p53 degradation in osteocytes and osteoblasts: the role of estrogen in bone cell senescence. Cell Tissue Res 2021; 386:297-308. [PMID: 34223980 DOI: 10.1007/s00441-021-03496-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/23/2021] [Indexed: 12/29/2022]
Abstract
Estrogens play multiple roles in maintaining skeletal homeostasis by regulating many physiological processes in bone cells. Recently, cellular senescence in bone cells, especially in osteocytes, has been demonstrated to be a pivotal factor in bone loss. However, whether and how estrogen mediates cellular senescence in bone cells remains unknown. Here, we show that estrogen is negatively correlated with p53-related cellular senescence, primarily through the regulation of p53 protein levels, both in vivo and in vitro. Further study confirmed that estrogen attenuated the nuclear import of p53 and accelerated p53 degradation in osteocyte-like MLO-Y4 cells and osteoblastic MC3T3-E1 cells. A screen of p53-related ubiquitinating/deubiquitinating enzymes indicated that estrogen induced the degradation of p53 through the regulation of Usp10, a deubiquitinase that is directly linked to p53. Usp10 inhibition attenuated H2O2-induced senescence in MLO-Y4 cells, as indicated by p53/p21 quantification, a senescence-associated β-galactosidase (SA-β-gal) assay, and p53 localization visualization with a confocal microscope. Usp10 overexpression abolished the estrogen-mediated regulation of p53 and the downstream transcriptional gene p21. The injection of ovariectomized (OVX) mice with Spautin-1, a Usp10 inhibitor, inhibited the expression of p53 and the transcription of downstream senescence markers, as well as promoted bone mass recovery. Taken together, our study unveils the regulatory function of estrogen in the prevention of cellular senescence through the regulation of Usp10, thereby accelerating the degradation of senescent factor p53 and inhibiting its nuclear import.
Collapse
Affiliation(s)
- Yu Wei
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Jiayao Fu
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Wenjing Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Pengfei Ma
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Le Ren
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Junhua Wu
- Department of Prosthodontics, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China.
| |
Collapse
|
36
|
Wang G, Cheng X, Zhang J, Liao Y, Jia Y, Qing C. Possibility of inducing tumor cell senescence during therapy. Oncol Lett 2021; 22:496. [PMID: 33981358 PMCID: PMC8108274 DOI: 10.3892/ol.2021.12757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The treatment options for cancer include surgery, radiotherapy and chemotherapy. However, the traditional approach of high-dose chemotherapy brings tremendous toxic side effects to patients, as well as potentially causing drug resistance. Drug resistance affects cell proliferation, cell senescence and apoptosis. Cellular senescence refers to the process in which cells change from an active proliferative status to a growth-arrested status. There are multiple factors that regulate this process and cellular senescence is activated by various pathways. Senescent cells present specific characteristics, such as an increased cell volume, flattened cell body morphology, ceased cell division and the expression of β-galactosidase. Tumor senescence can be categorized into replicative senescence and premature senescence. Cellular senescence may inhibit the occurrence and development of tumors, serving as an innovative strategy for the treatment of cancer. The present review mainly focuses on senescent biomarkers, methods for the induction of cellular senescence and its possible application in the treatment of cancer.
Collapse
Affiliation(s)
- Guohui Wang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xianliang Cheng
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jingyi Zhang
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuan Liao
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yinnong Jia
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Qing
- School of Pharmaceutical Sciences and Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
37
|
Tomicic MT, Krämer F, Nguyen A, Schwarzenbach C, Christmann M. Oxaliplatin-Induced Senescence in Colorectal Cancer Cells Depends on p14 ARF-Mediated Sustained p53 Activation. Cancers (Basel) 2021; 13:cancers13092019. [PMID: 33922007 PMCID: PMC8122251 DOI: 10.3390/cancers13092019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
Senescence is an important consequence of cytostatic drug-based tumor therapy. Here we analyzed to which degree the anticancer drug oxaliplatin induces cell death, cell cycle arrest, and senescence in colorectal cancer (CRC) cells and elucidated the role of p53. Oxaliplatin treatment resulted in the G2-phase arrest in all CRC lines tested (HCT116p53+/+, HCT116p53-/-, LoVo, SW48 and SW480). Immunoblot analysis showed that within the p53-competent lines p53 and p21CIP1 are activated at early times upon oxaliplatin treatment. However, at later times, only LoVo cells showed sustained activation of the p53/p21CIP1 pathway, accompanied by a strong induction of senescence as measured by senescence-associated β-Gal staining and induction of senescence-associated secretory phenotype (SASP) factors. Opposite to LoVo, the p53/p21CIP1 response and senescence induction was much weaker in the p53-proficient SW48 and SW480 cells, which was due to deficiency for p14ARF. Thus, among lines studied only LoVo express p14ARF protein and siRNA-mediated knockdown of p14ARF significantly reduced sustained p53/p21CIP1 activation and senescence. Vice versa, ectopic p14ARF expression enhanced oxaliplatin-induced senescence in SW48 and SW480 cells. Our data show that oxaliplatin-induced senescence in CRC cells is dependent on p53 proficiency; however, a significant induction can only be observed upon p14ARF-mediated p53 stabilization.
Collapse
|
38
|
Tang Z, Jiang W, Mao M, Zhao J, Chen J, Cheng N. Deubiquitinase USP35 modulates ferroptosis in lung cancer via targeting ferroportin. Clin Transl Med 2021; 11:e390. [PMID: 33931967 PMCID: PMC8087931 DOI: 10.1002/ctm2.390] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ferroptosis is essential to regulate tumor growth and serves as a promising therapeutic target to lung cancer. Ubiquitin-specific protease 35 (USP35) belongs to the deubiquitinases family that is associated with cell proliferation and mitosis. In this research, we aim to elucidate the potential role and molecular basis of USP35 in lung cancer. METHODS Lung cancer cells were infected with lentiviral vectors to silence or overexpress USP35. Cell viability, colony formation, lipid reactive oxygen species production, intracellular iron metabolism, and other ferroptotic markers were detected. The role of USP35 on ferroptosis and tumor progression were also tested in mouse tumor xenograft models in vivo. RESULTS USP35 was abundant in human lung cancer tissues and cell lines. USP35 knockdown promoted ferroptosis, and inhibited cell growth, colony formation, and tumor progression in lung cancer cells. USP35 overexpression did not affect tumorigenesis and ferroptosis under basal conditions, but reduced erastin/RSL3-triggered iron disturbance and ferroptosis, thereby facilitating lung cancer cell growth and tumor progression. Further studies determined that USP35 directly interacted with ferroportin (FPN) and functioned as a deubiquitinase to maintain its protein stability. More importantly, we observed that USP35 knockdown sensitized lung cancer cells to cisplatin and paclitaxel chemotherapy. CONCLUSION USP35 modulates ferroptosis in lung cancer via targeting FPN, and it is a promising therapeutic target to lung cancer.
Collapse
Affiliation(s)
- Zheng Tang
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Wanli Jiang
- Department of Thoracic SurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Ming Mao
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jinping Zhao
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jiakuan Chen
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Nitao Cheng
- Department of Thoracic SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
39
|
Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis 2021; 12:192. [PMID: 33602906 PMCID: PMC7893032 DOI: 10.1038/s41419-021-03474-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Many cancer therapies aim to trigger apoptosis in cancer cells. Nevertheless, the presence of oncogenic alterations in these cells and distorted composition of tumour microenvironment largely limit the clinical efficacy of this type of therapy. Luckily, scientific consensus describes about 10 different cell death subroutines with different regulatory pathways and cancer cells are probably not able to avoid all of cell death types at once. Therefore, a focused and individualised therapy is needed to address the specific advantages and disadvantages of individual tumours. Although much is known about apoptosis, therapeutic opportunities of other cell death pathways are often neglected. Molecular heterogeneity of head and neck squamous cell carcinomas (HNSCC) causing unpredictability of the clinical response represents a grave challenge for oncologists and seems to be a critical component of treatment response. The large proportion of this clinical heterogeneity probably lies in alterations of cell death pathways. How exactly cells die is very important because the predominant type of cell death can have multiple impacts on the therapeutic response as cell death itself acts as a second messenger. In this review, we discuss the different types of programmed cell death (PCD), their connection with HNSCC pathogenesis and possible therapeutic windows that result from specific sensitivity to some form of PCD in some clinically relevant subgroups of HNSCC.
Collapse
Affiliation(s)
- Martina Raudenská
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Michal Masařík
- Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic. .,Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00, Brno, Czech Republic. .,BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50, Vestec, Czech Republic.
| |
Collapse
|
40
|
Whitfield J, Soucek L. An "-omycs" Toolbox to Work with MYC. Methods Mol Biol 2021; 2318:1-11. [PMID: 34019283 DOI: 10.1007/978-1-0716-1476-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The MYC transcription factor coordinates a wide range of intra- and extracellular processes associated with tissue proliferation and regeneration. While these processes are typically tightly regulated in physiological conditions, they become deregulated in cancer, where MYC is oncogenically activated.The last decade has seen MYC progress from a renowned undruggable target to a hot topic in the cancer therapy field, as proof emerged from mouse models that its inhibition constitutes an effective and broadly applicable approach to fight cancer. However, there are several aspects of MYC biology that still appear to be elusive and maintain the interest in further studying this intriguing protein. Since MYC's discovery, more than four decades ago, multiple strategies have been developed to study it, related to the many and varied facets of its biology. This new version of The Myc gene: Methods and Protocols provides valuable tips from key "inhabitants of the MYC world," which significantly increase the reach of our investigative tools to shed light on the mysteries still surrounding MYC.
Collapse
Affiliation(s)
- Jonathan Whitfield
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Peptomyc S.L., Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
41
|
Wang TH, Chen CC, Leu YL, Lee YS, Lian JH, Hsieh HL, Chen CY. Palbociclib induces DNA damage and inhibits DNA repair to induce cellular senescence and apoptosis in oral squamous cell carcinoma. J Formos Med Assoc 2020; 120:1695-1705. [PMID: 33342707 DOI: 10.1016/j.jfma.2020.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND/PURPOSE Palbociclib is an FDA-approved cyclin-dependent kinase (CDK) 4/6 inhibitor that has been clinically proven to be effective in breast cancer. However, its use in oral cancer is not well researched. In this study, we investigated the inhibitory activity of palbociclib against oral squamous cell carcinoma (OSCC) cells and explored the mechanism of inhibition. METHODS The effects of palbociclib on the cytotoxicity of OSCC cells were determined by MTT and colony formation assays. β-Galactosidase staining and cell-cycle analysis were used to determine palbociclib-induced cellular senescence and apoptosis of OSCC cells. Wound healing and transwell assays were performed to assess the effects of palbociclib treatment on migration and invasion ability of OSCC cells. Whole transcriptome sequencing was conducted to show the relationship between DNA damage repair of OSCC cells and palbociclib treatment. Palbociclib-induced DNA damage and repair capacity of OSCC cells were confirmed by comet assay and immunofluorescence confocal microscopy. Western blotting was used to verify the palbociclib-mediated changes in the CDK/pRB/c-Myc/CDC25A pathway. Finally, in vitro findings were tested in a mouse xenograft model. RESULTS Our results showed that palbociclib can significantly inhibit the growth, migration, and invasive ability of OSCC cells and can accelerate cellular senescence and apoptosis. We found that palbociclib induced DNA damage and p21 expression through the p53-independent pathway, thereby downregulating c-Myc and CDC25A expression to inhibit cell cycle progression. In addition, palbociclib downregulated RAD51 expression to inhibit DNA damage repair ability of OSCC cell. CONCLUSION Palbociclib was found to have anti-oral squamous cell carcinoma activity and to simultaneously induce DNA damage and inhibit its repair, and to accelerated cellular senescence and apoptosis.
Collapse
Affiliation(s)
- Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan; Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Yann-Lii Leu
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, 5 De Ming Rd., Taoyuan City 333, Taiwan; Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Jang-Hau Lian
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Hsi-Lung Hsieh
- Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan; Department of Neurology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan.
| | - Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; Graduate Institute of Health Industry Technology and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan.
| |
Collapse
|
42
|
Bonacci T, Emanuele MJ. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin Cancer Biol 2020; 67:145-158. [PMID: 32201366 PMCID: PMC7502435 DOI: 10.1016/j.semcancer.2020.03.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Since its discovery forty years ago, protein ubiquitination has been an ever-expanding field. Virtually all biological processes are controlled by the post-translational conjugation of ubiquitin onto target proteins. In addition, since ubiquitin controls substrate degradation through the action of hundreds of enzymes, many of which represent attractive therapeutic candidates, harnessing the ubiquitin system to reshape proteomes holds great promise for improving disease outcomes. Among the numerous physiological functions controlled by ubiquitin, the cell cycle is among the most critical. Indeed, the discovery that the key drivers of cell cycle progression are regulated by the ubiquitin-proteasome system (UPS) epitomizes the connection between ubiquitin signaling and proliferation. Since cancer is a disease of uncontrolled cell cycle progression and proliferation, targeting the UPS to stop cancer cells from cycling and proliferating holds enormous therapeutic potential. Ubiquitination is reversible, and ubiquitin is removed from substrates by catalytic proteases termed deubiquitinases or DUBs. While ubiquitination is tightly linked to proliferation and cancer, the role of DUBs represents a layer of complexity in this landscape that remains poorly captured. Due to their ability to remodel the proteome by altering protein degradation dynamics, DUBs play an important and underappreciated role in the cell cycle and proliferation of both normal and cancer cells. Moreover, due to their enzymatic protease activity and an open ubiquitin binding pocket, DUBs are likely to be important in the future of cancer treatment, since they are among the most druggable enzymes in the UPS. In this review we summarize new and important findings linking DUBs to cell cycle and proliferation, as well as to the etiology and treatment of cancer. We also highlight new advances in developing pharmacological approaches to attack DUBs for therapeutic benefit.
Collapse
Affiliation(s)
- Thomas Bonacci
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Michael J Emanuele
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
43
|
Liang Y, Liang N, Yin L, Xiao F. Cellular and molecular mechanisms of xenobiotics-induced premature senescence. Toxicol Res (Camb) 2020; 9:669-675. [PMID: 33178427 DOI: 10.1093/toxres/tfaa073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/24/2020] [Indexed: 01/10/2023] Open
Abstract
Premature senescence, which share common features with replicative senescence such as morphology, senescence-associated galactosidase (SA-β-gal) activity, cell cycle regulation, and gene expression, can be triggered by the exposure of various xenobiotics including environmental pollutant, peroxides, and anticancer drugs. The exact mechanisms underlying the senescence onset and stabilization are still obscure. In this review, we summarized the possible cellular and molecular mechanisms of xenobiotics-induced premature senescence, including induction of reactive oxygen species (ROS), tumor suppressors, and DNA damage; disequilibrium of calcium homeostasis; activation of transforming growth factor-β (TGF-β); and blockage of aryl hydrocarbon receptor (AHR) pathway. The deeper understanding of the molecular mechanisms underlying xenobiotics-induced senescence may shed light on new therapeutic strategies for age-related pathologies and extend healthy lifespan.
Collapse
Affiliation(s)
- Yuehui Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Ningjuan Liang
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Lirong Yin
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| | - Fang Xiao
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, No. 238 Shangmayuanling Road, Kaifu District, Changsha, Hunan 410078, PR China
| |
Collapse
|
44
|
Hou C, Cai H, Zhu Y, Huang S, Song F, Hou J. Development and Validation of Autophagy-Related Gene Signature and Nomogram for Predicting Survival in Oral Squamous Cell Carcinoma. Front Oncol 2020; 10:558596. [PMID: 33178587 PMCID: PMC7596585 DOI: 10.3389/fonc.2020.558596] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022] Open
Abstract
Background Autophagy, a highly conserved self-digesting process, has been deeply involved in the development and progression of oral squamous cell carcinoma (OSCC). However, the prognostic value of autophagy-related genes (ARGs) for OSCC still remains unclear. Our study set out to develop a multigene expression signature based on ARGs for individualized prognosis assessment in OSCC patients. Methods Based on The Cancer Genome Atlas (TCGA) database, we identified prognosis-related ARGs through univariate COX regression analysis. Then we performed the least absolute shrinkage and selection operator (LASSO) regression analysis to identify an optimal autophagy-related multigene signature with the subsequent validation in testing set, GSE41613 and GSE42743 datasets. Results We identified 36 prognosis-related ARGs for OSCC. Subsequently, the multigene signature based on 13 prognostic ARGs was constructed and successfully divided OSCC patients into low and high-risk groups with significantly different overall survival in TCGA training set (p < 0.0001). The autophagy signature remained as an independent prognostic factor for OSCC in univariate and multivariate Cox regression analyses. The area under the curve (AUC) values of the receiver operating characteristic (ROC) curves for 1, 3, and 5-year survival were 0.758, 0.810, 0.798, respectively. Then the gene signature was validated in TCGA testing set, GSE41613 and GSE42743 datasets. Moreover, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and single-sample gene set enrichment analysis (ssGSEA) revealed the underlying biological characteristics and signaling pathways associated with this signature in OSCC. Finally, we constructed a nomogram by combining the gene signature with multiple clinical parameters (age, gender, TNM-stage, tobacco, and alcohol history). The concordance index (C-index) and calibration plots demonstrated favorable predictive performance of our nomogram. Conclusion In summary, we identified and verified a 13-ARGs prognostic signature and nomogram, which provide individualized prognosis evaluation and show insight for potential therapeutic targets for OSCC.
Collapse
Affiliation(s)
- Chen Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongshi Cai
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yue Zhu
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shuojin Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fan Song
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jinsong Hou
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Post-Translational Regulation of ARF: Perspective in Cancer. Biomolecules 2020; 10:biom10081143. [PMID: 32759846 PMCID: PMC7465197 DOI: 10.3390/biom10081143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023] Open
Abstract
Tumorigenesis can be induced by various stresses that cause aberrant DNA mutations and unhindered cell proliferation. Under such conditions, normal cells autonomously induce defense mechanisms, thereby stimulating tumor suppressor activation. ARF, encoded by the CDKN2a locus, is one of the most frequently mutated or deleted tumor suppressors in human cancer. The safeguard roles of ARF in tumorigenesis are mainly mediated via the MDM2-p53 axis, which plays a prominent role in tumor suppression. Under normal conditions, low p53 expression is stringently regulated by its target gene, MDM2 E3 ligase, which induces p53 degradation in a ubiquitin-proteasome-dependent manner. Oncogenic signals induced by MYC, RAS, and E2Fs trap MDM2 in the inhibited state by inducing ARF expression as a safeguard measure, thereby activating the tumor-suppressive function of p53. In addition to the MDM2-p53 axis, ARF can also interact with diverse proteins and regulate various cellular functions, such as cellular senescence, apoptosis, and anoikis, in a p53-independent manner. As the evidence indicating ARF as a key tumor suppressor has been accumulated, there is growing evidence that ARF is sophisticatedly fine-tuned by the diverse factors through transcriptional and post-translational regulatory mechanisms. In this review, we mainly focused on how cancer cells employ transcriptional and post-translational regulatory mechanisms to manipulate ARF activities to circumvent the tumor-suppressive function of ARF. We further discussed the clinical implications of ARF in human cancer.
Collapse
|
46
|
E2F1-induced ferritin heavy chain 1 pseudogene 3 (FTH1P3) accelerates non-small cell lung cancer gefitinib resistance. Biochem Biophys Res Commun 2020; 530:624-631. [PMID: 32762943 DOI: 10.1016/j.bbrc.2020.07.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been identified to be critical regulator for various human diseases and emerging evidence illustrate the essential function of lncRNAs in the non-small cell lung cancer (NSCLC). Here, our research team tried to identify the roles of lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) in the NSCLC, as well as its molecular mechanism. LncRNA microarray analysis revealed that ferritin heavy chain 1 pseudogene 3 (FTH1P3) was up-regulated in the gefitinib-resistant cells (PC9/GR). Clinically, lncRNA FTH1P3 high-expression was closely correlated with NSCLC patients' unfavorable prognosis. Gain and loss of functional experiments revealed that FTH1P3 promoted the proliferation and invasion of NSCLC cells in vitro, and FTH1P3 knockdown repressed the tumor growth in vivo. Mechanistically, transcription factor E2F1 accelerated the transcription of FTH1P3. RNA immunoprecipitation and chromatin immunoprecipitation experiments showed that FTH1P3 can recruit lysine-specific demethylase 1 (LSD1) and epigenetically repress the TIMP3, thereby accelerating the tumorigenesis of NSCLC. In summary, these findings suggest that FTH1P3 plays a critical role in the gefitinib resistance and progression of NSCLC, providing a potential novel prognostic marker for NSCLC.
Collapse
|
47
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
48
|
Wang X, Xia S, Li H, Wang X, Li C, Chao Y, Zhang L, Han C. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis. Cell Death Differ 2020; 27:1747-1764. [PMID: 31748695 PMCID: PMC7244734 DOI: 10.1038/s41418-019-0458-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/30/2022] Open
Abstract
Krüppel-like factor 4 (KLF4), a key transcription factor, acts as a multifunctional player involved in the progression of numerous aggressive cancers. The proteasome-dependent pathway is one of the main modalities in controlling KLF4 abundance at a posttranslational level. Although some of the ubiquitin ligases have been identified, the deubiquitinases of KLF4 and the regulatory function remain unexplored. Here, by screening ubiquitin-specific proteases that may interact with KLF4, we found ubiquitin-specific peptidase 10 (USP10) as a deubiquitinating enzyme for KLF4. Forced expression of USP10 remarkably increases KLF4 protein level by blocking the latter degradation, whereas the depletion of USP10 promotes KLF4 degradation and thus enhances tumorigenesis. Loss of USP10 in mice downregulates KLF4 expression and accelerates KrasG12D-driven lung adenocarcinoma initiation and progression. In addition, our data revealed that KLF4 can facilitate the transcription of tumor suppressor TIMP3 by directly binding to the TIMP3 promoter. Clinically, reduction of USP10 expression, concomitant with decreased KLF4 and TIMP3 abundance in carcinoma tissue, predicts poor prognosis of lung cancer patient. Taken together, our results demonstrate that USP10 is a critical regulator of KLF4, pinpointing USP10-KLF4-TIMP3 axis as a promising therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Xingyun Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Shilin Xia
- Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116027, China
| | - Hongchang Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Xiang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Chaonan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China
| | - Yulin Chao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, 100850, Beijing, China.
| | - Chuanchun Han
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
49
|
Hu C, Zhang M, Moses N, Hu CL, Polin L, Chen W, Jang H, Heyza J, Malysa A, Caruso JA, Xiang S, Patrick S, Stemmer P, Lou Z, Bai W, Wang C, Bepler G, Zhang XM. The USP10-HDAC6 axis confers cisplatin resistance in non-small cell lung cancer lacking wild-type p53. Cell Death Dis 2020; 11:328. [PMID: 32382008 PMCID: PMC7206099 DOI: 10.1038/s41419-020-2519-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin-specific peptidase 10 (USP10) stabilizes both tumor suppressors and oncogenes in a context-dependent manner. However, the nature of USP10’s role in non-small cell lung cancer (NSCLC) remains unclear. By analyzing The Cancer Genome Atlas (TCGA) database, we have shown that high levels of USP10 are associated with poor overall survival in NSCLC with mutant p53, but not with wild-type p53. Consistently, genetic depletion or pharmacological inhibition of USP10 dramatically reduces the growth of lung cancer xenografts lacking wild-type p53 and sensitizes them to cisplatin. Mechanistically, USP10 interacts with, deubiquitinates, and stabilizes oncogenic protein histone deacetylase 6 (HDAC6). Furthermore, reintroducing either USP10 or HDAC6 into a USP10-knockdown NSCLC H1299 cell line with null-p53 renders cisplatin resistance. This result suggests the existence of a “USP10-HDAC6-cisplatin resistance” axis. Clinically, we have found a positive correlation between USP10 and HDAC6 expression in a cohort of NSCLC patient samples. Moreover, we have shown that high levels of USP10 mRNA correlate with poor overall survival in a cohort of advanced NSCLC patients who received platinum-based chemotherapy. Overall, our studies suggest that USP10 could be a potential biomarker for predicting patient response to platinum, and that targeting USP10 could sensitize lung cancer patients lacking wild-type p53 to platinum-based therapy.
Collapse
Affiliation(s)
- Chen Hu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA.,Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Mu Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Niko Moses
- Cancer Biology Graduate Program, Karmanos Cancer Institute, 4100 John R. St., Detroit, MI, 48201, USA
| | - Cong-Li Hu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Hyejeong Jang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Joshua Heyza
- Cancer Biology Graduate Program, Karmanos Cancer Institute, 4100 John R. St., Detroit, MI, 48201, USA.,Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Agnes Malysa
- Cancer Biology Graduate Program, Karmanos Cancer Institute, 4100 John R. St., Detroit, MI, 48201, USA
| | - Joseph A Caruso
- Proteomics Facility Core, Institute of Environmental Health Sciences, Wayne State University, Scott Hall of Medical Sciences, 540 East Canfield, Room 2105, Detroit, MI, 48201, USA
| | - Shengyan Xiang
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Steve Patrick
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA
| | - Paul Stemmer
- Proteomics Facility Core, Institute of Environmental Health Sciences, Wayne State University, Scott Hall of Medical Sciences, 540 East Canfield, Room 2105, Detroit, MI, 48201, USA
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wenlong Bai
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA.
| | - Xiaohong Mary Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R. St., Detroit, MI, 48201, USA.
| |
Collapse
|
50
|
Prognostic significance of USP10 and p14ARF expression in patients with colorectal cancer. Pathol Res Pract 2020; 216:152988. [PMID: 32362421 DOI: 10.1016/j.prp.2020.152988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Ubiquitin-specific proteases (USPs) play an important role in fundamental cellular processes. Among these, USP10 is known for its association with tumor development and progression of multiple cancers. We aimed to investigate the clinical significance of USP10 expression in colorectal cancer and examined the potential link between USP10 and p14ARF in patients with colorectal cancer. USP10 and p14ARF protein expression was assessed via immunohistochemistry (IHC) on a tissue microarray from 280 colorectal cancer cases. IHC scores were evaluated by digital image analysis and compared with patients' outcomes. In addition, we examined DNA hypermethylation in colorectal cancer cell lines and tissues, which were matched with adjacent normal colon samples. USP10 expression was lost (USP10loss) in 18.6% of samples (52/280 cases), which was linked to lymphovascular invasion (p = 0.019) and distant metastases (p < 0.001). Similarly, loss of p14ARF expression (p14ARFloss) was associated with more advanced tumors. USP10 expression correlated positively with p14ARF expression (r = 0.617, p < 0.001). USP10loss, p14ARFloss, and dual loss of USP10 and p14ARF were significantly associated with shorter disease-free survival and overall survival in comparison to USP10intact, p14ARFintact, and dual loss of USP10 and p14ARF, respectively. Multivariate analysis revealed that USP10loss (p = 0.030) and dual loss of USP10 and p14ARF (p = 0.014) are independent prognostic factors for poor disease-free survival in colorectal cancer patients. Furthermore, aberrant hypermethylation of the USP10 promoter region was found in colorectal cancer cell lines and tissues. The present results suggest that USP10loss is a potential prognostic marker for colorectal cancer.
Collapse
|