1
|
Li F, Song X, Fan W, Pei L, Liu J, Zhao R, Zhang Y, Li M, Song K, Sun Y, Zhang C, Zhang Y, Xu Y. SPathDB: a comprehensive database of spatial pathway activity atlas. Nucleic Acids Res 2025; 53:D1205-D1214. [PMID: 39546631 PMCID: PMC11701687 DOI: 10.1093/nar/gkae1041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/26/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
Spatial transcriptomics sequencing technology deepens our understanding of the diversity of cell behaviors, fates and states within complex tissue, which is often determined by the fine-tuning of regulatory network functional activities. Therefore, characterizing the functional activity within tissue space is helpful for revealing the functional features that drive spatial heterogeneity, and understanding complex biological processes. Here, we describe a database, SPathDB (http://bio-bigdata.hrbmu.edu.cn/SPathDB/), which aims to dissect the pathway-mediated multidimensional spatial heterogeneity in the context of functional activity. We manually curated spatial transcriptomics datasets and biological pathways from public data resources. SPathDB consists of 1689 868 spatial spots of 695 slices from 84 spatial transcriptome datasets of human and mouse, which involves 36 tissues, and also diseases such as cancer, and provides interactive analysis and visualization of the functional activities of 114 998 pathways across these spatial spots. SPathDB provides five flexible interfaces to retrieve and analyze pathways with highly variable functional activity across spatial spots, the distribution of pathway functional activities along pseudo-space axis, pathway-mediated spatial intercellular communications and the associations between spatial pathway functional activity and the occurrence of cell types. SPathDB will serve as a foundational resource for identifying functional features and elucidating underlying mechanisms of spatial heterogeneity.
Collapse
Affiliation(s)
- Feng Li
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Xinyu Song
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Wenli Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Liying Pei
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Jiaqi Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Rui Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yifang Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Mengyue Li
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Kaiyue Song
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yu Sun
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Chunlong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| | - Yanjun Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, No.157 Baojian Road, Harbin 150081, China
| |
Collapse
|
2
|
McIntyre G, Jackson Z, Colina J, Sekhar S, DiFeo A. miR-181a: regulatory roles, cancer-associated signaling pathway disruptions, and therapeutic potential. Expert Opin Ther Targets 2024; 28:1061-1091. [PMID: 39648331 PMCID: PMC12054384 DOI: 10.1080/14728222.2024.2433687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/20/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION microRNA-181a (miR-181a) is a crucial post-transcriptional regulator of many mRNA transcripts and noncoding-RNAs, influencing cell proliferation, cancer cell stemness, apoptosis, and immune responses. Its abnormal expression is well-characterized in numerous cancers, establishing it as a significant genomic vulnerability and biomarker in cancer research. AREAS COVERED Here, we summarize miR-181a's correlation with poor patient outcomes across numerous cancers and the mechanisms governing miR-181a's activity and processing. We comprehensively describe miR-181a's involvement in multiple regulatory cancer signaling pathways, cellular processes, and the tumor microenvironment. We also discuss current therapeutic approaches to targeting miR-181a, highlighting their limitations and future potential. EXPERT OPINION miR-181a is a clinically relevant pan-cancer biomarker with potential as a therapeutic target. Its regulatory control of tumorigenic signaling pathways and immune responses positions it as a promising candidate for personalized treatments. The success of miR-181a as a target relies on the development of specific therapeutics platforms. Future research on miR-181a's role in the tumor microenvironment and the RNA binding proteins that regulate its stability will help uncover new techniques to targeting miR-181a. Further research into miR-181a serum levels in patients undergoing therapy will help to better stratify patients and enhance therapeutic success.
Collapse
Affiliation(s)
- Grace McIntyre
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Zoe Jackson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jose Colina
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Sreeja Sekhar
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Analisa DiFeo
- Department of Pathology, Rackham Graduate School, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Péterffy B, Nádasi TJ, Krizsán S, Horváth A, Márk Á, Barna G, Timár B, Almási L, Müller J, Csanádi K, Rakonczai A, Nagy Z, Kállay K, Kertész G, Kriván G, Csóka M, Sebestyén A, Semsei ÁF, Kovács GT, Erdélyi DJ, Bödör C, Egyed B, Alpár D. Digital PCR-based quantification of miR-181a in the cerebrospinal fluid aids patient stratification in pediatric acute lymphoblastic leukemia. Sci Rep 2024; 14:28556. [PMID: 39558071 PMCID: PMC11574027 DOI: 10.1038/s41598-024-79733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
Despite remarkable improvements in the survival of pediatric acute lymphoblastic leukemia (ALL), sensitive detection and clinical management of central nervous system leukemia (CNSL) are still immensely challenging. Blast cells residing in the CNS but not circulating in the cerebrospinal fluid (CSF) remain undetected by current diagnostic methods, preventing a truly risk-adapted anti-leukemic treatment in this compartment. We examined the clinical applicability of the molecular marker microRNA (miR)-181a quantified in the cell-free CSF to evaluate the level of CNS involvement and to optimize patient stratification based on CNS status. Normalized copy number of miR-181a was longitudinally profiled using droplet digital PCR, and the results were compared with the degree of leukemic involvement of the CNS. After combining cytospin- and flow cytometry (FCM) data with miR-181a expression, we could stratify previously ambiguous cases and reclassify patients into a CNS-positive/miR-significant group (mean ± SE for miR-181a copies: 3300.70 ± 809.69) bearing remarkable infiltration as well as into CNS-minimal/miR-significant and CNS-minimal/miR-minimal groups differentiating putative, clinically significant occult CNSL cases (2503.50 ± 275.89 and 744.02 ± 86.81 copies, respectively, p = 1.13 × 10-6). In summary, miR-181a expression is a promising biomarker for CNSL detection, facilitating the robust identification of patients who could benefit from intensified CNS-directed therapy.
Collapse
Grants
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- PD145889, FK134253, K137948, K139139 Hungarian National Research, Development and Innovation Office
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- STIA-KFI-2022 Semmelweis Scientific and Innovation fund
- 739593 Horizon 2020 Framework Programme
- 739593 Horizon 2020 Framework Programme
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- TKP2021-EGA-24, TKP2021-NVA-15 National Research, Development and Innovation Fund
- EFOP-3.6.3-VEKOP-16-2017-00009 Complementary Research Excellence Program of Semmelweis University
- BO/00125/22 János Bolyai Research Scholarship
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Tamás J Nádasi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Horváth
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes Márk
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Gábor Barna
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Botond Timár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Laura Almási
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Judit Müller
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, 86 Üllői Str, 1089, Budapest, Hungary
| | - Anna Rakonczai
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Zsolt Nagy
- Department of Internal Medicine and Hematology, Semmelweis University, 46 Szentkirályi Str, 1088, Budapest, Hungary
| | - Krisztián Kállay
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gabriella Kertész
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Gergely Kriván
- Department of Pediatric Hematology and Stem Cell Transplantation, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, 5-7 Albert Flórián Str, 1097, Budapest, Hungary
| | - Monika Csóka
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Anna Sebestyén
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Square, 1089, Budapest, Hungary
| | - Gábor T Kovács
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Dániel J Erdélyi
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary.
- Pediatric Center, Semmelweis University, 7-9 Tűzoltó Str, 1094, Budapest, Hungary.
| | - Donát Alpár
- HCEMM-SE, MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, 26 Üllői Str, 1085, Budapest, Hungary
| |
Collapse
|
4
|
Lu J, Liu X, Cen A, Hong Y, Wang Y. HYPOXIA induces lncRNA HOTAIR for recruiting RELA in papillary thyroid cancer cells to upregulate miR-181a and promote angiogenesis. J Endocrinol Invest 2024; 47:2873-2884. [PMID: 38748197 DOI: 10.1007/s40618-024-02388-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/02/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is one of the most common subtypes of thyroid carcinoma. Exosomal miR-181a plays an important role in the development of PTC. This study examined the regulatory mechanism of miR-181a under conditions of hypoxia and its impact on angiogenesis. METHODS A ribonucleoprotein immunoprecipitation (RIP) experiment was conducted to verify the interaction between HOTAIR and RELA. The relationship between RELA and the miR-181a promoter was detected by ChIP-qPCR. Short hairpin (sh) RNA was designed to knock down HOTAIR in TPC cells. The underlying mechanism of miR-181a was verified by use of dual-luciferase assays and rescue experiments. The regulatory effect of GATA6 on angiogenesis was studied using CCK8, EdU, Transwell, and western blot assays. RESULTS A RIP assay showed that HOTAIR could bind to RELA under hypoxic conditions. ChIP-qPCR and dual luciferase assays showed RELA could interact with the miR181a promoter and upregulate miR-181a. Knockdown of HOTAIR downregulated miR-181a in TPC-1 cells, and the downregulation could be rescued by RELA overexpression. MiR-181a downregulated GATA6 in HUVEC cells. Overexpression of GATA6 inhibited HUVEC proliferation, migration, tube formation, and EGFR expression. Exosomal miR-181a promoted angiogenesis by downregulating GATA6 expression. CONCLUSION HOTAIR activated RELA to upregulate miR-181a during hypoxia. Exosomal miR-181a promotes tumor angiogenesis by downregulating GATA6.
Collapse
MESH Headings
- Humans
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/metabolism
- Transcription Factor RelA/metabolism
- Transcription Factor RelA/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/metabolism
- Gene Expression Regulation, Neoplastic
- Cell Proliferation
- GATA6 Transcription Factor/genetics
- GATA6 Transcription Factor/metabolism
- Up-Regulation
- Cell Movement/genetics
- Cell Line, Tumor
- Hypoxia/metabolism
- Hypoxia/genetics
- Angiogenesis
Collapse
Affiliation(s)
- J Lu
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China
| | - X Liu
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China
| | - A Cen
- Department of Endocrinology, the People's Hospital of Jiangmen, Jiangmen, Guangdong, China
| | - Y Hong
- Department of Endocrinology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Y Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, China.
| |
Collapse
|
5
|
Király J, Szabó E, Fodor P, Vass A, Choudhury M, Gesztelyi R, Szász C, Flaskó T, Dobos N, Zsebik B, Steli ÁJ, Halmos G, Szabó Z. Expression of hsa-miRNA-15b, -99b, -181a and Their Relationship to Angiogenesis in Renal Cell Carcinoma. Biomedicines 2024; 12:1441. [PMID: 39062015 PMCID: PMC11274182 DOI: 10.3390/biomedicines12071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a regulatory role in various human cancers. The roles of hsa-miR-15a-5p, hsa-miR-99b-5p, and hsa-miR-181a-5p have not been fully explored in the angiogenesis of renal cell carcinoma (RCC). AIMS The present study aimed to evaluate the expression of these miRNAs in tumorous and adjacent healthy tissues of RCC. METHODS Paired tumorous and adjacent normal kidney tissues from 20 patients were studied. The expression levels of hsa-miR-15b-5p, hsa-miR-99b-5p, and hsa-miR-181a-5p were quantified by TaqMan miRNA Assays. Putative targets were analyzed by qRT-PCR. RESULTS Significant downregulation of all three miRNAs investigated was observed in tumorous samples compared to adjacent normal kidney tissues. Spearman analysis showed a negative correlation between the expression levels of miRNAs and the pathological grades of the patients. Increased expression of vascular endothelial growth factor-A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α), a tissue inhibitor of metalloproteinases-1 (TIMP-1), was observed in tumorous samples compared to adjacent normal tissues. Depletion of tissue inhibitors of metalloproteinase-2 (TIMP-2) and metalloproteinase-2 (MMP-2) was detected compared to normal adjacent tissues. The examined miRNAs might function as contributing factors to renal carcinogenesis. However, more prospective studies are warranted to evaluate the potential role of miRNAs in RCC angiogenesis.
Collapse
Affiliation(s)
- József Király
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, 4032 Debrecen, Hungary
| | - Erzsébet Szabó
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
- HUN-REN-DE Pharmamodul Research Group, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
| | - Petra Fodor
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Anna Vass
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Mahua Choudhury
- Texas A&M Health Science Center, Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, College Station, TX 77845, USA;
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Csaba Szász
- Department of Pathology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Tibor Flaskó
- Department of Urology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Nikoletta Dobos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Barbara Zsebik
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Ákos József Steli
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| | - Zsuzsanna Szabó
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary; (J.K.); (P.F.); (A.V.); (N.D.); (B.Z.); (Á.J.S.); (G.H.)
| |
Collapse
|
6
|
Thakur A, Rana M, Mishra A, Kaur C, Pan CH, Nepali K. Recent advances and future directions on small molecule VEGFR inhibitors in oncological conditions. Eur J Med Chem 2024; 272:116472. [PMID: 38728867 DOI: 10.1016/j.ejmech.2024.116472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
"A journey of mixed emotions" is a quote that best describes the progress chart of vascular endothelial growth factor receptor (VEGFR) inhibitors as cancer therapeutics in the last decade. Exhilarated with the Food and Drug Administration (FDA) approvals of numerous VEGFR inhibitors coupled with the annoyance of encountering the complications associated with their use, drug discovery enthusiasts are on their toes with an unswerving determination to enhance the rate of translation of VEGFR inhibitors from preclinical to clinical stage. The recently crafted armory of VEGFR inhibitors is a testament to their growing dominance over other antiangiogenic therapies for cancer treatment. This review perspicuously underscores the earnest attempts of the researchers to extract the antiproliferative potential of VEGFR inhibitors through the design of mechanistically diverse structural assemblages. Moreover, this review encompasses sections on structural/molecular properties and physiological functions of VEGFR, FDA-approved VEGFR inhibitors, and hurdles restricting the activity range/clinical applicability of VEGFR targeting antitumor agents. In addition, tactics to overcome the limitations of VEGFR inhibitors are discussed. A clear-cut viewpoint transmitted through this compilation can provide practical directions to push the cart of VEGFR inhibitors to advanced-stage clinical investigations in diverse malignancies.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Mandeep Rana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Anshul Mishra
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan
| | - Charanjit Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Chun-Hsu Pan
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
7
|
Wanram S, Klaewkla N, Pinyosri P. Downregulation of Serum miR-133b and miR-206 Associate with Clinical Outcomes of Progression as Monitoring Biomarkers for Metastasis Colorectal Cancer Patients. Microrna 2024; 13:56-62. [PMID: 38231064 PMCID: PMC11275315 DOI: 10.2174/0122115366266024240101075745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common cancer in the world. Noncoding RNAs or microRNAs (miRNAs; miRs) biomarkers can play a role in cancer carcinogenesis and progression. Specific KRAS and EGFR mutation are associated with CRC development playing a role in controlling the cellular process as epigenetic events. Circulating serum miRs can serve for early diagnosis, monitoring, and prognosis of CRC as biomarkers but it is still unclear, clinically. OBJECTIVE To determine potential biomarkers of circulating serum miR-133b and miR-206 in CRC patients Methods: Bioinformatic prediction of microRNA was screened followed by TargetScanHuman7.2, miRTar2GO, miRDB, MiRanda, and DIANA-microT-CDS. Forty-four CRC serum (19 locally advanced, 23 distant advanced CRC) and 12 normal serum samples were subsequently extracted for RNA isolation, cDNA synthesis, and miR validation. The candidate circulating serum miR-133b and miR-206 were validated resulting in a relative expression via quantitative RT-PCR. Relative expression was normalized to the spike-internal control and compared to normal samples as 1 using the -2ΔΔCt method in principle. RESULTS Our results represented 9 miRs of miR-206, miR-155-5p, miR-143-3p, miR-193a-3p, miR-30a- 5p, miR-30d-5p, miR-30e-5p, miR-543, miR-877-5p relate to KRAS-specific miRs, whereas, 9 miRs of miR-133b, miR-302a-3p, miR-302b-3p, miR-302d-3p, miR-302e, miR-520a-3p, miR-520b, miR-520c- 3p and miR-7-5p relevance to EGFR-specific miRs by using the bioinformatic prediction tools. Our results showed a decreased expression level of circulating serum miR-133b as well as miR-206 associating with CRC patients (local and advanced metastasis) when compared to normal (P < 0.05), significantly. CONCLUSION The circulating serum miR-133b and miR-206 can serve as significant biomarkers for monitoring the clinical outcome of progression with metastatic CRC patients. Increased drug-responsive CRC patients associated with crucial molecular intervention should be further explored, clinically.
Collapse
Affiliation(s)
- Surasak Wanram
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
- Biomedical Science Research Unit, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Namphon Klaewkla
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Parichart Pinyosri
- Biomedical Science Research Unit, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| |
Collapse
|
8
|
Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Asiamah EA, Smith-Togobo C, Razak SRA. MicroRNAs and colorectal cancer: clinical potential and regulatory networks. Mol Biol Rep 2023; 50:9575-9585. [PMID: 37776413 DOI: 10.1007/s11033-023-08810-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Colorectal cancer (CRC) is a serious global health concern, with a high incidence and mortality rate. Although there have been advancements in the early detection and treatment of CRC, therapy resistance is common. MicroRNAs (miRNAs), a type of small non-coding RNA that regulates gene expression, are key players in the initiation and progression of CRC. Recently, there has been growing attention to the complex interplay of miRNAs in cancer development. miRNAs are powerful RNA molecules that regulate gene expression and have been implicated in various physiological and pathological processes, including carcinogenesis. By identifying current challenges and limitations of treatment strategies and suggesting future research directions, this review aims to contribute to ongoing efforts to enhance CRC diagnosis and treatment. It also provides a comprehensive overview of the role miRNAs play in CRC carcinogenesis and explores the potential of miRNA-based therapies as a treatment option. Importantly, this review highlights the exciting potential of targeted modulation of miRNA function as a therapeutic approach for CRC.
Collapse
Affiliation(s)
- George Yiadom Osei
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Selina Koomson
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Solomon Beletaa
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, 4001, South Africa
- Cancer and Infectious Diseases Epidemiology Research Unit (CIDERU), College of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Cecilia Smith-Togobo
- Department of Medical Laboratory Sciences, University of Health and Allied Sciences, PMB 31, Ho, Ghana
| | - Siti Razila Abdul Razak
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Pulau Pinang, 13200, Malaysia.
| |
Collapse
|
9
|
Li J, Shen J, Zhao Y, Du F, Li M, Wu X, Chen Y, Wang S, Xiao Z, Wu Z. Role of miR‑181a‑5p in cancer (Review). Int J Oncol 2023; 63:108. [PMID: 37539738 PMCID: PMC10552769 DOI: 10.3892/ijo.2023.5556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
MicroRNAs (miRNAs) are non‑coding RNAs (ncRNAs) that can post‑transcriptionally suppress targeted genes. Dysregulated miRNAs are associated with a variety of diseases. MiR‑181a‑5p is a conserved miRNA with the ability to regulate pathological processes, such as angiogenesis, inflammatory response and obesity. Numerous studies have demonstrated that miR‑181a‑5p exerts regulatory influence on cancer development and progression, acting as an oncomiR or tumor inhibitor in various cancer types by impacting multiple hallmarks of tumor. Generally, miR‑181a‑5p binds to target RNA sequences with partial complementarity, resulting in suppression of the targeted genes of miR‑181a‑5p. However, the precise role of miR‑181a‑5p in cancer remains incompletely understood. The present review aims to provide a comprehensive summary of recent research on miR‑181a‑5p, focusing on its involvement in different types of cancer and its potential as a diagnostic and prognostic biomarker, as well as its function in chemoresistance.
Collapse
Affiliation(s)
- Junxin Li
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University
- South Sichuan Institute of Translational Medicine
- Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
10
|
Wang BY, Chang YY, Shiu LY, Lee YJ, Lin YW, Hsu YS, Tsai HT, Hsu SP, Su LJ, Tsai MH, Xiao JH, Lin JA, Chen CH. An integrated analysis of dysregulated SCD1 in human cancers and functional verification of miR-181a-5p/SCD1 axis in esophageal squamous cell carcinoma. Comput Struct Biotechnol J 2023; 21:4030-4043. [PMID: 37664175 PMCID: PMC10468324 DOI: 10.1016/j.csbj.2023.08.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), one of the most lethal cancers, has become a global health issue. Stearoyl-coA desaturase 1 (SCD1) has been demonstrated to play a crucial role in human cancers. However, pan-cancer analysis has revealed little evidence to date. In the current study, we systematically inspected the expression patterns and potential clinical outcomes of SCD1 in multiple human cancers. SCD1 was dysregulated in several types of cancers, and its aberrant expression acted as a diagnostic biomarker, indicating that SCD1 may play a role in tumorigenesis. We used ESCC as an example to demonstrate that SCD1 was dramatically upregulated in tumor tissues of ESCC and was associated with clinicopathological characteristics in ESCC patients. Furthermore, Kaplan-Meier analysis showed that high SCD1 expression was correlated with poor progression-free survival (PFS) and disease-free survival (DFS) in ESCC patients. The protein-protein interaction (PPI) network and module analysis by PINA database and Gephi were performed to identify the hub targets. Meanwhile, the functional annotation analysis of these hubs was constructed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Functionally, the gain-of-function of SCD1 in ESCC cells promoted cell proliferation, migration, and invasion; in contrast, loss-of-function of SCD1 in ESCC cells had opposite effects. Bioinformatic, QPCR, Western blotting and luciferase assays indicated that SCD1 was a direct target of miR-181a-5p in ESCC cells. In addition, gain-of-function of miR-181a-5p in ESCC cells reduced the cell growth, migratory, and invasive abilities. Conversely, inhibition of miR-181a-5p expression by its inhibitor in ESCC cells had opposite biological effects. Importantly, reinforced SCD1 in miR-181a-5p mimic ESCC transfectants reversed miR-181a-5p mimic-prevented malignant phenotypes of ESCC cells. Taken together, these results indicate that SCD1 expression influences tumor progression in a variety of cancers, and the miR-181a-5p/SCD1 axis may be a potential therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for General Education, Ming Dao University, Changhua, Taiwan
| | - Yuan-Yen Chang
- Department of Microbiology and Immunology, School of Medicine, Chung-Shan Medical University, and Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Li-Yen Shiu
- Cell Therapy Center, E-Da cancer Hospital, I-Shou University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Ju Lee
- Immunology Research Center, Chung Shan Medical University, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Wei Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Shen Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Ting Tsai
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Sung-Po Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, Taipei, Taiwan
| | - Li-Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Meng-Hsiu Tsai
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jing-Hong Xiao
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental Analysis, National Central University, Taoyuan County, Taiwan
| | - Jer-An Lin
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Food Safety, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Han Chen
- Department of Applied Chemistry, and Graduate Institute of Biomedicine and Biomedical Technology, National Chi Nan University, Nantou, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
11
|
Gupta J, Suliman M, Ali R, Margiana R, Hjazi A, Alsaab HO, Qasim MT, Hussien BM, Ahmed M. Double-edged sword role of miRNA-633 and miRNA-181 in human cancers. Pathol Res Pract 2023; 248:154701. [PMID: 37542859 DOI: 10.1016/j.prp.2023.154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India.
| | - Muath Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Rida Ali
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhja Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
12
|
Patel BY, Bhome R, Liu DSK, Giovannetti E, Merali N, Primrose JN, Mirnezami AH, Rockall TA, Annels N, Frampton AE. Cancer cell-derived extracellular vesicles activate hepatic stellate cells in colorectal cancer. Expert Rev Mol Diagn 2023; 23:843-849. [PMID: 37599564 DOI: 10.1080/14737159.2023.2246893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
Colorectal cancer (CRC) is the 2nd leading cause of cancer-related deaths worldwide, primarily due to the development of metastatic disease. The liver is the most frequently affected site. The metastatic cascade relies on a complex interaction between the immune system, tumor, and distant organs. Communication between the tumor and the metastatic site can be mediated by tumor-derived extracellular vesicles (EVs) and their cargo. The mechanisms underlying this process are starting to be understood through research that has rapidly expanded over the past 15 years. One crucial aspect is the remodeling of the microenvironment at the site of metastasis, which is essential for the formation of a premetastatic niche and the subsequent establishment of metastatic deposits. In the evaluated study, the authors use cellular experiments and a mouse model to investigate how tumour derived extracellular vesicles and their microRNA contents interact with hepatic stellate cells (HSCs). They demonstrate how this may lead to remodelling of the microenvironment and the formation of colorectal liver metastasis using their experimental model. In this mini review, we examine the current evidence surrounding tumour derived EVs and their effect on the tumour microenvironment to highlight potential areas for future research in CRC and other malignancies.
Collapse
Affiliation(s)
- Bhavik Y Patel
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Guildford, UK
| | - Rahul Bhome
- Cancer Sciences, University of Southampton, Southampton, UK
| | - Daniel S K Liu
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, San Giuliano, Italy
| | - Nabeel Merali
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Guildford, UK
| | - John N Primrose
- Department of Surgery, University of Southampton, Southampton, UK
| | - Alex H Mirnezami
- Department of Surgery, University of Southampton, Southampton, UK
| | - Timothy A Rockall
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
| | - Nicola Annels
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - Adam E Frampton
- Section of Oncology, Dept. of Clinical & Experimental Medicine, University of Surrey, Guildford, Surrey, UK
- Minimal Access Therapy Training Unit (MATTU), Leggett Building, University of Surrey, Guildford, UK
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
13
|
Tesolato SE, González-Gamo D, Barabash A, Claver P, de la Serna SC, Domínguez-Serrano I, Dziakova J, de Juan C, Torres AJ, Iniesta P. Expression Analysis of hsa-miR-181a-5p, hsa-miR-143-3p, hsa-miR-132-3p and hsa-miR-23a-3p as Biomarkers in Colorectal Cancer-Relationship to the Body Mass Index. Cancers (Basel) 2023; 15:3324. [PMID: 37444431 DOI: 10.3390/cancers15133324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
This work aims to investigate the expression levels of four preselected miRNAs previously linked to cancer and/or obesity, with the purpose of finding potential biomarkers in the clinical management of CRC developed by patients showing different BMI values. We analyzed samples from a total of 65 subjects: 43 affected by CRC and 22 without cancer. Serum and both subcutaneous and omental adipose tissues (SAT and OAT) were investigated, as well as tumor and non-tumor colorectal tissues in the case of the CRC patients. The relative expression (2-∆∆Ct) levels of 4 miRNAs (hsa-miR-181a-5p, hsa-miR-143-3p, has-miR-132-3p and hsa-miR-23a-3p) were measured by RT-qPCR. Serum, SAT and OAT expression levels of these miRNAs showed significant differences between subjects with and without CRC, especially in the group of overweight/obese subjects. In CRC, serum levels of hsa-miR-143-3p clearly correlated with their levels in both SAT and OAT, independently of the BMI group. Moreover, hsa-miR-181a-5p could be considered as a biomarker in CRC patients with BMI ≥ 25 Kg/m2 and emerges as a tumor location marker. We conclude that both adiposity and CRC induce changes in the expression of the miRNAs investigated, and hsa-miR-143-3p and hsa-miR-181a-5p expression analysis could be useful in the clinical management of CRC.
Collapse
Affiliation(s)
- Sofía Elena Tesolato
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Daniel González-Gamo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Ana Barabash
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- CIBERDEM (Network Biomedical Research Center for Diabetes and Associated Metabolic Diseases), Carlos III Institute of Health, 28029 Madrid, Spain
- Endocrinology & Nutrition Service, San Carlos Hospital, 28040 Madrid, Spain
- Department of Medicine, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Paula Claver
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
| | - Sofía Cristina de la Serna
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Inmaculada Domínguez-Serrano
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Jana Dziakova
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Carmen de Juan
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| | - Antonio José Torres
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
- Digestive Surgery Service, San Carlos Hospital, 28040 Madrid, Spain
| | - Pilar Iniesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, 28040 Madrid, Spain
- Health Research Institute of the San Carlos Hospital (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
14
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother 2023; 163:114806. [PMID: 37163782 DOI: 10.1016/j.biopha.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Zhou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunxi Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zifan Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiaoling Wan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
15
|
Han X, Li J, Wang Y, Li T, Du M, Ma Y, Wang Y, Guo L. Hsa_circ_0046430 promotes the progression of colorectal cancer by targeting miR-6785-5p/SRCIN1 axis as a ceRNA. Medicine (Baltimore) 2023; 102:e33064. [PMID: 36827049 PMCID: PMC11309722 DOI: 10.1097/md.0000000000033064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
The correlation among circular RNAs (circRNAs), microRNAs, and messenger RNAs have gained increasing attention in recent years. However, the mechanism of such discoveries in colorectal cancer (CRC) is not yet elucidated. The present study aimed to clarify whether the novel circRNAs regulate the prognosis-related genes through the competing endogenous RNAs (ceRNA). An analysis of the Weighted Gene Co-Expression Network Analysis was conducted to screen a module-trait circRNAs, and other big data mining technologies were used to predict the related microRNAs and the downstream genes. Prognosis-related gene model was built using the Cox regression analysis for the 138 messenger RNAs associated with hsa circ 0046430. The qRT-PCR was adopted to verify ceRNA network. Immunohistochemistry verified the correlation between SRCIN1 and patient prognosis. In summary, these results demonstrated that hsa_circ_0046430 is a tumor-related circRNA based on the clinical characteristics module of Weighted Gene Co-Expression Network Analysis. The prognostic risk score signature model analysis indicated that CRC risk was independently related to the risk score and SRCIN1 was independently associated with overall survival. Therefore, the hsa_circ_0046430/miR-6785-5p/SRCIN1 axis was constructed. Hsa_circ_0046430/miR-6785-5p/SRCIN1 axis relative expression level was determined by qRT-PCR. Immunohistochemical staining further validated that SCRIN1 was significantly higher in cancer than in adjacent normal tissues. Our study identified and primarily validated the hsa_circ_0046430/miR-6785-5p/SRCIN1 regulatory axis impacted on CRC prognosis, suggesting novel biomarkers and therapeutic targets for CRC patients. Further in-depth studies are essential to confirm the underlying ceRNA mechanism.
Collapse
Affiliation(s)
- Xiangming Han
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Junmei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunliang Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tingting Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Ma
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuhong Wang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingchuan Guo
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Oliinyk D, Eigenberger A, Felthaus O, Haerteis S, Prantl L. Chorioallantoic Membrane Assay at the Cross-Roads of Adipose-Tissue-Derived Stem Cell Research. Cells 2023; 12:cells12040592. [PMID: 36831259 PMCID: PMC9953848 DOI: 10.3390/cells12040592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
With a history of more than 100 years of different applications in various scientific fields, the chicken chorioallantoic membrane (CAM) assay has proven itself to be an exceptional scientific model that meets the requirements of the replacement, reduction, and refinement principle (3R principle). As one of three extraembryonic avian membranes, the CAM is responsible for fetal respiration, metabolism, and protection. The model provides a unique constellation of immunological, vascular, and extracellular properties while being affordable and reliable at the same time. It can be utilized for research purposes in cancer biology, angiogenesis, virology, and toxicology and has recently been used for biochemistry, pharmaceutical research, and stem cell biology. Stem cells and, in particular, mesenchymal stem cells derived from adipose tissue (ADSCs) are emerging subjects for novel therapeutic strategies in the fields of tissue regeneration and personalized medicine. Because of their easy accessibility, differentiation profile, immunomodulatory properties, and cytokine repertoire, ADSCs have already been established for different preclinical applications in the files mentioned above. In this review, we aim to highlight and identify some of the cross-sections for the potential utilization of the CAM model for ADSC studies with a focus on wound healing and tissue engineering, as well as oncological research, e.g., sarcomas. Hereby, the focus lies on the combination of existing evidence and experience of such intersections with a potential utilization of the CAM model for further research on ADSCs.
Collapse
Affiliation(s)
- Dmytro Oliinyk
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Correspondence:
| | - Andreas Eigenberger
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Oliver Felthaus
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, Faculty for Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Tang WW, Bauer KM, Barba C, Ekiz HA, O’Connell RM. miR-aculous new avenues for cancer immunotherapy. Front Immunol 2022; 13:929677. [PMID: 36248881 PMCID: PMC9554277 DOI: 10.3389/fimmu.2022.929677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The rising toll of cancer globally necessitates ingenuity in early detection and therapy. In the last decade, the utilization of immune signatures and immune-based therapies has made significant progress in the clinic; however, clinical standards leave many current and future patients without options. Non-coding RNAs, specifically microRNAs, have been explored in pre-clinical contexts with tremendous success. MicroRNAs play indispensable roles in programming the interactions between immune and cancer cells, many of which are current or potential immunotherapy targets. MicroRNAs mechanistically control a network of target genes that can alter immune and cancer cell biology. These insights provide us with opportunities and tools that may complement and improve immunotherapies. In this review, we discuss immune and cancer cell-derived miRNAs that regulate cancer immunity and examine miRNAs as an integral part of cancer diagnosis, classification, and therapy.
Collapse
Affiliation(s)
- William W. Tang
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Kaylyn M. Bauer
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Cindy Barba
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Huseyin Atakan Ekiz
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, İzmir, Turkey
| | - Ryan M. O’Connell
- Divison of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, United States
- Hunstman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
18
|
Cao M, Wang Y, Lu G, Qi H, Li P, Dai X, Lu J. Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4447-4471. [PMID: 36286020 PMCID: PMC9601273 DOI: 10.3390/cimb44100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although productive progress has been made in colorectal cancer (CRC) researchs, CRC is the second most frequent type of malignancy and the major cause of cancer-related death among gastrointestinal cancers. As angiogenesis constitutes an important point in the control of CRC progression and metastasis, understanding the key signaling pathways that regulate CRC angiogenesis is critical in elucidating ways to inhibit CRC. Herein, we comprehensively summarized the angiogenesis-related pathways of CRC, including vascular endothelial growth factor (VEGF), nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless and int-1 (Wnt), and Notch signaling pathways. We divided the factors influencing the specific pathway into promoters and inhibitors. Among these, some drugs or natural compounds that have antiangiogenic effects were emphasized. Furthermore, the interactions of these pathways in angiogenesis were discussed. The current review provides a comprehensive overview of the key signaling pathways that are involved in the angiogenesis of CRC and contributes to the new anti-angiogenic strategies for CRC.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunmeng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guige Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
19
|
Kim WR, Park EG, Lee YJ, Bae WH, Lee DH, Kim HS. Integration of TE Induces Cancer Specific Alternative Splicing Events. Int J Mol Sci 2022; 23:10918. [PMID: 36142830 PMCID: PMC9502224 DOI: 10.3390/ijms231810918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.
Collapse
Affiliation(s)
- Woo Ryung Kim
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Eun Gyung Park
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Yun Ju Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Woo Hyeon Bae
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Du Hyeong Lee
- Department of Integrated Biological Sciences, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
| | - Heui-Soo Kim
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| |
Collapse
|
20
|
Wang L, Sheng G, Cui J, Yao Y, Bai X, Chen F, Yu W. Electroacupuncture attenuates ischemic injury after stroke and promotes angiogenesis via activation of EPO mediated Src and VEGF signaling pathways. PLoS One 2022; 17:e0274620. [PMID: 36108080 PMCID: PMC9477374 DOI: 10.1371/journal.pone.0274620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Although electroacupuncture (EA) has been shown to be effective in the treatment of stroke, its mechanisms of action remain undefined. This study explored the therapeutic effects of EA in rats with cerebral ischemia-reperfusion injury (CIRI) and evaluated its possible mechanisms in promoting angiogenesis. To evaluate the effect of EA, we used 2, 3, 5-Triphenyl-2H-Tetrazolium Chloride (TTC) staining and behavior score to calculate the cerebral infarct volume and neurological deficit score after CIRI. Western blot (WB) analysis was employed to evaluate the expression of cluster of differentiation 34 (CD34), erythropoietin (EPO), vascular endothelial growth factor (VEGF) and phospho-Src (p-Src) in the brain of the rats with CIRI. On the other hand, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) injury model using brain microvascular endothelial cells (BMECs), and analyzed cell viability and expression of VEGF or p-Src using cell counting kit-8 (CCK-8) and WB, respectively. Our data showed that EA at the GV26 acupoint could significantly promote the expression of CD34, EPO, VEGF and p-Src in CIRI rats. Our CCK-8 results demonstrated that intervention with recombinant EPO and VEGF proteins remarkably improved the viability of BMECs after OGD/R, while a Src inhibitor, PP1, reversed this phenotype. The WB results showed that the recombinant EPO protein increased the expression of VEGF and p-Src, which was significantly inhibited by PP1. Taken together, our findings showed that EA at the GV26 acupoint can significantly attenuate ischemic injury after stroke and promote angiogenesis via activation of EPO-mediated Src and VEGF signaling pathways. Besides, the upregulation of VEGF may also be associated with the activation of Src by EPO.
Collapse
Affiliation(s)
- Lifen Wang
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Gang Sheng
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Jinjun Cui
- Department of Neurology, Hebei Cangzhou Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Cangzhou, China
| | - Yanling Yao
- Shaanxi Academy of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Chinese Medicine, Xi’an, China
| | - Xue Bai
- College of Acupuncture-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Fan Chen
- College of Acupuncture-Moxibustion and Massage, Shaanxi University of Chinese Medicine, Xian yang, China
| | - Wei Yu
- Department of Physiology, Xi’an Medical University, Xi’an, China
| |
Collapse
|
21
|
miR-657 Targets SRCIN1 via the Slug Pathway to Promote NSCLC Tumor Growth and EMT Induction. DISEASE MARKERS 2022; 2022:4842454. [PMID: 36033827 PMCID: PMC9402383 DOI: 10.1155/2022/4842454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/06/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022]
Abstract
Background MicroRNA- (miR-) 657 has been shown to regulate immunological and inflammatory activity, and it has also been defined to be dysregulated in both non-small-cell lung cancer (NSCLC) and hepatocellular carcinoma. The mechanistic role whereby miR-657 influences NSCLC progression, however, has yet to be clarified. Methods miR-657 and SRCIN1 expression levels were assessed via qPCR in the cell lines and tissues of NSCLC. Besides, correlations between the levels of miR-657 and NSCLC patient pathological characteristics were examined, and the Kaplan-Meier approach was employed for the evaluation of the prognostic utility of miR-657 in these patients. Moreover, the Pearson correlation analyses and dual-luciferase reporter assessments were used for detecting interactive relationships between miR-657 and SRCIN1. In addition, CCK-8, EdU, and Transwell assessments were employed for the appraisal of the ability of miR-657/SRCIN1 to regulate NSCLC cell proliferation and invasion. Western blotting was employed for the assessment of the levels of NSCLC cell proteins associated with the epithelial-mesenchymal transition (EMT) that were influenced by miR-657. The nude mice xenograft tumor model is established to observe the effect of miR-657 on NSCLC growth in vivo. Results NSCLC patient tissues and cell lines exhibited upregulated miR-657 expression that was closely related to tumor differentiation, lymphoid metastasis, and TNM stage. High levels of miR-657 were predictive of a poorer NSCLC patient prognosis, and overexpressing miR-657 resulted in the more rapid growth of NCI-H1650 and A549 cells, with a concomitant increase in their invasion. In addition, miR-657 overexpression raised the levels of Slug, N-cadherin, and Vimentin in these two cell lines while promoting E-cadherin downregulation. Dual-luciferase reporter assays confirmed that miR-657 was capable of binding to the SRCIN1 gene, and SRCIN1 expression levels were negatively associated with those of miR-657, indicating that it acts as a negative regulator of this gene. Knocking down SRCIN1 was capable to reverse the influences of miR-657 inhibitor treatment on NSCLC cell behavior. Finally, in vivo studies showed that miR-657 promoted NSCLC cell growth. Conclusion The obtained findings illuminate that miR-657 can promote the growth of tumors and the induction of the EMT in NSCLC cells by targeting SRCIN1 expression and modulating Slug pathway activation, highlighting this pathway as a promising therapeutic target in cases suffering from NSCLC.
Collapse
|
22
|
Thomaidou AC, Batsaki P, Adamaki M, Goulielmaki M, Baxevanis CN, Zoumpourlis V, Fortis SP. Promising Biomarkers in Head and Neck Cancer: The Most Clinically Important miRNAs. Int J Mol Sci 2022; 23:ijms23158257. [PMID: 35897831 PMCID: PMC9367895 DOI: 10.3390/ijms23158257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Head and neck cancers (HNCs) comprise a heterogeneous group of tumors that extend from the oral cavity to the upper gastrointestinal tract. The principal etiologic factors for oral tumors include tobacco smoking and alcohol consumption, while human papillomavirus (HPV) infections have been accused of a high incidence of pharyngeal tumors. Accordingly, HPV detection has been extensively used to categorize carcinomas of the head and neck. The diverse nature of HNC highlights the necessity for novel, sensitive, and precise biomarkers for the prompt diagnosis of the disease, its successful monitoring, and the timely prognosis of patient clinical outcomes. In this context, the identification of certain microRNAs (miRNAs) and/or the detection of alterations in their expression patterns, in a variety of somatic fluids and tissues, could serve as valuable biomarkers for precision oncology. In the present review, we summarize some of the most frequently studied miRNAs (including miR-21, -375, -99, -34a, -200, -31, -125a/b, -196a/b, -9, -181a, -155, -146a, -23a, -16, -29, and let-7), their role as biomarkers, and their implication in HNC pathogenesis. Moreover, we designate the potential of given miRNAs and miRNA signatures as novel diagnostic and prognostic tools for successful patient stratification. Finally, we discuss the currently ongoing clinical trials that aim to identify the diagnostic, prognostic, or therapeutic utility of miRNAs in HNC.
Collapse
Affiliation(s)
- Arsinoe C. Thomaidou
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Maria Adamaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece; (A.C.T.); (M.A.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| | - Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 11522 Athens, Greece; (P.B.); (M.G.); (C.N.B.)
- Correspondence: (V.Z.); (S.P.F.); Tel.: +30-210-727-3730 (V.Z.); +30-210-640-9462 (S.P.F.)
| |
Collapse
|
23
|
Coronel-Hernández J, Delgado-Waldo I, Cantú de León D, López-Camarillo C, Jacobo-Herrera N, Ramos-Payán R, Pérez-Plasencia C. HypoxaMIRs: Key Regulators of Hallmarks of Colorectal Cancer. Cells 2022; 11:1895. [PMID: 35741024 PMCID: PMC9221210 DOI: 10.3390/cells11121895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
Hypoxia in cancer is a thoroughly studied phenomenon, and the logical cause of the reduction in oxygen tension is tumor growth itself. While sustained hypoxia leads to death by necrosis in cells, there is an exquisitely regulated mechanism that rescues hypoxic cells from their fatal fate. The accumulation in the cytoplasm of the transcription factor HIF-1α, which, under normoxic conditions, is marked for degradation by a group of oxygen-sensing proteins known as prolyl hydroxylases (PHDs) in association with the von Hippel-Lindau anti-oncogene (VHL) is critical for the cell, as it regulates different mechanisms through the genes it induces. A group of microRNAs whose expression is regulated by HIF, collectively called hypoxaMIRs, have been recognized. In this review, we deal with the hypoxaMIRs that have been shown to be expressed in colorectal cancer. Subsequently, using data mining, we analyze a panel of hypoxaMIRs expressed in both normal and tumor tissues obtained from TCGA. Finally, we assess the impact of these hypoxaMIRs on cancer hallmarks through their target genes.
Collapse
Affiliation(s)
- Jossimar Coronel-Hernández
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| | - Izamary Delgado-Waldo
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - David Cantú de León
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 03100, Mexico;
| | - Nadia Jacobo-Herrera
- Biochemistry Unit, Institute of Medical Sciences and Nutrition, Salvador Zubirán, Tlalpan, Mexico City 14080, Mexico;
| | - Rosalío Ramos-Payán
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Culiacan City 80030, Mexico;
| | - Carlos Pérez-Plasencia
- Genomics Laboratory, The National Cancer Institute of México, Tlalpan, Mexico City 14080, Mexico; (I.D.-W.); (D.C.d.L.)
- Functional Genomics Laboratory, Biomedicine Unit, FES-IZTACALA, UNAM, Tlalnepantla 54090, Mexico
| |
Collapse
|
24
|
Yang C, Passos Gibson V, Hardy P. The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells 2022; 11:1670. [PMID: 35626707 PMCID: PMC9140109 DOI: 10.3390/cells11101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial dysfunction plays a critical role in many human angiogenesis-related diseases, including cancer and retinopathies. Small non-coding microRNAs (miRNAs) repress gene expression at the post-transcriptional level. They are critical for endothelial cell gene expression and function and are involved in many pathophysiological processes. The miR-181 family is one of the essential angiogenic regulators. This review summarizes the current state of knowledge of the role of miR-181 family members in endothelial cell dysfunction, with emphasis on their pathophysiological roles in aberrant angiogenesis. The actions of miR-181 members are summarized concerning their targets and associated major angiogenic signaling pathways in a cancer-specific context. Elucidating the underlying functional mechanisms of miR-181 family members that are dysregulated in endothelial cells or cancer cells is invaluable for developing miRNA-based therapeutics for angiogenesis-related diseases such as retinopathies, angiogenic tumors, and cancer. Finally, potential clinical applications of miR-181 family members in anti-angiogenic tumor therapy are discussed.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Victor Passos Gibson
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pediatrics, University of Montréal, Quebec, QC H3T 1C5, Canada
| |
Collapse
|
25
|
Egyed B, Horváth A, Semsei ÁF, Szalai C, Müller J, Erdélyi DJ, Kovács GT. Co-Detection of VEGF-A and Its Regulator, microRNA-181a, May Indicate Central Nervous System Involvement in Pediatric Leukemia. Pathol Oncol Res 2022; 28:1610096. [PMID: 35449729 PMCID: PMC9016120 DOI: 10.3389/pore.2022.1610096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/15/2022] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) involvement is a leading cause of therapy-refractory pediatric acute lymphoblastic leukemia (pALL), which is aggravated by underdiagnosing CNS disease with the currently used cell-based approach of cerebrospinal fluid (CSF) diagnostics. Our study focused on developing novel subcellular CNS leukemia indicators in the CSF and the bone marrow (BM) of patients with pALL. Serial liquid biopsy samples (n = 65) were analyzed by Elisas to measure the level of essential proteins associated with blast cell CNS trafficking, vascular endothelial growth factor A (VEGF-A) and integrin alpha 6 (ITGA6). In CSF samples from early induction chemotherapy, VEGF-A concentration were uniformly elevated in the CNS-positive group compared to those patients without unambiguous meningeal infiltration (9 vs Nine patients, Δc = 17.2 pg/ml, p = 0.016). Expression of miR-181a, a VEGFA-regulating microRNA which showed increased level in CNS leukemia in our previous experiments, was then paralleled with VEGF-A concentration. A slight correlation between the levels of miR-181a and VEGF-A indicators in CSF and BM samples was revealed (n = 46, Pearson’s r = 0.36, p = 0.015). After validating in international cohorts, the joint quantification of miR-181a and VEGF-A might provide a novel tool to precisely diagnose CNS involvement and adjust CNS-directed therapy in pALL.
Collapse
Affiliation(s)
- Bálint Egyed
- Hematology Unit, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.,Clinical Genomics Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary.,HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Horváth
- Clinical Genomics Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Ágnes F Semsei
- Clinical Genomics Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Csaba Szalai
- Clinical Genomics Research Group, Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Judit Müller
- Hematology Unit, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Dániel J Erdélyi
- Hematology Unit, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor T Kovács
- Hematology Unit, 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
26
|
Chen R, Liang F, Yan J, Wang Y. CircCDK17 knockdown inhibits tumor progression and cell glycolysis by downregulaing YWHAZ expression through sponging miR-1294 in cervical cancer. J Ovarian Res 2022; 15:24. [PMID: 35168653 PMCID: PMC8848895 DOI: 10.1186/s13048-022-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is the fourth aggressive tumor affecting women worldwide. Circular RNA (circRNA) is enrolled in CC process. This study aims to unveil the profiles of circ_101119 (circCDK17) in cell proliferation, migration, invasion, apoptosis and glycolysis in CC. METHODS The expression levels of circCDK17, microRNA-1294 (miR-1294) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ) mRNA were detected by quantitative real time polymerase chain reaction (qRT-PCR). The protein expression levels of YWHAZ, recombinant glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) were determined by western blot. Cell proliferation, migratory and invasive abilities and apoptosis were illustrated by cell counting kit-8 (CCK-8) assay, transwell assay and flow cytometry analysis, respectively. Cell lactate production, glucose uptake and adenosine 5'-triphosphate (ATP) level were severally elucidated by lactate assay kit, glucose assay kit and ATP detection kit. RESULTS CircCDK17 expression and the mRNA and protein expression levels of YWHAZ were dramatically upregulated, while miR-1294 expression was obviously downregulated in CC tissues or cells compared with control groups. CircCDK17 silencing suppressed cell proliferation, migration, invasion and glycolysis, and induced cell apoptosis in CC; however, miR-1294 inhibitor restrained these effects. Additionally, circCDK17 was a sponge of miR-1294 and miR-1294 bound to YWHAZ. Furthermore, circCDK17 knockdown inhibited tumor formation in vivo. CONCLUSION CircCDK17 knockdown repressed cell proliferation, migration, invasion and glycolysis, and promoted cell apoptosis via miR-1294/YWHAZ axis in CC. This finding provides a theoretical basis in studying circRNA-mediated therapy in CC.
Collapse
Affiliation(s)
- Rui Chen
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China
| | - Fei Liang
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China
| | - Jun Yan
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yu Wang
- Department of Gynaecology and Obstetrics, Henan Provincial People's Hospital, Peoples Hospital of Zhengzhou University, School of Clinical Medicine Henan University, No. 7 Weiwu Road Jinshui District, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
27
|
Tang W, Guo ZD, Chai WN, Du DL, Yang XM, Cao L, Chen H, Zhou C, Cheng CJ, Sun XC, Huang ZJ, Zhong JJ. Downregulation of miR-491-5p promotes neovascularization after traumatic brain injury. Neural Regen Res 2022; 17:577-586. [PMID: 34380897 PMCID: PMC8504397 DOI: 10.4103/1673-5374.314326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
MicroRNA-491-5p (miR-491-5p) plays an important role in regulating cell proliferation and migration; however, the effect of miR-491-5p on neovascularization after traumatic brain injury remains poorly understood. In this study, a controlled cortical injury model in C57BL/6 mice and an oxygen-glucose deprivation model in microvascular endothelial cells derived from mouse brain were established to simulate traumatic brain injury in vivo and in vitro, respectively. In the in vivo model, quantitative real-time-polymerase chain reaction results showed that the expression of miR-491-5p increased or decreased following the intracerebroventricular injection of an miR-491-5p agomir or antagomir, respectively, and the expression of miR-491-5p decreased slightly after traumatic brain injury. To detect the neuroprotective effects of miR-491-p, neurological severity scores, Morris water maze test, laser speckle techniques, and immunofluorescence staining were assessed, and the results revealed that miR-491-5p downregulation alleviated neurological dysfunction, promoted the recovery of regional cerebral blood flow, increased the number of lectin-stained microvessels, and increased the survival of neurons after traumatic brain injury. During the in vitro experiments, the potential mechanism of miR-491-5p on neovascularization was explored through quantitative real-time-polymerase chain reaction, which showed that miR-491-5p expression increased or decreased in brain microvascular endothelial cells after transfection with an miR-491-5p mimic or inhibitor, respectively. Dual-luciferase reporter and western blot assays verified that metallothionein-2 was a target gene for miR-491-5p. Cell counting kit 8 (CCK-8) assay, flow cytometry, and 2?,7?-dichlorofluorescein diacetate (DCFH-DA) assay results confirmed that the downregulation of miR-491-5p increased brain microvascular endothelial cell viability, reduced cell apoptosis, and alleviated oxidative stress under oxygen-glucose deprivation conditions. Cell scratch assay, Transwell assay, tube formation assay, and western blot assay results demonstrated that miR-491-5p downregulation promoted the migration, proliferation, and tube formation of brain microvascular endothelial cells through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor pathway. These findings confirmed that miR-491-5p downregulation promotes neovascularization, restores cerebral blood flow, and improves the recovery of neurological function after traumatic brain injury. The mechanism may be mediated through a metallothionein-2-dependent hypoxia-inducible factor-1α/vascular endothelial growth factor signaling pathway and the alleviation of oxidative stress. All procedures were approved by Ethics Committee of the First Affiliated Hospital of Chongqing Medical University, China (approval No. 2020-304) on June 22, 2020.
Collapse
Affiliation(s)
- Wei Tang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zong-Duo Guo
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei-Na Chai
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dong-Lin Du
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Min Yang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lang Cao
- Department of Ophthalmology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Chen
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chao Zhou
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Jian Huang
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
28
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
29
|
Urinary Exosomal miRNAs as biomarkers of bladder Cancer and experimental verification of mechanism of miR-93-5p in bladder Cancer. BMC Cancer 2021; 21:1293. [PMID: 34861847 PMCID: PMC8641206 DOI: 10.1186/s12885-021-08926-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies globally. Early diagnosis of it can significantly improve patients’ survival and quality of life. Urinary exosomes (UEs)-derived miRNAs might be a promising biomarker for BC detection. Method A total of 12 patients with BC and 4 non-cancerous participants (as healthy control) were recruited from a single center between March 2018 and December 2019 as the discovery set. Midstream urine samples from each participants were collected and high-throughput sequencing and differentially expression analysis were conducted. Combined with miRNA expression profile of BC tissue from The Cancer Genome Atlas (TCGA), miRNAs biomarkers for BC were determined. Candidate miRNAs as biomarkers were selected followed by verification with a quantitative reverse-transcription polymerase chain reaction assay in an independent validation cohort consisting of 53 BC patients and 51 healthy controls. The receiver-operating characteristic (ROC) curve was established to evaluate the diagnostic performance of UE-derived miRNAs. The possible mechanism of miRNAs were revealed by bioinformatic analysis and explored in vitro experiments. Results We identified that miR-93-5p, miR-516a-5p were simultaneously significantly increased both in UEs from BC compared with healthy control and BC tissue compared with normal tissue, which were verified by RT-qPCR in the validation cohort. Subsequently, the performance to discover BC of the miR-93-5p, miR-516a-5p was further verified with an area under ROC curve (AUC) of 0.838 and 0.790, respectively, which was significantly higher than that of urine cytology (AUC = 0.630). Moreover, miR-93-5p was significantly increased in muscle-invasive BC compared with non-muscle-invasive BC with an AUC of 0.769. Bioinformatic analysis revealed that B-cell translocation gene 2(BTG2) gene may be the hub target gene of miR-93-5p. In vitro experiments verified that miR-93-5p suppressed BTG2 expression and promoted BC cells proliferation, invasion and migration. Conclusion Urine derived exosomes have a distinct miRNA profile in BC patients, and urinary exosomal miRNAs could be used as a promising non-invasive tool to detect BC. In vitro experiments suggested that miR-93-5p overexpression may contribute to BC progression via suppressing BTG2 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08926-x.
Collapse
|
30
|
Wang J, Lv F, Sun T, Zhao S, Chen H, Liu Y, Liu Z. Sorafenib Nanomicelles Effectively Shrink Tumors by Vaginal Administration for Preoperative Chemotherapy of Cervical Cancer. NANOMATERIALS 2021; 11:nano11123271. [PMID: 34947619 PMCID: PMC8705954 DOI: 10.3390/nano11123271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
To investigate the potential of sorafenib (SF) in preoperative chemotherapy for cervical cancer to reduce tumor volume, sorafenib micelles (SF micelles) with good stability and high drug loading were designed. SF micelles were prepared by film hydration followed by the ultrasonic method. The results showed that the SF micelles were spherical with an average particle size of 67.18 ± 0.66 nm (PDI 0.17 ± 0.01), a considerable drug loading of 15.9 ± 0.46% (w/w%) and satisfactory stability in buffers containing plasma or not for at least 2 days. In vitro release showed that SF was gradually released from SF micelles and almost completely released on the third day. The results of in vitro cellular intake, cytotoxicity and proliferation of cervical cancer cell TC-1 showed that SF micelles were superior to sorafenib (Free SF). For intravaginal administration, SF micelles were dispersed in HPMC (SF micelles/HPMC), showed good viscosity sustained-release profiles in vitro and exhibited extended residence in intravaginal in vivo. Compared with SF micelles dispersed in N.S. (SF micelles/N.S.), SF micelles/HPMC significantly reduced tumor size with a tumor weight inhibition rate of 73%. The results suggested that SF micelles had good potential for preoperative tumor shrinkage and improving the quality life of patients.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China;
| | - Fengmei Lv
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (F.L.); (T.S.); (S.Z.); (H.C.)
| | - Tao Sun
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (F.L.); (T.S.); (S.Z.); (H.C.)
| | - Shoujin Zhao
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (F.L.); (T.S.); (S.Z.); (H.C.)
| | - Haini Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (F.L.); (T.S.); (S.Z.); (H.C.)
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, China;
- Correspondence: (Y.L.); (Z.L.)
| | - Zhepeng Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (F.L.); (T.S.); (S.Z.); (H.C.)
- Correspondence: (Y.L.); (Z.L.)
| |
Collapse
|
31
|
Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int J Biol Macromol 2021; 192:298-322. [PMID: 34634326 DOI: 10.1016/j.ijbiomac.2021.10.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 12/17/2022]
Abstract
Today, chronic wound care and management can be regarded as a clinically critical issue. However, the limitations of current approaches for wound healing have encouraged researchers and physicians to develop more efficient alternative approaches. Advances in tissue engineering and regenerative medicine have resulted in the development of promising approaches that can accelerate wound healing and improve the skin regeneration rate and quality. The design and fabrication of scaffolds that can address the multifactorial nature of chronic wound occurrence and provide support for the healing process can be considered an important area requiring improvement. In this regard, polysaccharide-based scaffolds have distinctive properties such as biocompatibility, biodegradability, high water retention capacity and nontoxicity, making them ideal for wound healing applications. Their tunable structure and networked morphology could facilitate a number of functions, such as controlling their diffusion, maintaining wound moisture, absorbing a large amount of exudates and facilitating gas exchange. In this review, the wound healing process and the influential factors, structure and properties of carbohydrate polymers, physical and chemical crosslinking of polysaccharides, scaffold fabrication techniques, and the use of polysaccharide-based scaffolds in skin tissue engineering and wound healing applications are discussed.
Collapse
|
32
|
Li B, Liu X, Wu G, Liu J, Cai S, Wang F, Yang C, Liu J. MicroRNA-934 facilitates cell proliferation, migration, invasion and angiogenesis in colorectal cancer by targeting B-cell translocation gene 2. Bioengineered 2021; 12:9507-9519. [PMID: 34699325 PMCID: PMC8809948 DOI: 10.1080/21655979.2021.1996505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health issue with increasing prevalence. MicroRNA-934 (miR-934) is a kind of non-coding RNA involved in the regulation of diverse cancers. Though previous researches have revealed part of association between miR-934 and CRC, the role of miR-934 in CRC pathogenesis has not been completely explored yet. In this study, we aim to investigate the effect of miR-934 on cell proliferation, migration, invasion and angiogenesis in CRC. Accordingly, miR-934 was found to be over-expressed in SW480 and HCT116 cells, two typical CRC cell lines. Meanwhile, miR-934 knockdown significantly inhibited cell proliferation and induced cell cycle arrest in SW480 and HCT116 cells. It was further validated that miR-934 knockdown displayed an inhibitory effect on cell migration and invasion in SW480 and HCT116 cells. Additionally, miR-934 deficiency markedly decreased VEGF expression in SW480 and HCT116 cells and suppressed capability of CRC cells to promote tube formation in vascular endothelial cells, which suggests the pro-angiogenesis role of miR-934 in vitro. Dual luciferase reporter assay further showed that miR-934 directly bound to B-cell translocation gene 2 (BTG2). BTG2 knockdown reversed the inhibitory effect of miR-934 silencing on cell proliferation, migration, invasion, and angiogenesis in SW480 and HCT116 cells. In summary, this study suggests that miR-934 facilitates CRC progression by targeting BTG2, and further highlights the role of miR-934 in pathogenesis of CRC.
Collapse
Affiliation(s)
- Bo Li
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Xianyi Liu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Guogang Wu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Jiawen Liu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Shouliang Cai
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Fuxin Wang
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| | - Chunyu Yang
- Department of General Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Jisheng Liu
- Department of General Surgery, Ansteel Group General Hospital, Anshan, Liaoning, China
| |
Collapse
|
33
|
Lee JW, Hur J, Kwon YW, Chae CW, Choi JI, Hwang I, Yun JY, Kang JA, Choi YE, Kim YH, Lee SE, Lee C, Jo DH, Seok H, Cho BS, Baek SH, Kim HS. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol 2021; 14:148. [PMID: 34530889 PMCID: PMC8444549 DOI: 10.1186/s13045-021-01147-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about endogenous inhibitors of angiogenic growth factors. In this study, we identified a novel endogenous anti-angiogenic factor expressed in pericytes and clarified its underlying mechanism and clinical significance. METHODS Herein, we found Kai1 knockout mice showed significantly enhanced angiogenesis. Then, we investigated the anti-angiogenic roll of Kai1 in vitro and in vivo. RESULTS KAI1 was mainly expressed in pericytes rather than in endothelial cells. It localized at the membrane surface after palmitoylation by zDHHC4 enzyme and induced LIF through the Src/p53 pathway. LIF released from pericytes in turn suppressed angiogenic factors in endothelial cells as well as in pericytes themselves, leading to inhibition of angiogenesis. Interestingly, KAI1 had another mechanism to inhibit angiogenesis: It directly bound to VEGF and PDGF and inhibited activation of their receptors. In the two different in vivo cancer models, KAI1 supplementation significantly inhibited tumor angiogenesis and growth. A peptide derived from the large extracellular loop of KAI1 has been shown to have anti-angiogenic effects to block the progression of breast cancer and retinal neovascularization in vivo. CONCLUSIONS KAI1 from PC is a novel molecular regulator that counterbalances the effect of angiogenic factors.
Collapse
Affiliation(s)
- Jin-Woo Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheong-Whan Chae
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Il Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Injoo Hwang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Ji-Yeon Yun
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Jin-A Kang
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Young-Eun Choi
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Young Hyun Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Sang Eun Lee
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heeyoung Seok
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byong Seung Cho
- ExoCoBio Inc, Gasan digital 1-ro, Geumcheon-gu, Seoul, 08594, Republic of Korea
| | - Sung Hee Baek
- Creative Research Initiative Center for Chromatin Dynamics, School of Biological Sciences, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Center for Medical Innovation, Seoul National University Hospital, Seoul, Republic of Korea.
- Center of Cell- and Bio-Therapy (CBT), Seoul National University Hospital, Seoul, Republic of Korea.
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Korea.
| |
Collapse
|
34
|
Umapathy D, Karthikeyan MC, Ponnuchamy K, Arockiam AJV. Transcriptional expression of miRNAs under glucose depletion/2-deoxy-d-glucose in HCC: A possible genetic footprints of angiogenesis and its hallmarks. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Sun CX, Liu BJ, Su Y, Shi GW, Wang Y, Chi JF. MiR-181a promotes cell proliferation and migration through targeting KLF15 in papillary thyroid cancer. Clin Transl Oncol 2021; 24:66-75. [PMID: 34312797 DOI: 10.1007/s12094-021-02670-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Papillary thyroid cancer (PTC) is the predominant histological type of thyroid cancer, accounting for 80% of thyroid cancers. MiR-181a is a novel microRNA that is usually upregulated in multiple cancers. This study aims to explore the role and underlying mechanism of miR-181a in PTC. METHODS CCK8 and Transwell assays were performed to evaluate cell viability and migration. The mRNA level of miR-181a and KLF15 was calculated by qRT-PCR. The protein level of E-Cadherin, N-Cadherin and GAPDH was evaluated by western blot. Dual luciferase assay was conducted to validate that miR-181a directly targeting the 3'-UTR of KLF15 mRNA in TPC-1 cells. RESULTS We observed that miR-181a was overexpressed and KLF15 was low expressed in PTC tissues and cell lines. Upregulation of miR-181a or downregulation of KLF15 predicted poor outcomes in PTC patients. MiR-181a improved cell growth of PTC, migration and epithelial-mesenchymal transition (EMT) in TPC-1 cells. KLF15 was a target gene of miR-181a and its expression was mediated by miR-181a. KLF15 partially reversed the facilitating effect of miR-181a on cell proliferation and migration in TPC-1 cells. CONCLUSION We discovered that miR-181a served as an oncogene downregulating KLF15, thereby inhibiting cell proliferation, migration and the EMT. These findings demonstrate that miR-181a plays a significant role in PTC progression and could be a therapeutic target for PTC.
Collapse
Affiliation(s)
- C X Sun
- Department of Endocrinology, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - B J Liu
- Operation Room, Rizhao Hospital of TCM, Rizhao, 276800, Shandong, China
| | - Y Su
- Operation Room, Qingdao Hospital of Traditional Chinese Medicine, Qingdao Hiser Hospital, Qingdao, 266033, Shandong, China
| | - G W Shi
- Health Management Center, Zhangqiu District People's Hospital, Jinan, 250200, Shandong, China
| | - Y Wang
- Health Management Center, Zhangqiu District People's Hospital, Jinan, 250200, Shandong, China
| | - J F Chi
- Department of Endocrinology, Jinan Central Hospital, 105 Jiefang Road, Lixia District, Jinan, 250013, Shandong, China.
| |
Collapse
|
36
|
Ji T, Zhang Y, Wang Z, Hou Z, Gao X, Zhang X. FOXD3-AS1 suppresses the progression of non-small cell lung cancer by regulating miR-150/SRCIN1axis. Cancer Biomark 2021; 29:417-427. [PMID: 32924985 DOI: 10.3233/cbm-200059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Long non-coding RNA (lncNRA) forkhead box D3 antisense RNA 1 (FOXD3-AS1) has been proved to promote or suppress the occurrence and development of multiple types of human tumors. However, the function and mechanism of FOXD3-AS1 in non-small cell lung cancer (NSCLC) are scarcely understood. METHODS qRT-PCR was used for detecting FOXD3-AS1, miR-150 and SRC kinase signaling inhibitor 1 (SRCIN1) mRNA expression in NSCLC tissues, and the relationship between pathological characteristics of NSCLC patients and FOXD3-AS1 expression level was analyzed. With human NSCLC cell lines H1299 and A549 as cell models, CCK-8 and BrdU assays were employed for detecting cancer cell proliferation, and Transwell assay was employed for detecting cell invasion ability. Dual luciferase reporter gene assay and RNA immunoprecipitation (RIP) assay were used for the verification of the targeting relationshipe between FOXD3-AS1 and miR-150, and Western blot was employed for detecting SRCIN1 protein expression. RESULTS FOXD3-AS1 expression was significantly reduced in NSCLC tissues and cell lines, and low expression of FOXD3-AS1 was closely related to positive lymph node metastasis and relatively high tumor grade. FOXD3-AS1 over-expression inhibited the proliferation and invasion of H1299 cell lines, while its knockdown promoted the proliferation and invasion of A549 cells. Additionally, it was confirmed that FOXD3-AS1 suppressed the expression of miR-150 by targeting it, and up-regulated the expression of SRCIN1. CONCLUSIONS FOXD3-AS1 indirectly enhances the expression of SRCIN1 by targeting miR-150, thereby inhibiting NSCLC progression.
Collapse
Affiliation(s)
- Tao Ji
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yanan Zhang
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Zuoxu Hou
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Xuhui Gao
- Department of Cardiothoracic Surgery, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Xiaoming Zhang
- Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
37
|
Li J, Han T, Wang X, Wang Y, Yang Q. Identification of novel survival-related lncRNA-miRNA-mRNA competing endogenous RNA network associated with immune infiltration in colorectal cancer. Am J Transl Res 2021; 13:5815-5834. [PMID: 34306328 PMCID: PMC8290742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
Increasing studies have reported that long noncoding RNAs (lncRNAs) play critical roles in the initiation and progression of carcinogenesis. However, the underlying regulatory mechanisms of lncRNA-related competing endogenous RNA (ceRNA) network in colorectal cancer (CRC) are not fully understood. In the present study, we systematically analyzed the expression levels and prognostic values of dysregulated microRNAs (miRNAs) in human CRC to identify novel survival-related lncRNA-miRNA-mRNA ceRNA regulatory network. As a result, 28 dysregulated miRNAs were obtained, and hsa-miR-195-5p was identified as a key oncogene in human CRC based on analyses of expression levels and prognostic values. By means of stepwise prediction and validation, two upstream lncRNAs (NEAT1, XIST) and eight downstream mRNAs (ACOX1, CYP26B1, IRF4, ITPR1, LITAF, PHLPP2, RECK, and TPM2) were identified as key genes that interact with hsa-miR-195-5p. A ceRNA regulatory network consisted of these key genes was constructed, and Gene Set Enrichment Analysis (GSEA) indicated the possible association of key mRNAs with CRC onset and progression. Importantly, immune infiltration analysis revealed that the ceRNA network was remarkably associated with infiltration abundance of multiple immune cells and expression levels of immune checkpoints. These findings indicate that NEAT1 and XIST are potential prognostic factors that affect CRC onset and progression by targeting miR-195-5p.
Collapse
Affiliation(s)
- Jianxin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University Luzhou 646000, Sichuan, P. R. China
| | - Ting Han
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University Luzhou 646000, Sichuan, P. R. China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University Luzhou 646000, Sichuan, P. R. China
| | - Yinchun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University Luzhou 646000, Sichuan, P. R. China
| | - Qingqiang Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University Luzhou 646000, Sichuan, P. R. China
| |
Collapse
|
38
|
Wang Y, Cen A, Yang Y, Ye H, Li J, Liu S, Zhao L. miR-181a, delivered by hypoxic PTC-secreted exosomes, inhibits DACT2 by downregulating MLL3, leading to YAP-VEGF-mediated angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:610-621. [PMID: 33898109 PMCID: PMC8054101 DOI: 10.1016/j.omtn.2021.02.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Papillary thyroid cancer (PTC) is the most common type of thyroid cancer, and angiogenesis plays critical roles in its recurrence and metastasis. In this study, we investigated the effects of hypoxia-induced exosomal microRNA-181 (miR-181a) from PTC on tumor growth and angiogenesis. Thyroid-cancer-related differentially expressed miR-181a was identified by microarray-based analysis in the Gene Expression Omnibus (GEO) database. We validated that miR-181a was highly expressed in PTC cells and even more so in cells cultured under hypoxic conditions, which also augmented exosome secretion from PTC cells. Exosomes extracted from PTC cells with manipulated miR-181a and mixed-lineage leukemia 3 (MLL3) were subjected to normoxic or hypoxic conditions. Human umbilical vein endothelial cells (HUVECs) were transfected with miR-181a inhibitor/mimic or small interfering RNA (siRNA)-MLL3 or treated with exosomes from hypoxic PTC cells. Hypoxic exosomal miR-181a delivery promoted proliferation and capillary-like network formation in HUVECs. Mechanistically, miR-181a targeted and inhibited MLL3. Furthermore, miR-181a downregulated DACT2 and upregulated YAP and vascular endothelial growth factor (VEGF). Further, hypoxic exosomal miR-181a induced angiogenesis and tumor growth in vivo, which was reversed by hypoxic exosomal miR-181a inhibitor. In conclusion, exosomal miR-181a from hypoxic PTC cells promotes tumor angiogenesis and growth through MLL3 and DACT2 downregulation, as well as VEGF upregulation.
Collapse
Affiliation(s)
- Yingxue Wang
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Aiying Cen
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Yuxian Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Huilin Ye
- Department of Hepatopancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou 510120, P.R. China
| | - Jiaying Li
- Department of Endocrinology, the First Affiliated Hospital of Jinan University, Guangzhou 510630, P.R. China
| | - Shiliang Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Lei Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| |
Collapse
|
39
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
40
|
Li X, Xie M, Yin S, Xiong Z, Mao C, Zhang F, Chen H, Jin L, Lan P, Lian L. Identification and Validation of a Six Immune-Related Genes Signature for Predicting Prognosis in Patients With Stage II Colorectal Cancer. Front Genet 2021; 12:666003. [PMID: 34017356 PMCID: PMC8129521 DOI: 10.3389/fgene.2021.666003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/14/2021] [Indexed: 01/20/2023] Open
Abstract
Background Immune-related genes (IRGs) play important roles in the tumor immune microenvironment and can affect the prognosis of cancer. This study aimed to construct a novel IRG signature for prognostic evaluation of stage II colorectal cancer (CRC). Methods Gene expression profiles and clinical data for stage II CRC patients were collected from the Cancer Genome Atlas and Gene Expression Omnibus database. Univariate, multivariate Cox regression, and least absolute shrinkage and selection operator regression were used to develop the IRG signature, namely IRGCRCII. A nomogram was constructed, and the “Cell Type Identification by Estimating Relative Subsets of RNA Transcripts” (CIBERSORT) method was used to estimate immune cell infiltration. The expression levels of genes and proteins were validated by qRT-PCR and immunohistochemistry in 30 pairs of primary stage II CRC and matched normal tissues. Results A total of 466 patients with stage II CRC were included, and 274 differentially expressed IRGs were identified. Six differentially expressed IRGs were detected and used to construct the IRGCRCII signature, which could significantly stratify patients into high-risk and low-risk groups in terms of disease-free survival in three cohorts: training, test, and external validation (GSE39582). Receiver operating characteristics analysis revealed that the area under the curves of the IRGCRCII signature were significantly greater than those of the OncotypeDX colon signature at 1 (0.759 vs. 0.623), 3 (0.875 vs. 0.629), and 5 years (0.906 vs. 0.698) disease-free survival, respectively. The nomogram performed well in the concordance index (0.779) and calibration curves. The high-risk group had a significantly higher percentage of infiltrated immune cells (e.g., M2 macrophages, plasma cells, resting mast cells) than the low-risk group. Finally, the results of qRT-PCR and immunohistochemistry experiments performed on 30 pairs of clinical specimens were consistent with bioinformatics analysis. Conclusion This study developed and validated a novel immune prognostic signature based on six differentially expressed IRGs for predicting disease-free survival and immune status in patients with stage II CRC, which may reflect immune dysregulation in the tumor immune microenvironment.
Collapse
Affiliation(s)
- Xianzhe Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghao Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shi Yin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhizhong Xiong
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chaobin Mao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fengxiang Zhang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huaxian Chen
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Longyang Jin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lei Lian
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
41
|
Jia N, Song Z, Chen B, Cheng J, Zhou W. A Novel Circular RNA circCSPP1 Promotes Liver Cancer Progression by Sponging miR-1182. Onco Targets Ther 2021; 14:2829-2838. [PMID: 33935503 PMCID: PMC8079351 DOI: 10.2147/ott.s292320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Aberrant circular RNA (circRNA) expression has been extensively discovered for its involvement in both the initiation and progression of various cancers. Through screening circRNA profile, we identified a novel circRNA has_circ_0001806, which is termed as circCSPP1 in liver cancer. In the present study, we aim to investigate the role of circCSPP1 in the progression of liver cancer. METHODS Fluorescence in situ hybridization (FISH) was used to detect the location of circCSPP1. Function studies including MTT, colony formation assay, transwell assay and flow cytometry were carried out to detect the malignant behaviour of circCSPP1 on liver cancer cells. Luciferase assay and RNA pull down were used to detect the interaction between miR-1182 and circCSPP1 as well as RAB15. Quantitative realtime (qPCR) and Western blot were performed to evaluate the RNA and protein expression, respectively. RESULTS CircCSPP1 knockdown inhibited the proliferation, migration and invasion while promoted apoptosis of liver cancer cells. Mechanically, we predicted and verified the target miR of circCSPP1 which is miR-1182. miR-1182 was capable of reversing the effect of circCSPP1 on liver cancer cells. Moreover, miR-1182 was found to also target RAB15 to participate in the regulation of cell phenotype. DISCUSSION Taken together, circCSPP1 promoted progression of liver cancer cells via sponging miR-1182 which may serve as a novel prognostic and therapeutic target for liver cancer.
Collapse
Affiliation(s)
- Nan Jia
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Zhe Song
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Baosheng Chen
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Jinsheng Cheng
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| | - Wenyong Zhou
- Department of General Surgery, CangZhou General Hospital, CangZhou, Hebei, 061001, People’s Republic of China
| |
Collapse
|
42
|
Chen L, He M, Zhang M, Sun Q, Zeng S, Zhao H, Yang H, Liu M, Ren S, Meng X, Xu H. The Role of non-coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacol Ther 2021; 226:107868. [PMID: 33901505 DOI: 10.1016/j.pharmthera.2021.107868] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is one of malignant afflictions burdening people worldwide, mainly caused by shortages of effective medical intervention and poorly mechanistic understanding of the pathogenesis of CRC. Non-coding RNAs (ncRNAs) are a type of heterogeneous transcripts without the capability of coding protein, but have the potency of regulating protein-coding gene expression. Autophagy is an evolutionarily conserved catabolic process in which cytoplasmic contents are delivered to cellular lysosomes for degradation, resulting in the turnover of cellular components and producing energy for cell functions. A growing body of evidence reveals that ncRNAs, autophagy, and the crosstalks of ncRNAs and autophagy play intricate roles in the initiation, progression, metastasis, recurrence and therapeutic resistance of CRC, which confer ncRNAs and autophagy to serve as clinical biomarkers and therapeutic targets for CRC. In this review, we sought to delineate the complicated roles of ncRNAs, mainly including miRNAs, lncRNAs and circRNAs, in the pathogenesis of CRC, particularly focus on the regulatory role of ncRNAs in CRC-related autophagy, attempting to shed light on the complex pathological mechanisms, involving ncRNAs and autophagy, responsible for CRC tumorigenesis and development, so as to underpin the ncRNAs- and autophagy-based therapeutic strategies for CRC in clinical setting.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Man He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Meng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacology, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
43
|
Tang Y, Zong S, Zeng H, Ruan X, Yao L, Han S, Hou F. MicroRNAs and angiogenesis: a new era for the management of colorectal cancer. Cancer Cell Int 2021; 21:221. [PMID: 33865381 PMCID: PMC8052662 DOI: 10.1186/s12935-021-01920-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNA molecules containing only 20–22 nucleotides. MiRNAs play a role in gene silencing and translation suppression by targeting and binding to mRNA. Proper control of miRNA expression is very important for maintaining a normal physiological environment because miRNAs can affect most cellular pathways, including cell cycle checkpoint, cell proliferation, and apoptosis pathways, and have a wide range of target genes. With these properties, miRNAs can modulate multiple signalling pathways involved in cancer development, such as cell proliferation, apoptosis, and migration pathways. MiRNAs that activate or inhibit the molecular pathway related to tumour angiogenesis are common topics of research. Angiogenesis promotes tumorigenesis and metastasis by providing oxygen and diffusible nutrients and releasing proangiogenic factors and is one of the hallmarks of tumour progression. CRC is one of the most common tumours, and metastasis has always been a difficult issue in its treatment. Although comprehensive treatments, such as surgery, radiotherapy, chemotherapy, and targeted therapy, have prolonged the survival of CRC patients, the overall response is not optimistic. Therefore, there is an urgent need to find new therapeutic targets to improve CRC treatment. In a series of recent reports, miRNAs have been shown to bidirectionally regulate angiogenesis in colorectal cancer. Many miRNAs can directly act on VEGF or inhibit angiogenesis through other pathways (HIF-1a, PI3K/AKT, etc.), while some miRNAs, specifically many exosomal miRNAs, are capable of promoting CRC angiogenesis. Understanding the mechanism of action of miRNAs in angiogenesis is of great significance for finding new targets for the treatment of tumour angiogenesis. Deciphering the exact role of specific miRNAs in angiogenesis is a challenge due to the high complexity of their actions. Here, we describe the latest advances in the understanding of miRNAs and their corresponding targets that play a role in CRC angiogenesis and discuss possible miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Yufei Tang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Shaoqi Zong
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.,Graduate School of Shanghai, University of Traditional Chinese Medicine, Shanghai, China
| | - Hailun Zeng
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Xiaofeng Ruan
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Liting Yao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Susu Han
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Fenggang Hou
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
44
|
Zeng Z, Lu J, Wang Y, Sheng H, Wang Y, Chen Z, Wu Q, Zheng J, Chen Y, Yang D, Yu K, Mo H, Hu J, Hu P, Liu Z, Ju H, Xu R. The lncRNA XIST/miR-125b-2-3p axis modulates cell proliferation and chemotherapeutic sensitivity via targeting Wee1 in colorectal cancer. Cancer Med 2021; 10:2423-2441. [PMID: 33666372 PMCID: PMC7982616 DOI: 10.1002/cam4.3777] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/26/2020] [Accepted: 12/30/2020] [Indexed: 01/03/2023] Open
Abstract
Background Numerous reports on microRNAs have illustrated their role in tumor growth and metastasis. Recently, a new prognostic factor, miR‐125b‐2‐3p, has been identified for predicting chemotherapeutic sensitivity in advanced colorectal cancer (CRC). However, the specific mechanisms and biological functions of miR‐125b‐2‐3p in advanced CRC under chemotherapy have yet to be elucidated. Methods MiR‐125b‐2‐3p expression was detected by real‐time PCR (RT‐PCR) in CRC tissues. The effects of miR‐125b‐2‐3p on the growth, metastasis, and drug sensitivity of CRC cells were tested in vitro and in vivo. Based on multiple databases, the upstream competitive endogenous RNAs (ceRNAs) and the downstream genes for miR‐125b‐2‐3p were predicted by bioinformatic analysis, followed by the experiments including luciferase reporter assays, western blot assays, and so on. Results MiR‐125b‐2‐3p was significantly lowly expressed in the tissues and cell lines of CRC. Higher expression of miR‐125b‐2‐3p was associated with relatively lower proliferation rates and fewer metastases. Moreover, overexpressed miR‐125b‐2‐3p remarkably improved chemotherapeutic sensitivity of CRC in vivo and in vitro. Mechanistically, miR‐125b‐2‐3p was absorbed by long noncoding RNA (lncRNA) XIST regulating WEE1 G2 checkpoint kinase (WEE1) expression. The upregulation of miR‐125b‐2‐3p inhibited the proliferation and epithelial‐mesenchymal transition (EMT) of CRC induced by lncRNA XIST. Conclusions Lower miR‐125b‐2‐3p expression resulted in lower sensitivity of CRC to chemotherapy and was correlated with poorer survival of CRC patients. LncRNA XIST promoted CRC metastasis acting as a ceRNA for miR‐125b‐2‐3p to mediate WEE1 expression. LncRNA XIST‐miR‐125b‐2‐3p‐WEE1 axis not only regulated CRC growth and metastasis but also contributed to chemotherapeutic resistance to CRC.
Collapse
Affiliation(s)
- Zhao‐lei Zeng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐huan Lu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yun Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hui Sheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ying‐nan Wang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zhan‐hong Chen
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical Oncology and Guangdong Key Laboratory of Liver Diseasethe Third Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Qi‐nian Wu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐Bo Zheng
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yan‐xing Chen
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Dong‐dong Yang
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Kai Yu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hai‐yu Mo
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jia‐jia Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Pei‐shan Hu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Ze‐xian Liu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Huai‐qiang Ju
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Rui‐Hua Xu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- Department of Medical OncologySun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
45
|
Shaik S, Martin E, Hayes D, Gimble J, Devireddy R. microRNA Sequencing of CD34+ Sorted Adipose Stem Cells Undergoing Endotheliogenesis. Stem Cells Dev 2021; 30:265-288. [PMID: 33397204 PMCID: PMC7994430 DOI: 10.1089/scd.2020.0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/02/2021] [Indexed: 12/13/2022] Open
Abstract
While several microRNAs (miRNAs) that regulate the endotheliogenesis and further promote angiogenesis have been identified in various cancers, the identification of miRNAs that can drive the differentiation of adipose derived stromal/stem cells (ASCs) into the endothelial lineage has been largely unexplored. In this study, CD34+ ASCs sorted using magnetic bead separation were induced to differentiate along the endothelial pathway. miRNA sequencing of ASCs at day 3, 9, and 14 of endothelial differentiation was performed on Ion Proton sequencing system. The data obtained by this high-throughput method were aligned to the human genome HG38, and the differentially expressed miRNAs during endothelial differentiation at various time points (day 3, 9, and 14) were identified. The gene targets of the identified miRNAs were obtained through miRWalk database. The network-pathway analysis of miRNAs and their targets was performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) bioinformatic tools to determine the potential candidate miRNAs that promote endothelial differentiation. Based on these analyses, six upregulated miRNAs (miR-181a-5p, miR-330-5p, miR-335-3p, miR-15b-5p, miR-99a-5p, and miR-199a-5p) and six downregulated miRNAs (miR-145-5p, miR-155-5p, miR-193a-3p, miR-125a-5p, miR-221-5p, and miR-222-3p) were chosen for further studies. In vitro evaluation of these miRNAs to induce endothelial differentiation when transfected into CD34+ sorted ASCs was studied using Von Willebrand Factor (VWF) staining and quantitative real time-polymerase chain reaction (qRT-PCR). Our results suggest that miRNAs: 335-5p, 330-5p, 181a-5p and anti-miRNAs: 125a-5p, 145-5p can likely induce endothelial differentiation in CD34+ sorted ASCs. Further studies are clearly required to elucidate the specific mechanisms on how miRNAs or anti-miRNAs identified through bioinformatics approach can induce the endotheliogenesis in ASCs.
Collapse
Affiliation(s)
- Shahensha Shaik
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Elizabeth Martin
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Daniel Hayes
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jeffrey Gimble
- La Cell, LLC and Obatala Sciences, Inc., New Orleans, Louisiana, USA
| | - Ram Devireddy
- Bioengineering Laboratory, Department of Mechanical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
46
|
Xuan W, Khan M, Ashraf M. Pluripotent stem cell-induced skeletal muscle progenitor cells with givinostat promote myoangiogenesis and restore dystrophin in injured Duchenne dystrophic muscle. Stem Cell Res Ther 2021; 12:131. [PMID: 33579366 PMCID: PMC7881535 DOI: 10.1186/s13287-021-02174-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is caused by mutations of the gene that encodes the protein dystrophin. A loss of dystrophin leads to severe and progressive muscle wasting in both skeletal and heart muscles. Human induced pluripotent stem cells (hiPSCs) and their derivatives offer important opportunities to treat a number of diseases. Here, we investigated whether givinostat (Givi), a histone deacetylase inhibitor, with muscle differentiation properties could reprogram hiPSCs into muscle progenitor cells (MPC) for DMD treatment. Methods MPC were generated from hiPSCs by treatment with CHIR99021 and givinostat called Givi-MPC or with CHIR99021 and fibroblast growth factor as control-MPC. The proliferation and migration capacity were investigated by CCK-8, colony, and migration assays. Engraftment, pathological changes, and restoration of dystrophin were evaluated by in vivo transplantation of MPC. Conditioned medium from cultured MPC was collected and analyzed for extracellular vesicles (EVs). Results Givi-MPC exhibited superior proliferation and migration capacity compared to control-MPC. Givi-MPC produced less reactive oxygen species (ROS) after oxidative stress and insignificant expression of IL6 after TNF-α stimulation. Upon transplantation in cardiotoxin (CTX)-injured hind limb of Mdx/SCID mice, the Givi-MPC showed robust engraftment and restored dystrophin in the treated muscle than in those treated with control-MPC or human myoblasts. Givi-MPC significantly limited infiltration of inflammatory cells and reduced muscle necrosis and fibrosis. Additionally, Givi-MPC seeded the stem cell pool in the treated muscle. Moreover, EVs released from Givi-MPC were enriched in several miRNAs related to myoangiogenesis including miR-181a, miR-17, miR-210 and miR-107, and miR-19b compared with EVs from human myoblasts. Conclusions It is concluded that hiPSCs reprogrammed into MPC by givinostat possessing anti-oxidative, anti-inflammatory, and muscle gene-promoting properties effectively repaired injured muscle and restored dystrophin in the injured muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02174-3.
Collapse
Affiliation(s)
- Wanling Xuan
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB-3712, Augusta, GA, 30912, USA.,Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB-3712, Augusta, GA, 30912, USA
| | - Mahmood Khan
- Department of Emergency Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Muhammad Ashraf
- Vascular Biology Center, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd., CB-3712, Augusta, GA, 30912, USA. .,Department of Medicine, Medical College of Georgia at Augusta University, 1460 Laney Walker Blvd, CB-3712, Augusta, GA, 30912, USA.
| |
Collapse
|
47
|
Nosrati H, Aramideh Khouy R, Nosrati A, Khodaei M, Banitalebi-Dehkordi M, Ashrafi-Dehkordi K, Sanami S, Alizadeh Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J Nanobiotechnology 2021; 19:1. [PMID: 33397416 PMCID: PMC7784275 DOI: 10.1186/s12951-020-00755-7] [Citation(s) in RCA: 345] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/12/2020] [Indexed: 12/23/2022] Open
Abstract
Skin is the body's first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | | | - Ali Nosrati
- School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Khodaei
- Department of Materials Science and Engineering, Golpayegan University of Technology, Golpayegan, Iran
| | - Mehdi Banitalebi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Korosh Ashrafi-Dehkordi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Sanami
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
48
|
Wang Y, Fang YX, Dong B, Du X, Wang J, Wang X, Gao WQ, Xue W. Discovery of extracellular vesicles derived miR-181a-5p in patient's serum as an indicator for bone-metastatic prostate cancer. Theranostics 2021; 11:878-892. [PMID: 33391510 PMCID: PMC7738844 DOI: 10.7150/thno.49186] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose: To identify extracellular vesicle (EV)-delivered microRNAs in the patient's serum as indicators for bone-metastatic prostate cancer. Methods: First, the profiling change of serum EV-delivered miRNAs in patients with either benign prostatic hyperplasia (BPH), non-bone metastatic prostate cancer or bone-metastatic prostate cancer was detected by microRNA deep sequencing assay and microRNA-chip array assay, respectively. Second, the candidates were further confirmed using TaqMan microRNA assay in two independent validation cohorts of total 176 patients with either BPH, non-bone metastatic prostate cancer or bone metastatic prostate cancer to seek the most valuable microRNA(s). Results: Through microRNA deep sequencing and microRNA-chip array, we found 4 prospective EV-delivered miRNAs including miR-181a-5p with significantly upregulated expression in bone metastatic groups than in non-bone metastatic prostate cancer groups (p < 0.05). In the validation cohorts, logistic regression analysis was performed to evaluate the diagnostic association of candidates with bone metastasis, which indicated that miR-181a-5p was significantly associated with bone metastatic prostate cancer. Furthermore, accuracy estimate of each candidate for the diagnosis of bone metastatic prostate cancer was quantified using the area under the receiver-operating characteristic curve (AUC), which identified miR-181a-5p as the best biomarker with the AUCs of 85.6% for diagnosis of prostate cancer and 73.8% for diagnosis of bone metastatic prostate cancer. Conclusion: EV-delivered miR-181a-5p from patient's serum is a promising diagnostic biomarker for bone metastatic prostate cancer.
Collapse
|
49
|
Chapelle J, Baudino A, Torelli F, Savino A, Morellato A, Angelini C, Salemme V, Centonze G, Natalini D, Gai M, Poli V, Kähne T, Turco E, Defilippi P. The N-terminal domain of the adaptor protein p140Cap interacts with Tiam1 and controls Tiam1/Rac1 axis. Am J Cancer Res 2020; 10:4308-4324. [PMID: 33415001 PMCID: PMC7783762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 06/12/2023] Open
Abstract
The p140Cap adaptor protein, encoded by the SRCIN1 gene, negatively controls tumor progression, as demonstrated in the subgroup of HER2-amplified breast cancers and in neuroblastoma patients, where high p140Cap expression predicts a decreased probability of developing metastasis, with a significantly prolonged survival. In NeuT mice, a preclinical model or Her2-positive breast cancer, we previously reported that p140Cap counteracts Her2-dependent breast cancer progression, associating with the specific Rac1 Guanine Nucleotide Exchange Factor, Tiam1, and limiting the activation of both Tiam1 and Rac1. Here, we show that in TUBO breast cancer cells derived from the NeuT tumors, p140Cap expression causes Tiam1 redistribution along the apicobasal junctional axis. Furthermore, p140Cap and Tiam1 interact with E-cadherin, a member of the adherence junction, with a concomitant increase of E-cadherin at the cell membrane. We characterized biochemically the interaction between p140Cap and Tiam1, showing that the amino terminal region of p140Cap (1-287 amino acids) is sufficient to associate with full length Tiam1, and with the truncated catalytic domain of Tiam1, with a concomitant decrease of the Tiam1 activity. Moreover, in a large cohort of Her2 positive breast cancer, high levels of SRCIN1 expression positively correlates with increased survival in patients with high TIAM1 expression. Overall, our findings sustain a protective role of p140Cap in Her2 positive breast cancer, where p140Cap can associate with Tiam1 and negatively regulate the Tiam1/Rac1 axis.
Collapse
Affiliation(s)
- Jennifer Chapelle
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Annalisa Baudino
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Federico Torelli
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Aurora Savino
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Marta Gai
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Thilo Kähne
- Institute of Experimental Internal Medicine, Medical Faculty, Otto von Guericke UniversityMagdeburg 39120, Germany
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of TorinoTorino 10126, Italy
| |
Collapse
|
50
|
Salemme V, Angelini C, Chapelle J, Centonze G, Natalini D, Morellato A, Taverna D, Turco E, Ala U, Defilippi P. The p140Cap adaptor protein as a molecular hub to block cancer aggressiveness. Cell Mol Life Sci 2020; 78:1355-1367. [PMID: 33079227 PMCID: PMC7904710 DOI: 10.1007/s00018-020-03666-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 01/03/2023]
Abstract
The p140Cap adaptor protein is a scaffold molecule encoded by the SRCIN1 gene, which is physiologically expressed in several epithelial tissues and in the neurons. However, p140Cap is also strongly expressed in a significant subset of cancers including breast cancer and neuroblastoma. Notably, cancer patients with high p140Cap expression in their primary tumors have a lower probability of developing a distant event and ERBB2-positive breast cancer sufferers show better survival. In neuroblastoma patients, SRCIN1 mRNA levels represent an independent risk factor, which is inversely correlated to disease aggressiveness. Consistent with clinical data, SRCIN1 gain or loss of function mouse models demonstrated that p140Cap may affect tumor growth and metastasis formation by controlling the signaling pathways involved in tumorigenesis and metastatic features. This study reviews data showing the relevance of SRCIN1/p140Cap in cancer patients, the impact of SRCIN1 status on p140Cap expression, the specific mechanisms through which p140Cap can limit cancer progression, the molecular functions regulated by p140Cap, along with the p140Cap interactome, to unveil its key role for patient stratification in clinics.
Collapse
Affiliation(s)
- Vincenzo Salemme
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Jennifer Chapelle
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Dora Natalini
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Daniela Taverna
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, TO, Italy.
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Science, Università degli Studi di Torino, Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|