1
|
Mukherjee A, Biswas S, Roy I. Exploring immunotherapeutic strategies for neurodegenerative diseases: a focus on Huntington's disease and Prion diseases. Acta Pharmacol Sin 2025; 46:1511-1538. [PMID: 39890942 PMCID: PMC12098710 DOI: 10.1038/s41401-024-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/09/2024] [Indexed: 02/03/2025]
Abstract
Immunotherapy has emerged as a promising therapeutic approach for the treatment of neurodegenerative disorders, which are characterized by the progressive loss of neurons and impaired cognitive functions. In this review, active and passive immunotherapeutic strategies that help address the underlying pathophysiology of Huntington's disease (HD) and prion diseases by modulating the immune system are discussed. The current landscape of immunotherapeutic strategies, including monoclonal antibodies and vaccine-based approaches, to treat these diseases is highlighted, along with their potential benefits and mechanisms of action. Immunotherapy generally works by targeting disease-specific proteins, which serve as the pathological hallmarks of these diseases. Additionally, the review addresses the challenges and limitations associated with immunotherapy. For HD, immunotherapeutic approaches focus on neutralizing the toxic effects of mutant huntingtin and tau proteins, thereby reducing neurotoxicity. Immunotherapeutic approaches targeting flanking sequences, rather than the polyglutamine tract in the mutant huntingtin protein, have yielded promising outcomes for patients with HD. In prion diseases, therapies attempt to prevent or eliminate misfolded proteins that cause neurodegeneration. The major challenge in prion diseases is immune tolerance. Approaches to overcome the highly tolerogenic nature of the prion protein have been discussed. A common hurdle in delivering antibodies is the blood‒brain barrier, and strategies that can breach this barrier are being investigated. As protein aggregation and neurotoxicity are related, immunotherapeutic strategies being developed for other neurodegenerative diseases could be repurposed to target protein aggregation in HD and prion diseases. While significant advances in this field have been achieved, continued research and development are necessary to overcome the existing limitations, which will help in shaping the future of immunotherapy as a strategy for managing neurological disorders.
Collapse
Affiliation(s)
- Abhiyanta Mukherjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Soumojit Biswas
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Sun XJ, Xiao SJ, Ma WQ, Jin H, Ren LQ, Yao YY, Chen ZD, Li XX, Chen T, Liu NF. Activation of TFEB protects against diabetic vascular calcification by improving autophagic flux and activating Nrf2 antioxidant system. Am J Physiol Endocrinol Metab 2025; 328:E924-E939. [PMID: 39805031 DOI: 10.1152/ajpendo.00161.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Autophagic flux blockade and excessive oxidative stress play important roles in the pathogenesis of diabetic vascular calcification (VC). Transcription factor EB (TFEB) is an important regulator of many autophagy-lysosomal related components, which is mainly involved in promoting autophagy process in cells. Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system is considered as one of the key pathways in response to intracellular oxidative stress. Periostin (POSTN), a matrix protein, is widely involved in regulating the formation and maintenance of organs such as bones, teeth, heart valves, and tendons. We have previously reported that POSTN interfered with autophagic flux in an oxidative stress-dependent manner in vascular smooth muscle cells (VSMCs) to aggravate the development of diabetic VC. However, how POSTN interfered with autophagic flux by regulating oxidative stress has not been clarified. This study aims to further explore the roles of TFEB, POSTN, autophagy, and Nrf2 antioxidant system in the development of diabetic VC. Our experimental results revealed that activation of TFEB attenuated diabetic VC by improving autophagic flux and activating Nrf2 antioxidant system, whereas POSTN reduced the autophagic degradation of Kelch-like ECH-associated protein 1 (KEAP1) by inhibiting lysosomal function, thus inhibiting the activation of the Nrf2 antioxidant system, and ultimately abolishing the protective effect of TFEB against diabetic VC. In conclusion, this study uncovers that TFEB play an important role in alleviating diabetic VC by improving autophagic flux and activating Nrf2 antioxidant system, suggesting that TFEB may be a new target for the prevention and treatment of diabetic VC.NEW & NOTEWORTHY This study is the first to suggest the protective effect of activation of transcription factor EB (TFEB) against diabetic vascular calcification (VC), emphasizing that activation of TFEB alleviated diabetic VC by improving the autophagic flux and activating the Nuclear factor erythroid-2 related factor 2 (Nrf2) antioxidant system in vascular smooth muscle cells (VSMCs), and revealing that periostin (POSTN) partially abolished the protective effect of TFEB on diabetic VC by inhibiting the autophagic degradation of Kelch-like ECH-associated protein 1 (KEAP1).
Collapse
Affiliation(s)
- Xue-Jiao Sun
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Sheng-Jue Xiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Wen-Qi Ma
- Department of cardiovascular medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jin
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Li-Qun Ren
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yu-Yu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Zheng-Dong Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Tian Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Gao Z, Qiu R, Dave DR, Chandravanshi P, Soares GP, Smith CS, Ortega JA, Palmer LC, Álvarez Z, Stupp SI. Supramolecular Copolymerization of Glycopeptide Amphiphiles and Amyloid Peptides Improves Neuron Survival. J Am Chem Soc 2025; 147:17710-17724. [PMID: 40365999 DOI: 10.1021/jacs.5c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis are characterized by progressive neuronal loss and the accumulation of misfolded proteins including amyloid proteins. Current therapeutic options include the use of antibodies for these proteins, but novel chemical strategies need to be developed. The disaccharide trehalose has been widely reported to prevent misfolding and aggregation of proteins, and we therefore investigated the conjugation of this moiety to biocompatible peptide amphiphiles (TPAs) known to undergo supramolecular polymerization. Using X-ray scattering, circular dichroism, and infrared spectroscopy, we found that trehalose conjugation destabilized the internal β-sheet structures within the TPA supramolecular polymers as evidenced by a lower thermal transition. Thioflavin T fluorescence showed that these metastable TPA nanofibers suppressed A42 aggregation. Interestingly, we found that the suppression involved supramolecular copolymerization of TPA polymers with Aβ42, which effectively trapped the peptides within the filamentous structures. In vitro assays with human induced pluripotent stem cell-derived neurons demonstrated that these TPAs significantly improved neuron survival compared to other conditions. Our study highlights the potential of properly tuned supramolecular polymerizations of monomers to safely remove amyloidogenic proteins in neurodegeneration.
Collapse
Affiliation(s)
- Zijun Gao
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ruomeng Qiu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Dhwanit R Dave
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Gisele P Soares
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Neurodevelopmental Disorders Group, NeuroBell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Cara S Smith
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona L'Hospitalet de Llobregat, Barcelona 08907, Spain
- Neurodevelopmental Disorders Group, NeuroBell, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Liam C Palmer
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid 28029, Spain
| | - Samuel I Stupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Regenerative Nanomedicine Northwestern University 303 E. Superior Street, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Lee H, Han JH, Jeong RG, Kang YJ, Choi BH, Kim SR, Cheon CK, Hur J, Lee SY. Oral trehalose improves histological and behavior symptoms of mucopolysaccharidosis type II in iduronate 2-sulfatase deficient mice. Sci Rep 2025; 15:4882. [PMID: 39929944 PMCID: PMC11811122 DOI: 10.1038/s41598-025-88362-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Mucopolysaccharidosis type II (MPS II) is caused by a deficiency in iduronate-2-sulfatase (Ids), an enzyme that catabolizes glycosaminoglycan (GAG). Ids insufficiency results in the accumulation of GAG in various organs, ultimately resulting in multisystemic disease. Trehalose, a non-reducing disaccharide, has shown protective effects against various diseases. However, its potential utility through oral administration in MPS II has not yet been explored. In the present study, to investigate the efficacy of oral trehalose in Ids-knock-out (KO) mice, Ids-KO and wild type (WT) mice were treated with 2% trehalose dissolved in distilled water ad libitum for 24 weeks. Histological analysis revealed that almost all tissues from Ids-KO mice exhibited abnormal changes, including large vacuolization, inflammatory cell infiltration, and GAG deposition. However, oral administration of trehalose significantly suppressed GAG levels, vacuolization, inflammation and apoptosis in the spleen and brain. Additionally, oral trehalose considerably improved cognitive functions, such as short-term spatial learning and working memory, alongside limited improvements in walking capacity in Ids-KO mice. These results suggest that oral trehalose can reduce GAG accumulation, vacuolization and the number of apoptotic and inflammatory cells in pathological tissues including the brain, ultimately considerably improving spontaneous alteration behavior and could be a promising treatment option for MPS II.
Collapse
Affiliation(s)
- Hyesook Lee
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Jung-Hwa Han
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Roo Gam Jeong
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Yun Jeong Kang
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Byung Hyun Choi
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Seo Rin Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea
| | - Chong Kun Cheon
- Department of Pediatrics, School of Medicine, Pusan National University Children's Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Jin Hur
- Department of Convergence Medicine, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- PNU GRAND Convergence Medical Science Education Research Center, Pusan National University School of Medicine, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| | - Soo Yong Lee
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam-do, 50612, Republic of Korea.
| |
Collapse
|
5
|
Zhang Y, Du B, Zou M, Peng B, Rao Y. Neuronal Ceroid Lipofuscinosis-Concepts, Classification, and Avenues for Therapy. CNS Neurosci Ther 2025; 31:e70261. [PMID: 39925015 PMCID: PMC11808193 DOI: 10.1111/cns.70261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/11/2025] Open
Abstract
Neuronal ceroid lipofuscinosis (NCL) is a group of neurodegenerative lysosomal storage disorders characterized by excessive accumulation of lysosomal lipofuscin. Thirteen subtypes of NCL have been identified, each associated with distinct genes encoding various transmembrane proteins, secretory proteins, or lysosomal enzymes. Clinically, NCL manifests in infants through vision impairment, motor and cognitive dysfunctions, epilepsy, and premature death. The pathological complexity of NCL has hindered the development of effective clinical protocols. Current treatment modalities, including enzyme replacement therapy, pharmacological approaches, gene therapy, and stem cell therapy, have demonstrated limited efficacy. However, emerging evidence suggests a significant relationship between NCL and microglial cells, highlighting the potential of novel microglial cell replacement therapies. This review comprehensively examines the pathogenic genes associated with various NCL subtypes, elucidating their roles, clinical presentations, and corresponding mouse models. Especially, we thoroughly discuss the advances in the clinical study of potential therapeutics, which crucially calls for early diagnosis and treatment more than ever.
Collapse
Affiliation(s)
- Yuheng Zhang
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bingying Du
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
- Department of NeurologyThe First Affiliated Hospital of Naval Medical UniversityShanghaiChina
| | - Miaozhan Zou
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Bo Peng
- Children’s Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesFudan UniversityShanghaiChina
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Laboratory Animal CenterFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Sadeghloo Z, Nabavi-Rad A, Zali MR, Klionsky DJ, Yadegar A. The interplay between probiotics and host autophagy: mechanisms of action and emerging insights. Autophagy 2025; 21:260-282. [PMID: 39291740 PMCID: PMC11759520 DOI: 10.1080/15548627.2024.2403277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Autophagy, a lysosome-dependent protein degradation mechanism, is a highly conserved catabolic process seen in all eukaryotes. This cell protection system, which is present in all tissues and functions at a basic level, can be up- or downregulated in response to various stresses. A disruption in the natural route of the autophagy process is frequently followed by an interruption in the inherent operation of the body's cells and organs. Probiotics are live bacteria that protect the host through various mechanisms. One of the processes through which probiotics exert their beneficial effects on various cells and tissues is autophagy. Autophagy can assist in maintaining host homeostasis by stimulating the immune system and affecting numerous physiological and pathological responses. In this review, we particularly focus on autophagy impairments occurring in several human illnesses and investigate how probiotics affect the autophagy process under various circumstances.Abbreviation: AD: Alzheimer disease; AKT: AKT serine/threonine kinase; AMPK: 5'AMP-activated protein kinase; ATG: autophagy related; CCl4: carbon tetrachloride; CFS: cell-free supernatant; CMA: chaperone-mediated autophagy; CRC: colorectal cancer; EPS: L. plantarum H31 exopolysaccharide; HD: Huntington disease; HFD: high-fat diet; HPV: human papillomavirus; IFNG/IFN-γ: interferon gamma; IL6: interleukin 6; LGG: L. rhamnosus GG; LPS: lipopolysaccharide; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; PD: Parkinson disease; Pg3G: pelargonidin-3-O-glucoside; PI3K: phosphoinositide 3-kinase; PolyQ: polyglutamine; ROS: reactive oxygen species; SCFAs: short-chain fatty acids; SLAB51: a novel formulation of lactic acid bacteria and bifidobacteria; Slp: surface layer protein (of acidophilus NCFM); SNCA: synuclein alpha; ULK1: unc-51 like autophagy-activating kinase 1; YB: B. longum subsp. infantis YB0411; YFP: yeast fermentate prebiotic.
Collapse
Affiliation(s)
- Zahra Sadeghloo
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Nabavi-Rad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ma Z, Meng C, Wang X, Zhao Y, Wang J, Chen Y, Li Y, Jiang Y, Ouyang F, Li J, Zheng M, Cheng L, Jing J. Trehalose enhances macrophage autophagy to promote myelin debris clearance after spinal cord injury. Cell Biosci 2025; 15:11. [PMID: 39881390 PMCID: PMC11781065 DOI: 10.1186/s13578-025-01357-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI. RESULTS We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro. In vivo, trehalose administration markedly reduced myelin debris accumulation, inhibited foamy macrophage formation, suppressed inflammatory responses, decreased fibrotic scarring, and promoted axonal growth and motor function recovery after SCI. These beneficial effects of trehalose may be related to the overexpression of transcription factor EB (TFEB), a key regulator of the autophagy-lysosomal system, which can rescue autophagic dysfunction in foamy macrophages and inhibit inflammatory responses. Additionally, the effects of trehalose on macrophages were abolished by chloroquine, an autophagy inhibitor, suggesting trehalose's potential as a therapeutic candidate for enhancing myelin debris clearance post-SCI. CONCLUSIONS Our findings underscore the pivotal role of trehalose in modulating myelin debris clearance within macrophages, providing new perspectives for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Zhida Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Congpeng Meng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiang Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yihao Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yiteng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yan Jiang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Li Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
8
|
Della Vecchia S, Gammaldi N, Ricca I, Mero S, Doccini S, Ardissone A, Bagnoli S, Battini R, Colombi E, Favaro J, Furlan R, Giordano L, Ingannato A, Mandelli A, Manzoni FMP, Milito G, Moroni I, Nacmias B, Nardocci N, Parmeggiani L, Pezzini F, Pietrafusa N, Sartori S, Specchio N, Trivisano M, Ets ANCL, Simonati A, Santorelli FM. Open-label evaluation of oral trehalose in patients with neuronal ceroid lipofuscinoses. J Neurol 2025; 272:94. [PMID: 39775944 DOI: 10.1007/s00415-024-12790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 01/11/2025]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are incurable pediatric neurodegenerative diseases characterized by accumulation of lysosomal material and dysregulation of autophagy. Given the promising results of treatment with trehalose, an autophagy inducer, in cell and animal models of NCL, we conducted an open-label, non-placebo-controlled, non-randomized 12-month prospective study in NCL patients receiving oral trehalose (4 g/day). All were treated with a commercially available formulation for 6 months, followed by a 6-month washout. The primary endpoint was the presence of severe adverse reactions during treatment; secondary endpoints were clinical changes documented using the validated Unified Batten Disease Rating Scale and the Hamburg scale. Leveraging on our recent multiomic studies identifying convergent biomarkers in NCLs, fluid biomarker changes were taken as additional secondary endpoints. Of the 17 patients enrolled, 11 completed the study. Oral intake of trehalose in NCL patients with different genetic forms and at different disease stages was found to be well tolerated over 6 months. Oral trehalose is associated with subjective benefits reported by caregivers, but not with improvement or worsening on clinical scales. Analysis of potential biomarkers demonstrated significant differences between patients and controls at baseline, but we observed no modifications over time, or correlations with clinical scales and treatment. In our pilot experience in a heterogeneous disease group of NCL, oral trehalose seemed safe for patients. While subjective improvements were reported by caregivers, larger multicenter randomized placebo-controlled studies, and perhaps additional clinical tools covering multiple functions affected by the disease, will be needed to identify possible improvements in clinical scale scores and biomarkers.
Collapse
Affiliation(s)
- Stefania Della Vecchia
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Nicola Gammaldi
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Ivana Ricca
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Serena Mero
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Stefano Doccini
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
| | - Anna Ardissone
- Child Neurology Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Silvia Bagnoli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Roberta Battini
- IRCCS Stella Maris Foundation, Via Dei Giacinti 2, 56128, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Elisa Colombi
- Child Neuropsychiatric Unit, ASL CN2 Alba-Bra, Alba, Italy
| | - Jacopo Favaro
- Neurology and Neurophysiology Unit, Department of Women's and Children's Health, Padua University Hospital, 35128, Padua, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita E Salute San Raffaele University, Milan, Italy
| | - Lucio Giordano
- Paediatric Neurology and Psychiatry Unit, Spedali Civili Children's Hospital, University of Brescia, Brescia, Italy
| | - Assunta Ingannato
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Milito
- Paediatric Neurology and Psychiatry Unit, Spedali Civili Children's Hospital, University of Brescia, Brescia, Italy
| | - Isabella Moroni
- Child Neurology Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Benedetta Nacmias
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Nardo Nardocci
- Child Neurology Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Besta, Milan, Italy
| | - Lucio Parmeggiani
- Child Neurology and Rehabilitation Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134, Verona, Italy
| | - Nicola Pietrafusa
- Neurology, Epilepsy, and Movement Disorders Unit, Full Member of European Reference Network EpiCARE, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Stefano Sartori
- Neurology and Neurophysiology Unit, Department of Women's and Children's Health, Padua University Hospital, 35128, Padua, Italy
| | - Nicola Specchio
- Neurology, Epilepsy, and Movement Disorders Unit, Full Member of European Reference Network EpiCARE, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy, and Movement Disorders Unit, Full Member of European Reference Network EpiCARE, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A-N C L Ets
- Associazione Nazionale CeroidoLipofuscinosi Onlus, Via Oberdan 3, 76015, Trinitapoli, Italy
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134, Verona, Italy
| | | |
Collapse
|
9
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
10
|
Motamedi-Sedeh F, Khorasani A, Lotfi M, Moosavi SM, Arbabi A, Hosseini SM. Role of gamma irradiation and disaccharide trehalose to induce immune responses in Syrian hamster model against Iranian SARS-CoV-2 virus isolate. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:681-689. [PMID: 39816636 PMCID: PMC11729106 DOI: 10.30466/vrf.2024.2022838.4172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 01/18/2025]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus is the causative agent of the emerging zoonotic respiratory disease. One of the most important prerequisites for combating emerging diseases is the development of vaccines within a short period of time. In this study, antigen-irradiated, inactivated SARS-CoV-2 viruses and the disaccharide trehalose were used to enhance immune responses in the Syrian hamster. The SARS-CoV-2 virus was isolated from tracheal swabs, confirmed by real-time polymerase chain reaction, and propagated on Vero cells. For inactivation, it was irradiated with 14.00 kGy gamma radiation. Evaluation of the antigenic properties of the spike protein subunit S1 showed that the antigens were intact after gamma irradiation. The gamma-irradiated and formalin-treated viruses were used to immunize hamsters in four vaccine formulations. Neutralizing antibodies increased significantly in all vaccinated groups three weeks after the second and third vaccinations. The concentration of secretory immunoglobulin A in the irradiated vaccine plus trehalose increased significantly in nasal lavage and nasopharyngeal-associated lymphoid tissue fluids three weeks after the second and third vaccinations. The lymphocyte proliferation test in the spleen showed a significant increase in all vaccinated hamsters, but the increase was greater in irradiated vaccine plus trehalose and irradiated vaccine plus alum. We can recommend the irradiated inactivated vaccine SARS-CoV-2 plus trehalose (intra-nasal) and another irradiated inactivated vaccine SARS-CoV-2 plus alum (subcutaneous) as safe vaccines against coronavirus disease of 2019 (COVID-19), which can stimulate mucosal, humeral, and cellular immunities. However, the protectivity of the vaccine against COVID-19 in vaccinated hamsters must be investigated in a challenge test to assess the potency and efficiency of vaccine.
Collapse
Affiliation(s)
- Farahnaz Motamedi-Sedeh
- Department of Veterinary and Animal Diseases, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Akbar Khorasani
- Department of FMD Vaccine, Razi Vaccine and Serum Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Lotfi
- Department of Quality Control, Razi Vaccine and Serum Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Seyed Morteza Moosavi
- Department of Veterinary and Animal Diseases, Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
- Iran Veterinary Organization, Mashhad, Iran
| | - Arash Arbabi
- MD Student, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Sevriev B, Dimitrova S, Kehayova G, Dragomanova S. Trehalose: Neuroprotective Effects and Mechanisms-An Updated Review. NEUROSCI 2024; 5:429-444. [PMID: 39484301 PMCID: PMC11503274 DOI: 10.3390/neurosci5040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
Trehalose is a naturally occurring disaccharide that has recently gained significant attention for its neuroprotective properties in various models of neurodegeneration. This review provides an overview of available experimental data on the beneficial properties of trehalose for central nervous system pathological conditions. Trehalose's impact on neuronal cell survival and function was also examined. As a result, we identified that trehalose's neuroprotection includes autophagy modulation as well as its capability to stabilize proteins and inhibit the formation of misfolded ones. Moreover, trehalose mitigates oxidative stress-induced neuronal damage by stabilizing cellular membranes and modulating mitochondrial function. Furthermore, trehalose attenuates excitotoxicity-induced neuroinflammation by suppressing pro-inflammatory cytokine release and inhibiting inflammasome activation. A possible connection of trehalose with the gut-brain axis was also examined. These findings highlight the potential therapeutic effects of trehalose in neurodegenerative diseases. According to the conclusions drawn from this study, trehalose is a promising neuroprotective agent as a result of its distinct mechanism of action, which makes this compound a candidate for further research and the development of therapeutic strategies to combat neuronal damage and promote neuroprotection in various neurological diseases.
Collapse
Affiliation(s)
- Borislav Sevriev
- Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria;
| | - Simeonka Dimitrova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Gabriela Kehayova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria; (S.D.); (G.K.)
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna "Prof. Dr. Paraskev Stoyanov", 9000 Varna, Bulgaria; (S.D.); (G.K.)
| |
Collapse
|
12
|
Evans EF, Shyr ZA, Traynor BJ, Zheng W. Therapeutic development approaches to treat haploinsufficiency diseases: restoring protein levels. Drug Discov Today 2024; 29:104201. [PMID: 39384033 DOI: 10.1016/j.drudis.2024.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024]
Abstract
Rare diseases affect one in ten people but only a small fraction of these diseases have an FDA-approved treatment. Haploinsufficiency, caused by a dominant loss-of-function mutation, is a unique rare disease group because patients have one normal allele of the affected gene. This makes rare haploinsufficiency diseases promising candidates for drug development by increasing expression of the normal gene allele, decreasing the target protein degradation and enhancing the target protein function. This review summarizes recent progresses and approaches used in the translational research of therapeutics to treat haploinsufficiency diseases including gene therapy, nucleotide-based therapeutics and small-molecule drug development. We hope that these drug development strategies will accelerate therapeutic development to treat haploinsufficiency diseases.
Collapse
Affiliation(s)
- Elena F Evans
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Zeenat A Shyr
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA
| | - Bryan J Traynor
- National Institute on Aging, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20814, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
13
|
Ferrão R, Rai A. Advanced Polymeric Nanoparticles for the Treatment of Neurodegenerative Diseases. CHEMICAL PHYSICS OF POLYMER NANOCOMPOSITES 2024:843-885. [DOI: 10.1002/9783527837021.ch27] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
14
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
15
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
16
|
Pradeloux S, Coulombe K, Ouamba AJK, Isenbrandt A, Calon F, Roy D, Soulet D. Oral Trehalose Intake Modulates the Microbiota-Gut-Brain Axis and Is Neuroprotective in a Synucleinopathy Mouse Model. Nutrients 2024; 16:3309. [PMID: 39408276 PMCID: PMC11478413 DOI: 10.3390/nu16193309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease affecting dopaminergic neurons in the nigrostriatal and gastrointestinal tracts, causing both motor and non-motor symptoms. This study examined the neuroprotective effects of trehalose. This sugar is confined in the gut due to the absence of transporters, so we hypothesized that trehalose might exert neuroprotective effects on PD through its action on the gut microbiota. We used a transgenic mouse model of PD (PrP-A53T G2-3) overexpressing human α-synuclein and developing GI dysfunctions. Mice were given water with trehalose, maltose, or sucrose (2% w/v) for 6.5 m. Trehalose administration prevented a reduction in tyrosine hydroxylase immunoreactivity in the substantia nigra (-25%), striatum (-38%), and gut (-18%) in PrP-A53T mice. It also modulated the gut microbiota, reducing the loss of diversity seen in PrP-A53T mice and promoting bacteria negatively correlated with PD in patients. Additionally, trehalose treatment increased the intestinal secretion of glucagon-like peptide 1 (GLP-1) by 29%. Maltose and sucrose, which break down into glucose, did not show neuroprotective effects, suggesting glucose is not involved in trehalose-mediated neuroprotection. Since trehalose is unlikely to cross the intestinal barrier at the given dose, the results suggest its effects are mediated indirectly through the gut microbiota and GLP-1.
Collapse
Affiliation(s)
- Solène Pradeloux
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Katherine Coulombe
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Alexandre Jules Kennang Ouamba
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Amandine Isenbrandt
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Frédéric Calon
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Roy
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté des Sciences de l’Agriculture et de l’Alimentation, Université Laval, Québec, QC G1V 0A6, Canada
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Québec, QC G1V 4G2, Canada; (S.P.); (K.C.); (A.J.K.O.); (A.I.); (F.C.); (D.R.)
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
17
|
Ye LC, Chow SY, Chang SC, Kuo CH, Wang YL, Wei YJ, Lee GC, Liaw SH, Chen WM, Chen SC. Structural and Mutational Analyses of Trehalose Synthase from Deinococcus radiodurans Reveal the Interconversion of Maltose-Trehalose Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18649-18657. [PMID: 39109746 PMCID: PMC11342931 DOI: 10.1021/acs.jafc.4c03661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
Trehalose synthase (TreS) catalyzes the reversible interconversion of maltose to trehalose, playing a vital role in trehalose production. Understanding the catalytic mechanism of TreS is crucial for optimizing the enzyme activity and enhancing its suitability for industrial applications. Here, we report the crystal structures of both the wild type and the E324D mutant of Deinococcus radiodurans trehalose synthase in complex with the trehalose analogue, validoxylamine A. By employing structure-guided mutagenesis, we identified N253, E320, and E324 as crucial residues within the +1 subsite for isomerase activity. Based on these complex structures, we propose the catalytic mechanism underlying the reversible interconversion of maltose to trehalose. These findings significantly advance our comprehension of the reaction mechanism of TreS.
Collapse
Affiliation(s)
- Li-Ci Ye
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Sih-Yao Chow
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - San-Chi Chang
- Department
of Agricultural Chemistry, National Taiwan
University, Taipei 10617, Taiwan
| | - Chia-Hung Kuo
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Yung-Lin Wang
- Institute
of Biochemistry and Molecular Biology, National
Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Genomics
Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yong-Jun Wei
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Guan-Chiun Lee
- Department
of Life Science, National Taiwan Normal
University, No. 162, Sec. 1, Heping East Road, Taipei 116, Taiwan
| | - Shwu-Huey Liaw
- Department
of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Wen-Ming Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| | - Sheng-Chia Chen
- Department
of Seafood Science, National Kaohsiung University
of Science and Technology, No. 142, Haijhuan Rd, Kaohsiung, Nanzih District 81157, Taiwan
| |
Collapse
|
18
|
Tanaka MT, Miki Y, Mori F, Kon T, Furukawa T, Shimoyama S, Tatara Y, Ozaki T, Bettencourt C, Warner TT, Wakabayashi K. Intranasal administration of trehalose reduces α-synuclein oligomers and accelerates α-synuclein aggregation. Brain Commun 2024; 6:fcae193. [PMID: 39165481 PMCID: PMC11334933 DOI: 10.1093/braincomms/fcae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 08/22/2024] Open
Abstract
Abnormal α-synuclein (αSyn), including an oligomeric form of αSyn, accumulates and causes neuronal dysfunction in the brains of patients with multiple system atrophy. Neuroprotective drugs that target abnormal αSyn aggregation have not been developed for the treatment of multiple system atrophy. In addition, treating diseases at an early stage is crucial to halting the progress of neuronal damage in neurodegeneration. In this study, using early-stage multiple system atrophy mouse model and in vitro kinetic analysis, we investigated how intranasal and oral administration of trehalose can improve multiple system atrophy pathology and clinical symptoms. The multiple system atrophy model showed memory impairment at least four weeks after αSyn induction. Behavioural and physiological analyses showed that intranasal and oral administration of trehalose reversed memory impairments to near-normal levels. Notably, trehalose treatment reduced the amount of toxic αSyn and increased the aggregated form of αSyn in the multiple system atrophy model brain. In vitro kinetic analysis confirmed that trehalose accelerated the aggregate formation of αSyn. Based on our findings, we propose a novel strategy whereby accelerated αSyn aggregate formation leads to reduced exposure to toxic αSyn oligomers, particularly during the early phase of disease progression.
Collapse
Affiliation(s)
- Makoto T Tanaka
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yasuo Miki
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
| | - Fumiaki Mori
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomoya Kon
- Department of Neurology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Tomonori Furukawa
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Shuji Shimoyama
- Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yota Tatara
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Taku Ozaki
- Department of Biological Science, Graduate School of Science and Engineering, Iwate University, Morioka 020-8551, Japan
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Thomas T Warner
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London WC1N 1PJ, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
- Reta Lila Weston Institute of Neurological Studies, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Koichi Wakabayashi
- Department of Neuropathology, Institute of Brain Science, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
19
|
Kul E, Stork O. Trehalose consumption ameliorates pathogenesis in an inducible mouse model of the Fragile X-associated tremor/ataxia syndrome. Nutr Neurosci 2024; 27:826-835. [PMID: 37776526 DOI: 10.1080/1028415x.2023.2261682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Trehalose is a naturally occurring sugar found in various food and pharmaceutical preparations with the ability to enhance cellular proteostasis and reduce the formation of toxic intracellular protein aggregates, making it a promising therapeutic candidate for various neurodegenerative disorders. OBJECTIVES Here, we explored the effectiveness of nutritional trehalose supplementation in ameliorating symptoms in a mouse model of Fragile X-associated tremor/ataxia syndrome (FXTAS), an incurable late onset manifestation of moderately expanded trinucleotide CGG repeat expansion mutations in the 5' untranslated region of the fragile X messenger ribonucleoprotein 1 gene (FMR1). METHODS An inducible mouse model of FXTAS expressing 90 CGG repeats in the brain had been previously developed, which faithfully captures hallmarks of the disorder, the formation of intracellular inclusions, and the disturbance of motor function. Taking advantage of the inducible nature of the model, we investigated the therapeutic potential of orally administered trehalose under two regimens, modelling disease prevention and disease treatment. RESULTS AND DISCUSSION Trehalose's effectiveness in combating protein aggregation is frequently attributed to its ability to induce autophagy. Accordingly, trehalose supplementation under the prevention regimen ameliorated the formation of intranuclear inclusions and improved the motor deficiencies resulting from the induced expression of 90 CGG repeats, but it failed to reverse the existing nuclear pathology as a treatment strategy. Given the favorable safety profile of trehalose, it is promising to further explore the potential of this agent for early stage FXTAS.
Collapse
Affiliation(s)
- Emre Kul
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
20
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
21
|
Magalhães RSS, Monteiro Neto JR, Ribeiro GD, Paranhos LH, Eleutherio ECA. Trehalose Protects against Superoxide Dismutase 1 Proteinopathy in an Amyotrophic Lateral Sclerosis Model. Antioxidants (Basel) 2024; 13:807. [PMID: 39061876 PMCID: PMC11274086 DOI: 10.3390/antiox13070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This work aimed to study the effect of trehalose in protecting cells against Sod1 proteinopathy associated with amyotrophic lateral sclerosis (ALS). Humanized yeast cells in which native Sod1 was replaced by wild-type human Sod1 or an ALS mutant (WT-A4V Sod1 heterodimer) were used as the experimental model. Cells were treated with 10% trehalose (p/v) before or after the appearance of hSod1 proteinopathy induced by oxidative stress. In both conditions, trehalose reduced the number of cells with Sod1 inclusions, increased Sod1 activity, and decreased the levels of intracellular oxidation, demonstrating that trehalose avoids Sod1 misfolding and loss of function in response to oxidative stress. The survival rates of ALS Sod1 cells stressed in the presence of trehalose were 60% higher than in their absence. Treatment with trehalose after the appearance of Sod1 inclusions in cells expressing WT Sod1 doubled longevity; after 5 days, non-treated cells did not survive, but 15% of cells treated with sugar were still alive. Altogether, our results emphasize the potential of trehalose as a novel therapy, which might be applied preventively in ALS patients with a family history of the disease or after diagnosis in ALS patients who discover the disease following the first symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Elis C. A. Eleutherio
- Institute of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil; (R.S.S.M.); (J.R.M.N.); (G.D.R.); (L.H.P.)
| |
Collapse
|
22
|
Qin X, Li H, Zhao H, Fang L, Wang X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med Res Rev 2024; 44:1904-1922. [PMID: 38483176 DOI: 10.1002/med.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 06/10/2024]
Abstract
The pursuit of enhanced health during aging has prompted the exploration of various strategies focused on reducing the decline associated with the aging process. A key area of this exploration is the management of mitochondrial dysfunction, a notable characteristic of aging. This review sheds light on the crucial role that small molecules play in augmenting healthy aging, particularly through influencing mitochondrial functions. Mitochondrial oxidative damage, a significant aspect of aging, can potentially be lessened through interventions such as coenzyme Q10, alpha-lipoic acid, and a variety of antioxidants. Additionally, this review discusses approaches for enhancing mitochondrial proteostasis, emphasizing the importance of mitochondrial unfolded protein response inducers like doxycycline, and agents that affect mitophagy, such as urolithin A, spermidine, trehalose, and taurine, which are vital for sustaining protein quality control. Of equal importance are methods for modulating mitochondrial energy production, which involve nicotinamide adenine dinucleotide boosters, adenosine 5'-monophosphate-activated protein kinase activators, and compounds like metformin and mitochondria-targeted tamoxifen that enhance metabolic function. Furthermore, the review delves into emerging strategies that encourage mitochondrial biogenesis. Together, these interventions present a promising avenue for addressing age-related mitochondrial degradation, thereby setting the stage for the development of innovative treatment approaches to meet this extensive challenge.
Collapse
Affiliation(s)
- Xiujiao Qin
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Huiying Zhao
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
23
|
Liu Q, Gu X, Liu X, Gu Y, Zhang H, Yang J, Huang Z. Long-chain fatty acids - The turning point between 'mild' and 'severe' acute pancreatitis. Heliyon 2024; 10:e31296. [PMID: 38828311 PMCID: PMC11140623 DOI: 10.1016/j.heliyon.2024.e31296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disease characterized by localized pancreatic injury and a systemic inflammatory response. Fatty acids (FAs), produced during the breakdown of triglycerides (TGs) in blood and peripancreatic fat, escalate local pancreatic inflammation to a systemic level by damaging pancreatic acinar cells (PACs) and triggering M1 macrophage polarization. This paper provides a comprehensive analysis of lipases' roles in the onset and progression of AP, as well as the effects of long-chain fatty acids (LCFAs) on the function of pancreatic acinar cells (PACs). Abnormalities in the function of PACs include Ca2+ overload, premature trypsinogen activation, protein kinase C (PKC) expression, endoplasmic reticulum (ER) stress, and mitochondrial and autophagic dysfunction. The study highlights the contribution of long-chain saturated fatty acids (LC-SFAs), especially palmitic acid (PA), to M1 macrophage polarization through the activation of the NLRP3 inflammasome and the NF-κB pathway. Furthermore, we investigated lipid lowering therapy for AP. This review establishes a theoretical foundation for pro-inflammatory mechanisms associated with FAs in AP and facilitating drug development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Xinyi Gu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Xiaodie Liu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| | - Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Hongchen Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou 310058, China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, China
| | - Zhicheng Huang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou 310058, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310003, China
| |
Collapse
|
24
|
Ghorbani M, Abouei Mehrizi M, Tajvidi M, Amin Habibi M, Mohammadi M, Esmaeilian S, Torabi P, Rahmanipour E, Daskareh M, Mohammadi A. Trehalose: A promising new treatment for traumatic brain injury? A systematic review of animal evidence. INTERDISCIPLINARY NEUROSURGERY 2024; 36:101947. [DOI: 10.1016/j.inat.2023.101947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024] Open
|
25
|
Zhao DY, Bäuerlein FJB, Saha I, Hartl FU, Baumeister W, Wilfling F. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol Cell 2024; 84:1980-1994.e8. [PMID: 38759629 DOI: 10.1016/j.molcel.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 05/19/2024]
Abstract
Aggregation of proteins containing expanded polyglutamine (polyQ) repeats is the cytopathologic hallmark of a group of dominantly inherited neurodegenerative diseases, including Huntington's disease (HD). Huntingtin (Htt), the disease protein of HD, forms amyloid-like fibrils by liquid-to-solid phase transition. Macroautophagy has been proposed to clear polyQ aggregates, but the efficiency of aggrephagy is limited. Here, we used cryo-electron tomography to visualize the interactions of autophagosomes with polyQ aggregates in cultured cells in situ. We found that an amorphous aggregate phase exists next to the radially organized polyQ fibrils. Autophagosomes preferentially engulfed this amorphous material, mediated by interactions between the autophagy receptor p62/SQSTM1 and the non-fibrillar aggregate surface. In contrast, amyloid fibrils excluded p62 and evaded clearance, resulting in trapping of autophagic structures. These results suggest that the limited efficiency of autophagy in clearing polyQ aggregates is due to the inability of autophagosomes to interact productively with the non-deformable, fibrillar disease aggregates.
Collapse
Affiliation(s)
- Dorothy Y Zhao
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Felix J B Bäuerlein
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; University Medical Center Göttingen, Institute of Neuropathology, 37077 Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Itika Saha
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - F Ulrich Hartl
- Max Planck Institute of Biochemistry, Cellular Biochemistry, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - Florian Wilfling
- Max Planck Institute of Biochemistry, Molecular Machines and Signaling, 82152 Martinsried, Germany; Max Planck Institute of Biochemistry, Molecular Structural Biology, 82152 Martinsried, Germany; Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, 60438 Frankfurt, Germany; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
26
|
Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Intracellular Protective Functions and Therapeutical Potential of Trehalose. Molecules 2024; 29:2088. [PMID: 38731579 PMCID: PMC11085779 DOI: 10.3390/molecules29092088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Trehalose is a naturally occurring, non-reducing saccharide widely distributed in nature. Over the years, research on trehalose has revealed that this initially thought simple storage molecule is a multifunctional and multitasking compound protecting cells against various stress factors. This review presents data on the role of trehalose in maintaining cellular homeostasis under stress conditions and in the virulence of bacteria and fungi. Numerous studies have demonstrated that trehalose acts in the cell as an osmoprotectant, chemical chaperone, free radical scavenger, carbon source, virulence factor, and metabolic regulator. The increasingly researched medical and therapeutic applications of trehalose are also discussed.
Collapse
Affiliation(s)
| | | | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (D.K.-W.); (K.S.-S.)
| |
Collapse
|
27
|
Sadeghi G, Dinani MS, Rabbani M. Effects of extracts and manna of Echinops cephalotes on impaired cognitive function induced by scopolamine in mice. Res Pharm Sci 2024; 19:167-177. [PMID: 39035579 PMCID: PMC11257209 DOI: 10.4103/rps.rps_27_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/16/2023] [Accepted: 03/05/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Alzheimer's disease (AD) is a neurodegenerative disease specified by chronic and irreversible destruction of neurons. This study aimed to evaluate the effects of different extracts (aqueous, hydroalcoholic, hexane, and ethyl acetate) and manna of Echinops cephalotes (EC) on impaired cognitive function induced by scopolamine in mice. EC is shown to have anti-cholinesterase-butyrylcholinesterase activities. Experimental approach In this study, aqueous and hydroalcoholic extracts, hexane and ethyl acetate fractions of EC (25, 50, 100 mg/kg, i.p.), and the manna (25, 50, 100 mg/kg, gavage) were administered for 14 days alongside scopolamine (0.7 mg/kg, i.p.). Rivastigmine (reference drug) was administered for 2 weeks i.p. Mice were tested for their memory function using two behavioral models, object recognition test (ORT) and passive avoidance test (PAT). Findings/Results Administration of scopolamine significantly impaired memory function in both behavioral models. In the PAT model, all extracts at 50 and 100 mg/kg significantly reversed the effect of memory destruction caused by scopolamine. At a lower dose of 25 mg/kg, however, none of the extracts were able to significantly change the step-through latency time. In the ORT model, however, administration of all extracts at 50 and 100 mg/kg, significantly increased the recognition index. Only the manna and the aqueous extract at 25 mg/kg were able to reverse scopolamine-induced memory impairment. Conclusions and implications These results suggest that all forms of EC extracts improve memory impairment induced by scopolamine comparably to rivastigmine. Whether the effects are sustained over a longer period remains to be tested in future work.
Collapse
Affiliation(s)
- Giti Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Masoud Sadeghi Dinani
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rabbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Bhat MA, Dhaneshwar S. Neurodegenerative Diseases: New Hopes and Perspectives. Curr Mol Med 2024; 24:1004-1032. [PMID: 37691199 DOI: 10.2174/1566524023666230907093451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, and Friedrich ataxia are all incurable neurodegenerative diseases defined by the continuous progressive loss of distinct neuronal subtypes. Despite their rising prevalence among the world's ageing population, fewer advances have been made in the concurrent massive efforts to develop newer drugs. Recently, there has been a shift in research focus towards the discovery of new therapeutic agents for neurodegenerative diseases. In this review, we have summarized the recently developed therapies and their status in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Aadil Bhat
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, UP, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai, Maharashtra, India
| |
Collapse
|
29
|
Zhong Y, Maruf A, Qu K, Milewska M, Wandzik I, Mou N, Cao Y, Wu W. Nanogels with covalently bound and releasable trehalose for autophagy stimulation in atherosclerosis. J Nanobiotechnology 2023; 21:472. [PMID: 38066538 PMCID: PMC10704736 DOI: 10.1186/s12951-023-02248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
Atherosclerosis, cholesterol-driven plaque formation in arteries, is a complex multicellular disease which is a leading cause of vascular diseases. During the progression of atherosclerosis, the autophagic function is impaired, resulting in lipid accumulation-mediated foam cell formation. The stimulation of autophagy is crucial for the recovery of cellular recycling process. One of the potential autophagy inducers is trehalose, a naturally occurring non-reducing disaccharide. However, trehalose has poor bioavailability due to its hydrophilic nature which results in poor penetration through cell membranes. To enhance its bioavailability, we developed trehalose-releasing nanogels (TNG) for the treatment of atherosclerosis. The nanogels were fabricated through copolymerization of 6-O-acryloyl-trehalose with the selected acrylamide-type monomers affording a high trehalose conjugation (~ 58%, w/w). TNG showed a relatively small hydrodynamic diameter (dH, 67 nm) and a uniform spherical shape and were characterized by negative ζ potential (-18 mV). Thanks to the trehalose-rich content, TNG demonstrated excellent colloidal stability in biological media containing serum and were non-hemolytic to red blood cells. In vitro study confirmed that TNG could stimulate autophagy in foam cells and enhance lipid efflux and in vivo study in ApoE-/- mice indicated a significant reduction in atherosclerotic plaques, while increasing autophagic markers. In conclusion, TNG hold great promise as a trehalose delivery system to restore impaired autophagy-mediated lipid efflux in atherosclerosis and subsequently reduce atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Ali Maruf
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Małgorzata Milewska
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| | - Ilona Wandzik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, 44-100, Poland.
- Biotechnology Center, Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland.
| | - Nianlian Mou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Yu Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College, Faculty of Medicine, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
30
|
Gopar-Cuevas Y, Saucedo-Cardenas O, Loera-Arias MJ, Montes-de-Oca-Luna R, Rodriguez-Rocha H, Garcia-Garcia A. Metformin and Trehalose-Modulated Autophagy Exerts a Neurotherapeutic Effect on Parkinson's Disease. Mol Neurobiol 2023; 60:7253-7273. [PMID: 37542649 DOI: 10.1007/s12035-023-03530-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
Since the number of aged people will increase in the next years, neurodegenerative diseases, including Parkinson's Disease (PD), will also rise. Recently, we demonstrated that autophagy stimulation with rapamycin decreases dopaminergic neuronal death mediated by oxidative stress in the paraquat (PQ)-induced PD model. Assessing the neurotherapeutic efficacy of autophagy-inducing molecules is critical for preventing or delaying neurodegeneration. Therefore, we evaluated the autophagy inducers metformin and trehalose effect in a PD model. Autophagy induced by both molecules was confirmed in the SH-SY5Y dopaminergic cells by detecting increased LC3-II marker and autophagosome number compared to the control by western blot and transmission electron microscopy. Both autophagy inducers showed an antioxidant effect, improved mitochondrial activity, and decreased dopaminergic cell death induced by PQ. Next, we evaluated the effect of both inducers in vivo. C57BL6 mice were pretreated with metformin or trehalose before PQ administration. Cognitive and motor deteriorated functions in the PD model were evaluated through the nest building and the gait tests and were prevented by metformin and trehalose. Both autophagy inducers significantly reduced the dopaminergic neuronal loss, astrocytosis, and microgliosis induced by PQ. Also, cell death mediated by PQ was prevented by metformin and trehalose, assessed by TUNEL assay. Metformin and trehalose induced autophagy through AMPK phosphorylation and decreased α-synuclein accumulation. Therefore, metformin and trehalose are promising neurotherapeutic autophagy inducers with great potential for treating neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Yareth Gopar-Cuevas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Odila Saucedo-Cardenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Maria J Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico
| | - Humberto Rodriguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| | - Aracely Garcia-Garcia
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Francisco I. Madero S/N, 64460, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
31
|
Yang X, Zeng D, Li C, Yu W, Xie G, Zhang Y, Lu W. Therapeutic potential and mechanism of functional oligosaccharides in inflammatory bowel disease: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
32
|
Shafiei B, Afgar A, Nematollahi MH, Shabani M, Nazari-Robati M. Effect of trehalose on miR-132 and SIRT1 in the hippocampus of aged rats. Neurosci Lett 2023; 813:137418. [PMID: 37549864 DOI: 10.1016/j.neulet.2023.137418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Aging causes substantial molecular to morphological changes in the brain. The brain cells are more susceptible towards oxidative damage due to impaired antioxidant defense system. Sirtuin1 (SIRT1) is a crucial cellular survival protein, which its gene has been identified as a direct target of microRNA 132 (miR-132). Trehalose contributes to preventing neuronal damage through several mechanisms. However, little is known about the interactive effects of aging and trehalose on the expression pattern of miR-132 and SIRT1 in the hippocampus. Male Wistar rats were divided into four groups. Two groups of aged (24 months) and young (4 months) rats were administered 2% trehalose solution for 30 days. Two other groups of aged and young rats received regular tap water. At the end of treatment, the levels of Sirt1 mRNA and its protein, malondialdehyde, protein carbonyl content, total antioxidant capacity, tumor necrosis factor α (TNF-α), as well as the expression of miR-132 were measured in the hippocampus. We found that trehalose treatment upregulated the expression of SIRT1 and miR-132. Moreover, administration of trehalose enhanced the level of total antioxidant activity whereas reduced the levels of lipid peroxidation, protein carbonyl content, and TNF-α. In conclusion, our data indicated that trehalose restored antioxidant status and alleviated inflammation in the hippocampus which was probably associated with the upregulation of SIRT1 and miR-132.
Collapse
Affiliation(s)
- Bentolhoda Shafiei
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Afgar
- Research Center for Hydatid Disease in Iran, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Nazari-Robati
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
33
|
Zhang S, Qiu X, Zhang Y, Huang C, Lin D. Metabolomic Analysis of Trehalose Alleviating Oxidative Stress in Myoblasts. Int J Mol Sci 2023; 24:13346. [PMID: 37686153 PMCID: PMC10488301 DOI: 10.3390/ijms241713346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Trehalose, a naturally occurring non-toxic disaccharide, has attracted considerable attention for its potential in alleviating oxidative stress in skeletal muscle. In this study, our aim was to elucidate the metabolic mechanisms underlying the protective effects of trehalose against hydrogen peroxide (H2O2)-induced oxidative stress in C2C12 myoblasts. Our results show that both trehalose treatment and pretreatment effectively alleviate the H2O2-induced decrease in cell viability, reduce intracellular reactive oxygen species (ROS), and attenuate lipid peroxidation. Furthermore, using NMR-based metabolomics analysis, we observed that trehalose treatment and pretreatment modulate the metabolic profile of myoblasts, specifically regulating oxidant metabolism and amino acid metabolism, contributing to their protective effects against oxidative stress. Importantly, our results reveal that trehalose treatment and pretreatment upregulate the expression levels of P62 and Nrf2 proteins, thereby activating the Nrf2-NQO1 axis and effectively reducing oxidative stress. These significant findings highlight the potential of trehalose supplementation as a promising and effective strategy for alleviating oxidative stress in skeletal muscle and provide valuable insights into its potential therapeutic applications.
Collapse
Affiliation(s)
- Shuya Zhang
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| | - Xu Qiu
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| | - Yue Zhang
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen 361021, China;
| | - Donghai Lin
- Key Laboratory of Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (S.Z.); (X.Q.); (Y.Z.)
| |
Collapse
|
34
|
Xu Y, Bao X, Chen L, Zhuang T, Xu Y, Feng L. Enhanced productivity and stability of PRV in recombinant ST-Tret1 cells. Biologicals 2023; 83:101692. [PMID: 37442044 DOI: 10.1016/j.biologicals.2023.101692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 05/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Productivity and stability of Pseudorabies virus (PRV) are critical for the manufacture and storage of live attenuated pseudorabies vaccine. Trehalose is commonly used as a cryoprotectant to stabilize organisms during freezing and lyophilization. Trehalose transporter 1 (Tret1), derived from Polypedilum vanderplanki, can deliver trehalose with a reversible transporting direction. In this study, we demonstrated that productivity and stability of PRV proliferated in recombinant ST cells with stable expression of Tret1 were enhanced. As a result, a five-fold increase of intracellular trehalose amount was observed, and the significant increase of progeny viral titer was achieved in recombinant cells with the addition of 20 mM trehalose. Particularly, after storage for 8 weeks at 20 °C, the loss of viral titer was 0.8 and 1.7 lgTCID50/mL lower than the control group with or without the addition of trehalose. Additionally, the freeze-thaw resistance at -20 °C and -70 °C of PRV was significantly enhanced. Furthermore, according to standard international protocols, a series of tests, including karyotype analysis, tumorigenicity, and the ability of proliferation PRV, were conducted. Our results demonstrated that the recombinant ST cell with Tret1 is a promising cell substrate and has a high potential for producing more stable PRV for the live attenuated vaccine.
Collapse
Affiliation(s)
- Yue Xu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China; Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, Jiangsu, China
| | - Xi Bao
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Li Chen
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Tenghan Zhuang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Yang Xu
- Shanghai Pharmaceutical School, Shanghai, China
| | - Lei Feng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China; Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, Jiangsu, China; School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
35
|
Belkova M, Janegova T, Hrabarova E, Nahalka J. Physiologically Aggregated LacZ Applied in Trehalose Galactosylation in a Recycled Batch Mode. Life (Basel) 2023; 13:1619. [PMID: 37629477 PMCID: PMC10455999 DOI: 10.3390/life13081619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/17/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023] Open
Abstract
Galactooligosaccharides obtained via β-galactosidase transgalactosylation have health-promoting properties and are widely recognized as effective prebiotics. Trehalose-based galactooligosaccharides could be introduced into food and pharmaceutical industries similarly to trehalose. In light of this, new technological approaches are needed. Recently, in vivo enzyme immobilizations for recombinant proteins have been introduced, and physiological aggregation into active inclusion bodies (aIBs) has emerged as one such method of in vivo immobilization. To prepare LacZ β-galactosidase in the form of aIBs, we used a short 10 amino acid aggregation-prone tag. These native protein particles were simply washed from the cell lysate and applied in trehalose galactosylation in a recycled batch mode. In this study, aIBs entrapped in alginate beads, encapsulated in alginate/cellulose sulfate/poly(methylene-co-guanidine) capsules and magnetized were compared with free aIBs. Alginate/cellulose sulfate/PMCG capsules showed more suitable properties and applicability for biotransformation of trehalose at its high concentration (25%, w/v) and elevated temperature (50 °C).
Collapse
Affiliation(s)
- Martina Belkova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| | - Tatiana Janegova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| | - Eva Hrabarova
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| | - Jozef Nahalka
- Institute of Chemistry, Centre for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, SK-84538 Bratislava, Slovakia; (M.B.)
- Institute of Chemistry, Centre of Excellence for White-Green Biotechnology, Slovak Academy of Sciences, Trieda Andreja Hlinku 2, SK-94976 Nitra, Slovakia
| |
Collapse
|
36
|
Yap KH, Azmin S, Makpol S, Damanhuri HA, Mustapha M, Hamzah JC, Ibrahim NM. Profiling neuroprotective potential of trehalose in animal models of neurodegenerative diseases: a systematic review. Neural Regen Res 2023; 18:1179-1185. [PMID: 36453391 PMCID: PMC9838167 DOI: 10.4103/1673-5374.360164] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022] Open
Abstract
Trehalose, a unique nonreducing crystalline disaccharide, is a potential disease-modifying treatment for neurodegenerative diseases associated with protein misfolding and aggregation due to aging, intrinsic mutations, or autophagy dysregulation. This systematic review summarizes the effects of trehalose on its underlying mechanisms in animal models of selected neurodegenerative disorders (tau pathology, synucleinopathy, polyglutamine tract, and motor neuron diseases). All animal studies on neurodegenerative diseases treated with trehalose published in Medline (accessed via EBSCOhost) and Scopus were considered. Of the 2259 studies screened, 29 met the eligibility criteria. According to the SYstematic Review Center for Laboratory Animal Experiment (SYRCLE) risk of bias tool, we reported 22 out of 29 studies with a high risk of bias. The present findings support the purported role of trehalose in autophagic flux and protein refolding. This review identified several other lesser-known pathways, including modifying amyloid precursor protein processing, inhibition of reactive gliosis, the integrity of the blood-brain barrier, activation of growth factors, upregulation of the downstream antioxidant signaling pathway, and protection against mitochondrial defects. The absence of adverse events and improvements in the outcome parameters were observed in some studies, which supports the transition to human clinical trials. It is possible to conclude that trehalose exerts its neuroprotective effects through both direct and indirect pathways. However, heterogeneous methodologies and outcome measures across the studies rendered it impossible to derive a definitive conclusion. Translational studies on trehalose would need to clarify three important questions: 1) bioavailability with oral administration, 2) optimal time window to confer neuroprotective benefits, and 3) optimal dosage to confer neuroprotection.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, UKM Medical Centre, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, UKM Medical Centre, Kuala Lumpur, Malaysia
| | | | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | | | | |
Collapse
|
37
|
Wang Y, Khanal D, Alreja AB, Yang H, Yk Chang R, Tai W, Li M, Nelson DC, Britton WJ, Chan HK. Bacteriophage endolysin powders for inhaled delivery against pulmonary infections. Int J Pharm 2023; 635:122679. [PMID: 36738804 DOI: 10.1016/j.ijpharm.2023.122679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Endolysins are bacteriophage-encoded enzymatic proteins that have great potential to treat multidrug-resistant bacterial infections. Bacteriophage endolysins Cpl-1 and ClyJ-3 have shown promising antimicrobial activity against Streptococcus pneumoniae, which causes pneumonia in humans. This is the first study to investigate the feasibility of spray-dried endolysins Cpl-1 and ClyJ-3 with excipients to produce inhalable powders. The two endolysins were individually tested with leucine and sugar (lactose or trehalose) for spray drying method followed by characterization of biological and physico-chemical properties. A complete loss of ClyJ-3 bioactivity was observed after atomization of the liquid feed solution(before the drying process), while Cpl-1 maintained its bioactivity in the spray-dried powders. Cpl-1 formulations containing leucine with lactose or trehalose showed promising physico-chemical properties (particle size, crystallinity, hygroscopicity, etc.) and aerosol performances (fine particle fraction values above 65%). The results indicated that endolysin Cpl-1 can be formulated as spray dried powders suitable for inhaled delivery to the lungs for the potential treatment of pulmonary infections.
Collapse
Affiliation(s)
- Yuncheng Wang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Adit B Alreja
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Rachel Yk Chang
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Waiting Tai
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Mengyu Li
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, USA
| | - Warwick J Britton
- Centenary Institute and Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
38
|
Dietary Trehalose as a Bioactive Nutrient. Nutrients 2023; 15:nu15061393. [PMID: 36986123 PMCID: PMC10054017 DOI: 10.3390/nu15061393] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
Trehalose is a naturally occurring, non-reducing disaccharide comprising two covalently-linked glucose molecules. It possesses unique physiochemical properties, which account for multiple biological roles in a variety of prokaryotic and eukaryotic organisms. In the past few decades, intensive research on trehalose has uncovered its functions, and extended its uses as a sweetener and stabilizer in the food, medical, pharmaceutical, and cosmetic industries. Further, increased dietary trehalose consumption has sparked research on how trehalose affects the gut microbiome. In addition to its role as a dietary sugar, trehalose has gained attention for its ability to modulate glucose homeostasis, and potentially as a therapeutic agent for diabetes. This review discusses the bioactive effects of dietary trehalose, highlighting its promise in future industrial and scientific contributions.
Collapse
|
39
|
Carling PJ, Ryan BJ, McGuinness W, Kataria S, Humble SW, Milde S, Duce JA, Kapadia N, Zuercher WJ, Davis JB, Di Daniel E, Wade-Martins R. Multiparameter phenotypic screening for endogenous TFEB and TFE3 translocation identifies novel chemical series modulating lysosome function. Autophagy 2023; 19:692-705. [PMID: 35786165 PMCID: PMC9851200 DOI: 10.1080/15548627.2022.2095834] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Phillippa J Carling
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Brent J Ryan
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - William McGuinness
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| | - Shikha Kataria
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Stewart W Humble
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.,Inherited Neurodegenerative Diseases Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD USA
| | - Stefan Milde
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - James A Duce
- ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Cambridge
| | - Nirav Kapadia
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - William J Zuercher
- Structural Genomics Consortium, UNC, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - John B Davis
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Elena Di Daniel
- Oxford Drug Discovery Institute, Target Discovery Institute, University of Oxford, NDM Research Building, Old Road Campus, Oxford, UK
| | - Richard Wade-Martins
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Does treatment with autophagy-enhancers and/or ROS-scavengers alleviate behavioral and neurochemical consequences of low-dose rotenone-induced mild mitochondrial dysfunction in mice? Mol Psychiatry 2023; 28:1667-1678. [PMID: 36690794 DOI: 10.1038/s41380-023-01955-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Bipolar-disorder's pathophysiology and the mechanism by which medications exert their beneficial effect is yet unknown, but others' and our data implicate patients' brain mitochondrial-dysfunction and its amendment by mood-stabilizers. We recently designed a novel mouse bipolar-disorder-like model using chronic administration of a low-dose of the oxidative-phosphorylation complex I inhibitor, rotenone. Four and eight weeks rotenone treatment induced manic- and depressive-like behavior, respectively, accompanied by mood-related neurochemical changes. Here we aimed to investigate whether each of the autophagy-enhancers lithium (a mood-stabilizer), trehalose and resveratrol and/or each of the reactive oxygen species (ROS)-scavengers, resveratrol and N-acetylcystein and/or the combinations lithium+resveratrol or trehalose+N-acetylcystein, can ameliorate behavioral and neurochemical consequences of neuronal mild mitochondrial-dysfunction. We observed that lithium, trehalose and N-acetylcystein reversed rotenone-induced manic-like behavior as well as deviations in protein levels of mitochondrial complexes and the autophagy marker LC3-II. This raises the possibility that mild mitochondrial-dysfunction accompanied by impaired autophagy and a very mild increase in ROS levels are related to predisposition to manic-like behavior. On the other hand, although, as expected, most of the drugs tested eliminated the eight weeks rotenone-induced increase in protein levels of all hippocampal mitochondrial complexes, only lithium ubiquitously ameliorated the depressive-like behaviors. We cautiously deduce that aberrant autophagy and/or elevated ROS levels are not involved in predisposition to the depressive phase of bipolar-like behavior. Rather, that amending the depressive-like characteristics requires different mitochondria-related interventions. The latter might be antagonizing N-methyl-D-aspartate receptors (NMDARs), thus protecting from disruption of mitochondrial calcium homeostasis and its detrimental consequences. In conclusion, our findings suggest that by-and-large, among the autophagy-enhancers and ROS-scavengers tested, lithium is the most effective in counteracting rotenone-induced changes. Trehalose and N-acetylcystein may also be effective in attenuating manic-like behavior.
Collapse
|
41
|
Smith JK, Mellick GD, Sykes AM. The role of the endolysosomal pathway in α-synuclein pathogenesis in Parkinson's disease. Front Cell Neurosci 2023; 16:1081426. [PMID: 36704248 PMCID: PMC9871505 DOI: 10.3389/fncel.2022.1081426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease that is characterized by a loss of dopaminergic neurons in the substantia nigra pars compacta of the midbrain (SNpc). Extensive studies into genetic and cellular models of PD implicate protein trafficking as a prominent contributor to the death of these dopaminergic neurons. Considerable evidence also suggests the involvement of α-synuclein as a central component of the characteristic cell death in PD and it is a major structural constituent of proteinaceous inclusion bodies (Lewy bodies; LB). α-synuclein research has been a vital part of PD research in recent years, with newly discovered evidence suggesting that α-synuclein can propagate through the brain via prion-like mechanisms. Healthy cells can internalize toxic α-synuclein species and seed endogenous α-synuclein to form large, pathogenic aggregates and form LBs. A better understanding of how α-synuclein can propagate, enter and be cleared from the cell is vital for therapeutic strategies.
Collapse
|
42
|
Panda C, Mahapatra RK. Bi-Directional Relationship Between Autophagy and Inflammasomes in Neurodegenerative Disorders. Cell Mol Neurobiol 2023; 43:115-137. [PMID: 35066716 PMCID: PMC11415217 DOI: 10.1007/s10571-021-01184-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/12/2021] [Indexed: 01/18/2023]
Abstract
The innate immune system, as the first line of cellular defense, triggers a protective response called inflammation when encountered with invading pathogens. Inflammasome is a multi-protein cytosolic signaling complex that induces inflammation and is critical for inflammation-induced pyroptotic cell death. Inflammasome activation has been found associated with neurodegenerative disorders (NDs), inflammatory diseases, and cancer. Autophagy is a crucial intracellular quality control and homeostasis process which removes the dysfunctional organelles, damaged proteins, and pathogens by sequestering the cytosolic components in a double-membrane vesicle, which eventually fuses with lysosome resulting in cargo degradation. Autophagy disruption has been observed in many NDs presented with persistent neuroinflammation and excessive inflammasome activation. An interplay between inflammation activation and the autophagy process has been realized over the last decade. In the case of NDs, autophagy regulates neuroinflammation load and cellular damage either by engulfing the misfolded protein deposits, dysfunctional mitochondria, or the inflammasome complex itself. A healthy two-way regulation between both cellular processes has been realized for cell survival and cell defense during inflammatory conditions. Therefore, clinical interest in the modulation of inflammasome activation by autophagy inducers is rapidly growing. In this review, we discuss the structural basis of inflammasome activation and the mechanistic ideas of the autophagy process in NDs. Along with comments on multiple ways of neuroinflammation regulation by microglial autophagy, we also present a perspective on pharmacological opportunities in this molecular interplay pertaining to NDs.
Collapse
Affiliation(s)
- Chinmaya Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
43
|
Forouzanfar F, Vakilzadeh MM, Mehri A, Pourbagher-Shahri AM, Ganjali S, Abbasifard M, Sahebkar A. Anti-arthritic and Antioxidant Effects of Trehalose in an Experimental Model of Arthritis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2023; 17:145-151. [PMID: 37622696 DOI: 10.2174/2772270817666230825093141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND The purpose of the present study was to study the potential anti-arthritic and antioxidant effects of trehalose in an experimental model of complete Freund's adjuvant (CFA)-induced arthritis. METHODS Arthritis was induced via subcutaneous injection of CFA (0.1) into the right footpad of each rat. Trehalose (10 mg/kg per day) and indomethacin (5 mg/kg) as a reference drug were intraperitoneally injected into CFA-induced arthritic rats from days 0 to 21. Changes in paw volume, pain responses, arthritic score, and oxidative/antioxidative parameters were determined. RESULTS Trehalose administration could significantly decrease arthritis scores (p <0.01) and paw edema (p <0.001), and significantly increase the nociceptive threshold (p <0.05) in CFA-induced arthritic rats. Trehalose also significantly reduced the pro-oxidant-antioxidant balance values when compared to CFA treatment alone. In addition, no significant difference was found between the trehalose group and indomethacin as a positive control group. CONCLUSION The current study suggests that trehalose has a protective effect against arthritis, which may be mediated by antioxidative effects of this disaccharide.
Collapse
Affiliation(s)
- Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ali Mehri
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Shiva Ganjali
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, Australia
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
44
|
Gholami D, Sharafi M, Esmaeili V, Nadri T, Alaei L, Riazi G, Shahverdi A. Beneficial effects of trehalose and gentiobiose on human sperm cryopreservation. PLoS One 2023; 18:e0271210. [PMID: 37053285 PMCID: PMC10101468 DOI: 10.1371/journal.pone.0271210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 06/25/2022] [Indexed: 04/15/2023] Open
Abstract
The protection of human sperm during cryopreservation is of great importance to infertility. Recent studies have shown that this area is still a long way from its ultimate aim of maintaining the maximum viability of sperm in cryopreservation. The present study used trehalose and gentiobiose to prepare the human sperm freezing medium during the freezing-thawing. The freezing medium of sperm was prepared with these sugars, and the sperm were then cryopreserved. The viable cells, sperm motility parameters, sperm morphology, membrane integrity, apoptosis, acrosome integrity, DNA fragmentation, mitochondrial membrane potential, reactive oxygen radicals, and malondialdehyde concentration was evaluated using standard protocols. A higher percentage of the total and progressive motility, rate of viable sperm, cell membrane integrity, DNA and acrosome integrity, and mitochondrial membrane potential were observed in the two frozen treatment groups compared to the frozen control. The cells had less abnormal morphology due to treatment with the new freezing medium than the frozen control. The higher malondialdehyde and DNA fragmentation were significantly observed in the two frozen treatment groups than in the frozen control. According to the results of this study, the use of trehalose and gentiobiose in the sperm freezing medium is a suitable strategy for sperm freezing to improve its motion and cellular parameters.
Collapse
Affiliation(s)
- Dariush Gholami
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Vahid Esmaeili
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| | - Touba Nadri
- Department of Animal Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Loghman Alaei
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology at Reproduction Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACER, Tehran, Iran
| |
Collapse
|
45
|
Potential Properties of Natural Nutraceuticals and Antioxidants in Age-Related Eye Disorders. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010077. [PMID: 36676026 PMCID: PMC9863869 DOI: 10.3390/life13010077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Eye health is crucial, and the onset of diseases can reduce vision and affect the quality of life of patients. The main causes of progressive and irreversible vision loss include various pathologies, such as cataracts, ocular atrophy, corneal opacity, age-related macular degeneration, uncorrected refractive error, posterior capsular opacification, uveitis, glaucoma, diabetic retinopathy, retinal detachment, undetermined disease and other disorders involving oxidative stress and inflammation. The eyes are constantly exposed to the external environment and, for this reason, must be protected from damage from the outside. Many drugs, including cortisonics and antinflammatory drugs have widely been used to counteract eye disorders. However, recent advances have been obtained via supplementation with natural antioxidants and nutraceuticals for patients. In particular, evidence has accumulated that polyphenols (mostly deriving from Citrus Bergamia) represent a reliable source of antioxidants able to counteract oxidative stress accompanying early stages of eye diseases. Luteolin in particular has been found to protect photoreceptors, thereby improving vision in many disease states. Moreover, a consistent anti-inflammatory response was found to occur when curcumin is used alone or in combination with other nutraceuticals. Additionally, Coenzyme Q10 has been demonstrated to produce a consistent effect in reducing ocular pressure, thereby leading to protection in patients undergoing glaucoma. Finally, both grape seed extract, rich in anthocyanosides, and polynsatured fatty acids seem to contribute to the prevention of retinal disorders. Thus, a combination of nutraceuticals and antioxidants may represent the right solution for a multi-action activity in eye protection, in association with current drug therapies, and this will be of potential interest in early stages of eye disorders.
Collapse
|
46
|
Cano GH, Dean J, Abreu SP, Rodríguez AH, Abbasi C, Hinson M, Lucke-Wold B. Key Characteristics and Development of Psychoceuticals: A Review. Int J Mol Sci 2022; 23:15777. [PMID: 36555419 PMCID: PMC9779201 DOI: 10.3390/ijms232415777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Psychoceuticals have brought benefits to the pharmacotherapeutic management of central nervous system (CNS) illnesses since the 19th century. However, these drugs have potential side effects or lack high response rates. This review covers twenty drugs' biochemical mechanisms, benefits, risks, and clinical trial reports. For this study, medications from seven psychoceutical organizations were reviewed and evaluated. Nineteen drugs were chosen from the organizations, and one was selected from the literature. The databases used for the search were Pubmed, Google Scholar, and NIH clinical trials. In addition, information from the organizations' websites and other sources, such as news reports, were also used. From the list of drugs, the most common targets were serotonergic, opioid, and N-methyl-D-aspartate (NMDA) receptors. These drugs have shown promise in psychiatric illnesses such as substance abuse, post-traumatic stress disorder (PTSD), anxiety, depression, and neurological conditions, such as Parkinson's disease, traumatic brain injury, and neuroinflammation. Some of these drugs, however, are still early in development, so their therapeutic significance cannot be determined. These twenty drugs have promising benefits, but their clinical usage and efficacy must still be explored.
Collapse
Affiliation(s)
- Genaro Herrera Cano
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Jordan Dean
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Samuel Padilla Abreu
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | | | - Cyrena Abbasi
- University of Connecticut School of Medicine, 263 Farmington Ave, Farmington, CT 06030, USA
| | - Madison Hinson
- Wake Forest University School of Medicine, 475 Vine St, Winston-Salem, NC 27101, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| |
Collapse
|
47
|
Shim KH, Sharma N, An SSA. Prion therapeutics: Lessons from the past. Prion 2022; 16:265-294. [PMID: 36515657 PMCID: PMC9754114 DOI: 10.1080/19336896.2022.2153551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Prion diseases are a group of incurable zoonotic neurodegenerative diseases (NDDs) in humans and other animals caused by the prion proteins. The abnormal folding and aggregation of the soluble cellular prion proteins (PrPC) into scrapie isoform (PrPSc) in the Central nervous system (CNS) resulted in brain damage and other neurological symptoms. Different therapeutic approaches, including stalling PrPC to PrPSc conversion, increasing PrPSc removal, and PrPC stabilization, for which a spectrum of compounds, ranging from organic compounds to antibodies, have been explored. Additionally, a non-PrP targeted drug strategy using serpin inhibitors has been discussed. Despite numerous scaffolds being screened for anti-prion activity in vitro, only a few were effective in vivo and unfortunately, almost none of them proved effective in the clinical studies, most likely due to toxicity and lack of permeability. Recently, encouraging results from a prion-protein monoclonal antibody, PRN100, were presented in the first human trial on CJD patients, which gives a hope for better future for the discovery of other new molecules to treat prion diseases. In this comprehensive review, we have re-visited the history and discussed various classes of anti-prion agents, their structure, mode of action, and toxicity. Understanding pathogenesis would be vital for developing future treatments for prion diseases. Based on the outcomes of existing therapies, new anti-prion agents could be identified/synthesized/designed with reduced toxicity and increased bioavailability, which could probably be effective in treating prion diseases.
Collapse
Affiliation(s)
- Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Niti Sharma
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon University, Seongnam, South Korea
| |
Collapse
|
48
|
Wallen ZD, Demirkan A, Twa G, Cohen G, Dean MN, Standaert DG, Sampson TR, Payami H. Metagenomics of Parkinson's disease implicates the gut microbiome in multiple disease mechanisms. Nat Commun 2022; 13:6958. [PMID: 36376318 PMCID: PMC9663292 DOI: 10.1038/s41467-022-34667-x] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) may start in the gut and spread to the brain. To investigate the role of gut microbiome, we conducted a large-scale study, at high taxonomic resolution, using uniform standardized methods from start to end. We enrolled 490 PD and 234 control individuals, conducted deep shotgun sequencing of fecal DNA, followed by metagenome-wide association studies requiring significance by two methods (ANCOM-BC and MaAsLin2) to declare disease association, network analysis to identify polymicrobial clusters, and functional profiling. Here we show that over 30% of species, genes and pathways tested have altered abundances in PD, depicting a widespread dysbiosis. PD-associated species form polymicrobial clusters that grow or shrink together, and some compete. PD microbiome is disease permissive, evidenced by overabundance of pathogens and immunogenic components, dysregulated neuroactive signaling, preponderance of molecules that induce alpha-synuclein pathology, and over-production of toxicants; with the reduction in anti-inflammatory and neuroprotective factors limiting the capacity to recover. We validate, in human PD, findings that were observed in experimental models; reconcile and resolve human PD microbiome literature; and provide a broad foundation with a wealth of concrete testable hypotheses to discern the role of the gut microbiome in PD.
Collapse
Affiliation(s)
- Zachary D. Wallen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Ayse Demirkan
- grid.5475.30000 0004 0407 4824Surrey Institute for People-Centred AI, University of Surrey, Guildford, Surrey GU2 7XH UK
| | - Guy Twa
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Gwendolyn Cohen
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| | - Marissa N. Dean
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - David G. Standaert
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Timothy R. Sampson
- grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA ,grid.189967.80000 0001 0941 6502Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Haydeh Payami
- grid.265892.20000000106344187Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233 USA ,grid.513948.20000 0005 0380 6410Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815 USA
| |
Collapse
|
49
|
Rai M, Demontis F. Muscle-to-Brain Signaling Via Myokines and Myometabolites. Brain Plast 2022; 8:43-63. [PMID: 36448045 PMCID: PMC9661353 DOI: 10.3233/bpl-210133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle health and function are important determinants of systemic metabolic homeostasis and organism-wide responses, including disease outcome. While it is well known that exercise protects the central nervous system (CNS) from aging and disease, only recently this has been found to depend on the endocrine capacity of skeletal muscle. Here, we review muscle-secreted growth factors and cytokines (myokines), metabolites (myometabolites), and other unconventional signals (e.g. bioactive lipid species, enzymes, and exosomes) that mediate muscle-brain and muscle-retina communication and neuroprotection in response to exercise and associated processes, such as the muscle unfolded protein response and metabolic stress. In addition to impacting proteostasis, neurogenesis, and cognitive functions, muscle-brain signaling influences complex brain-dependent behaviors, such as depression, sleeping patterns, and biosynthesis of neurotransmitters. Moreover, myokine signaling adapts feeding behavior to meet the energy demands of skeletal muscle. Contrary to protective myokines induced by exercise and associated signaling pathways, inactivity and muscle wasting may derange myokine expression and secretion and in turn compromise CNS function. We propose that tailoring muscle-to-CNS signaling by modulating myokines and myometabolites may combat age-related neurodegeneration and brain diseases that are influenced by systemic signals.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
50
|
Wu G, Lv Y, Chu Y, Zhang X, Ding Z, Xie J. Evaluation of Preservation (−23 to 4 °C) for Cuttlefish Through Functional Ice Glazing During Storage and Cold Chain Logistics. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|