1
|
Chen Y, Xu R, Meng F. Biodegradable polylactic acid plastic can aid to achieve partial nitrification/denitrification for low carbon to nitrogen ratio wastewater treatment: Performance and microbial mechanism. BIORESOURCE TECHNOLOGY 2025; 427:132411. [PMID: 40118223 DOI: 10.1016/j.biortech.2025.132411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
The partial nitrification/denitrification (PND) process is a green biotechnology for nitrogen removal in low carbon to nitrogen ratio wastewater, however, inhibiting nitrite-oxidizing bacteria (NOB) remains a challenge. This study uncovered that polylactic acid (PLA) can eliminate NOB and regulate the structure and function of nitrogen-transforming bacteria (NTB). An anoxic/aerobic membrane bioreactor with PLA achieved a total nitrogen removal efficiency of 64.8%, much higher than the 32.4% without PLA. Nitrite accumulation during nitrification stage reached 66.7% with PLA addition. Ammonia-oxidizing bacteria were transiently inhibited by PLA but recovered quickly. NOB were maintained at low levels due to the absence of genes for protein and DNA repair, while denitrifiers lacking NarGHI/NapAB genes were enriched. OLB8, with a relative abundance of 13.7%, played a central role in regulating NTB interaction and facilitating PND. In summary, this study provided a new strategy for improving nitrogen removal from wastewater through the reuse of PLA plastics.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Ronghua Xu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University), Guangzhou 510275, PR China.
| |
Collapse
|
2
|
García-Giménez JL, Cánovas-Cervera I, Nacher-Sendra E, Dolz-Andrés E, Sánchez-Bernabéu Á, Agúndez AB, Hernández-Gil J, Mena-Mollá S, Pallardó FV. Oxidative stress and central metabolism pathways impact epigenetic modulation in inflammation and immune response. Free Radic Biol Med 2025; 233:378-399. [PMID: 40185167 DOI: 10.1016/j.freeradbiomed.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Oxidative stress, metabolism, and epigenetics are deeply interconnected processes that collectively influence cellular function, health status, and contribute to disease progression. This review highlights the critical role of metabolic intermediates in epigenetic regulation, focusing on lactate, glutathione (GSH), and S-adenosylmethionine (SAM). Beyond its traditional role in energy metabolism, lactate modulates epigenetic mechanisms, influencing gene expression and cellular adaptation. Meanwhile, GSH and SAM serve as key regulators of DNA methylation and histone post-translational modifications, maintaining epigenetic homeostasis. These processes are tightly controlled by redox balance and oxidative stress, underscoring the intricate interplay between metabolism and epigenetic regulation. GSH depletion disrupts methylation homeostasis, while oxidative post-translational modifications (oxPTMs) on histones-including S-glutathionylation, carbonylation, and nitrosylation-alter chromatin architecture and transcriptional regulation. Additionally, we focus on histone lactylation, particularly its role in regulating innate and adaptive immune responses. We also explore how GSH and oxidative stress influence lactate levels, potentially inducing histone lactylation or S-glutathionylation through S,D-lactoylglutathione (LGSH), thereby impacting epigenetic regulation. By integrating insights into metabolic-epigenetic crosstalk, this review underscores the role of oxidative stress and central metabolic pathways in regulating epigenetic mechanisms, a concept known as "redox epigenetics." Understanding these intricate interactions offers new perspectives for therapeutic strategies aimed at restoring redox homeostasis and metabolic integrity to counteract disturbances in the epigenetic landscape.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Irene Cánovas-Cervera
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Elena Nacher-Sendra
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enric Dolz-Andrés
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Álvaro Sánchez-Bernabéu
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Ana Belén Agúndez
- EpiDisease S.L. Parc Científic de la Universitat de València, Paterna, 46980, Valencia, Spain
| | - Javier Hernández-Gil
- INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Salvador Mena-Mollá
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain
| | - Federico V Pallardó
- Faculty of Medicine and Dentistry, Department of Physiology, University of Valencia, Av/Blasco Ibañez, 15. Valencia, 46010, Spain; INCLIVA Biomedical Research Institute. Av/Menéndez Pelayo. 4acc. Valencia, 46010, Spain; CIBERER, The Centre for Biomedical Network Research on Rare Diseases, ISCIII, C. de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
3
|
Feng J, Zhu L, He C, Xiang R, Liu J, Cai J, Wang D. Lactate induces oxidative stress by HIF1α stabilization and circadian clock disturbance in mammary gland of dairy cows. J Anim Sci Biotechnol 2025; 16:62. [PMID: 40307878 PMCID: PMC12044779 DOI: 10.1186/s40104-025-01181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/16/2025] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Lactate is a classical byproduct of glucose metabolism, and the main lactate production pathway depends on glycolysis. Lactate stabilized HIF1α by inhibiting PHD activity, leading to hypoxic stress response and exacerbating glycolysis in multiple tissues. However, the redox induction mechanism of lactate in mammary gland has not been understood yet. Herein, we describe a lactate-responsive HIF1α/circadian control mechanism in oxidative stress in the mammary glands of dairy cows. RESULTS The in vivo study showed that dairy cows with high lactate concentrations are associated with reduced milk yield and more ROS accumulation in mammary gland. Western blot results in MAC-T cells showed positive correlation between lactate concentrations, expression of HIF1α and oxidative stress indicators, but not circadian core components. To test how lactate-mediated HIF1α dysfunction leads to cell protection process, we investigated altered expression of circadian core related genes following HIF1α stabilization. We found that stabilized HIF1α by lactate inhibited stimulated expression of circadian core components due to the similarity of HRE and E-box transcription elements. Furthermore, we found that lactate treatment strengthened the binding of HIF1α with BMAL1, HMOX1 and FOXO3 in MAC-T cells. Moreover, HIF1α knockdown altered expression of circadian rhythm related genes and reduced oxidative stress state. CONCLUSION In summary, our study highlights the central role of competitive transcriptional element occupancy in lactate-mediated oxidative stress of mammary gland, which is caused by HIF1α stabilization and circadian rhythm dysfunction. Our findings introduce a novel nutritional strategy with potential applications in dairy farming for optimizing milk production and maintaining mammary gland health.
Collapse
Affiliation(s)
- Juan Feng
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Lei Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Ruidong Xiang
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, VIC, 3052, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3052, Australia
| | - Jianxin Liu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Jie Cai
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| | - Diming Wang
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
4
|
Zhao Q, Hao D, Wang S, Chen S, Zhou C, Fan C, Su Q, Huang W, Liu J, Kong Q, Wu Y, He Z. Exposure to high altitude leads to disturbances in host metabolic homeostasis: study of the effects of hypoxia-reoxygenation and the associations between the microbiome and metabolome. mSystems 2025:e0134724. [PMID: 40237534 DOI: 10.1128/msystems.01347-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/16/2025] [Indexed: 04/18/2025] Open
Abstract
This study investigated alterations in hematological parameters, gut microbiota composition, and fecal and plasma metabolic profiles among high-altitude residents during reoxygenation periods of 1 week, 1 month, and 4 months to elucidate the effects of reoxygenation on human physiology and metabolism. Exposure to high altitudes alters intestinal flora, plasma and fecal metabolites, disrupting their metabolic balance. Distinct differences in amino acid, lipid, energy, immune, cofactor, and vitamin metabolism pathways were detected between high- and low-altitude populations, with a partial recovery of disparities during reoxygenation. Although the gut microbiota exhibited limited adaptive homeostasis to altitude variations, the abundance of microbial taxa and the expression levels of fecal metabolites during the initial reoxygenation phase, particularly during the first week, were sensitive to the reoxygenated environment. Through 16S rRNA gene sequencing and bioinformatics analysis, operational taxonomic units (OTUs) were annotated at the genus level, revealing that the genera Barnesiella, Parabacteroides, and Megasphaera, along with plasma L-arginine, S1P, and alpha-D-glucose, emerged as potential biomarkers for the first week of reoxygenation among high-altitude populations. Notably, a marked change in oxidative stress levels and an increase in antioxidant capacity were observed in high-altitude residents during early reoxygenation. Tyrosine metabolism, which is jointly regulated by the plasma and fecal metabolites and gut microbiota, plays an important role under high-altitude conditions during initial reoxygenation. Additionally, the plasma metabolites pyridoxine and hypoxanthine and the Rothia genus correlated significantly with high-altitude deacclimatization syndrome scores during the first week of reoxygenation.IMPORTANCEOur research focuses on the prompt activation of tyrosine metabolism in plasma following reoxygenation, along with the regulatory mechanisms employed by the intestinal microbiota and the metabolism of feces to modulate this metabolic process. Notably, in the initial stages of reoxygenation, specific microbial genera such as Barnesiella, Parabacteroides, and Megasphaera, alongside plasma biomarkers including L-arginine, S1P, and alpha-D-glucose, emerge as pivotal players. Additionally, our findings reveal a distinct hematological profile characterized by a decrease in the MCHC and increases in the MCV and RDW-SD during the first week of reoxygenation, and this temporal window marked a crucial juncture in the plasma metabolome. Whereas the first month of reoxygenation signified a pivotal phase in the gut microbiome's adaptation to altered environmental conditions, as evidenced by alterations in alpha diversity.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Biobank, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Doudou Hao
- Department of Biobank, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Siyu Wang
- Department of Biobank, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Siyuan Chen
- Department of Biobank, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Chaohua Zhou
- Department of Biobank, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Chen Fan
- Department of Science Education, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Qian Su
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenting Huang
- Stomatology, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Jiaxin Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Yunhong Wu
- Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| | - Zeng He
- Department of Biobank, Hospital of Chengdu Office of People's Government of Xizang Autonomous Region (Hospital.C.X.), Chengdu, Sichuan, China
| |
Collapse
|
5
|
Zhang W, Meng Z, Yu P, Wang L, Liu W, Song X, Yao Y, Liu X, Meng X. Metabolomics-based analysis of nitric oxide regulation of ginseng herb quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2800-2810. [PMID: 39659278 DOI: 10.1002/jsfa.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Ginsenosides, the primary active ingredients in Panax ginseng, are secondary metabolites. However, their content varies significantly across batches due to differences in environmental conditions and production methods. Ecological stress can increase the levels of reactive oxygen species (ROS) in plants, and ROS can enhance secondary metabolism. Nitric oxide (NO) can promote the production of O2 ·- and H2O2. This study utilized physiological and non-targeted metabolomics to investigate how NO regulates ginseng quality and how P. ginseng adapts to adversity. RESULTS Sodium nitroprusside (SNP, an NO donor) at 0.5 mmol·L-1 significantly increased ROS levels, with O2 ·- increasing by 64.3% (P < 0.01) and H2O2 by 79.2% (P < 0.01). Nitric oxide influenced P. ginseng metabolism, with 24 metabolites showing significant differences. Rotenone, lactic acid, and gluconic acid, which are involved in ROS metabolism, increased significantly, whereas tyrosine decreased. Metabolites involved in secondary metabolic pathways, including campesterol, ginsenosides Rh1, Rb1, Rc, Rd, Rg3, phenylalanine, and tryptophan, increased markedly, whereas 2,3-oxidosqualene, glucose 1-phosphate, ferulic acid, and pyrogallol decreased. Isocitric acid, succinic acid, and 3-isopropylmalic acid, associated with respiratory metabolism, showed significant increases, but pyruvic acid decreased. Finally, 18:0 Lyso PC and 9-hydroxy-10E,12Z-octadecadienoic acid, linked to cell membrane protection, increased significantly, and mannose and raffinose decreased. CONCLUSION Sodium nitroprusside enhances the physiological resilience of P. ginseng under stress and improves its quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhaoping Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengcheng Yu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liyang Wang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenfei Liu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowen Song
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Yao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Sun C, Li J, Dong L, Mou Y, Zhang B, Song X. Lactylation: A Novel Epigenetic Regulator of Cellular Senescence. Aging Dis 2025:AD.2025.0277. [PMID: 40153584 DOI: 10.14336/ad.2025.0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/23/2025] [Indexed: 03/30/2025] Open
Abstract
Cellular senescence is the basic unit of organismal aging, a complicated biological process involving several cell types and tissues. It is also an important mechanism by which the body responds to damage and potential carcinogenesis. However, excessive or abnormal cellular senescence can lead to tissue functional degradation and the occurrence of diseases. In recent years, the role of epigenetic modifications in cellular senescence has received extensive attention. Lactylation, a novel post-translational modification derived from lactate, has recently gained significant attention as a key factor in cellular metabolism and epigenetic regulation, gradually demonstrating its importance in the regulation of cellular senescence. This review emphasizes the bidirectional causal relationship between lactylation and cellular senescence, highlighting its potential as a therapeutic target for aging-related diseases.
Collapse
Affiliation(s)
- Caiyu Sun
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Jiaxuan Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Lei Dong
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
7
|
Wu L, Yang J, Chen Y, Lin J, Huang W, Li M. Association of circulating metabolic biomarkers with risk of lung cancer: a population-based prospective cohort study. BMC Med 2025; 23:176. [PMID: 40140895 PMCID: PMC11948749 DOI: 10.1186/s12916-025-03993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND There is emerging evidence that metabolites might be associated with risk of lung cancer, but their relationships have not been fully characterized. We aimed to investigate the association between circulating metabolic biomarkers and lung cancer risk and the potential underlying pathways. METHODS Nuclear magnetic resonance metabolomic profiling was conducted on baseline plasma samples from 91,472 UK Biobank participants without cancer and pregnancy. Multivariate Cox regression models were employed to assess the hazard ratios (HRs) of 164 metabolic biomarkers (including metabolites and lipoprotein subfractions) and 9 metabolic biomarker principal components (PCs) for lung cancer, after adjusting for covariates and false discovery rate (FDR). Pathway analysis was conducted to investigate the potential metabolic pathways. RESULTS During a median follow-up of 11.0 years, 702 participants developed lung cancer. A total of 109 metabolic biomarkers (30 metabolites and 79 lipoprotein subfractions) were associated with the risk of lung cancer. Glycoprotein acetyls demonstrated a positive association with lung cancer risk [HR = 1.13 (95%CI: 1.04, 1.22)]. Negative associations with lung cancer were found for albumin [0.78 (95%CI: 0.72, 0.83)], acetate [0.91 (95%CI: 0.85, 0.97)], valine [0.90 (95%CI: 0.83, 0.98)], alanine [0.88 (95%CI: 0.82, 0.95)], glucose [0.91 (95%CI: 0.85, 0.99)], citrate [0.91 (95%CI: 0.85, 0.99)], omega-3 fatty acids [0.83 (95%CI: 0.77, 0.90)], linoleic acid [0.83 (95%CI: 0.77, 0.89)], etc. Nine PCs represented over 90% of the total variances, and among those with statistically significant estimates, PC1 [0.85 (95%CI: 0.80, 0.92)], PC2 [0.88 (95%CI: 0.82, 0.95)], and PC9 [0.87 (95%CI: 0.80, 0.93)] were negatively associated with lung cancer risk, whereas PC7 [1.08 (95%CI: 1.00, 1.16)] and PC8 [1.16 (95%CI: 1.08, 1.26)] showed positive associations with lung cancer risk. The pathway analysis showed that the "linoleic acid metabolism" was statistically significant after the FDR adjustment (p value 0.0496). CONCLUSIONS Glycoprotein acetyls had a positive association with lung cancer risk while other metabolites and lipoprotein subfractions showed negative associations. Certain metabolites and lipoprotein subfractions might be independent risk factors for lung cancer. Our findings shed new light on the etiology of lung cancer and might aid the selection of high-risk individuals for lung cancer screening.
Collapse
Affiliation(s)
- Lan Wu
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yu Chen
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jiahao Lin
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wenkai Huang
- National Central Cancer Registry Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengmeng Li
- Department of Cancer Prevention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
8
|
Altan Z, Johnson R. Targeting Wnt signalling through LINC02418: insights from CRISPR screens. Gut 2025; 74:513-515. [PMID: 39978931 DOI: 10.1136/gutjnl-2024-334266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Affiliation(s)
- Zekiye Altan
- School of Biology and Environmental Science, University College Dublin, Dublin, Leinster, Ireland
- School of Medicine, University College Dublin, Dublin, Leinster, Ireland
| | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Leinster, Ireland
- University College Dublin Conway Institute of Biomolecular and Biomedical Research, Dublin, Leinster, Ireland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Medical Oncology, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Mouli K, Liopo AV, McHugh EA, Underwood E, Zhao J, Dash PK, Vo ATT, Malojirao VH, Hegde ML, Tour JM, Derry PJ, Kent TA. Oxidized Carbon Nanoparticles Enhance Cellular Energetics With Application to Injured Brain. Adv Healthc Mater 2025; 14:e2401629. [PMID: 39329414 PMCID: PMC11937864 DOI: 10.1002/adhm.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Pro-energetic effects of functionalized, oxidized carbon nanozymes (OCNs) are reported. OCNs, derived from harsh acid oxidation of single-wall carbon nanotubes or activated charcoal are previously shown to possess multiple nanozymatic activities including mimicking superoxide dismutase and catalyzing the oxidation of reduced nicotinamide adenine dinucleotide (NADH) to NAD+. These actions are predicted to generate a glycolytic shift and enhance mitochondrial energetics under impaired conditions. Impaired mitochondrial energy metabolism is increasingly recognized as an important facet of traumatic brain injury (TBI) pathophysiology and decreases the efficiency of electron transport chain (ETC)-coupled adenosine triphosphate (ATP) and NAD+ regeneration. In vitro, OCNs promote a pro-aerobic shift in energy metabolism that persists through ETC inhibition and enhances glycolytic flux, glycolytic ATP production, and cellular generation of lactate, a crucial auxiliary substrate for energy metabolism. To address specific mechanisms of iron injury from hemorrhage, OCNs with the iron chelator, deferoxamine (DEF), covalently-linked were synthesized. DEF-linked OCNs induce a glycolytic shift in-vitro and in-vivo in tissue sections from a rat model of TBI complicated by hemorrhagic contusion. OCNs further reduced hemorrhage volumes 3 days following TBI. These results suggest OCNs are promising as pleiotropic mediators of cell and tissue resilience to injury.
Collapse
Affiliation(s)
- Karthik Mouli
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
| | - Anton V. Liopo
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Emily A. McHugh
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
| | - Erica Underwood
- Department of Neurobiology and AnatomyThe University of TX McGovern Medical SchoolHoustonTX77030USA
| | - Jing Zhao
- Department of Neurobiology and AnatomyThe University of TX McGovern Medical SchoolHoustonTX77030USA
| | - Pramod K. Dash
- Department of Neurobiology and AnatomyThe University of TX McGovern Medical SchoolHoustonTX77030USA
| | - Anh T. T. Vo
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
| | - Vikas H. Malojirao
- Center for NeuroregenerationDepartment of NeurosurgeryDivision of DNA Repair ResearchHouston Methodist Research InstituteHoustonTX77030USA
| | - Muralidhar L. Hegde
- Center for NeuroregenerationDepartment of NeurosurgeryDivision of DNA Repair ResearchHouston Methodist Research InstituteHoustonTX77030USA
- Department of NeurosciencesWeill Cornell Medical CollegeNew YorkNYUSA
- EnMedSchool of Engineering MedicineTexas A&M UniversityHouston77030USA
| | - James M. Tour
- Department of ChemistryRice UniversityHoustonTX77005USA
- Smalley‐Curl InstituteRice UniversityHoustonTX77005USA
- Welch Institute for Advanced MaterialsRice UniversityHoustonTX77005USA
- The NanoCarbon CenterRice UniversityHoustonTX77005USA
| | - Paul J. Derry
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
- EnMedSchool of Engineering MedicineTexas A&M UniversityHouston77030USA
| | - Thomas A. Kent
- Center for Genomics and Precision MedicineDepartment of Translational MedicineInstitute of Biosciences and TechnologyTexas A&M Health Science CenterHoustonTX77030USA
- Department of ChemistryRice UniversityHoustonTX77005USA
- Stanley H. Appel Department of NeurologyHouston Methodist Hospital and Research InstituteHoustonTX77030USA
| |
Collapse
|
10
|
Politte H, Maram L, Elgendy B. Advances in the Development of Mitochondrial Pyruvate Carrier Inhibitors for Therapeutic Applications. Biomolecules 2025; 15:223. [PMID: 40001526 PMCID: PMC11852594 DOI: 10.3390/biom15020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is a transmembrane protein complex critical for cellular energy metabolism, enabling the transport of pyruvate from the cytosol into the mitochondria, where it fuels the citric acid cycle. By regulating this essential entry point of carbon into mitochondrial metabolism, MPC is pivotal for maintaining cellular energy balance and metabolic flexibility. Dysregulation of MPC activity has been implicated in several metabolic disorders, including type 2 diabetes, obesity, and cancer, underscoring its potential as a therapeutic target. This review provides an overview of the MPC complex, examining its structural components, regulatory mechanisms, and biological functions. We explore the current understanding of transcriptional, translational, and post-translational modifications that modulate MPC function and highlight the clinical relevance of MPC dysfunction in metabolic and neurodegenerative diseases. Progress in the development of MPC-targeting therapeutics is discussed, with a focus on challenges in designing selective and potent inhibitors. Emphasis is placed on modern approaches for identifying novel inhibitors, particularly virtual screening and computational strategies. This review establishes a foundation for further research into the medicinal chemistry of MPC inhibitors, promoting advances in structure-based drug design to develop therapeutics for metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Henry Politte
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Lingaiah Maram
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| | - Bahaa Elgendy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.P.); (L.M.)
- Center for Clinical Pharmacology, Washington University School of Medicine and University of Health Sciences and Pharmacy, St. Louis, MO 63110, USA
| |
Collapse
|
11
|
Sauvain JJ, Wild P, Charreau T, Jouannique V, Sakthithasan K, Debatisse A, Suárez G, Hopf NB, Guseva Canu I. Are metals in exhaled breath condensate and urine associated with oxidative/nitrosative stress and metabolism-related biomarkers? Results from 303 randomly selected Parisian subway workers. ENVIRONMENT INTERNATIONAL 2025; 196:109325. [PMID: 39952202 DOI: 10.1016/j.envint.2025.109325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Subway particles can cause oxidative stress, with metals being a key factor. Only few epidemiological studies have examined the role of metal mixtures in this effect for subway workers. OBJECTIVES This cross-sectional study examined the relationship between metal concentrations in exhaled breath condensate (EBC) and urine, and biomarkers of oxidative/nitrosative stress and metabolism in subway workers. METHODS The study involved 303 randomly selected Parisian metro workers exposed to various levels of subway particles. Metals in EBC and urine were measured using ICP-MS, and biomarkers were analyzed through liquid chromatography-mass spectrometry. Factor analysis as dimension reduction strategy and cluster analysis to account for metal mixtures and multiple multi-media effect biomarkers was used along with multivariable linear regression analysis on factor variables adjusted for potential confounders. RESULTS Significant positive associations were observed between urinary metals and oxidative stress biomarkers, despite similar metal levels in workers and the general population. Metals in EBC were linked to nitrosative stress and other metabolites in EBC. Worker occupation correlated with small chain fatty acids in EBC and urinary levels of barium and titanium. Smoking was associated with effect biomarkers but not with exposure biomarkers. CONCLUSIONS Elevated metal levels in EBC and urine are associated with altered bronchopulmonary metabolites and increased systemic oxidative stress. While Ba and Ti may originate from brake wear, other metals identified in EBC and urine are not clearly related with subway particles and may be from non-occupational sources. Smoking showed a stronger relationship with the workers' oxidative stress status than occupation.
Collapse
Affiliation(s)
- J J Sauvain
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - P Wild
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - T Charreau
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - V Jouannique
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - K Sakthithasan
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - A Debatisse
- Service Santé-Travail, Régie autonome des transports parisiens (RATP), 88 Boulevard Sébastopol, 75003 Paris, France.
| | - G Suárez
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - N B Hopf
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| | - I Guseva Canu
- Department of Occupational and Environmental Health, Unisanté, Center for Primary Care and Public Health & University of Lausanne, Route de la Corniche 2, 1066 Epalinges, Switzerland.
| |
Collapse
|
12
|
Blom SE, Behan-Bush RM, Ankrum JA, Yang L, Stephens SB. Proinflammatory cytokines mediate pancreatic β-cell specific alterations to Golgi morphology via iNOS-dependent mitochondrial inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635550. [PMID: 39975379 PMCID: PMC11838340 DOI: 10.1101/2025.01.29.635550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Type 1 diabetes (T1D) is caused by the selective autoimmune ablation of pancreatic β-cells. Emerging evidence reveals β-cell secretory dysfunction arises early in T1D development and may contribute to diseases etiology; however, the underlying mechanisms are not well understood. Our data reveal that proinflammatory cytokines elicit a complex change in the β-cell's Golgi structure and function. The structural modifications include Golgi compaction and loss of the inter-connecting ribbon resulting in Golgi fragmentation. Our data demonstrate that iNOS generated nitric oxide (NO) is necessary and sufficient for β-cell Golgi re-structuring. Moreover, the unique sensitivity of the β-cell to NO-dependent mitochondrial inhibition results in β-cell specific Golgi alterations that are absent in other cell types, including α-cells. Collectively, our studies provide critical clues as to how β-cell secretory functions are specifically impacted by cytokines and NO that may contribute to the development of β-cell autoantigens relevant to T1D.
Collapse
|
13
|
Zhang Y, Zhang S, Yang L, Zhang Y, Cheng Y, Jia P, Lv Y, Wang K, Fan P, Zhang P, Wei H. Lactate modulates microglial inflammatory responses through HIF-1α-mediated CCL7 signaling after cerebral ischemia in mice. Int Immunopharmacol 2025; 146:113801. [PMID: 39675197 DOI: 10.1016/j.intimp.2024.113801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Lactate is a potent regulator of neuroinflammation. We recently demonstrated that lactate alleviated neuronal injury via HIF-1α-regulated microglial inflammation after oxygen-glucose deprivation (OGD). However, the underlying mechanisms and the effect of lactate on microglial responses after ischemic stroke remained unknown. Mouse acute cerebral ischemia-reperfusion injury was induced by middle cerebral artery occlusion (MCAO). L-lactate (100 mM, 2 μl) was intracerebroventricularly administrated 30 min after the reperfusion. Microglia responses were evidenced by the expression of multiple markers such as CD86, iNOS, arginase-1, CD206 and Ym1 in the peri-infarction 24 h after MCAO using western blot analysis and quantitative real-time PCR. Inflammatory factors IL-6, TNF-α, TGF-β and IL-10, as well as NF-κB signaling were also detected. Infarct size and neuronal apoptosis in the peri-infarction at 24 h, mice survival within 7 days and long-term neurobehavioral function were evaluated. The involvement of HIF-1α in lactate-mediated microglial inflammation after MCAO was assessed using a HIF-1α inhibitor. Additionally, transcriptome analysis was used to identify the potential lactate targets in BV2 cells after OGD. The recombinant product of the identified CCL7 gene was used to verify its effect on cerebral ischemia-reperfusion injury in vivo. Lactate supplementation reduced infarction volume, neuronal apoptosis and neurological deficits. Lactate reduced the expression of CD86, iNOS, IL-6, TNF-α and elevated the expression of arginase-1, CD206, Ym1, TGF-β and IL-10 in the peri-infarction at 24 h after reperfusion. Consistently, lactate inhibited the NF-κB signaling. Additionally, lactate upregulated HIF-1α in microglia 24 h after reperfusion, while inhibition of HIF-1α reversed the effects of lactate on brain damage and neuroinflammation after cerebral ischemia. Furthermore, CCL7 was identified as the top down-regulated inflammatory gene induced by lactate in OGD-treated BV2 cells. It was also found high expression of CCL7 in the peri-infarction at 24 h after reperfusion and lactate treatment inhibited CCL7 expression. However, HIF-1α inhibitor reversed the effect of lactate treatment on CCL7 expression. Finally, supplementation of recombinant CCL7 reversed the mitigated neuroinflammation and neuroprotective effect rendered by lactate treatment after MCAO. We concluded that treatment with lactate modulated the microglia inflammatory responses and alleviated cerebral ischemia injury. The inhibition of CCL7/NF-κB signaling by HIF-1α might be involved in the beneficial effect of lactate treatment.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Shuyue Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Liufei Yang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, China
| | - Yan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yiqin Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pengyu Jia
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Yuying Lv
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Kui Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pei Fan
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Neurobiology Institute of Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Haidong Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China.
| |
Collapse
|
14
|
Storaci AM, Bertolini I, Martelli C, De Turris G, Mansour N, Crosti M, De Filippo MR, Ottobrini L, Valenti L, Polledri E, Fustinoni S, Caroli M, Fanizzi C, Bosari S, Ferrero S, Zadra G, Vaira V. V-ATPase in glioma stem cells: a novel metabolic vulnerability. J Exp Clin Cancer Res 2025; 44:17. [PMID: 39825382 PMCID: PMC11740391 DOI: 10.1186/s13046-025-03280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth. METHODS V-ATPase activity in GSC cultures was modulated using Bafilomycin A1 (BafA1) and cell viability and metabolic traits were analyzed using live assays. The GBM patients-derived orthotopic xenografts were used as in vivo models of disease. Cell extracts, proximity-ligation assay and advanced microscopy was used to analyze subcellular presence of proteins. A metabolomic screening was performed using Biocrates p180 kit, whereas transcriptomic analysis was performed using Nanostring panels. RESULTS Perturbation of V-ATPase activity reduces GSC growth in vitro and in vivo. In GSC there is a pool of V-ATPase that localize in mitochondria. At the functional level, V-ATPase inhibition in GSC induces ROS production, mitochondrial damage, while hindering mitochondrial oxidative phosphorylation and reducing protein synthesis. This metabolic rewiring is accompanied by a higher glycolytic rate and intracellular lactate accumulation, which is not exploited by GSCs for biosynthetic or survival purposes. CONCLUSIONS V-ATPase activity in GSC is critical for mitochondrial metabolism and cell growth. Targeting V-ATPase activity may be a novel potential vulnerability for glioblastoma treatment.
Collapse
Affiliation(s)
- Alessandra Maria Storaci
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Bertolini
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, USA
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgia De Turris
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale Di Genetica Molecolare "Romeo Ed Enrica Invernizzi", 20122, Milan, Italy
| | | | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Polledri
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Silvia Fustinoni
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Manuela Caroli
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Fanizzi
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvano Bosari
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council (CNR-IGM), 27100, Pavia, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
15
|
Kuang X, Chen S, Ye Q. The lactate metabolism and protein lactylation in epilepsy. Front Cell Neurosci 2025; 18:1464169. [PMID: 39876842 PMCID: PMC11772370 DOI: 10.3389/fncel.2024.1464169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025] Open
Abstract
Protein lactylation is a new form of post-translational modification that has recently been proposed. Lactoyl groups, derived mainly from the glycolytic product lactate, have been linked to protein lactylation in brain tissue, which has been shown to correlate with increased neuronal excitability. Ischemic stroke may promote neuronal glycolysis, leading to lactate accumulation in brain tissue. This accumulation of lactate accumulation may heighten neuronal excitability by upregulating protein lactylation levels, potentially triggering post-stroke epilepsy. Although current clinical treatments for seizures have advanced significantly, approximately 30% of patients with epilepsy remain unresponsive to medication, and the prevalence of epilepsy continues to rise. This study explores the mechanisms of epilepsy-associated neuronal death mediated by lactate metabolism and protein lactylation. This study also examines the potential for histone deacetylase inhibitors to alleviate seizures by modifying lactylation levels, thereby offering fresh perspectives for future research into the pathogenesis and clinical treatment of epilepsy.
Collapse
Affiliation(s)
- Xi Kuang
- Hainan Health Vocational College, Haikou, China
| | - Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingmei Ye
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Srivastav S, Biswas A, Anand A. Interplay of niche and respiratory network in shaping bacterial colonization. J Biol Chem 2025; 301:108052. [PMID: 39662826 PMCID: PMC11742581 DOI: 10.1016/j.jbc.2024.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/13/2024] Open
Abstract
The human body is an intricate ensemble of prokaryotic and eukaryotic cells, and this coexistence relies on the interplay of many biotic and abiotic factors. The inhabiting microbial population has to maintain its physiological homeostasis under highly dynamic and often hostile host environments. While bacterial colonization primarily relies on the metabolic suitability for the niche, there are reports of active remodeling of niche microenvironments to create favorable habitats, especially in the context of pathogenic settlement. Such physiological plasticity requires a robust metabolic system, often dependent on an adaptable energy metabolism. This review focuses on the respiratory electron transport system and its adaptive consequences within the host environment. We provide an overview of respiratory chain plasticity, which allows pathogenic bacteria to niche-specify, niche-diversify, mitigate inflammatory stress, and outcompete the resident microbiota. We have reviewed existing and emerging knowledge about the role of respiratory chain components responsible for the entry and exit of electrons in influencing the pathogenic outcomes.
Collapse
Affiliation(s)
- Stuti Srivastav
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Arpita Biswas
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Amitesh Anand
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India.
| |
Collapse
|
17
|
Kim J, Jo Y, Lim G, Ji Y, Roh JH, Kim WG, Yi HS, Choi DW, Cho D, Ryu D. A microbiota-derived metabolite, 3-phenyllactic acid, prolongs healthspan by enhancing mitochondrial function and stress resilience via SKN-1/ATFS-1 in C. elegans. Nat Commun 2024; 15:10773. [PMID: 39737960 DOI: 10.1038/s41467-024-55015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans). To elucidate the underlying mechanisms, we conduct transcriptomic profiling through RNA-seq analysis in C. elegans exposed to GTB1, a strain of Lactiplantibacillus plantarum or 3-phenyllactic acid (PLA), mimicking the presence of key candidate metabolites of GTB1 and evaluating healthspan. Our findings reveal that PLA treatment significantly extends the healthspan of C. elegans by promoting energy metabolism and stress resilience in a SKN-1/ATFS-1-dependent manner. Moreover, PLA-mediated longevity is associated with a novel age-related parameter, the Healthy Aging Index (HAI), introduced in this study, which comprises healthspan-related factors such as motility, oxygen consumption rate (OCR), and ATP levels. Extending the relevance of our work to humans, we observe an inverse correlation between blood PLA levels and physical performance in patients with sarcopenia, when compared to age-matched non-sarcopenic controls. Our investigation thus sheds light on the pivotal role of the metabolite PLA in probiotics-mediated enhancement of organismal healthspan, and also hints at its potential involvement in age-associated sarcopenia. These findings warrant further investigation to delineate PLA's role in mitigating age-related declines in healthspan and resilience to external stressors.
Collapse
Affiliation(s)
- Juewon Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
- Department of Physiology, Konkuk University College of Medicine, Chungju, Republic of Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Gyumin Lim
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul, Seoul, Republic of Korea
| | - Yosep Ji
- HEM Pharma Inc., 407, Suwon, Republic of Korea
| | - Jong-Hwa Roh
- Amorepacific Research & Innovation Center, Yongin, Republic of Korea
| | - Wan-Gi Kim
- Amorepacific Research & Innovation Center, Yongin, Republic of Korea
| | - Hyon-Seung Yi
- Laboratory of Endocrinology and Immune System, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| | - Dong Wook Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul, Seoul, Republic of Korea.
| | - Donghyun Cho
- HEM Pharma Inc., 407, Suwon, Republic of Korea.
- Amorepacific Research & Innovation Center, Yongin, Republic of Korea.
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.
| |
Collapse
|
18
|
Lanzetti L. Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer. Cell Death Differ 2024; 31:1582-1594. [PMID: 39438765 PMCID: PMC11618380 DOI: 10.1038/s41418-024-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
By the time a tumor reaches clinical detectability, it contains around 108-109 cells. However, during tumor formation, significant cell loss occurs due to cell death. In some estimates, it could take up to a thousand cell generations, over a ~ 20-year life-span of a tumor, to reach clinical detectability, which would correspond to a "theoretical" generation of ~1030 cells. These rough calculations indicate that cancers are under negative selection. The fact that they thrive implies that they "evolve", and that their evolutionary trajectories are shaped by the pressure of the environment. Evolvability of a cancer is a function of its heterogeneity, which could be at the genetic, epigenetic, and ecological/microenvironmental levels [1]. These principles were summarized in a proposed classification in which Evo (evolutionary) and Eco (ecological) indexes are used to label cancers [1]. The Evo index addresses cancer cell-autonomous heterogeneity (genetic/epigenetic). The Eco index describes the ecological landscape (non-cell-autonomous) in terms of hazards to cancer survival and resources available. The reciprocal influence of Evo and Eco components is critical, as it can trigger self-sustaining loops that shape cancer evolvability [2]. Among the various hallmarks of cancer [3], metabolic alterations appear unique in that they intersect with both Evo and Eco components. This is partly because altered metabolism leads to the accumulation of oncometabolites. These oncometabolites have traditionally been viewed as mediators of non-cell-autonomous alterations in the cancer microenvironment. However, they are now increasingly recognized as inducers of genetic and epigenetic modifications. Thus, oncometabolites are uniquely positioned at the crossroads of genetic, epigenetic and ecological alterations in cancer. In this review, the mechanisms of action of oncometabolites will be summarized, together with their roles in the Evo and Eco phenotypic components of cancer evolvability. An evolutionary perspective of the impact of oncometabolites on the natural history of cancer will be presented.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Department of Oncology, University of Turin Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Str. Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy.
| |
Collapse
|
19
|
Chen S, Chen W, Wang X, Liu S. Mendelian randomization analyses support causal relationships between gut microbiome and longevity. J Transl Med 2024; 22:1032. [PMID: 39548551 PMCID: PMC11568586 DOI: 10.1186/s12967-024-05823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Gut microbiome plays a significant role in longevity, and dysbiosis is indeed one of the hallmarks of aging. However, the causal relationship between gut microbiota and human longevity or aging remains elusive. METHODS Our study assessed the causal relationships between gut microbiome and longevity using Mendelian Randomization (MR). Summary statistics for the gut microbiome were obtained from four genome-wide association study (GWAS) meta-analysis of the MiBioGen consortium (N = 18,340), Dutch Microbiome Project (N = 7738), German individuals (N = 8956), and Finland individuals (N = 5959). Summary statistics for Longevity were obtained from Five GWAS meta-analysis, including Human healthspan (N = 300,447), Longevity (N = 36,745), Lifespans (N = 1,012,240), Parental longevity (N = 389,166), and Frailty (one of the primary aging-linked physiological hallmarks, N = 175,226). RESULTS Our findings reveal several noteworthy associations, including a negative correlation between Bacteroides massiliensis and longevity, whereas the genus Subdoligranulum and Alistipes, as well as species Alistipes senegalensis and Alistipes shahii, exhibited positive associations with specific longevity traits. Moreover, the microbial pathway of coenzyme A biosynthesis I, pyruvate fermentation to acetate and lactate II, and pentose phosphate pathway exhibited positive associations with two or more traits linked to longevity. Conversely, the TCA cycle VIII (helicobacter) pathway consistently demonstrated a negative correlation with lifespan and parental longevity. CONCLUSIONS Our findings of this MR study indicated many significant associations between gut microbiome and longevity. These microbial taxa and pathways may potentially play a protective role in promoting longevity or have a suppressive effect on lifespan.
Collapse
Affiliation(s)
- Shu Chen
- Department of Pathology, The Seven Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Chen
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xudong Wang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Sheng Liu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
20
|
Huang K, Yi X, Xie H, Luo J, Zeng Q, He F, Wang L. Iron-Based Nanoplatforms Achieve Hepatocellular Carcinoma Regression Through a Cascade of Effects. Int J Nanomedicine 2024; 19:11105-11128. [PMID: 39502633 PMCID: PMC11537158 DOI: 10.2147/ijn.s479425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
Purpose Ferroptosis is a regulated form of cell death characterized by iron-dependent accumulation of associated lipid peroxides (LPO), which can induce cell death when a certain level is reached. However, the extremely complex tumor microenvironment (TME) has the characteristics of antioxidant, even if it induces ferroptosis of tumor cells, its killing effect on tumor cells is still very limited. To solve this problem, we constructed a novel nanomaterials (GOx/EC@Fe3O4@CCM). We evaluated the anticancer effect of this nanomaterial in inhibiting tumor growth through comprehensive in vitro and in vivo experiments. Methods We successfully synthesized GOx/EC@Fe3O4 by one-pan synthesis method, then coated the Hepatocellular carcinoma cell membrane on its surface by co-extrusion technology, and finally synthesized the GOx/EC@Fe3O4@CCM nanoplatforms. We characterized the compounds in terms of morphology, particle size, and Zeta potential. In addition, we also studied the anti-tumor effect of GOx/EC@Fe3O4@CCM nanoplatforms from the following aspects, including the performance test of the nanoplatform, the intracellular effect of the nanoplatform, the anti-tumor effect in vitro, the intracellular ROS analysis, the intracellular effect of EC, and the anti-tumor effect in vivo. Results The iron-based carriers in GOx/EC@Fe3O4@CCM nanoplatforms are released and produce ferrous ions (Fe2+) in an acidic environment. Due to the limitation of the endogenous level of hydrogen peroxide (H2O2), we introduced GOx into the TME or tumor cells. Under the catalysis of GOx, glucose reacted rapidly to produce a large amount of H2O2, which then combined with Fe2+ to produce a large number of Hydroxyl radical (·OH). Its toxicity leads to dysfunction of cell membrane and organelles, and then causes cell damage. EC inhibits Nuclear factor erythroid 2-related factor 2 (Nrf2) in cancer cells, which effectively down-regulates downstream gene products, including NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase 1 (HMOX1). A series of chain reactions reduce the escape effect of oxidative stress (OS) and effectively maintain a high level of intracellular oxidation. Furthermore, it induces sustained and intense ferroptosis in tumor cells. Finally, the use of cancer cell membrane modified nanoplatforms due to the homology of membrane protein components improves the tumor cell targeting of the nanoplatforms, showing significant tumor cell inhibition and killing effect in vivo. Conclusion The results showed that the GOx/EC@Fe3O4@CCM nanoplatforms successfully induced significant ferroptosis of Hepatocellular carcinoma cells through a cascade effect, and finally effectively promoted cancer cell regression.
Collapse
Affiliation(s)
- Kunzhao Huang
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Xiaoyuan Yi
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Huaying Xie
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Jianzhang Luo
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Qingyu Zeng
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Feifei He
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| | - Liyan Wang
- Digestive Department, The Affiliated Hospital of Guilin Medical College, Guilin, 541001, People’s Republic of China
| |
Collapse
|
21
|
Yang ZJ, Zhang WF, Jin QQ, Wu ZR, Du YY, Shi H, Qu ZS, Han XJ, Jiang LP. Lactate Contributes to Remote Ischemic Preconditioning-Mediated Protection Against Myocardial Ischemia Reperfusion Injury by Facilitating Autophagy via the AMP-Activated Protein Kinase-Mammalian Target of Rapamycin-Transcription Factor EB-Connexin 43 Axis. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1857-1878. [PMID: 39069170 DOI: 10.1016/j.ajpath.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Remote ischemic preconditioning (RIPC) exerts a protective role on myocardial ischemia/reperfusion (I/R) injury by the release of various humoral factors. Lactate is a common metabolite in ischemic tissues. Nevertheless, little is known about the role lactate plays in myocardial I/R injury and its underlying mechanism. This investigation revealed that RIPC elevated the level of lactate in blood and myocardium. Furthermore, AZD3965, a selective monocarboxylate transporter 1 inhibitor, and 2-deoxy-d-glucose, a glycolysis inhibitor, mitigated the effects of RIPC-induced elevated lactate in the myocardium and prevented RIPC against myocardial I/R injury. In an in vitro hypoxia/reoxygenation model, lactate markedly mitigated hypoxia/reoxygenation-induced cell damage in H9c2 cells. Further studies suggested that lactate contributed to RIPC, rescuing I/R-induced autophagy deficiency by promoting transcription factor EB (TFEB) translocation to the nucleus through activating the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway without influencing the phosphatidylinositol 3-kinase-Akt pathway, thus reducing cardiomyocyte damage. Interestingly, lactate up-regulated the mRNA and protein expression of connexin 43 (CX43) by facilitating the binding of TFEB to CX43 promoter in the myocardium. Functionally, silencing of TFEB attenuated the protective effect of lactate on cell damage, which was reversed by overexpression of CX43. Further mechanistic studies suggested that lactate facilitated CX43-regulated autophagy via the AMPK-mTOR-TFEB signaling pathway. Collectively, this research demonstrates that RIPC protects against myocardial I/R injury through lactate-mediated myocardial autophagy via the AMPK-mTOR-TFEB-CX43 axis.
Collapse
Affiliation(s)
- Zhang-Jian Yang
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Pharmacy, 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wei-Fang Zhang
- Department of Pharmacy, 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing-Qing Jin
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhi-Rong Wu
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yun-Yan Du
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hao Shi
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhen-Sheng Qu
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China.
| | - Li-Ping Jiang
- Jiangxi Provincial Key Laboratory of Drug Targets and Drug Screening, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
22
|
Zhang H, Zhang M, Zhang H, Shen X, Lv W, Wang X, Zhang J, Guo X. Bioaccumulation, transformation and toxicity of imidacloprid and dinotefuran in Eisenia fetida under single and binary exposure scenarios. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104570. [PMID: 39368615 DOI: 10.1016/j.etap.2024.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Earthworms (Eisenia fetida) were exposed to individual and binary mixture of imidacloprid (IMI) and dinotefuran (DIN) at 0.05 and 0.5 mg/kg for 28 days to investigate their bioaccumulation, transformation and toxicity. IMI was more easily absorbed by earthworms than DIN, and worms didn't accumulate or generate toxic metabolites. The obvious accumulation of neonicotinoids during later period caused significant neural dysfunction, especially when exposed to high-concentration IMI. Meanwhile, oxidative stress indicated by decreased SOD/CAT activity (33.2 %-68.1 %) and increased MDA (38.4 %-55.0 %) was induced by binary exposure with high-concentration IMI. By contrast, coelomocytes responded earlier and more strongly than oxidative responses. Coelomocytes' viability and mitochondrial membrane potential were inhibited (23.6 %-91.7 %) mainly by IMI and binary exposure. Coelomocytes' lactate dehydrogenase activity exerted a fluctuating pattern, suggesting irregular disturbance on cellular functions. This study highlights the role of coelomocytes and the need to consider binary/multiple scenarios and transformation of neonicotinoids in their risk assessment to earthworms.
Collapse
Affiliation(s)
- Haiyun Zhang
- Shanghai Academy of Agricultural Sciences, Agricultural Environment and Farmland Conservation Experiment Station, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Meng Zhang
- Co‑Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Hanlin Zhang
- Shanghai Academy of Agricultural Sciences, Agricultural Environment and Farmland Conservation Experiment Station, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xiaofang Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Weiguang Lv
- Shanghai Academy of Agricultural Sciences, Agricultural Environment and Farmland Conservation Experiment Station, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Juanqin Zhang
- Shanghai Academy of Agricultural Sciences, Agricultural Environment and Farmland Conservation Experiment Station, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China.
| | - Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
23
|
Lan Z, Lv S, Ge Z, Zhao B, Li L, Li C. Lactic acid regulates lipid droplet aggregation through a microglia-neuron axis in neuroinflammation. J Lipid Res 2024; 65:100629. [PMID: 39182605 PMCID: PMC11437955 DOI: 10.1016/j.jlr.2024.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Neuroinflammation, marked by the release of proinflammatory cytokines and resulting neuronal death, is a multifaceted process extending beyond traditional inflammatory pathways. Microglia, primary cells in the inflammatory response, rapidly activate during neuroinflammation and produce proinflammatory and cytotoxic factors that affect neuronal function. Recent evidence highlights the significant role of abnormal lipid droplet (LD) deposition in the pathogenesis of neuroinflammation. While microglia are known to influence LD aggregation during neuroinflammation, the regulatory mechanism within neurons is not well understood. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia. Our study demonstrates that lipopolysaccharide-activated microglia induce the accumulation of LD in neurons, identifying microglial-derived lactic acid as a key mediator in this process. Excessive lipid accumulation threatens neuronal function, a phenomenon reversed by eliminating microglia.
Collapse
Affiliation(s)
- Zhuoqing Lan
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Shukai Lv
- Department of General Medicine, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Ziyi Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bing Zhao
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Leilei Li
- Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Caixia Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Badial K, Lacayo P, Murakami S. Biology of Healthy Aging: Biological Hallmarks of Stress Resistance Related and Unrelated to Longevity in Humans. Int J Mol Sci 2024; 25:10493. [PMID: 39408822 PMCID: PMC11477412 DOI: 10.3390/ijms251910493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Stress resistance is highly associated with longer and healthier lifespans in various model organisms, including nematodes, fruit flies, and mice. However, we lack a complete understanding of stress resistance in humans; therefore, we investigated how stress resistance and longevity are interlinked in humans. Using more than 180 databases, we identified 541 human genes associated with stress resistance. The curated gene set is highly enriched with genes involved in the cellular response to stress. The Reactome analysis identified 398 biological pathways, narrowed down to 172 pathways using a medium threshold (p-value < 1 × 10-4). We further summarized these pathways into 14 pathway categories, e.g., cellular response to stimuli/stress, DNA repair, gene expression, and immune system. There were overlapping categories between stress resistance and longevity, including gene expression, signal transduction, immune system, and cellular responses to stimuli/stress. The categories include the PIP3-AKT-FOXO and mTOR pathways, known to specify lifespans in the model systems. They also include the accelerated aging syndrome genes (WRN and HGPS/LMNA), while the genes were also involved in non-overlapped categories. Notably, nuclear pore proteins are enriched among the stress-resistance pathways and overlap with diverse metabolic pathways. This study fills the knowledge gap in humans, suggesting that stress resistance is closely linked to longevity pathways but not entirely identical. While most longevity categories intersect with stress-resistance categories, some do not, particularly those related to cell proliferation and beta-cell development. We also note inconsistencies in pathway terminologies with aging hallmarks reported previously, and propose them to be more unified and integral.
Collapse
Affiliation(s)
| | | | - Shin Murakami
- Department of Foundational Biomedical Sciences, College of Osteopathic Medicine, Touro University California, Vallejo, CA 94592, USA
| |
Collapse
|
25
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
26
|
Mosqueda-Martínez E, Chiquete-Félix N, Castañeda-Tamez P, Ricardez-García C, Gutiérrez-Aguilar M, Uribe-Carvajal S, Mendez-Romero O. In Rhodotorula mucilaginosa, active oxidative metabolism increases carotenoids to inactivate excess reactive oxygen species. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1378590. [PMID: 39309729 PMCID: PMC11412819 DOI: 10.3389/ffunb.2024.1378590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Carotenoids produced by bacteria, yeasts, algae and plants inactivate Free Radicals (FR). However, FR may inactivate carotenoids and even turn them into free radicals. Oxidative metabolism is a source of the highly motile Reactive Oxygen Species (ROS). To evaluate carotenoid interactions with ROS, the yeast Rhodotorula mucilaginosa was grown in dextrose (YPD), a fermentative substrate where low rates of oxygen consumption and low carotenoid expression were observed, or in lactate (YPLac), a mitochondrial oxidative-phosphorylation (OxPhos) substrate, which supports high respiratory activity and carotenoid production. ROS were high in YPLac-grown cells and these were unmasked by the carotenoid production-inhibitor diphenylamine (DPA). In contrast, in YPD-grown cells ROS were almost absent. It is proposed that YPLac cells are under oxidative stress. In addition, YPLac-grown cells were more sensitive than YPD-grown cells to menadione (MD), a FR-releasing agent. To test whether carotenoids from cells grown in YPLac had been modified by ROS, carotenoids from each, YPD- and YPLac-grown cells were isolated and added back to cells, evaluating protection from MD. Remarkably, carotenoids extracted from cells grown in YPLac medium inhibited growth, while in contrast extracts from YPD-grown cells were innocuous or mildly protective. Results suggest that carotenoid-synthesis in YPLac-cells is a response to OxPhos-produced ROS. However, upon reacting with FR, carotenoids themselves may be inactivated or even become prooxidant themselves.
Collapse
Affiliation(s)
- Edson Mosqueda-Martínez
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Natalia Chiquete-Félix
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paulina Castañeda-Tamez
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carolina Ricardez-García
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Manuel Gutiérrez-Aguilar
- Department of Biochemistry, Facultad de Química, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Salvador Uribe-Carvajal
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofelia Mendez-Romero
- Department of Genetics and Molecular Biology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
27
|
Zhang X, Lei Y, Zhou H, Liu H, Xu P. The Role of PKM2 in Multiple Signaling Pathways Related to Neurological Diseases. Mol Neurobiol 2024; 61:5002-5026. [PMID: 38157121 DOI: 10.1007/s12035-023-03901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Pyruvate kinase M2 (PKM2) is a key rate-limiting enzyme in glycolysis. It is well known that PKM2 plays a vital role in the proliferation of tumor cells. However, PKM2 can also exert its biological functions by mediating multiple signaling pathways in neurological diseases, such as Alzheimer's disease (AD), cognitive dysfunction, ischemic stroke, post-stroke depression, cerebral small-vessel disease, hypoxic-ischemic encephalopathy, traumatic brain injury, spinal cord injury, Parkinson's disease (PD), epilepsy, neuropathic pain, and autoimmune diseases. In these diseases, PKM2 can exert various biological functions, including regulation of glycolysis, inflammatory responses, apoptosis, proliferation of cells, oxidative stress, mitochondrial dysfunction, or pathological autoimmune responses. Moreover, the complexity of PKM2's biological characteristics determines the diversity of its biological functions. However, the role of PKM2 is not entirely the same in different diseases or cells, which is related to its oligomerization, subcellular localization, and post-translational modifications. This article will focus on the biological characteristics of PKM2, the regulation of PKM2 expression, and the biological role of PKM2 in neurological diseases. With this review, we hope to have a better understanding of the molecular mechanisms of PKM2, which may help researchers develop therapeutic strategies in clinic.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yihui Lei
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hongyan Zhou
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
28
|
Gomez-Pinilla F, Thapak P. Exercise epigenetics is fueled by cell bioenergetics: Supporting role on brain plasticity and cognition. Free Radic Biol Med 2024; 220:43-55. [PMID: 38677488 PMCID: PMC11144461 DOI: 10.1016/j.freeradbiomed.2024.04.237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Exercise has the unique aptitude to benefit overall health of body and brain. Evidence indicates that the effects of exercise can be saved in the epigenome for considerable time to elevate the threshold for various diseases. The action of exercise on epigenetic regulation seems central to building an "epigenetic memory" to influence long-term brain function and behavior. As an intrinsic bioenergetic process, exercise engages the function of the mitochondria and redox pathways to impinge upon molecular mechanisms that regulate synaptic plasticity and learning and memory. We discuss how the action of exercise uses mechanisms of bioenergetics to support a "epigenetic memory" with long-term implications for neural and behavioral plasticity. This information is crucial for directing the power of exercise to reduce the burden of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Fernando Gomez-Pinilla
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavan Thapak
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Wang Z, Gao J, Xu C. Targeting metabolism to influence cellular senescence a promising anti-cancer therapeutic strategy. Biomed Pharmacother 2024; 177:116962. [PMID: 38936195 DOI: 10.1016/j.biopha.2024.116962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/29/2024] Open
Abstract
Metabolic disorders are considered the hallmarks of cancer and metabolic reprogramming is emerging as a new strategy for cancer treatment. Exogenous and endogenous stressors can induce cellular senescence; the interactions between cellular senescence and systemic metabolism are dynamic. Cellular senescence disrupts metabolic homeostasis in various tissues, which further promotes senescence, creating a vicious cycle facilitating tumor occurrence, recurrence, and altered outcomes of anticancer treatments. Therefore, the regulation of cellular senescence and related secretory phenotypes is considered a breakthrough in cancer therapy; moreover, proteins involved in the associated pathways are prospective therapeutic targets. Although studies on the association between cellular senescence and tumors have emerged in recent years, further elucidation of this complex correlation is required for comprehensive knowledge. In this paper, we review the research progress on the correlation between cell aging and metabolism, focusing on the strategies of targeting metabolism to modulate cellular senescence and the progress of relevant research in the context of anti-tumor therapy. Finally, we discuss the significance of improving the specificity and safety of anti-senescence drugs, which is a potential challenge in cancer therapy.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China
| | - Jianwen Gao
- College of Health Management, Shanghai Jian Qiao University, Shanghai 201306, China.
| | - Congjian Xu
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai 200011, China; Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai 200032, China.
| |
Collapse
|
30
|
Kulbay M, Wu KY, Nirwal GK, Bélanger P, Tran SD. The Role of Reactive Oxygen Species in Age-Related Macular Degeneration: A Comprehensive Review of Antioxidant Therapies. Biomedicines 2024; 12:1579. [PMID: 39062152 PMCID: PMC11274723 DOI: 10.3390/biomedicines12071579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
This review article delves into the intricate roles of reactive oxygen species (ROS) in the pathogenesis of age-related macular degeneration (AMD). It presents a detailed analysis of the oxidative stress mechanisms that contribute to the development and progression of these diseases. The review systematically explores the dual nature of ROS in ocular physiology and pathology, underscoring their essential roles in cellular signaling and detrimental effects when in excess. In the context of AMD, the focus is on the oxidative impairment in the retinal pigment epithelium and Bruch's membrane, culminating in the deterioration of macular health. Central to this review is the evaluation of various antioxidant strategies in the prevention and management of AMD. It encompasses a wide spectrum of antioxidants, ranging from dietary nutrients like vitamins C and E, lutein, and zeaxanthin to pharmacological agents with antioxidative properties. The review also addresses novel therapeutic approaches, including gene therapy and nanotechnology-based delivery systems, aiming to enhance antioxidant defense mechanisms in ocular tissues. The article concludes by synthesizing current research findings, clinical trial data, and meta-analyses to provide evidence-based recommendations. It underscores the need for further research to optimize antioxidant therapies, considering individual patient factors and disease stages. This comprehensive review thus serves as a valuable resource for clinicians, researchers, and healthcare professionals in ophthalmology, offering insights into the potential of antioxidants in mitigating the burden of AMD.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montréal, QC H4A 3S5, Canada;
| | - Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (K.Y.W.)
| | - Gurleen K. Nirwal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Bélanger
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
31
|
Emanuele S, Giuliano M. Riding the Wave of Ambivalence in Cell Biology. Int J Mol Sci 2024; 25:7348. [PMID: 39000455 PMCID: PMC11242416 DOI: 10.3390/ijms25137348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Increasing evidence clearly shows that most functional molecules in the cell exert a dual role depending on the specific interactive context, biochemical pathway, or subcellular localization [...].
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
32
|
Chen J, Zhang C, Yang Z, Wu W, Zou W, Xin Z, Zheng S, Liu R, Yang L, Peng H. Intestinal microbiota imbalance resulted by anti-Toxoplasma gondii immune responses aggravate gut and brain injury. Parasit Vectors 2024; 17:284. [PMID: 38956725 PMCID: PMC11221008 DOI: 10.1186/s13071-024-06349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Toxoplasma gondii infection affects a significant portion of the global population, leading to severe toxoplasmosis and, in immunocompromised patients, even death. During T. gondii infection, disruption of gut microbiota further exacerbates the damage to intestinal and brain barriers. Therefore, identifying imbalanced probiotics during infection and restoring their equilibrium can regulate the balance of gut microbiota metabolites, thereby alleviating tissue damage. METHODS Vimentin gene knockout (vim-/-) mice were employed as an immunocompromised model to evaluate the influence of host immune responses on gut microbiota balance during T. gondii infection. Behavioral experiments were performed to assess changes in cognitive levels and depressive tendencies between chronically infected vim-/- and wild-type (WT) mice. Fecal samples were subjected to 16S ribosomal RNA (rRNA) sequencing, and serum metabolites were analyzed to identify potential gut probiotics and their metabolites for the treatment of T. gondii infection. RESULTS Compared to the immunocompetent WT sv129 mice, the immunocompromised mice exhibited lower levels of neuronal apoptosis and fewer neurobehavioral abnormalities during chronic infection. 16S rRNA sequencing revealed a significant decrease in the abundance of probiotics, including several species of Lactobacillus, in WT mice. Restoring this balance through the administration of Lactobacillus murinus and Lactobacillus gasseri significantly suppressed the T. gondii burden in the intestine, liver, and brain. Moreover, transplantation of these two Lactobacillus spp. significantly improved intestinal barrier damage and alleviated inflammation and neuronal apoptosis in the central nervous system. Metabolite detection studies revealed that the levels of various Lactobacillus-related metabolites, including indole-3-lactic acid (ILA) in serum, decreased significantly after T. gondii infection. We confirmed that L. gasseri secreted much more ILA than L. murinus. Notably, ILA can activate the aromatic hydrocarbon receptor signaling pathway in intestinal epithelial cells, promoting the activation of CD8+ T cells and the secretion of interferon-gamma. CONCLUSION Our study revealed that host immune responses against T. gondii infection severely disrupted the balance of gut microbiota, resulting in intestinal and brain damage. Lactobacillus spp. play a crucial role in immune regulation, and the metabolite ILA is a promising therapeutic compound for efficient and safe treatment of T. gondii infection.
Collapse
Affiliation(s)
- Jiating Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Chi Zhang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zihan Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weiling Wu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Zixuan Xin
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Shuyu Zheng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Runchun Liu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Lili Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Diseases Research, School of Public Health, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Southern Medical University, 1023-1063 South Shatai Rd, Guangzhou, 510515, Guangdong, People's Republic of China.
| |
Collapse
|
33
|
Chen Z, Wei Z, Shen S, Luo D. Development of a Nomogram Model Based on Lactate-To-Albumin Ratio for Prognostic Prediction in Hospitalized Patients with Intracerebral Hemorrhage. World Neurosurg 2024; 187:e1025-e1039. [PMID: 38750888 DOI: 10.1016/j.wneu.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/08/2024] [Indexed: 07/07/2024]
Abstract
OBJECTIVE This study aims to develop a nomogram model incorporating lactate-to-albumin ratio (LAR) to predict the prognosis of hospitalized patients with intracerebral hemorrhage (ICH) and demonstrate its excellent predictive performance. METHODS A total of 226 patients with ICH from the Medical information mart for intensive care III (MIMIC Ⅲ) database were randomly split into 8:2 ratio training and experimental groups, and 38 patients from the eICU-CRD for external validation. Univariate and multivariate Cox proportional hazards regression analysis was performed to identify independent factors associated with ICH, and multivariate Cox regression was used to construct nomograms for 7-day and 14-day overall survival (OS). The performance of nomogram was verified by the calibration curves, decision curves, and receiver operating characteristic (ROC) curves. RESULTS Our study identified LAR, glucose, mean blood pressure, sodium, and ethnicity as independent factors influencing in-hospital prognosis. The predictive performance of our nomogram model for predicting 7-day and 14 -day OS (AUCs: 0.845 and 0.830 respectively) are both superior to Oxford Acute Severity of Illness Score, Simplified acute physiology score II, and SIRS (AUCs: 0.617, 0.620 and 0.591 and AUCs: 0.709, 0.715 and 0.640, respectively) in internal validation, and also demonstrate favorable predictive performance in external validation (AUCs: 0.778 and 0.778 respectively). CONCLUSIONS LAR as a novel biomarker is closely associated with an increased risk of in-hospital mortality of patients with ICH. The nomogram model incorporating LAR along with glucose, mean blood pressure, sodium, and ethnicity demonstrate excellent predictive performance for predicting the prognosis of 7- and 14-day OS of hospitalized patients with ICH.
Collapse
Affiliation(s)
- Zi Chen
- School of Microelectronics and Data Science, Anhui University of Technology, Ma'anshan, Anhui, China; Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Ma'anshan, Anhui, China
| | - Zihao Wei
- School of Microelectronics and Data Science, Anhui University of Technology, Ma'anshan, Anhui, China; Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Ma'anshan, Anhui, China
| | - Siyuan Shen
- State Key Laboratory of Genetic Engineering, Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai, China
| | - Dongmei Luo
- School of Microelectronics and Data Science, Anhui University of Technology, Ma'anshan, Anhui, China; Anhui Provincial Joint Key Laboratory of Disciplines for Industrial Big Data Analysis and Intelligent Decision, Ma'anshan, Anhui, China.
| |
Collapse
|
34
|
Sarg NH, Zaher DM, Abu Jayab NN, Mostafa SH, Ismail HH, Omar HA. The interplay of p38 MAPK signaling and mitochondrial metabolism, a dynamic target in cancer and pathological contexts. Biochem Pharmacol 2024; 225:116307. [PMID: 38797269 DOI: 10.1016/j.bcp.2024.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Mitochondria play a crucial role in cellular metabolism and bioenergetics, orchestrating various cellular processes, including energy production, metabolism, adaptation to stress, and redox balance. Besides, mitochondria regulate cellular metabolic homeostasis through coordination with multiple signaling pathways. Importantly, the p38 mitogen-activated protein kinase (MAPK) signaling pathway is a key player in the intricate communication with mitochondria, influencing various functions. This review explores the multifaced interaction between the mitochondria and p38 MAPK signaling and the consequent impact on metabolic alterations. Overall, the p38 MAPK pathway governs the activities of key mitochondrial proteins, which are involved in mitochondrial biogenesis, oxidative phosphorylation, thermogenesis, and iron homeostasis. Additionally, p38 MAPK contributes to the regulation of mitochondrial responses to oxidative stress and apoptosis induced by cancer therapies or natural substances by coordinating with other pathways responsible for energy homeostasis. Therefore, dysregulation of these interconnected pathways can lead to various pathologies characterized by aberrant metabolism. Consequently, gaining a deeper understanding of the interaction between mitochondria and the p38 MAPK pathway and their implications presents exciting forecasts for novel therapeutic interventions in cancer and other disorders characterized by metabolic dysregulation.
Collapse
Affiliation(s)
- Nadin H Sarg
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dana M Zaher
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nour N Abu Jayab
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Salma H Mostafa
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hussein H Ismail
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hany A Omar
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.
| |
Collapse
|
35
|
Vera MJ, Ponce I, Almarza C, Ramirez G, Guajardo F, Dubois-Camacho K, Tobar N, Urra FA, Martinez J. CCL2 and Lactate from Chemotherapeutics-Treated Fibroblasts Drive Malignant Traits by Metabolic Rewiring in Low-Migrating Breast Cancer Cell Lines. Antioxidants (Basel) 2024; 13:801. [PMID: 39061870 PMCID: PMC11274190 DOI: 10.3390/antiox13070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
While cytostatic chemotherapy targeting DNA is known to induce genotoxicity, leading to cell cycle arrest and cytokine secretion, the impact of these drugs on fibroblast-epithelial cancer cell communication and metabolism remains understudied. Our research focused on human breast fibroblast RMF-621 exposed to nonlethal concentrations of cisplatin and doxorubicin, revealing reduced proliferation, diminished basal and maximal mitochondrial respirations, heightened mitochondrial ROS and lactate production, and elevated MCT4 protein levels. Interestingly, RMF-621 cells enhanced glucose uptake, promoting lactate export. Breast cancer cells MCF-7 exposed to conditioned media (CM) from drug-treated stromal RMF-621 cells increased MCT1 protein levels, lactate-driven mitochondrial respiration, and a significantly high mitochondrial spare capacity for lactate. These changes occurred alongside altered mitochondrial respiration, mitochondrial membrane potential, and superoxide levels. Furthermore, CM with doxorubicin and cisplatin increased migratory capacity in MCF-7 cells, which was inhibited by MCT1 (BAY-8002), glutamate dehydrogenase (EGCG), mitochondrial pyruvate carrier (UK5099), and complex I (rotenone) inhibitors. A similar behavior was observed in T47-D and ZR-75-1 breast cancer cells. This suggests that CM induces metabolic rewiring involving elevated lactate uptake to sustain mitochondrial bioenergetics during migration. Treatment with the mitochondrial-targeting antioxidant mitoTEMPO in RMF-621 and the addition of an anti-CCL2 antibody in the CM prevented the promigratory MCF-7 phenotype. Similar effects were observed in THP1 monocyte cells, where CM increased monocyte recruitment. We propose that nonlethal concentrations of DNA-damaging drugs induce changes in the cellular environment favoring a promalignant state dependent on mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Maria Jesus Vera
- Laboratory of Cellular Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
| | - Iván Ponce
- Laboratory of Cellular Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Cristopher Almarza
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Gonzalo Ramirez
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Francisco Guajardo
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Karen Dubois-Camacho
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Nicolás Tobar
- Laboratory of Cellular Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
| | - Félix A. Urra
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratory of Metabolic Plasticity and Bioenergetics, Program of Molecular and Clinical Pharmacology, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Av. Independencia 1027, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
- Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago 8320216, Chile
| | - Jorge Martinez
- Laboratory of Cellular Biology, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago 7830490, Chile
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
| |
Collapse
|
36
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
37
|
Mok DZ, Tng DJ, Yee JX, Chew VS, Tham CY, Ooi JS, Tan HC, Zhang SL, Lin LZ, Ng WC, Jeeva LL, Murugayee R, Goh KKK, Lim TP, Cui L, Cheung YB, Ong EZ, Chan KR, Ooi EE, Low JG. Electron transport chain capacity expands yellow fever vaccine immunogenicity. EMBO Mol Med 2024; 16:1310-1323. [PMID: 38745062 PMCID: PMC11178804 DOI: 10.1038/s44321-024-00065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/16/2024] Open
Abstract
Vaccination has successfully controlled several infectious diseases although better vaccines remain desirable. Host response to vaccination studies have identified correlates of vaccine immunogenicity that could be useful to guide development and selection of future vaccines. However, it remains unclear whether these findings represent mere statistical correlations or reflect functional associations with vaccine immunogenicity. Functional associations, rather than statistical correlates, would offer mechanistic insights into vaccine-induced adaptive immunity. Through a human experimental study to test the immunomodulatory properties of metformin, an anti-diabetic drug, we chanced upon a functional determinant of neutralizing antibodies. Although vaccine viremia is a known correlate of antibody response, we found that in healthy volunteers with no detectable or low yellow fever 17D viremia, metformin-treated volunteers elicited higher neutralizing antibody titers than placebo-treated volunteers. Transcriptional and metabolomic analyses collectively showed that a brief course of metformin, started 3 days prior to YF17D vaccination and stopped at 3 days after vaccination, expanded oxidative phosphorylation and protein translation capacities. These increased capacities directly correlated with YF17D neutralizing antibody titers, with reduced reactive oxygen species response compared to placebo-treated volunteers. Our findings thus demonstrate a functional association between cellular respiration and vaccine-induced humoral immunity and suggest potential approaches to enhancing vaccine immunogenicity.
Collapse
Affiliation(s)
- Darren Zl Mok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Danny Jh Tng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Jia Xin Yee
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Valerie Sy Chew
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Christine Yl Tham
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Justin Sg Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Hwee Cheng Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Summer L Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lowell Z Lin
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wy Ching Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lavanya Lakshmi Jeeva
- SingHealth Investigational Medicine Unit, Singapore General Hospital, Singapore, Singapore
| | - Ramya Murugayee
- SingHealth Investigational Medicine Unit, Singapore General Hospital, Singapore, Singapore
| | - Kelvin K-K Goh
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Tze-Peng Lim
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Liang Cui
- Singapore-MIT Alliance for Research and Technology, Antimicrobial Resistance Interdisciplinary Research Group, Campus for Research Excellence and Technological Enterprise, Singapore, Singapore
| | - Yin Bun Cheung
- Center for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore
- Center for Child, Adolescent and Maternal Health Research, Tampere University, Tampere, Finland
| | - Eugenia Z Ong
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.
- Department of Translational Clinical Research, Singapore General Hospital, Singapore, Singapore.
| | - Jenny G Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore.
- Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.
| |
Collapse
|
38
|
Zhou H, Cheng Y, Huang Q, Xiao J. Regulation of ferroptosis by nanotechnology for enhanced cancer immunotherapy. Expert Opin Drug Deliv 2024; 21:921-943. [PMID: 39014916 DOI: 10.1080/17425247.2024.2379937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION This review explores the innovative intersection of ferroptosis, a form of iron-dependent cell death, with cancer immunotherapy. Traditional cancer treatments face limitations in efficacy and specificity. Ferroptosis as a new paradigm in cancer biology, targets metabolic peculiarities of cancer cells and may potentially overcome such limitations, enhancing immunotherapy. AREA COVERED This review centers on the regulation of ferroptosis by nanotechnology to augment immunotherapy. It explores how nanoparticle-modulated ferroptotic cancer cells impact the TME and immune responses. The dual role of nanoparticles in modulating immune response through ferroptosis are also discussed. Additionally, it investigates how nanoparticles can be integrated with various immunotherapeutic strategies, to optimize ferroptosis induction and cancer treatment efficacy. The literature search was conducted using PubMed and Google Scholar, covering articles published up to March 2024. EXPERT OPINION The manuscript underscores the promising yet intricate landscape of ferroptosis in immunotherapy. It emphasizes the need for a nuanced understanding of ferroptosis' impact on immune cells and the TME to develop more effective cancer treatments, highlighting the potential of nanoparticles in enhancing the efficacy of ferroptosis and immunotherapy. It calls for deeper exploration into the molecular mechanisms and clinical potential of ferroptosis to fully harness its therapeutic benefits in immunotherapy.
Collapse
Affiliation(s)
- Haohan Zhou
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China
| | - Quan Huang
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| | - Jianru Xiao
- Department of Orthopedic Oncology, Changzheng Hospital, Naval Medical University, Shanghai, PR China
| |
Collapse
|
39
|
Runnebohm AM, Wijeratne HRS, Justice SAP, Wijeratne AB, Roy G, Singh N, Hergenrother P, Boothman DA, Motea EA, Mosley AL. IB-DNQ and Rucaparib dual treatment alters cell cycle regulation and DNA repair in triple negative breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594427. [PMID: 38798459 PMCID: PMC11118307 DOI: 10.1101/2024.05.15.594427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death. Methods To gain a better understanding of the mechanisms behind this synergistic effect, we used global proteomics, phosphoproteomics, and thermal proteome profiling to analyze changes in protein abundance, phosphorylation and protein thermal stability. Results Very few protein abundance changes resulted from single or dual agent treatment; however, protein phosphorylation and thermal stability were impacted. Histone H2AX was among several proteins identified to have increased phosphorylation when cells were treated with the combination of IB-DNQ and Rucaparib, validating that the drugs induced persistent DNA damage. Thermal proteome profiling revealed destabilization of H2AX following combination treatment, potentially a result of the increase in phosphorylation. Kinase substrate enrichment analysis predicted altered activity for kinases involved in DNA repair and cell cycle following dual agent treatment. Further biophysical analysis of these two processes revealed alterations in SWI/SNF complex association and tubulin / p53 interactions. Conclusions Our findings that the drugs target DNA repair and cell cycle regulation, canonical cancer treatment targets, in a way that is dependent on increased expression of a protein selectively found to be upregulated in cancers without impacting protein abundance illustrate that multi-omics methodologies are important to gain a deeper understanding of the mechanisms behind treatment induced cancer cell death.
Collapse
Affiliation(s)
- Avery M Runnebohm
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - H R Sagara Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Sarah A Peck Justice
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Department of Biology, Marian University, Indianapolis, IN
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Gitanjali Roy
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | | | - Paul Hergenrother
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL
| | - David A Boothman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Edward A Motea
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- IU Simon Comprehensive Cancer Center, Indianapolis, IN
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
40
|
Wang T, Chen M, Su Y, Zhang Y, Liu C, Lan M, Li L, Liu F, Li N, Yu Y, Xiong L, Wang K, Liu J, Xu Q, Hu Y, Jia Y, Cao Y, Pan J, Meng Q. Immunoglobulin Superfamily Containing Leucine-Rich Repeat (ISLR) Serves as a Redox Sensor That Modulates Antioxidant Capacity by Suppressing Pyruvate Kinase Isozyme M2 Activity. Cells 2024; 13:838. [PMID: 38786060 PMCID: PMC11119796 DOI: 10.3390/cells13100838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Qingyong Meng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Yuanmingyuan West Road No. 2, Haidian District, Beijing 100193, China; (T.W.); (M.C.); (Y.S.); (C.L.); (L.L.); (N.L.)
| |
Collapse
|
41
|
Bhattacharya S, Ristic N, Cohen AJ, Tsang D, Gwin M, Howell R, Young G, Jung E, Dela Cruz CS, Gautam S. A dual role for CRTH2 in acute lung injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.05.29.493897. [PMID: 35665001 PMCID: PMC9164436 DOI: 10.1101/2022.05.29.493897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition defined by rapid-onset respiratory failure following acute lung injury (ALI). The high mortality rate and rising incidence of ARDS due to COVID-19 make it an important research priority. Here we sought to investigate the role of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) in ARDS. CRTH2 is a G protein-coupled receptor best studied in the context of type 2 immunity, but it also exerts effects on neutrophilic inflammation. To evaluate its role in mouse models of ARDS, we first examined its expression pattern on murine neutrophils. We found it is expressed on neutrophils, but only after extravasation into the lung. Next, we showed that CRTH2 expression on extravasated lung neutrophils promotes cell survival, as genetic deletion of CRTH2 and pharmacologic inhibition of CRTH2 using fevipiprant both led to increased apoptosis in vitro. We then evaluated the role of CRTH2 in vivo using a murine model of LPS-induced ALI. In line with the pro-inflammatory effects of CRTH2 in vitro, we observed improvement of lung injury in CRTH2-deficient mice in terms of vascular leak, weight loss and survival after LPS administration. However, neutrophilic inflammation was elevated, not suppressed in the CRTH2 KO. This finding indicated a second mechanism offsetting the pro-survival effect of CRTH2 on neutrophils. Bulk RNAseq of lung tissue indicated impairments in type 2 immune signaling in the CRTH2 KO, and qPCR and ELISA confirmed downregulation of IL-4, which is known to suppress neutrophilic inflammation. Thus, CRTH2 may play a dual role in ALI, directly promoting neutrophil cell survival, but indirectly suppressing neutrophil effector function via IL-4.
Collapse
|
42
|
Zhao L, Wu L, Wang Z, Fan J, Li G. The lactate-to-albumin ratio relationship with all-cause mortality in cerebral infarction patients: analysis from the MIMIC-IV database. Front Neurol 2024; 15:1334097. [PMID: 38779217 PMCID: PMC11110838 DOI: 10.3389/fneur.2024.1334097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/18/2024] [Indexed: 05/25/2024] Open
Abstract
Objective To examine the association of lactate-to-albumin ratio (LAR) with 30-day and 90-day mortality in patients with cerebral infarction admitted to the intensive care unit (ICU). Methods In this retrospective observational study, 1,089 patients with cerebral infarction were recruited. The concentration of blood lactate and serum albumin on the first day of ICU admission were recorded. The relationship between LAR levels and mortality was evaluated through univariate and multivariate Cox regression analyses, four-knot multivariate restricted cubic spline regression, and Kaplan-Meier (KM) curves. Results The overall 30-day and 90-day mortality rates in the entire cohort were 27.3 and 35.8%, respectively. KM analysis revealed a significant relationship between high LAR index and the risk of all-cause mortality (log-rank p < 0.001). Furthermore, multivariate Cox proportional risk analysis showed that the LAR index independently predicted the risk of 30-day mortality (HR: 1.38, 95% CI 1.15-1.64, p = 0.004) and 90-day mortality (HR: 1.53, 95% CI 1.32-1.77, p < 0.001) in the study population. Furthermore, a higher LAR exceeding 0.53 was positively correlated with the risk of 30-day and 90-day mortalities. Subsequent subgroup analyses demonstrated that LAR could predict the primary outcome. Conclusion In summary, the LAR index is a reliable and independent predictor of increased mortality among critically ill patients suffering from cerebral infarction. Nonetheless, there is a need for additional comprehensive prospective studies to validate these findings.
Collapse
Affiliation(s)
- Lingyan Zhao
- Wuxi Hospital of Traditional Chinese Medicine, Wuxi, China
| | - Linna Wu
- Medicine Acupuncture and Moxibustion Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zekun Wang
- Medicine Acupuncture and Moxibustion Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Fan
- Medicine Acupuncture and Moxibustion Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiping Li
- Medicine Acupuncture and Moxibustion Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
43
|
Mérida S, Návea A, Desco C, Celda B, Pardo-Tendero M, Morales-Tatay JM, Bosch-Morell F. Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment. Antioxidants (Basel) 2024; 13:539. [PMID: 38790644 PMCID: PMC11117864 DOI: 10.3390/antiox13050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
Collapse
Affiliation(s)
- Salvador Mérida
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| | - Amparo Návea
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
| | - Carmen Desco
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
- FOM, Fundación de Oftalmología Médica de la Comunidad Valenciana, 46015 Valencia, Spain
| | - Bernardo Celda
- Physical Chemistry Department, University of Valencia, 46100 Valencia, Spain;
| | - Mercedes Pardo-Tendero
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| |
Collapse
|
44
|
Chatterjee S, Leach-Mehrwald M, Huang CK, Xiao K, Fuchs M, Otto M, Lu D, Dang V, Winkler T, Dunbar CE, Thum T, Bär C. Telomerase is essential for cardiac differentiation and sustained metabolism of human cardiomyocytes. Cell Mol Life Sci 2024; 81:196. [PMID: 38658440 PMCID: PMC11043037 DOI: 10.1007/s00018-024-05239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Telomeres as the protective ends of linear chromosomes, are synthesized by the enzyme telomerase (TERT). Critically short telomeres essentially contribute to aging-related diseases and are associated with a broad spectrum of disorders known as telomeropathies. In cardiomyocytes, telomere length is strongly correlated with cardiomyopathies but it remains ambiguous whether short telomeres are the cause or the result of the disease. In this study, we employed an inducible CRISPRi human induced pluripotent stem cell (hiPSC) line to silence TERT expression enabling the generation of hiPSCs and hiPSC-derived cardiomyocytes with long and short telomeres. Reduced telomerase activity and shorter telomere lengths of hiPSCs induced global transcriptomic changes associated with cardiac developmental pathways. Consequently, the differentiation potential towards cardiomyocytes was strongly impaired and single cell RNA sequencing revealed a shift towards a more smooth muscle cell like identity in the cells with the shortest telomeres. Poor cardiomyocyte function and increased sensitivity to stress directly correlated with the extent of telomere shortening. Collectively our data demonstrates a TERT dependent cardiomyogenic differentiation defect, highlighting the CRISPRi TERT hiPSCs model as a powerful platform to study the mechanisms and consequences of short telomeres in the heart and also in the context of telomeropathies.
Collapse
Affiliation(s)
- Shambhabi Chatterjee
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Megan Leach-Mehrwald
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Cheng-Kai Huang
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Ke Xiao
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Maximilian Fuchs
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Mandy Otto
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Vinh Dang
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Winkler
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.
- Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany.
| |
Collapse
|
45
|
Xiao Y, Wan J, Gao X, Wei Y, Fang J, Shen B. Versatile Fluorescence Lifetime-Based Copper Probe to Quantify Mitochondrial Membrane Potential and Reveal Its Interaction with Protein Aggregation. Anal Chem 2024; 96:6493-6500. [PMID: 38595323 DOI: 10.1021/acs.analchem.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mitochondria play a crucial role in maintaining cellular homeostasis, and the depolarization of mitochondrial membrane potential (MMP) is an important signal of apoptosis. Additionally, protein misfolding and aggregation are closely related to diseases including neurodegenerative diseases, diabetes, and cancers. However, the interaction between MMP changes and disease-related protein aggregation was rarely studied. Herein, we report a novel "turn-on" fluorescent probe MitoRhB that specifically targets to mitochondria for Cu2+ detection in situ. The fluorescence lifetime (τ) of MitoRhB exhibits a positive correlation with MMP changes, allowing us to quantitatively determine the relative MMP during SOD1 (A4 V) protein aggregation. Finally, we found that (1) the increasing concentrations of copper will accelerate the depolarization of mitochondria and reduce MMP; (2) the depolarization of mitochondria can intensify the degree of protein aggregation, suggesting a new routine of copper-induced cell death mediated through abnormal MMP depolarization and protein aggregation.
Collapse
Affiliation(s)
- Yu Xiao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jingyang Wan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiaochen Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yu Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jiabao Fang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
46
|
Yang Q, Han X, Ye M, Jiang T, Wang B, Zhang Z, Li F. Association of genetically predicted 486 blood metabolites on the risk of Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1372605. [PMID: 38681667 PMCID: PMC11047179 DOI: 10.3389/fnagi.2024.1372605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
Background Studies have reported that metabolic disturbance exhibits in patients with Alzheimer's disease (AD). Still, the presence of definitive evidence concerning the genetic effect of metabolites on AD risk remains insufficient. A systematic exploration of the genetic association between blood metabolites and AD would contribute to the identification of new targets for AD screening and prevention. Methods We conducted an exploratory two-sample Mendelian randomization (MR) study aiming to preliminarily identify the potential metabolites involved in AD development. A genome-wide association study (GWAS) involving 7,824 participants provided information on 486 human blood metabolites. Outcome information was obtained from a large-scale GWAS meta-analysis of AD, encompassing 21,982 cases and 41,944 controls of Europeans. The primary two-sample MR analysis utilized the inverse variance weighted (IVW) model while supplementary analyses used Weighted median (WM), MR Egger, Simple mode, and Weighted mode, followed by sensitivity analyses such as the heterogeneity test, horizontal pleiotropy test, and leave-one-out analysis. For the further identification of metabolites, replication and meta-analysis with FinnGen data, steiger test, linkage disequilibrium score regression, confounding analysis, and were conducted for further evaluation. Multivariable MR was performed to assess the direct effect of metabolites on AD. Besides, an extra replication analysis with EADB data was conducted for final evaluation of the most promising findings. Results After rigorous genetic variant selection, IVW, complementary analysis, sensitivity analysis, replication and meta-analysis with the FinnGen data, five metabolites (epiandrosterone sulfate, X-12680, pyruvate, docosapentaenoate, and 1-stearoylglycerophosphocholine) were identified as being genetically associated with AD. MVMR analysis disclosed that genetically predicted these four known metabolites can directly influence AD independently of other metabolites. Only epiandrosterone sulfate and X-12680 remained suggestive significant associations with AD after replication analysis with the EADB data. Conclusion By integrating genomics with metabonomics, this study furnishes evidence substantiating the genetic association of epiandrosterone sulfate and X-12680 with AD. These findings hold significance for the screening, prevention, and treatment strategies for AD.
Collapse
Affiliation(s)
- Qiqi Yang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Xinyu Han
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Min Ye
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China
| | - Tianxin Jiang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Baoguo Wang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Zhenfeng Zhang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Fei Li
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Intelligent Manufacturing Institute, Hefei University of Technology, Hefei, China
| |
Collapse
|
47
|
Cerina M, Levers M, Keller JM, Frega M. Neuroprotective role of lactate in a human in vitro model of the ischemic penumbra. Sci Rep 2024; 14:7973. [PMID: 38575687 PMCID: PMC10994928 DOI: 10.1038/s41598-024-58669-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
In patients suffering from cerebral ischemic stroke, there is an urgent need for treatments to protect stressed yet viable brain cells. Recently, treatment strategies that induce neuronal activity have been shown to be neuroprotective. Here, we hypothesized that neuronal activation might maintain or trigger the astrocyte-to-neuron lactate shuttle (ANLS), whereby lactate is released from astrocytes to support the energy requirements of ATP-starved hypoxic neurons, and this leads to the observed neuroprotection. We tested this by using a human cell based in vitro model of the ischemic penumbra and investigating whether lactate might be neuroprotective in this setting. We found that lactate transporters are involved in the neuroprotective effect mediated by neuronal activation. Furthermore, we showed that lactate exogenously administered before hypoxia correlated with neuroprotection in our cellular model. In addition, stimulation of astrocyte with consequent endogenous production of lactate resulted in neuroprotection. To conclude, here we presented evidence that lactate transport into neurons contributes to neuroprotection during hypoxia providing a potential basis for therapeutic approaches in ischemic stroke.
Collapse
Affiliation(s)
- Marta Cerina
- Department of Clinical Neurophysiology, University of Twente, 7522 NB, Enschede, The Netherlands
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza 2, 20126, Milan, Italy
| | - Marloes Levers
- Department of Clinical Neurophysiology, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Jason M Keller
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
48
|
Shanderson RL, Ferguson ID, Siprashvili Z, Ducoli L, Li AM, Miao W, Srinivasan S, Velasco MG, Li Y, Ye J, Khavari PA. Mitochondrial Raf1 Regulates Glutamine Catabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.581297. [PMID: 38496616 PMCID: PMC10942467 DOI: 10.1101/2024.03.08.581297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Raf kinases play vital roles in normal mitogenic signaling and cancer, however, the identities of functionally important Raf-proximal proteins throughout the cell are not fully known. Raf1 proximity proteomics/BioID in Raf1-dependent cancer cells unexpectedly identified Raf1-adjacent proteins known to reside in the mitochondrial matrix. Inner-mitochondrial localization of Raf1 was confirmed by mitochondrial purification and super-resolution microscopy. Inside mitochondria, Raf1 associated with glutaminase (GLS) in diverse human cancers and enabled glutaminolysis, an important source of biosynthetic precursors in cancer. These impacts required Raf1 kinase activity and were independent of canonical MAP kinase pathway signaling. Kinase-dead mitochondrial matrix-localized Raf1 impaired glutaminolysis and tumorigenesis in vivo. These data indicate that Raf1 localizes inside mitochondria where it interacts with GLS to engage glutamine catabolism and support tumorigenesis.
Collapse
Affiliation(s)
- Ronald L. Shanderson
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Ian D. Ferguson
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Zurab Siprashvili
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Luca Ducoli
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Albert M. Li
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Weili Miao
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | - Suhas Srinivasan
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
| | | | - Yang Li
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Jiangbin Ye
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Paul A. Khavari
- Program in Cancer Biology, Stanford University, Stanford, CA, 94305, USA
- Program in Epithelial Biology, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Healthcare System, Palo Alto, CA, 94304, USA
| |
Collapse
|
49
|
Sussman JH, Oldridge DA, Yu W, Chen CH, Zellmer AM, Rong J, Parvaresh-Rizi A, Thadi A, Xu J, Bandyopadhyay S, Sun Y, Wu D, Emerson Hunter C, Brosius S, Ahn KJ, Baxter AE, Koptyra MP, Vanguri RS, McGrory S, Resnick AC, Storm PB, Amankulor NM, Santi M, Viaene AN, Zhang N, Raedt TD, Cole K, Tan K. A longitudinal single-cell and spatial multiomic atlas of pediatric high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583588. [PMID: 38496580 PMCID: PMC10942465 DOI: 10.1101/2024.03.06.583588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Pediatric high-grade glioma (pHGG) is an incurable central nervous system malignancy that is a leading cause of pediatric cancer death. While pHGG shares many similarities to adult glioma, it is increasingly recognized as a molecularly distinct, yet highly heterogeneous disease. In this study, we longitudinally profiled a molecularly diverse cohort of 16 pHGG patients before and after standard therapy through single-nucleus RNA and ATAC sequencing, whole-genome sequencing, and CODEX spatial proteomics to capture the evolution of the tumor microenvironment during progression following treatment. We found that the canonical neoplastic cell phenotypes of adult glioblastoma are insufficient to capture the range of tumor cell states in a pediatric cohort and observed differential tumor-myeloid interactions between malignant cell states. We identified key transcriptional regulators of pHGG cell states and did not observe the marked proneural to mesenchymal shift characteristic of adult glioblastoma. We showed that essential neuromodulators and the interferon response are upregulated post-therapy along with an increase in non-neoplastic oligodendrocytes. Through in vitro pharmacological perturbation, we demonstrated novel malignant cell-intrinsic targets. This multiomic atlas of longitudinal pHGG captures the key features of therapy response that support distinction from its adult counterpart and suggests therapeutic strategies which are targeted to pediatric gliomas.
Collapse
Affiliation(s)
- Jonathan H. Sussman
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek A. Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Wenbao Yu
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Chia-Hui Chen
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Abigail M. Zellmer
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Jiazhen Rong
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | | | - Anusha Thadi
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Cellular and Molecular Biology Graduate Group, Perelman School of
Medicine, University of Pennsylvania, PA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Neuroscience Graduate Group, Perelman School of Medicine,
University of Pennsylvania, PA
| | - David Wu
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - C. Emerson Hunter
- Medical Scientist Training Program, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Stephanie Brosius
- Graduate Group in Genomics and Computational Biology, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Amy E. Baxter
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Mateusz P. Koptyra
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Rami S. Vanguri
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Stephanie McGrory
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Adam C. Resnick
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Phillip B. Storm
- Department of Neurosurgery, Children’s Hospital of
Philadelphia, Philadelphia, PA
| | - Nduka M. Amankulor
- Department of Neurosurgery, Perelman School of Medicine,
Philadelphia, PA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nancy Zhang
- Department of Statistics and Data Science, University of
Pennsylvania, Philadelphia, PA
| | - Thomas De Raedt
- Department of Pathology and Laboratory Medicine, Perelman School
of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
| | - Kristina Cole
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
| | - Kai Tan
- Center for Childhood Cancer Research, Children’s Hospital
of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman
School of Medicine, Philadelphia, PA
- Center for Single Cell Biology, Children’s Hospital of
Philadelphia, Philadelphia, PA
| |
Collapse
|
50
|
Zheng LY, Da YX, Luo X, Zhang X, Sun ZJ, Dong DL. Sorafenib extends the lifespan of C. elegans through mitochondrial uncoupling mechanism. Free Radic Biol Med 2024; 214:101-113. [PMID: 38360276 DOI: 10.1016/j.freeradbiomed.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Sorafenib is a targeted anticancer drug in clinic. Low-dose sorafenib has been reported to activate AMPK through inducing mitochondrial uncoupling without detectable toxicities. AMPK activation has been the approach for extending lifespan, therefore, we investigated the effect of sorafenib on lifespan and physical activity of C. elegans and the underlying mechanisms. In the present study, we found that the effect of sorafenib on C. elegans lifespan was typically hermetic. Sorafenib treatment at higher concentrations (100 μM) was toxic but at lower concentrations (1, 2.5, 5 μM) was beneficial to C. elegans. Sorafenib (1 μM) treatment for whole-life period extended C. elegans lifespan and improved C. elegans physical activity as manifested by increasing pharyngeal pumping and body movement, preserving intestinal barrier integrity, muscle fibers organization and mitochondrial morphology. In addition, sorafenib (1 μM) treatment enhanced C. elegans stress resistance. Sorafenib activated AMPK through inducing mitochondrial uncoupling in C. elegans. Sorafenib treatment activated DAF-16, SKN-1, and increased SOD-3, HSP-16.2, GST-4 expression in C. elegans. Sorafenib treatment induced AMPK-dependent autophagy in C. elegans. We conclude that low-dose sorafenib protects C. elegans against aging through activating AMPK/DAF-16 dependent anti-oxidant pathways and stimulating autophagy responses. Low-dose sorafenib could be a strategy for treating aging and aging-related diseases.
Collapse
Affiliation(s)
- Lu-Yao Zheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yan-Xin Da
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiu Luo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao Zhang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|