1
|
Shi T, Geng Q, Wang Z, Wen C, Xu J, Jiao Y, Diao W, Gu J, Deng T, Xiao C, Zhong B, Wang J. "Friends or foes": a new perspective of tumour metabolic transcriptional modification. Cell Death Dis 2025; 16:106. [PMID: 39962057 PMCID: PMC11833121 DOI: 10.1038/s41419-025-07429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/11/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Energy metabolism plays a pivotal role in cancer clinical treatment and has become an important means of clinical diagnosis of tumour progression. However, current research mostly focuses on changes in metabolic products and neglects the deeper mechanisms of transcriptional regulation. This paper proposes a new perspective, establishing a comprehensive network that reveals the interaction between metabolism and transcription, which explores how tumour metabolism affects tumour progression through transcriptional modifications, and provides a novel approach for optimizing tumour treatment strategies. This viewpoint is conducive to overcoming current bottlenecks in treatment and promoting the development of drug combinations and personalized medicine.
Collapse
Affiliation(s)
- Tong Shi
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Zhaoran Wang
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Chaoying Wen
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yi Jiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
| | - Wenya Diao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
| | - Jienan Gu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
- Beijing University of Chinese Medicine, China-Japan Friendship Hospital Clinical Medicine, Beijing, China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Cheng Xiao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China.
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China.
| | - Baoyuan Zhong
- Department of General Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
2
|
Lee YB, Park Y, Hamza A, Min JK, Dogsom O, Kim SC, Park JB. Function of a complex of p-Y42 RhoA GTPase and pyruvate kinase M2 in EGF signaling pathway in glioma cells. J Neurochem 2025; 169:e16210. [PMID: 39183510 DOI: 10.1111/jnc.16210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/22/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024]
Abstract
Epidermal growth factor (EGF) is known to be a critical stimulant for inducing the proliferation of glioma cancer cells. In our study, we observed that GST-RhoA binds to pyruvate kinase M2 (PKM2) in vitro. While EGF reduced the levels of RhoA protein, it significantly increased p-Y42 RhoA, as well as PKM1 and PKM2 in LN18 glioma cell line. We determined that RhoA undergoes degradation through ubiquitination involving SCF1 and Smurf1. Interestingly, we observed that p-Y42 RhoA binds to PKM2, while the dephosphomimetic form, RhoA Y42F, did not. Additionally, our observation revealed that PKM2 stabilized both RhoA and p-Y42 RhoA. Importantly, RhoA, p-Y42 RhoA, and PKM2, but not RhoA-GTP, were localized in the nucleus upon EGF stimulation. Knockdown of RhoA with siRNA resulted in the reduced levels of phosphoglycerate kinase1 (PGK1) and microtubule affinity-regulating kinase 4 (MARK). Furthermore, we found that the promoter of PGK1 was associated with β-catenin and YAP. Notably, p-Y42 RhoA and PKM2 co-immunoprecipitated with β-catenin and YAP. Based on these findings, we proposed a novel mechanism by which p-Y42 RhoA and PKM2, in conjunction with β-catenin and YAP, regulate PGK1 expression, contributing to the progression of glioma upon EGF.
Collapse
Affiliation(s)
- Yoon-Beom Lee
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Yohan Park
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Amir Hamza
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jung Ki Min
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Oyungerel Dogsom
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Department of Biology, School of bio-Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Sung-Chan Kim
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Kangwon-do, Republic of Korea
- ELMED Co. Hallym University, Chuncheon, Kangwon-do, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Wen Y, Chen Q, Huang Y, Zhou D, Yang W, Yang L, Xiong J, Gao K, Sun L, Zhai R. Downregulation of tRNA methyltransferase FTSJ1 by PM2.5 promotes glycolysis and malignancy of NSCLC via facilitating PGK1 expression and translation. Cell Death Dis 2024; 15:911. [PMID: 39695074 DOI: 10.1038/s41419-024-07287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024]
Abstract
Fine particulate matter (PM2.5) exposure has been associated with increased incidence and mortality of lung cancer. However, the molecular mechanisms underlying PM2.5 carcinogenicity remain incompletely understood. Here, we identified that PM2.5 suppressed the expression of tRNA methyltransferase FTSJ1 and Am modification level of tRNA in vitro and in vivo. FTSJ1 downregulation enhanced glycolytic metabolism of non-small cell lung cancer (NSCLC) cells, as indicated by increased levels of lactate, pyruvate, and extracellular acidification rate (ECAR). Whereas treatment with glycolytic inhibitor 2-DG reversed this effect. In contrast, upregulation of FTSJ1 significantly suppressed glycolysis of NSCLC cells. Mechanistically, the silencing of FTSJ1 increased NSCLC cell proliferation and glycolysis through enhancing the expression and translation of PGK1. In human NSCLC tumor samples, FTSJ1 expression was negatively correlated with PGK1 expression level and the SUVmax value of PET/CT scan. In summary, our work reveals a previously unrecognized function of PM2.5-downregulated FTSJ1 on PGK1-mediated glycolysis in NSCLC, suggesting that targeted upregulation of FTSJ1 may represent a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Yiling Wang
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Yuxin Wen
- Department of Thoracic Surgery, The People's Hospital of Shenzhen, 1017 North Dongmen Road, Shenzhen, 518020, China
| | - Qianqian Chen
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Yongyi Huang
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Duanyang Zhou
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Wenhan Yang
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Lin Yang
- Department of Thoracic Surgery, The People's Hospital of Shenzhen, 1017 North Dongmen Road, Shenzhen, 518020, China
| | - Juan Xiong
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China
| | - Kaiping Gao
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
| | - Liyuan Sun
- School of Nursing, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
| | - Rihong Zhai
- School of Public Health, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Medical School, 1066 Xueyuan Ave, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Mozafari M, Md Hashim SN, Ahmad Amin Noordin KB, Zainal SA, Azlina A. Nuclear Factor of Activated T Cells (NFAT) Proteins as Targeted Molecules in Diseases: A Narrative Review. Cureus 2024; 16:e75844. [PMID: 39822413 PMCID: PMC11736229 DOI: 10.7759/cureus.75844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2024] [Indexed: 01/19/2025] Open
Abstract
The nuclear factor of activated T cells (NFAT) is a key player in the NFAT pathway, regulating various cellular processes physiologically and pathologically. NFAT signaling is implicated in developing multiple diseases, such as cancer progression, that are associated with angiogenesis. Despite numerous studies on NFAT, there is still a dearth of information on the proteins and signaling pathway compared to other established pathways. With five NFAT proteins in the spotlight, this review aims to update the understanding of their roles and signaling by analyzing the most recent studies on the NFAT pathway. The recent insights into NFAT proteins and their association with diseases enhance our understanding of these proteins and open the possibility of developing therapeutic strategies for such diseases.
Collapse
Affiliation(s)
- Mohadese Mozafari
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | - Siti Nurnasihah Md Hashim
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | | | - Siti Aishah Zainal
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| | - Ahmad Azlina
- Basic and Medical Sciences Unit, School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, MYS
| |
Collapse
|
5
|
Yin YF, Jia QY, Yao HF, Zhu YH, Zheng JH, Duan ZH, Hu CY, Sun YW, Liu DJ, Huo YM, Liu W. OCIAD2 promotes pancreatic cancer progression through the AKT signaling pathway. Gene 2024; 927:148735. [PMID: 38944166 DOI: 10.1016/j.gene.2024.148735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/18/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND OCIAD2(Ovarian carcinoma immunoreactive antigen-like protein 2) is a protein reported in various cancers. However, the role of OCIAD2 has not been explored in pan-cancer datasets. The purpose of this research lies in analyzing the expression level and prognostic-related value of OCIAD2 in different human cancers, as well as revealing the underlying mechanism in specific cancer type (pancreatic adenocarcinoma, PAAD). METHODS The correlation between OCIAD2 expression level and clinical relevance in different human cancers was investigated from bioinformatical perspective (GTEx and TCGA). The OCIAD2 expression level and clinical significance in PAAD were explored in GEO datasets and tissue microarray. Functional experiments were used to determine the OCIAD2 cell functions in vitro and in vivo. GSEA, western blot and immunohistochemistry were used to uncover the potential mechanism. RESULTS OCIAD2 expression level was closely correlated with clinical relevance in many cancer types through pan-cancer analysis, and we found OCIAD2 was highly expressed in PAAD and associated with poorer prognosis. OCIAD2 acted as the promotor of Warburg effect and influenced PAAD cells proliferation, migration and apoptosis. Mechanistically, OCIAD2 upregulation may boost glycolysis in PAAD via activating the AKT signaling pathway in PAAD. CONCLUSIONS In PAAD, OCIAD2 promotes Warburg effect via AKT signaling pathway and targeting cancer cells metabolic reprogramming could be a potential treatment.
Collapse
Affiliation(s)
- Yi-Fan Yin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Qin-Yuan Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Hong-Fei Yao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yu-Heng Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Jia-Hao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Zong-Hao Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Cheng-Yu Hu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Yong-Wei Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - De-Jun Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Yan-Miao Huo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| | - Wei Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, PR China; Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.
| |
Collapse
|
6
|
Jiang J, Xu J, Ji S, Yu X, Chen J. Unraveling the mysteries of MGMT: Implications for neuroendocrine tumors. Biochim Biophys Acta Rev Cancer 2024; 1879:189184. [PMID: 39303858 DOI: 10.1016/j.bbcan.2024.189184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Neuroendocrine tumors (NETs) are a diverse group of tumors that arise from neuroendocrine cells and are commonly found in various organs. A considerable proportion of NET patients were diagnosed at an advanced or metastatic stage. Alkylating agents are the primary treatment for NET, and O6-methylguanine methyltransferase (MGMT) remains the first-line of defense against DNA damage caused by these agents. Clinical trials have indicated that MGMT promoter methylation or its low/lacked expression can predict a favorable outcome with Temozolomide in NETs. Its status could help select NET patients who can benefit from alkylating agents. Therefore, MGMT status serves as a biomarker to guide decisions on the efficacy of Temozolomide as a personalized treatment option. Additionally, delving into the regulatory mechanisms of MGMT status can lead to the development of MGMT-targeted therapies, benefiting individuals with high levels of MGMT expression. This review aims to explore the polymorphism of MGMT regulation and summarize its clinical implications in NETs, which would help establish the role of MGMT as a biomarker and its potential as a therapeutic target in NETs. Additionally, we explore the benefits of combining Temozolomide and immunotherapy in MGMT hypermethylated subgroups. Future studies can focus on optimizing Temozolomide administration to induce specific immunomodulatory changes.
Collapse
Affiliation(s)
- Jianyun Jiang
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Junfeng Xu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Shunrong Ji
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Xianjun Yu
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Shanghai Pancreatic Cancer Institute, Shanghai 200032, China; Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China.
| | - Jie Chen
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Ryuno H, Hanafusa Y, Fujisawa T, Ogawa M, Adachi H, Naguro I, Ichijo H. HES1 potentiates high salt stress response as an enhancer of NFAT5-DNA binding. Commun Biol 2024; 7:1290. [PMID: 39384976 PMCID: PMC11464898 DOI: 10.1038/s42003-024-06997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/01/2024] [Indexed: 10/11/2024] Open
Abstract
High salt conditions and subsequent hyperosmolarity are injurious cellular stresses that can activate immune signaling. Nuclear factor of activated T-cells 5 (NFAT5) is an essential transcription factor that induces osmoprotective genes such as aldose reductase (AR) and betaine-GABA transporter 1 (BGT1). High salt stress-mediated NFAT5 activation is also reported to accelerate the inflammatory response and autoimmune diseases. However, the systemic regulation of NFAT5 remains unclear. Here, we performed a genome-wide siRNA screen to comprehensively identify the regulators of NFAT5. We monitored NFAT5 nuclear translocation and identified one of the Notch signaling effectors, Hairy and enhancer of split-1 (HES1), as a positive regulator of NFAT5. HES1 was induced by high salinity via ERK signaling and facilitated NFAT5 recruitment to its target promoter region, resulting in the proper induction of osmoprotective genes and cytoprotection under high salt stress. These findings suggest that, though HES1 is well known as a transcriptional repressor, it positively regulates NFAT5-dependent transcription in the context of a high salinity/hyperosmotic response.
Collapse
Affiliation(s)
- Hiroki Ryuno
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Hanafusa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takao Fujisawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| | - Motoyuki Ogawa
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan
| | - Hiroki Adachi
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Isao Naguro
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan.
- Laboratory of Bioresponse Signaling, Faculty of Pharmacy, Juntendo University, Urayasu, Chiba, Japan.
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Cell Signaling and Stress Responses Laboratory, TMDU Advanced Research Institute, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
8
|
Zhu Y, Lu Y, Xu C, Huang Y, Yu Z, Wang T, Mao L, Liao X, Li S, Zhang W, Zhou F, Liu K, Zhang Y, Yang W, Min S, Deng Y, Wang Z, Fan X, Nie G, Xie X, Li Z. TMEM52B Isoforms P18 and P20 Differentially Promote the Oncogenesis and Metastasis of Nasopharyngeal Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402457. [PMID: 38940427 PMCID: PMC11434218 DOI: 10.1002/advs.202402457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/29/2024] [Indexed: 06/29/2024]
Abstract
Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.
Collapse
Affiliation(s)
- Yuqi Zhu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
| | - Yanxin Lu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Chunhua Xu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Yuqian Huang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Ziyi Yu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Tongyu Wang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Longyi Mao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Ximian Liao
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Shi Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Wanqing Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Feng Zhou
- Oncology Department, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518060, China
| | - Kaiqing Liu
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wei Yang
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shasha Min
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yaqin Deng
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Zaixing Wang
- Institute of Otorhinolaryngology and Shenzhen Key of Otorhinolaryngology, Longgang Otorhinolaryngology Hospital, Shenzhen, 518172, China
| | - Xiaoqin Fan
- The Bio-bank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Guohui Nie
- The Bio-bank of Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Xina Xie
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518000, China
- Medical Research Center, The Affiliated Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, 512025, China
- Basic Medical Science Department, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, Sichuan, 637199, China
| |
Collapse
|
9
|
Gupta I, Badrzadeh F, Tsentalovich Y, Gaykalova DA. Connecting the dots: investigating the link between environmental, genetic, and epigenetic influences in metabolomic alterations in oral squamous cell carcinoma. J Exp Clin Cancer Res 2024; 43:239. [PMID: 39169426 PMCID: PMC11337877 DOI: 10.1186/s13046-024-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for around 90% of all oral cancers and is the eighth most common cancer worldwide. Despite progress in managing OSCC, the overall prognosis remains poor, with a survival rate of around 50-60%, largely due to tumor size and recurrence. The challenges of late-stage diagnosis and limitations in current methods emphasize the urgent need for less invasive techniques to enable early detection and treatment, crucial for improving outcomes in this aggressive form of oral cancer. Research is currently aimed at unraveling tumor-specific metabolite profiles to identify candidate biomarkers as well as discover underlying pathways involved in the onset and progression of cancer that could be used as new targets for diagnostic and therapeutic purposes. Metabolomics is an advanced technological approach to identify metabolites in different sample types (biological fluids and tissues). Since OSCC promotes metabolic reprogramming influenced by a combination of genetic predisposition and environmental factors, including tobacco and alcohol consumption, and viral infections, the identification of distinct metabolites through screening may aid in the diagnosis of this condition. Moreover, studies have shown the use of metabolites during the catalysis of epigenetic modification, indicating a link between epigenetics and metabolism. In this review, we will focus on the link between environmental, genetic, and epigenetic influences in metabolomic alterations in OSCC. In addition, we will discuss therapeutic targets of tumor metabolism, which may prevent oral tumor growth, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Fariba Badrzadeh
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Yuri Tsentalovich
- International tomography center CB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Genome Sciences, 670 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
10
|
Lu G, Wen Z, Yu L, Wang C, Gao Y. HIF1A overexpression caused by etomidate activates PGK1-induced oxidative stress in postoperative cognitive dysfunction. Brain Res 2024; 1841:149069. [PMID: 38852658 DOI: 10.1016/j.brainres.2024.149069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Etomidate (ETO), a hypnotic agent used for anesthesia induction, has been shown to induce long-lasting cognitive deficits. In the present study, we investigated whether ETO could activate the HIF1A/PGK1 pathway to antagonize oxidative damage in mice with postoperative cognitive dysfunction (POCD). A mouse model of ETO-mediated POCD was established, and pathological changes, apoptosis, and inflammatory factors in mouse hippocampal tissues were analyzed by HE staining, TUNEL assay, and ELISA. ETO was revealed to cause cognitive dysfunction in mice. Integrated database mining was conducted to screen out transcription factors that are both related to ETO and POCD. Hypoxia-inducible factor 1-alpha (HIF1A) was overexpressed in mice with POCD, and downregulation of HIF1A alleviated cognitive dysfunction in mice. HIF1A downregulation inhibited the transcription of phosphoglycerate kinase 1 (PGK1). Overexpression of PGK1 abated the alleviating effects of HIF1A knockdown on oxidative stress in mice with POCD. In addition, HIF1A activation of PGK1 induced oxidative stress and apoptosis in HT-22 cells while inhibiting cell viability. Taken together, we demonstrated that HIF1A activation of PGK1 induced oxidative stress in ETO-mediated POCD.
Collapse
Affiliation(s)
- Guangxi Lu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150077, Heilongjiang, PR China
| | - Zhibin Wen
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150077, Heilongjiang, PR China
| | - Lu Yu
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150077, Heilongjiang, PR China
| | - Chao Wang
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150077, Heilongjiang, PR China
| | - Yang Gao
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150077, Heilongjiang, PR China.
| |
Collapse
|
11
|
Zhen H, Yao Y, Yang H. SAFB2 Inhibits the Progression of Breast Cancer by Suppressing the Wnt/β-Catenin Signaling Pathway via NFAT5. Mol Biotechnol 2023; 65:1465-1475. [PMID: 36652182 DOI: 10.1007/s12033-022-00649-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023]
Abstract
Aberrant scaffold attachment factor-B2 (SAFB2) expression is associated with several malignant tumors. In this study, we investigated how SAFB2 worked in the process of breast cancer as well as the underlying mechanism. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analysis were used to investigate the expression of SAFB2 and nuclear factor of activated T cells 5 (NFAT5). Cellular proliferative ability was detected with cell counting kit 8 (CCK8), colony formation and 5-Ethynyl-2'-deoxyuridine (EdU) staining assays. Cell apoptosis was measured via flow cytometry and western blotting analysis. Wound healing, transwell assays, and western blotting analysis were executed to estimate cell migration and invasion. The relationship between SAFB2 and NFAT5 was verified by RNA immunoprecipitation (RIP) assay and NFAT5 mRNA stability was examined with actinomycin (Act) D assay. Western blotting analysis also tested the expression of Wnt/β-catenin signaling-associated proteins. As a result, SAFB2 was downregulated in breast cancer cell lines, while NFAT5 was highly expressed in most breast cancer cell lines. Overexpression of SAFB2 suppressed the proliferation, migration, and invasion while exacerbated the apoptosis of breast cancer cells. SAFB2 interacted with NFAT5 mRNA and declined the stability of NFAT5 mRNA. Overexpression of NFAT5 counteracted anti-proliferative, anti-metastatic and pro-apoptotic effects of SAFB2 in breast cancer cells. Mechanistically, SAFB2 overexpression inhibited the Wnt/β-catenin signaling pathway, while this effect was partially eliminated by NFAT5. Collectively, SAFB2 hindered breast cancer development and inactivated Wnt/β-catenin signaling via regulation of NFAT5, suggesting that SAFB2 might be a promising therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Huifen Zhen
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China
| | - Yarong Yao
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China
| | - Haibo Yang
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, 99 Longcheng Street, Taiyuan, 030032, Shanxi Province, China.
| |
Collapse
|
12
|
Liu C, Lin J, Yang H, Li N, Tang L, Neumann D, Ding X, Zhu L. NFAT5 Restricts Bovine Herpesvirus 1 Productive Infection in MDBK Cell Cultures. Microbiol Spectr 2023; 11:e0011723. [PMID: 37227295 PMCID: PMC10434061 DOI: 10.1128/spectrum.00117-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Bovine herpesvirus 1 (BoHV-1), an important bovine viral pathogen, causes severe disease in the upper respiratory tract and reproductive system. Tonicity-responsive enhancer-binding protein (TonEBP), also known as nuclear factor of activated T cells 5 (NFAT5), is a pleiotropic stress protein involved in a range of cellular processes. In this study, we showed that the knockdown of NFAT5 by siRNA increased BoHV-1 productive infection and overexpression of NFAT5 via plasmid transfection decreased virus production in bovine kidney (MDBK) cells. Virus productive infection at later stages significantly increased transcription of NFAT5 but not appreciably alter measurable NFAT5 protein levels. Virus infection relocalized NFAT5 protein and decreased the cytosol accumulation. Importantly, we found a subset of NFAT5 resides in mitochondria, and virus infection led to the depletion of mitochondrial NFAT5. In addition to full-length NFAT5, another two isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection. In addition, virus infection differentially altered mRNA levels of PGK1, SMIT, and BGT-1, the canonical downstream targets regulated by NFAT5. Taken together, NFAT5 is a potential host factor that restricts BoHV-1 productive infection, and virus infection hijacks NFAT5 signaling transduction by relocalization of NFAT5 molecules in cytoplasm, nucleus, and mitochondria, as well as altered expression of its downstream targets. IMPORTANCE Accumulating studies have revealed that NFAT5 regulates disease development due to infection of numerous viruses, underlying the importance of the host factor in virus pathogenesis. Here, we report that NFAT5 has capacity to restrict BoHV-1 productive infection in vitro. And virus productive infection at later stages may alter NFAT5 signaling pathway as observed by relocalization of NFAT5 protein, reduced accumulation of NFAT5 in cytosol, and differential expression of NFAT5 downstream targets. Importantly, for the first time, we found that a subset of NFAT5 resides in mitochondria, implying that NFAT5 may regulate mitochondrial functions, which will extend our knowledge on NFAT5 biological activities. Moreover, we found two NFAT5 isoforms with distinct molecular weights were exclusively detected in the nucleus, where the accumulation was differentially affected following virus infection, representing a novel regulation mechanism on NFAT5 function in response to BoHV-1infection.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Hebei University, Baoding, China
| | - Jiayu Lin
- College of Life Sciences, Hebei University, Baoding, China
| | - Hao Yang
- College of Life Sciences, Hebei University, Baoding, China
| | - Ningxi Li
- College of Life Sciences, Hebei University, Baoding, China
| | - Linke Tang
- College of Life Sciences, Hebei University, Baoding, China
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding, China
- Key Laboratory of Microbial Diversity Research and Application of Hebei Province, College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
13
|
Gao J, Fang Y, Chen J, Tang Z, Tian M, Jiang X, Tao C, Huang R, Zhu G, Qu W, Wu X, Zhou J, Fan J, Liu W, Shi Y. Methyltransferase like 3 inhibition limits intrahepatic cholangiocarcinoma metabolic reprogramming and potentiates the efficacy of chemotherapy. Oncogene 2023; 42:2507-2520. [PMID: 37420030 DOI: 10.1038/s41388-023-02760-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/08/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
N6-methyladenosine (m6A) RNA methylation and its associated methyltransferase like 3 (METTL3) are involved in the development and maintenance of various tumors. The present study aimed to evaluate the cross-talk of METTL3 with glucose metabolism and reveal a novel mechanism for intrahepatic cholangiocarcinoma (ICC) progression. Real-time quantitative PCR, western blotting, and immunohistochemistry analyses suggested that METTL3 was highly expressed in ICC, which was correlated with poor patient prognosis. Immunoprecipitation sequencing of m6A-RNA showed that METTL3 upregulated m6A modification of NFAT5, which recruited IGF2BP1 for NFAT5 mRNA stabilization. Elevated expression of NFAT5 increased the expression of the gluconeogenesis-related genes GLUT1 and PGK1, resulting in enhanced aerobic glycolysis, proliferation, and tumor metastasis of ICC. Moreover, higher METTL3 expression was observed in tumor tissues of ICC patients with activated ICC glucose metabolism. Importantly, STM2457, a highly potent METTL3 inhibitor, which inhibited METTL3 activity and acted synergistically with gemcitabine, suggests that reprogramming RNA epigenetic modifications may serve as a potential therapeutic strategy. Overall, our findings highlighted the role of METTL3-mediated m6A modification of NFAT5 in activating glycolytic reprogramming in ICC and proposed that the METTL3/NFAT5 axis was a clinical target for the management of ICC chemoresistance by targeting cancer glycolysis.
Collapse
Affiliation(s)
- Jun Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Fang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiafeng Chen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Zheng Tang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Mengxin Tian
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xifei Jiang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Chenyang Tao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Run Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guiqi Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Weifeng Qu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoling Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Weiren Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yinghong Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
- Research Unit of Liver Cancer Recurrence and Metastasis, Chinese Academy of Medical Sciences, Beijing, China.
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| |
Collapse
|
14
|
Li Y, Gao Z, Wang Y, Pang B, Zhang B, Hu R, Wang Y, Liu C, Zhang X, Yang J, Mei M, Wang Y, Zhou X, Li M, Ren Y. Lysine methylation promotes NFAT5 activation and determines temozolomide efficacy in glioblastoma. Nat Commun 2023; 14:4062. [PMID: 37429858 DOI: 10.1038/s41467-023-39845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
Temozolomide (TMZ) therapy offers minimal clinical benefits in patients with glioblastoma multiforme (GBM) with high EGFR activity, underscoring the need for effective combination therapy. Here, we show that tonicity-responsive enhancer binding protein (NFAT5) lysine methylation, is a determinant of TMZ response. Mechanistically, EGFR activation induces phosphorylated EZH2 (Ser21) binding and triggers NFAT5 methylation at K668. Methylation prevents NFAT5 cytoplasm interaction with E3 ligase TRAF6, thus blocks NFAT5 lysosomal degradation and cytosol localization restriction, which was mediated by TRAF6 induced K63-linked ubiquitination, resulting in NFAT5 protein stabilization, nuclear accumulation and activation. Methylated NFAT5 leads to the upregulation of MGMT, a transcriptional target of NFAT5, which is responsible for unfavorable TMZ response. Inhibition of NFAT5 K668 methylation improved TMZ efficacy in orthotopic xenografts and patient-derived xenografts (PDX) models. Notably, NFAT5 K668 methylation levels are elevated in TMZ-refractory specimens and confer poor prognosis. Our findings suggest targeting NFAT5 methylation is a promising therapeutic strategy to improve TMZ response in tumors with EGFR activation.
Collapse
Affiliation(s)
- Yatian Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhenyue Gao
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuhong Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bo Pang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Binbin Zhang
- Department of Neuro-oncology, Tianjin Huanhu Hospital, Tianjin, China
| | - Ruxin Hu
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuqing Wang
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Chao Liu
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huanhu Hospital, Tianjin, China
| | - Jingxuan Yang
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Mei Mei
- Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Yongzhi Wang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Oncology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Cancer Institute, National Clinical Research Center of Cancer, Tianjin, China.
| | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Yu Ren
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Surgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
15
|
Tang Z, Liu L, Borlak J. Combined inhibition of histone deacetylase and cytidine deaminase improves epigenetic potency of decitabine in colorectal adenocarcinomas. Clin Epigenetics 2023; 15:89. [PMID: 37208732 DOI: 10.1186/s13148-023-01500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Targeting the epigenome of cancerous diseases represents an innovative approach, and the DNA methylation inhibitor decitabine is recommended for the treatment of hematological malignancies. Although epigenetic alterations are also common to solid tumors, the therapeutic efficacy of decitabine in colorectal adenocarcinomas (COAD) is unfavorable. Current research focuses on an identification of combination therapies either with chemotherapeutics or checkpoint inhibitors in modulating the tumor microenvironment. Here we report a series of molecular investigations to evaluate potency of decitabine, the histone deacetylase inhibitor PBA and the cytidine deaminase (CDA) inhibitor tetrahydrouridine (THU) in patient derived functional and p53 null colon cancer cell lines (CCCL). We focused on the inhibition of cell proliferation, the recovery of tumor suppressors and programmed cell death, and established clinical relevance by evaluating drug responsive genes among 270 COAD patients. Furthermore, we evaluated treatment responses based on CpG island density. RESULTS Decitabine caused marked repression of the DNMT1 protein. Conversely, PBA treatment of CCCL recovered acetylation of histone 3 lysine residues, and this enabled an open chromatin state. Unlike single decitabine treatment, the combined decitabine/PBA treatment caused > 95% inhibition of cell proliferation, prevented cell cycle progression especially in the S and G2-phase and induced programmed cell death. Decitabine and PBA differed in their ability to facilitate re-expression of genes localized on different chromosomes, and the combined decitabine/PBA treatment was most effective in the re-expression of 40 tumor suppressors and 13 genes typically silenced in cancer-associated genomic regions of COAD patients. Furthermore, this treatment repressed expression of 11 survival (anti-apoptotic) genes and augmented expression of X-chromosome inactivated genes, especially the lncRNA Xist to facilitate p53-mediated apoptosis. Pharmacological inhibition of CDA by THU or its gene knockdown prevented decitabine inactivation. Strikingly, PBA treatment recovered the expression of the decitabine drug-uptake transporter SLC15A1, thus enabling high tumor drug-loads. Finally, for 26 drug responsive genes we demonstrated improved survival in COAD patients. CONCLUSION The combined decitabine/PBA/THU drug treatment improved drug potency considerably, and given their existing regulatory approval, our findings merit prospective clinical trials for the triple combination in COAD patients.
Collapse
Affiliation(s)
- Zijiao Tang
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Lu Liu
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
16
|
Jiang Y, Han L, Yang J, Yang M, Zhang J, Xue M, Zhu Y, Xiong C, Shi M, Zhao S, Shen B, Xu Z, Jiang L, Chen H. Identification of a novel immune checkpoint molecule V-set immunoglobulin domain-containing 4 that leads to impaired immunity infiltration in pancreatic ductal adenocarcinoma. Cancer Immunol Immunother 2023:10.1007/s00262-023-03438-y. [PMID: 37097516 PMCID: PMC10361881 DOI: 10.1007/s00262-023-03438-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Checkpoint-based immunotherapy has failed to elicit responses in the majority of patients with pancreatic cancer. In our study, we aimed to identify the role of a novel immune checkpoint molecule V-set Ig domain-containing 4 (VSIG4) in pancreatic ductal adenocarcinoma (PDAC). METHODS Online datasets and tissue microarray (TMA) were utilized to analyze the expression level of VSIG4 and its correlation with clinical parameters in PDAC. CCK8, transwell assay and wound healing assay were applied to explore the function of VSIG4 in vitro. Subcutaneous, orthotopic xenograft and liver metastasis model was established to explore the function of VSIG4 in vivo. TMA analysis and chemotaxis assay were conducted to uncover the effect of VSIG4 on immune infiltration. Histone acetyltransferase (HAT) inhibitors and si-RNA were applied to investigate factors that regulate the expression of VSIG4. RESULTS Both mRNA and protein levels of VSIG4 were higher in PDAC than normal pancreas in TCGA, GEO, HPA datasets and our TMA. VSIG4 showed positive correlations with tumor size, T classification and liver metastasis. Patients with higher VSIG4 expression were related to poorer prognosis. VSIG4 knockdown impaired the proliferation and migration ability of pancreatic cancer cells both in vitro and in vivo. Bioinformatics study showed positive correlation between VSIG4 and infiltration of neutrophil and tumor-associated macrophages (TAMs) in PDAC, and it inhibited the secretion of cytokines. According to our TMA panel, high expression of VSIG4 was correlated with fewer infiltration of CD8+ T cells. Chemotaxis assay also showed knockdown of VSIG4 increased the recruitment of total T cells and CD8+ T cells. HAT inhibitors and knockdown of STAT1 led to decreased expression of VSIG4. CONCLUSIONS Our data indicate that VSIG4 contributes to cell proliferation, migration and resistance to immune attack, thus identified as a promising target for PDAC treatment with good prognostic value.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Lijie Han
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Minwei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Zhang
- Medical Department Health Services Section, Qingdao Women and Children's Hospital, Qingdao, People's Republic of China
| | - Meilin Xue
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Youwei Zhu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Cheng Xiong
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Minmin Shi
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Shiwei Zhao
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhiwei Xu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Lingxi Jiang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Research Institute of Pancreatic Diseases, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Institute of Translational Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
17
|
He RZ, Zheng JH, Yao HF, Xu DP, Yang MW, Liu DJ, Sun YW, Huo YM. ADAMTS12 promotes migration and epithelial-mesenchymal transition and predicts poor prognosis for pancreatic cancer. Hepatobiliary Pancreat Dis Int 2023; 22:169-178. [PMID: 35508435 DOI: 10.1016/j.hbpd.2022.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/18/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND ADAMTS (a disintegrin and metalloproteinase with thrombospondin-like motifs) family, a group of extracellular multifunctional enzymes, has been proven to play a pivotal role in the tumor. In pancreatic cancer, the role and mechanism of this family remain unclear. The present study aimed to figure out the hub gene of ADAMTSs and explore the exact roles in the prognosis and biological functions in pancreatic ductal adenocarcinoma (PDAC). METHODS We used several databases to analyze the ADAMTS family and then screen out the hub genes. The expression of ADAMTS12 in 106 pairs of PDAC tumors and adjacent normal tissues was examined by immunohistochemistry, and its correlations with clinical parameters were further analyzed. The impacts of ADAMTS12 on the migration of PDAC cells were predicted by gene set enrichment analysis and confirmed by transwell assays. The potential impacts of ADAMTS12 on the epithelial-mesenchymal transition (EMT) were identified by database analysis and experimental proof of real-time quantitative polymerase chain reaction (qPCR) and Western blotting. RESULTS Our study found that ADAMTS12 was a crucial gene in PDAC, and it was highly expressed in tumor tissues when compared to that in the adjacent tissues. ADATMS12 had predictive value of a poor prognosis for PDAC. The elevation of ADAMTS12 was parallel to the progression of PDAC. Inhibition of ADAMTS12 suppressed the migration of PDAC cells and interfered with the process of EMT. CONCLUSIONS ADAMTS12 is a crucial member of ADAMTSs in PDAC and a predictor of poor prognosis. Additionally, based on its impacts on migration and metastasis in PDAC and the relationship with EMT, ADAMTS12 plays a role of an oncogene in PDAC and may be a promising target for treatment.
Collapse
Affiliation(s)
- Rui-Zhe He
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Hao Zheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Fei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Da-Peng Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min-Wei Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - De-Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong-Wei Sun
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Miao Huo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
18
|
Wang Z, Wu B, Nie G, Wei J, Li Y. Regulation of metabolism in pancreatic ductal adenocarcinoma via nanotechnology-enabled strategies. Cancer Lett 2023; 560:216138. [PMID: 36934836 DOI: 10.1016/j.canlet.2023.216138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with insidious onset and early distal metastasis. Metabolic reprogramming, the autonomous changes in cellular bioenergetics driven by aberrant genetic events and crosstalk between cancer and non-cancer cells in the desmoplastic microenvironment, is pivotal for the rapid progression of PDAC. As an attractive therapeutic target, nucleoside metabolism is regulated by various anti-metabolic drugs for the clinical treatment of PDAC. Despite various challenges, such as poor drug delivery efficiency and off-target side effects, metabolic modification and intervention are emerging as promising strategies for PDAC therapy, enabled by the rapid development of nanotechnology-based drug delivery strategies. In this review, we discuss the metabolic characteristics of PDAC and highlight how the development of nanomedicine has boosted the development of new therapeutics for PDAC by modulating critical targets in metabolic reprogramming.
Collapse
Affiliation(s)
- Zhiqin Wang
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, PR China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Bowen Wu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Guangjun Nie
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, 510530, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun, 130021, PR China.
| | - Yiye Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, PR China.
| |
Collapse
|
19
|
PGK1 modulates balance between pro- and anti-inflammatory cytokines by interacting with ITI-H4. Biomed Pharmacother 2023; 161:114437. [PMID: 36841032 DOI: 10.1016/j.biopha.2023.114437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
Inter-α-trypsin inhibitor heavy chain 4 (ITI-H4) is one of the acute phase proteins and is mainly related with inflammatory diseases such as bacterial bloodstream infection and recurrent pregnancy loss (RPL). In a previous study, ITI-H4 was reported to be cleaved by kallikrein B1 (KLKB1) and its cleaved form induces the imbalance between pro- and anti-inflammatory cytokines. Therefore, in this study, putative substrates of ITI-H4 were isolated by immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) analysis. Of those, phosphoglycerate kinase 1 (PGK1) was found to be a binding protein of ITI-H4. PGK1 increases the level of ITI-H4 expression and blocks the cleavage of ITI-H4 mediated by KLKB1. It also inhibits pro-inflammatory response by inhibiting the JAK2/STAT3 signaling pathway. Therefore, PGK1, a novel binding partner of ITI-H4, is expected to have cellular functions in the pathogenesis of ITI-H4-related inflammatory diseases.
Collapse
|
20
|
KIF15 is essential for USP10-mediated PGK1 deubiquitination during the glycolysis of pancreatic cancer. Cell Death Dis 2023; 14:137. [PMID: 36807568 PMCID: PMC9938189 DOI: 10.1038/s41419-023-05679-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Glycolysis is the most predominant metabolic reprogramming of pancreatic cancer (PC), the underlying mechanism of which in PC cells remains unclear. In this study, we found for the first time that KIF15 promotes the glycolytic capacity of PC cells and PC tumor growth. Moreover, the expression of KIF15 was negatively correlated with the prognosis of PC patients. The ECAR and OCR measurements indicated that KIF15 knockdown significantly impaired the glycolytic capacity of PC cells. Western blotting demonstrated that the expression of glycolysis molecular markers decreased rapidly after the knockdown of KIF15. Further experiments revealed that KIF15 promoted the stability of PGK1 and its effect on PC cell glycolysis. Interestingly, the overexpression of KIF15 impaired the ubiquitination level of PGK1. To investigate the underlying mechanism by which KIF15 regulates the function of PGK1, we performed mass spectrometry (MS). The MS and Co-IP assay indicated that KIF15 recruited and enhanced the binding between PGK1 and USP10. The ubiquitination assay verified that KIF15 recruited and promoted the effect of USP10 on PGK1, thereby deubiquitinating PGK1. Through the construction of KIF15 truncators, we found that KIF15 is bound to PGK1 and USP10 through its coil2 domain. Together, our study demonstrated for the first time that KIF15 enhances the glycolytic capacity of PC through the recruitment of USP10 and PGK1, and that the KIF15/USP10/PGK1 axis may serve as an effective therapeutic agent for PC.
Collapse
|
21
|
Krishna G, Pillai VS, Gopi P, Nair AS, Veettil MV. Epstein-Barr virus infection controls the concentration of the intracellular antioxidant glutathione by upregulation of the glutamate transporter EAAT3 in tumor cells. Virus Genes 2023; 59:55-66. [PMID: 36344769 DOI: 10.1007/s11262-022-01951-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
Abstract
Epstein-Barr virus or human herpesvirus 4 (EBV/HHV-4) is an omnipresent oncovirus etiologically associated with various B-cell lymphomas and epithelial cancers. The malignant transformation associated with the persistent expression of viral proteins often deregulates the host cellular machinery and EBV infection is coupled to elevated levels of reactive oxygen species. Here, we investigated the role that the glutamate transporter EAAT3 plays in regulating the antioxidant system as a protective mechanism of EBV-infected cells against the virus-induced oxidative stress. Our study demonstrated that the expression of EAAT3 was upregulated and localized to the plasma membrane in EBV latently infected and de novo EBV-infected cells. EAAT3 was regulated by the transcription factor NFAT5 in the infected cells. Membrane localized EAAT3 was found to be involved in the transportation of glutamate from the extracellular space into the cell, as EAAT3 and NFAT5 inhibitors markedly reduced the levels of intracellular glutamate levels in EBV latently infected cells. Additionally, our data demonstrated a notable decrease in the intracellular glutathione levels following treatment with an EAAT3 inhibitor. Collectively, our results suggest that upregulation of the glutamate transporter EAAT3 is an adaptation of EBV-infected cells to maintain cellular redox homeostasis against the virus-induced oxidative stress, and that this cellular balance could be therapeutically destroyed by targeting EAAT3 to impede EBV-associated cancers.
Collapse
Affiliation(s)
- Gayathri Krishna
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Vinod Soman Pillai
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
- Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, Kerala, 695317, India
| | - Poornima Gopi
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India
| | - Anuja S Nair
- Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, Kerala, 695317, India
| | - Mohanan Valiya Veettil
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, 682022, India.
- Institute of Advanced Virology (IAV), Thonnakkal, Thiruvananthapuram, Kerala, 695317, India.
| |
Collapse
|
22
|
Sustained activation of non-canonical NF-κB signalling drives glycolytic reprogramming in doxorubicin-resistant DLBCL. Leukemia 2023; 37:441-452. [PMID: 36446947 DOI: 10.1038/s41375-022-01769-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
DLBCL is the most common lymphoma with high tumor heterogeneity. Treatment refractoriness and relapse from R-CHOP therapy in patients remain a clinical problem. Activation of the non-canonical NF-κB pathway is associated with R-CHOP resistance. However, downstream targets of non-canonical NF-κB mediating R-CHOP-induced resistance remains uncharacterized. Here, we identify the common mechanisms underlying both intrinsic and acquired resistance that are induced by doxorubicin, the main cytotoxic component of R-CHOP. We performed global transcriptomic analysis of (1) a panel of resistant versus sensitive and (2) isogenic acquired doxorubicin-resistant DLBCL cell lines following short and chronic exposure to doxorubicin respectively. Doxorubicin-induced stress in resistant cells activates a distinct transcriptional signature that is enriched in metabolic reprogramming and oncogenic signalling. Selective and sustained activation of non-canonical NF-κB signalling in these resistant cells exacerbated their survival by augmenting glycolysis. In response to doxorubicin, p52-RelB complexes transcriptionally activated multiple glycolytic regulators with prognostic significance through increased recruitment at their gene promoters. Targeting p52-RelB and their targets in resistant cells increased doxorubicin sensitivity in vitro and in vivo. Collectively, our study uncovered novel molecular drivers of doxorubicin-induced resistance that are regulated by non-canonical NF-κB pathway. We reveal new avenues of therapeutic targeting for R-CHOP-treated refractory/relapsed DLBCL patients.
Collapse
|
23
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
24
|
Doneti R, Pasha A, Botlagunta M, Heena SK, Mutyala VVVP, Pawar SC. Molecular docking, synthesis, and biological evaluation of 7-azaindole-derivative (7AID) as novel anti-cancer agent and potent DDX3 inhibitor:-an in silico and in vitro approach. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:179. [PMID: 36048256 DOI: 10.1007/s12032-022-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022]
Abstract
The DEAD-box helicase family member DDX3 is involved in many diseases, such as viral infection, inflammation, and cancer. Many studies in the last decade have revealed the role of DDX3 in tumorigenesis and metastasis. DDX3 has both tumour suppressor and oncogenic effect, in the present study we have evaluated the expression levels of DDX3 in cervical squamous cell carcinoma at mRNA level via real-time PCR and protein level via Immunohistochemistry. DDX3 has become a molecule of interest in cancer biology that promotes drug resistance by adaptive response inevitably leading to treatment failure. One approach to avoid the development of resistant to disease is to create novel drugs that target the overexpressed proteins, we designed and synthesized a novel 7-azaindole derivative (7-AID) compound, {5-[1H-pyrrolo (2, 3-b) pyridin-5-yl] pyridin-2-ol]} that could lodge within the adenosine-binding pocket of the DDX3 (PDB ID: 2I4I). The binding efficacy of 7-AID compound with DDX3 was analysed by molecular docking studies. 7-AID was found to interact with the key residues Tyr200 and Arg202 from the Q-motif rendered by π-interactions and hydrogen bonds within the binding pocket with good docking score - 7.99 kcal/mol. The cytotoxicity effect of 7-AID compound was evaluated using MTT assay on human cervical carcinoma cells (HeLa) and breast cancer cells (MCF-7 and MDA MB-231) and the compound shown effective inhibitory concentration (IC50) on Hela cells 16.96 µM/ml and 14.12 and 12.69 µM/ml on MCF-7 and MDA MB-231, respectively. Further, the in-vitro, in-vivo anti-cancer and anti-angiogenic assessment of 7-AID compound was evaluated on Hela cells using scratch wound-healing assay, DAPI staining, cell cycle analysis, immunoblotting, and chorioallontoic membrane assay. Furthermore, the inhibitory effect of derivative compound on DDX3 was investigated in HeLa, MCF-7, and MDA MB-231 cells at the mRNA and protein levels. The results showed that the 7-AID compound effectively inhibited DDX3 in a dose-dependent manner, and the findings suggest that the compound could be used as a potential DDX3 inhibitor.
Collapse
Affiliation(s)
- Ravinder Doneti
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Mahendran Botlagunta
- School of Biosciences Engineering and Technology, VIT Bhopal University, Bhopal, Madhya Pradesh, 466114, India
| | - S K Heena
- Department of Pathology, Osmania Medical College, Hyderabad, Telangana, 500095, India
| | | | - Smita C Pawar
- Department of Genetics & Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India.
| |
Collapse
|
25
|
Nguyen A, Kim AH, Kang MK, Park NH, Kim RH, Kim Y, Shin KH. Chronic Alcohol Exposure Promotes Cancer Stemness and Glycolysis in Oral/Oropharyngeal Squamous Cell Carcinoma Cell Lines by Activating NFAT Signaling. Int J Mol Sci 2022; 23:ijms23179779. [PMID: 36077186 PMCID: PMC9456298 DOI: 10.3390/ijms23179779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol consumption is associated with an increased risk of several cancers, including oral/oropharyngeal squamous cell carcinoma (OSCC). Alcohol also enhances the progression and aggressiveness of existing cancers; however, its underlying molecular mechanism remains elusive. Especially, the local carcinogenic effects of alcohol on OSCC in closest contact with ingestion of alcohol are poorly understood. We demonstrated that chronic ethanol exposure to OSCC increased cancer stem cell (CSC) populations and their stemness features, including self-renewal capacity, expression of stem cell markers, ALDH activity, and migration ability. The ethanol exposure also led to a significant increase in aerobic glycolysis. Moreover, increased aerobic glycolytic activity was required to support the stemness phenotype of ethanol-exposed OSCC, suggesting a molecular coupling between cancer stemness and metabolic reprogramming. We further demonstrated that chronic ethanol exposure activated NFAT (nuclear factor of activated T cells) signaling in OSCC. Functional studies revealed that pharmacological and genetic inhibition of NFAT suppressed CSC phenotype and aerobic glycolysis in ethanol-exposed OSCC. Collectively, chronic ethanol exposure promotes cancer stemness and aerobic glycolysis via activation of NFAT signaling. Our study provides a novel insight into the roles of cancer stemness and metabolic reprogramming in the molecular mechanism of alcohol-mediated carcinogenesis.
Collapse
Affiliation(s)
- Anthony Nguyen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Anna H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Mo K. Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Reuben H. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Yong Kim
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Laboratory of Stem Cell and Cancer Epigenetics, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Broad Stem Cell Research Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: (Y.K.); (K.-H.S.)
| |
Collapse
|
26
|
Gong S, Xiong L, Luo Z, Yin Q, Huang M, Zhou Y, Li J. SIRT6 promotes ferroptosis and attenuates glycolysis in pancreatic cancer through regulation of the NF-κB pathway. Exp Ther Med 2022; 24:502. [PMID: 35837046 PMCID: PMC9257961 DOI: 10.3892/etm.2022.11430] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/16/2022] [Indexed: 11/05/2022] Open
Abstract
Pancreatic cancer (PC) is a malignant tumor with high mortality worldwide. SIRT6 plays versatile roles in human cancers. However, SIRT6 has rarely been studied in PC. The purpose of the present study was to explore the function and potential mechanism of SIRT6 in PC. The expression of SIRT6 in PC tissues and cells was detected by reverse transcription-quantitative PCR and western blotting. The overall survival time was analyzed through the Kaplan Meier method. Cell viability was measured by the Cell Counting Kit-8 assay. The Fe2+ content, glucose uptake, lactic acid and ATP production were detected through the corresponding kits. ROS was evaluated using the DCFH-DA detection kit. Protein expression was assessed by immunohistochemistry or western blot analysis. In the present study, SIRT6 was lowly expressed in PC tissues and cells compared with normal tissues and cells. Moreover, the low expression of SIRT6 was associated with a poor prognosis in patients with PC. Upregulation of SIRT6 significantly promoted the ferroptosis and inhibited the glycolysis in PC cells. However, knockdown of SIRT6 resisted ferroptosis and increased glycolysis in PC cells. Further studies found that the activation of NF-κB could reverse the effect of SIRT6 on PC cells. In addition, overexpression of SIRT6 restrained the growth of xenografted tumors and suppressed the nuclear transcription of NF-κB in vivo. Collectively, the present study indicated that SIRT6 promoted ferroptosis and inhibited glycolysis through inactivating the NF-κB signaling pathway in PC. These findings suggested that SIRT6 may become a therapeutic target for PC.
Collapse
Affiliation(s)
- Shuangxi Gong
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Lixin Xiong
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Zhen Luo
- Department of General Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Qinghua Yin
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Ming Huang
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Yang Zhou
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| | - Jian Li
- Department of Hepatobiliary Surgery, The First Hospital of Changsha, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
27
|
Xiang Y, Chen Q, Li Q, Liang C, Cao W. The expression level of chicken telomerase reverse transcriptase in tumors induced by ALV-J is positively correlated with methylation and mutation of its promoter region. Vet Res 2022; 53:49. [PMID: 35739589 PMCID: PMC9229480 DOI: 10.1186/s13567-022-01069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter mutation. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT promoter in each ALV-J tumors tested had a mutation of -183 bp C > T, and 36.0% (9/25) of the tumors also had mutations of -184 bp T > C, -73 bp::GGCCC and -56 bp A > T in the chTERT promoter, which formed the binding sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT-qPCR and Western blotting showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the molecular mechanism of chTERT in ALV-J tumorigenesis.
Collapse
Affiliation(s)
- Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingbo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China. .,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Yang J, Liu DJ, Zheng JH, He RZ, Xu DP, Yang MW, Yao HF, Fu XL, Yang JY, Huo YM, Tao LY, Hua R, Sun YW, Kong XM, Jiang SH, Liu W. IRAK2-NF-κB signaling promotes glycolysis-dependent tumor growth in pancreatic cancer. Cell Oncol (Dordr) 2022; 45:367-379. [PMID: 35486320 DOI: 10.1007/s13402-022-00670-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metabolic reprogramming has emerged as a core hallmark of cancer, and cancer metabolism has long been equated with aerobic glycolysis. Moreover, hypoxia and the hypovascular tumor microenvironment (TME) are major hallmarks of pancreatic ductal adenocarcinoma (PDAC), in which glycolysis is imperative for tumor cell survival and proliferation. Here, we explored the impact of interleukin 1 receptor-associated kinase 2 (IRAK2) on the biological behavior of PDAC and investigated the underlying mechanism. METHODS The expression pattern and clinical relevance of IRAK2 was determined in GEO, TCGA and Ren Ji datasets. Loss-of-function and gain-of-function studies were employed to investigate the cellular functions of IRAK2 in vitro and in vivo. Gene set enrichment analysis, Seahorse metabolic analysis, immunohistochemistry and Western blot were applied to reveal the underlying molecular mechanisms. RESULTS We found that IRAK2 is highly expressed in PDAC patient samples and is related to a poor prognosis. IRAK2 knockdown led to a significant impairment of PDAC cell proliferation via an aberrant Warburg effect. Opposite results were obtained after exogenous IRAK2 overexpression. Mechanistically, we found that IRAK2 is critical for sustaining the activation of transcription factors such as those of the nuclear factor-κB (NF-κB) family, which have increasingly been recognized as crucial players in many steps of cancer initiation and progression. Treatment with maslinic acid (MA), a NF-κB inhibitor, markedly attenuated the aberrant oncological behavior of PDAC cells caused by IRAK2 overexpression. CONCLUSIONS Our data reveal a role of IRAK2 in PDAC metabolic reprogramming. In addition, we obtained novel insights into how immune-related pathways affect PDAC progression and suggest that targeting IRAK2 may serve as a novel therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rui-Zhe He
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Da-Peng Xu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min-Wei Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xue-Liang Fu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ling-Ye Tao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Xian-Ming Kong
- Central Laboratory, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
29
|
Liao L, Dang W, Lin T, Yu J, Liu T, Li W, Xiao S, Feng L, Huang J, Fu R, Li J, Liu L, Wang M, Tao H, Jiang H, Chen K, Diao X, Zhou B, Shen X, Luo C. A potent PGK1 antagonist reveals PGK1 regulates the production of IL-1β and IL-6. Acta Pharm Sin B 2022; 12:4180-4192. [PMID: 36386479 PMCID: PMC9643279 DOI: 10.1016/j.apsb.2022.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/02/2022] Open
Abstract
Glycolytic metabolism enzymes have been implicated in the immunometabolism field through changes in metabolic status. PGK1 is a catalytic enzyme in the glycolytic pathway. Here, we set up a high-throughput screen platform to identify PGK1 inhibitors. DC-PGKI is an ATP-competitive inhibitor of PGK1 with an affinity of Kd = 99.08 nmol/L. DC-PGKI stabilizes PGK1 in vitro and in vivo, and suppresses both glycolytic activity and the kinase function of PGK1. In addition, DC-PGKI unveils that PGK1 regulates production of IL-1β and IL-6 in LPS-stimulated macrophages. Mechanistically, inhibition of PGK1 with DC-PGKI results in NRF2 (nuclear factor-erythroid factor 2-related factor 2, NFE2L2) accumulation, then NRF2 translocates to the nucleus and binds to the proximity region of Il-1β and Il-6 genes, and inhibits LPS-induced expression of these genes. DC-PGKI ameliorates colitis in the dextran sulfate sodium (DSS)-induced colitis mouse model. These data support PGK1 as a regulator of macrophages and suggest potential utility of PGK1 inhibitors in the treatment of inflammatory bowel disease.
Collapse
|
30
|
Pan-cancer analysis of microRNA expression profiles highlights microRNAs enriched in normal body cells as effective suppressors of multiple tumor types: A study based on TCGA database. PLoS One 2022; 17:e0267291. [PMID: 35476804 PMCID: PMC9045663 DOI: 10.1371/journal.pone.0267291] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are frequently deregulated in various types of cancer. While antisense oligonucleotides are used to block oncomiRs, delivery of tumour-suppressive miRNAs holds great potential as a potent anti-cancer strategy. Here, we aim to determine, and functionally analyse, miRNAs that are lowly expressed in various types of tumour but abundantly expressed in multiple normal tissues. METHODS The miRNA sequencing data of 14 cancer types were downloaded from the TCGA dataset. Significant differences in miRNA expression between tumor and normal samples were calculated using limma package (R programming). An adjusted p value < 0.05 was used to compare normal versus tumor miRNA expression profiles. The predicted gene targets were obtained using TargetScan, miRanda, and miRDB and then subjected to gene ontology analysis using Enrichr. Only GO terms with an adjusted p < 0.05 were considered statistically significant. All data from wet-lab experiments (cell viability assays and flow cytometry) were expressed as means ± SEM, and their differences were analyzed using GraphPad Prism software (Student's t test, p < 0.05). RESULTS By compiling all publicly available miRNA profiling data from The Cancer Genome Atlas (TCGA) Pan-Cancer Project, we reveal a small set of tumour-suppressing miRNAs (which we designate as 'normomiRs') that are highly expressed in 14 types of normal tissues but poorly expressed in corresponding tumour tissues. Interestingly, muscle-enriched miRNAs (e.g. miR-133a/b and miR-206) and miRNAs from DLK1-DIO3 locus (e.g. miR-381 and miR-411) constitute a large fraction of the normomiRs. Moreover, we define that the CCCGU motif is absent in the oncomiRs' seed sequences but present in a fraction of tumour-suppressive miRNAs. Finally, the gain of function of candidate normomiRs across several cancer cell types indicates that miR-206 and miR-381 exert the most potent inhibition on multiple cancer types in vitro. CONCLUSION Our results reveal a pan-cancer set of tumour-suppressing miRNAs and highlight the potential of miRNA-replacement therapies for targeting multiple types of tumour.
Collapse
|
31
|
ENO3 promotes colorectal cancer progression by enhancing cell glycolysis. Med Oncol 2022; 39:80. [PMID: 35477821 DOI: 10.1007/s12032-022-01676-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the leading cause of cancer-related morbidity and mortality worldwide. Aerobic glycolysis, as a metabolic hallmark of cancer, plays an important role in CRC progression. Enolase 3 (ENO3) is a glycolytic enzyme that catalyzes 2-phosphoglycerate into phosphoenolpyruvate, while its role in CRC is still unknown. METHODS Bioinformatics analysis was performed to examine the expression changes and roles of ENO3 in CRC patients from public databases. Then, ENO3 expression was validated in CRC tissues using Quantitative real-time PCR (qRT-PCR), immunohistochemical (IHC) analysis, and western blot. Overexpression and silencing models were constructed using plasmid and lentivirus transfection. Cell viability, proliferation, and migration in vitro were applied to evaluate the protumoral effects of ENO3 on CRC. RNA sequencing and GO enrichment analysis of differentially expressed genes (DEGs) were performed to explore the underlying molecular mechanisms of ENO3 in CRC progression. The ATP and lactate production level were detected to assess cell glycolysis. RESULTS ENO3 was significantly up-regulated in CRC. High ENO3 expression was positively correlated with poor prognosis and higher clinical stages of CRC patients. ROC curve demonstrated the diagnostic value of ENO3 for CRC with the AUC of 0.802. Gain- and loss-of function experiments demonstrated that ENO3 significantly enhanced the proliferation and migration ability of CRC cells in vitro. After ENO3 knockdown, RNA sequencing screened out a list of DEGs which were enriched in the regulation of the glycolytic process. The detection of lactate production and ATP level verified the role of ENO3 in the glycolytic process. CONCLUSION Our findings illustrate that ENO3 could promote the progression of CRC by the enhancement of cell glycolysis, indicating the potential value of ENO3 as a novel biomarker and therapeutic target for CRC.
Collapse
|
32
|
Liu Y, Han K, Cao Y, Hu Y, Shao Z, Tong W, Han Y, Liu Y. KLF9 regulates miR-338-3p/NRCAM axis to block the progression of osteosarcoma cells. J Cancer 2022; 13:2029-2039. [PMID: 35399713 PMCID: PMC8990415 DOI: 10.7150/jca.63533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/06/2022] [Indexed: 12/13/2022] Open
Abstract
Background: MiR-338-3p is revealed to serve as a tumor suppressor in several carcinomas. Whereas, the effect of miR-338-3p in the progression of osteosarcoma has not been explored. The aim of this paper was to analyze the functional influences of miR-338-3p on osteosarcoma progression and the potential mechanism. Methods: The expression of genes and miRNAs in osteosarcoma cells was assessed via western blotting or quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Osteosarcoma cellular proliferation was explored by MTT and EdU incorporation assay. Osteosarcoma cellular migratory and invasive capacity was explored by wound-healing and transwell assay. Bioinformatics approaches were adopted to predict target genes. The relationships between miR-338-3p and neuron‑glial‑related cell adhesion (NRCAM), between kruppel-like factor 9 (KLF9) and miR-338-3p were verified by dual-luciferase reporter assay. Results: We found that miR-338-3p was reduced in osteosarcoma and that higher expression of miR-338-3p suppressed proliferative, invasive and migratory ability of osteosarcoma cells. Furthermore, the result showed that overexpression of NRCAM could reduce the anti-tumor role of miR-338-3p in osteosarcoma cells. In addition, we found that overexpression of KLF9 could enhance the expression level of miR-338-3p in osteosarcoma cells. Conclusion: The KLF9/miR-338-3p/NRCAM axis played a significant role in regulating osteosarcoma progression, which may become a promising therapeutic method for osteosarcoma.
Collapse
Affiliation(s)
- Yunlu Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kuijing Han
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, China
| | - Yulin Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuxiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Tong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanjiu Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yong Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
33
|
Kussainova A, Bulgakova O, Aripova A, Khalid Z, Bersimbaev R, Izzotti A. The Role of Mitochondrial miRNAs in the Development of Radon-Induced Lung Cancer. Biomedicines 2022; 10:428. [PMID: 35203638 PMCID: PMC8962319 DOI: 10.3390/biomedicines10020428] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/07/2022] Open
Abstract
MicroRNAs are short, non-coding RNA molecules regulating gene expression by inhibiting the translation of messenger RNA (mRNA) or leading to degradation. The miRNAs are encoded in the nuclear genome and exported to the cytosol. However, miRNAs have been found in mitochondria and are probably derived from mitochondrial DNA. These miRNAs are able to directly regulate mitochondrial genes and mitochondrial activity. Mitochondrial dysfunction is the cause of many diseases, including cancer. In this review, we consider the role of mitochondrial miRNAs in the pathogenesis of lung cancer with particular reference to radon exposure.
Collapse
Affiliation(s)
- Assiya Kussainova
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Zumama Khalid
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy; (A.K.); (Z.K.)
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Nur-Sultan, Akmola 010008, Kazakhstan; (O.B.); (A.A.)
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
34
|
Liu H, Wang X, Shen P, Ni Y, Han X. The basic functions of phosphoglycerate kinase 1 and its roles in cancer and other diseases. Eur J Pharmacol 2022; 920:174835. [DOI: 10.1016/j.ejphar.2022.174835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
|
35
|
Pan X, Guo J, Liu C, Pan Z, Yang Z, Yao X, Yuan J. LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis. Cell Mol Biol Lett 2022; 27:5. [PMID: 34991445 PMCID: PMC8903679 DOI: 10.1186/s11658-021-00304-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Osteosarcoma (OS) is a common primary bone malignancy. Long noncoding RNA HCG18 is known to play an important role in a variety of cancers. However, its role in OS and relevant molecular mechanisms are unclear. Methods Real-time quantitative PCR was performed to determine the expression of target genes. Function experiments showed the effects of HCG18 and miR-365a-3p on OS cell growth. Results HCG18 expression was increased in OS cell lines. Moreover, in vitro and in vivo experiments demonstrated that HCG18 knockdown inhibited OS cell proliferation. Mechanistically, HCG18 was defined as a competing endogenous RNA by sponging miR-365a-3p, thus elevating phosphoglycerate kinase 1 (PGK1) expression by directly targeting its 3ʹUTR to increase aerobic glycolysis. Conclusion HCG18 promoted OS cell proliferation via enhancing aerobic glycolysis by regulating the miR-365a-3p/PGK1 axis. Therefore, HCG18 may be a potential target for OS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00304-6.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Jin Guo
- Department of Orthopedics, Zhenjiang First People's Hospital Branch, Zhenjiang, People's Republic of China
| | - Canjun Liu
- Department of Respiratory Therapy, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Zhanpeng Pan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Zhicheng Yang
- Department of Orthopedics, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| | - Xiang Yao
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
36
|
Liu S, Song L, Yao H, Zhang L. HPV16 E6/E7 stabilize PGK1 protein by reducing its poly-ubiquitination in cervical cancer. Cell Biol Int 2021; 46:370-380. [PMID: 34882921 DOI: 10.1002/cbin.11744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/03/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022]
Abstract
This study aimed to explore the expression profile, prognostic value, regulatory effect, and the underlying mechanism of dysregulation of phosphoglycerate kinase 1 (PGK1) in high-risk human papillomavirus (HPV)-positive cervical epithelial squamous cell carcinoma (CESC). Bioinformatic analysis was performed using the CESC subset of The Cancer Genome Atlas (TCGA)-Cervical Cancer (CESC) and normal cervix in The Genotype-Tissue Expression (GTEx) project. HPV-16 positive CaSki and SiHa cells were used as in vitro cell models. Results showed that compared to the normal cervix, CESC tissues had significantly higher expression of PGK1. CESC patients with the higher 50% expression of PGK1 had substantially shorter disease-specific survival (DSS), and progression-free survival (PFS) compared to the cases with the lower 50% expression of PGK1. PGK1 knockdown impaired, but PGK1 overexpression enhanced the proliferation, colony formation, aerobic glycolytic activities (lactate production, intracellular ATP levels, glucose uptake, and extracellular acidification rate), migration, and invasion of CaSki and SiHa cells. HPV-16 E6/E7 knockdown in CaSki and SiHa cells had limited influence on PGK1 transcription but significantly decreased the half-life of PGK1 protein. E6/E7 knockdown mediated PGK1 downregulation could be blocked by adding MG-132. PGK1 poly-ubiquitination was significantly enhanced after E6/E7 knockdown. In conclusion, this study showed that PGK1 expression might serve as a prognostic biomarker in cervical cancer. Its upregulation contributes to enhanced aerobic glycolysis, migration, and invasion of CESC cells. HPV16 E6/E7 stabilizes PGK1 protein by reducing its poly-ubiquitination.
Collapse
Affiliation(s)
- Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Lili Song
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Hairong Yao
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| | - Liang Zhang
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
37
|
Mai S, Inkielewicz-Stepniak I. Pancreatic Cancer and Platelets Crosstalk: A Potential Biomarker and Target. Front Cell Dev Biol 2021; 9:749689. [PMID: 34858977 PMCID: PMC8631477 DOI: 10.3389/fcell.2021.749689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Platelets have been recognized as key players in hemostasis, thrombosis, and cancer. Preclinical and clinical researches evidenced that tumorigenesis and metastasis can be promoted by platelets through a wide variety of crosstalk between cancer cells and platelets. Pancreatic cancer is a devastating disease with high morbidity and mortality worldwide. Although the relationship between pancreatic cancer and platelets in clinical diagnosis is described, the interplay between pancreatic cancer and platelets, the underlying pathological mechanism and pathways remain a matter of intensive study. This review summaries recent researches in connections between platelets and pancreatic cancer. The existing data showed different underlying mechanisms were involved in their complex crosstalk. Typically, pancreatic tumor accelerates platelet aggregation which forms thrombosis. Furthermore, extracellular vesicles released by platelets promote communication in a neoplastic microenvironment and illustrate how these interactions drive disease progression. We also discuss the advantages of novel model organoids in pancreatic cancer research. A more in-depth understanding of tumor and platelets crosstalk which is based on organoids and translational therapies may provide potential diagnostic and therapeutic strategies for pancreatic cancer progression.
Collapse
Affiliation(s)
- Shaoshan Mai
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Iwona Inkielewicz-Stepniak
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
38
|
Wan L, Gu D, Li P. LncRNA SNHG16 promotes proliferation and migration in laryngeal squamous cell carcinoma via the miR-140-5p/NFAT5/Wnt/β-catenin pathway axis. Pathol Res Pract 2021; 229:153727. [PMID: 34911016 DOI: 10.1016/j.prp.2021.153727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Recent studies demonstrate that long noncoding RNAs (lncRNAs) are involved in the development of various cancers. Many lncRNAs were reported to abnormally express in laryngeal squamous cell carcinoma (LSCC) and play pivotal roles in its development. LncRNA small nucleolar RNA host gene 16 (SNHG16) was previously validated as an oncogene in hepatocellular carcinoma. Nevertheless, the biological role of SNHG16 in LSCC still needs more explorations. The goal of this assay is to explore the function and molecular mechanism of lncRNA SNHG16 in the development of LSCC. METHODS AND RESULTS First, RT-qPCR demonstrated the upregulation of SNHG16 in LSCC cells and tissues. Loss-of-function assays determined the inhibitive influence of SNHG16 downregulation on cell viability, growth, and migration in LSCC. Furthermore, SNHG16 bound with miR-140-5p in LSCC. MiR-140-5p overexpression suppressed LSCC cell proliferation and migration. NFAT5 was identified as a direct target of miR-140-5p. Through rescue experiments, overexpression of NFAT5 reversed SNHG16 knockdown-mediated suppression on cell viability, growth, and migration in LSCC. Additionally, NFAT5 overexpression activated while NFAT5 downregulation inhibited the Wnt/β-catenin signaling pathway. CONCLUSION LncRNA SNHG16 is upregulated in LSCC and contributes to the development of LSCC via regulating the miR-140-5p/NFAT5/Wnt/β-catenin pathway axis. The SNHG16/miR-140-5p/NFAT5/Wnt/β-catenin pathway axis might provide a novel strategy for LSCC treatment.
Collapse
Affiliation(s)
- Lanlan Wan
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Dongsheng Gu
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Peizhong Li
- Department of Otolaryngology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian 223300, Jiangsu, China.
| |
Collapse
|
39
|
Cheng Y, Wang Y, Cheng Y, Yang Q, Zhang L, Li Z, Cheng J. FOXD3-induced miR-133a blocks progression and metastasis of colorectal cancer through regulating UBA2. J Cancer 2021; 12:6145-6154. [PMID: 34539887 PMCID: PMC8425194 DOI: 10.7150/jca.60647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background and Aim: Some studies have verified that miR-133a played an inhibitory role in several cancers. Whereas, the effect of miRNA-133a in colorectal cancer (CRC) has not been fully elucidated. Our study aims to confirm UBA2 as a direct target gene of miRNA-133a and explore the upstream modulatory molecules of miR-133a. In addition, their impacts on the biological characteristics of CRC cells were assessed. Methods: QRT-PCR analyzed miR-133a expression levels in colorectal cells including HCT116, SW48 cells and human normal colorectal cell line NCM460. A serial biological experiment assessed miR-133a effects on cell proliferation, migration, invasion and apoptosis capacities in HCT116 and SW48 cells. MiRNA targeting gene prediction and a dual luciferase assay were employed to confirm miR-133a-targeted UBA2. Transcription factors (TFs) FOXD3 was identified as an upstream regulator of miR-133a via JASPAR. The influence of miR-133a and FOXD3 on UBA2 expression was analyzed by qRT-PCR or western blot. Results: miR-133a was lowly expressed in CRC cells. High miRNA-133a expression suppressed the proliferation, migration, invasion and enhanced apoptosis capacities of CRC cells. MiR-133a targeted the UBA2 mRNA 3ʹUTR area and reduced UBA2 protein expression. We also unveiled that FOXD3 high-expression significantly raised miR-133a expression and diminished UBA2 expression. We also discovered that high miR-133a expression augmented the effects of elevated FOXD3 expression on CRC cell proliferation, migration and invasion, whereas, low miR-133a expression generated the opposite outcomes. Conclusion: FOXD3 induced miRNA-133a directly targeting UBA2 could affect the progression and growth of CRC.
Collapse
Affiliation(s)
- Yuanfang Cheng
- Sanquan College of Xinxiang Medical University, west of Changjiang Avenue, Pingyuan New Area, Xinxiang City, Henan Province, China
| | - Yajuan Wang
- Sanquan College of Xinxiang Medical University, west of Changjiang Avenue, Pingyuan New Area, Xinxiang City, Henan Province, China
| | - Yuanzun Cheng
- College of Nursing, LuoYang Polytechic, Luoyang, 471000, Henan, China
| | - Quanzhong Yang
- Sanquan College of Xinxiang Medical University, west of Changjiang Avenue, Pingyuan New Area, Xinxiang City, Henan Province, China
| | - Lejing Zhang
- Sanquan College of Xinxiang Medical University, west of Changjiang Avenue, Pingyuan New Area, Xinxiang City, Henan Province, China
| | - Zhaoxi Li
- Sanquan College of Xinxiang Medical University, west of Changjiang Avenue, Pingyuan New Area, Xinxiang City, Henan Province, China
| | - Jiancheng Cheng
- Department of Cardiovascular Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
40
|
Jiang B, Chen Y, Xia F, Li X. PTCSC3-mediated glycolysis suppresses thyroid cancer progression via interfering with PGK1 degradation. J Cell Mol Med 2021; 25:8454-8463. [PMID: 34337858 PMCID: PMC8419167 DOI: 10.1111/jcmm.16806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023] Open
Abstract
The Warburg effect (aerobic glycolysis), a hallmark of cancer, serves as a promising target for diagnosis and therapy. Growing evidence indicates that long non‐coding RNAs (lncRNAs) play an important role in aerobic glycolysis of various tumours. However, the correlation between lncRNAs and glycolysis in thyroid cancer cells is still poorly understood. In this study, we showed that lncRNA papillary thyroid cancer susceptibility candidate 3 (PTCSC3) was significantly downregulated in papillary thyroid carcinoma (PTC). Overexpression of PTCSC3 significantly inhibited the aerobic glycolysis and tumour growth of PTC cells. Consistently, PTCSC3 overexpression suppressed tumour progress in vivo. Mechanistically, PTCSC3 inhibits aerobic glycolysis and proliferation of PTC by directly interacting with PGK1, a key enzyme in glycolytic pathway. As a result, PTCSC3 performs its role in PTC development via PGK1 and may be a potential therapeutic target for PTC treatment.
Collapse
Affiliation(s)
- Bo Jiang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Chen
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Estaras M, Gonzalez A. Modulation of cell physiology under hypoxia in pancreatic cancer. World J Gastroenterol 2021; 27:4582-4602. [PMID: 34366624 PMCID: PMC8326256 DOI: 10.3748/wjg.v27.i28.4582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
In solid tumors, the development of vasculature is, to some extent, slower than the proliferation of the different types of cells that form the tissue, both cancer and stroma cells. As a consequence, the oxygen availability is compromised and the tissue evolves toward a condition of hypoxia. The presence of hypoxia is variable depending on where the cells are localized, being less extreme at the periphery of the tumor and more severe in areas located deep within the tumor mass. Surprisingly, the cells do not die. Intracellular pathways that are critical for cell fate such as endoplasmic reticulum stress, apoptosis, autophagy, and others are all involved in cellular responses to the low oxygen availability and are orchestrated by hypoxia-inducible factor. Oxidative stress and inflammation are critical conditions that develop under hypoxia. Together with changes in cellular bioenergetics, all contribute to cell survival. Moreover, cell-to-cell interaction is established within the tumor such that cancer cells and the microenvironment maintain a bidirectional communication. Additionally, the release of extracellular vesicles, or exosomes, represents short and long loops that can convey important information regarding invasion and metastasis. As a result, the tumor grows and its malignancy increases. Currently, one of the most lethal tumors is pancreatic cancer. This paper reviews the most recent advances in the knowledge of how cells grow in a pancreatic tumor by adapting to hypoxia. Unmasking the physiological processes that help the tumor increase its size and their regulation will be of major relevance for the treatment of this deadly tumor.
Collapse
Affiliation(s)
- Matias Estaras
- Department of Physiology, Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres 10003, Spain
| | - Antonio Gonzalez
- Department of Physiology, Cell Biology and Communication Research Group, University of Extremadura, Caceres 10003, Spain
| |
Collapse
|
42
|
Zhang X, Chen Q, Liu Q, Wang Y, Wang F, Zhao Z, Zhao G, Lau WY, Gao Y, Liu R. Development and validation of glycolysis-related prognostic score for prediction of prognosis and chemosensitivity of pancreatic ductal adenocarcinoma. J Cell Mol Med 2021; 25:5615-5627. [PMID: 33942483 PMCID: PMC8184720 DOI: 10.1111/jcmm.16573] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with aggressive biological behaviour. Its rapid proliferation and tumour growth require reprogramming of glucose metabolism or the Warburg effect. However, the association between glycolysis-related genes with clinical features and prognosis of PDAC is still unknown. Here, we used the meta-analysis to correlate the hazard ratios (HR) of 106 glycolysis genes from MSigDB by the cox proportional hazards regression analysis in 6 clinical data sets of PDAC patients to form a training cohort, and a single group of PDAC patients from the TCGA, ICGC, Arrayexpress and GEO databases to form the validation cohort. Then, a glycolysis-related prognosis (GRP) score based on 29 glycolysis prognostic genes was established in 757 PDAC patients from the training composite cohort and validated in 267 ICGC-CA validation cohort (all P < .05). In addition, including PADC, the prognostic value was also confirmed in other 7 out of 30 pan-cancer cohorts. The GRP score was significantly related to specific metabolism pathways, immune genes and immune cells in the patients with PADC (all P < .05). Finally, by combining with immune cells, the GRP score also well-predicted the chemosensitivity of patients with PADC in the TCGA cohort (AUC = 0.709). In conclusion, this study developed a GRP score for patients with PDAC in predicting prognosis and chemosensitivity for PDAC.
Collapse
Affiliation(s)
- Xiu‐Ping Zhang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Qinjunjie Chen
- Department of Hepatic Surgery IVThe Eastern Hepatobiliary Surgery HospitalSecond Military Medical UniversityShanghaiChina
| | - Qu Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Yang Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Fei Wang
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Zhi‐Ming Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Guo‐Dong Zhao
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| | - Wan Yee Lau
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
- Faculty of MedicineThe Chinese University of Hong KongHong KongChina
| | - Yu‐Zhen Gao
- Department of Clinical LaboratorySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Rong Liu
- Faculty of Hepato‐Biliary‐Pancreatic SurgeryChinese People’s Liberation Army (PLA) General HospitalBeijingChina
| |
Collapse
|
43
|
Dou Y, Tian W, Wang H, Lv S. Circ_0001944 Contributes to Glycolysis and Tumor Growth by Upregulating NFAT5 Through Acting as a Decoy for miR-142-5p in Non-Small Cell Lung Cancer. Cancer Manag Res 2021; 13:3775-3787. [PMID: 34040437 PMCID: PMC8140396 DOI: 10.2147/cmar.s302814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/15/2021] [Indexed: 01/12/2023] Open
Abstract
Background Circular RNAs (circRNAs) participate in the tumorigenesis of various cancers. CircRNA hsa_circ_0001944 (circ_0001944), derived from the TCONS_l2_00030860 gene, has been uncovered to be upregulated in NSCLC (non-small cell lung cancer). Nevertheless, the influence of circ_0001944 on glycolysis and tumor growth in NSCLC is unclear. Methods Expression trend of circ_0001944 in NSCLC tissues and cells were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Loss-of-function experiments were performed to assess the influence of circ_0001944 knockdown on proliferation, migration, invasion, and glycolysis of NSCLC cells. Protein levels were assessed by Western blotting. The regulatory mechanism of circ_0001944 was analyzed by bioinformatics analysis, dual-luciferase reporter assay, and/or RNA pull-down assay. The tumorigenicity of circ_0001944 was confirmed by xenograft assay. Results Circ_0001944 was highly expressed in NSCLC, and NSCLC patients with high expression of circ_0001944 had a worse prognosis. Circ_0001944 silencing decreased xenograft tumor growth in vivo and repressed proliferation, migration, invasion, and glycolysis of NSCLC cells in vitro. Circ_0001944 was verified as a decoy for microRNA (miR)-142-5p, which targeted NFAT5 (nuclear factor of activated T cells 5). MiR-142-5p was downregulated while NFAT5 was upregulated in NSCLC. Both miR-142-5p inhibition and NFAT5 overexpression offset the suppressive impact of circ_0001944 silencing on proliferation, migration, invasion, and glycolysis of NSCLC cells. Circ_0001944 adsorbed miR-142-5p to elevate NFAT5 expression in NSCLC cells. Conclusion Circ_0001944 promotes proliferation, migration, invasion, and glycolysis of NSCLC cells by upregulating NFAT5 through adsorbing miR-142-5p, offering a novel mechanism for understanding the advancement of NSCLC.
Collapse
Affiliation(s)
- Yawei Dou
- Department of Thoracic Surgery, Shaanxi Province People's Hospital, Xi'an, 710068, People's Republic of China
| | - Wei Tian
- Department of Thoracic Surgery, Shaanxi Province People's Hospital, Xi'an, 710068, People's Republic of China
| | - Hongtao Wang
- Department of Thoracic Surgery, Shaanxi Province People's Hospital, Xi'an, 710068, People's Republic of China
| | - Shanshan Lv
- Department of Cardiovascular Surgery, Xijing Hospital of Airforce Medical University, Xi'an, 710032, People's Republic of China
| |
Collapse
|
44
|
RANK promotes colorectal cancer migration and invasion by activating the Ca 2+-calcineurin/NFATC1-ACP5 axis. Cell Death Dis 2021; 12:336. [PMID: 33795653 PMCID: PMC8016848 DOI: 10.1038/s41419-021-03642-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022]
Abstract
The tumor necrosis factor (TNF) receptor superfamily member 11a (TNFRSF11a, also known as RANK) was demonstrated to play an important role in tumor metastasis. However, the specific function of RANK in colorectal cancer (CRC) metastasis and the underlying mechanism are unknown. In this study, we found that RANK expression was markedly upregulated in CRC tissues compared with that in matched noncancerous tissues. Increased RANK expression correlated positively with metastasis, higher TNM stage, and worse prognosis in patients with CRC. Overexpression of RANK promoted CRC cell metastasis in vitro and in vivo, while knockdown of RANK decreased cell migration and invasion. Mechanistically, RANK overexpression significantly upregulated the expression of tartrate-resistant acid phosphatase 5 (TRAP/ACP5) in CRC cells. Silencing of ACP5 in RANK-overexpressing CRC cells attenuated RANK-induced migration and invasion, whereas overexpression of ACP5 increased the migration and invasion of RANK-silencing cells. The ACP5 expression was transcriptionally regulated by calcineurin/nuclear factor of activated T cells c1 (NFATC1) axis. The inhibition of calcineurin/NFATC1 significantly decreased ACP5 expression, and attenuated RANK-induced cell migration and invasion. Furthermore, RANK induced phospholipase C-gamma (PLCγ)-mediated inositol-1,4,5-trisphosphate receptor (IP3R) axis and stromal interaction molecule 1 (STIM1) to evoke calcium (Ca2+) oscillation. The RANK-mediated intracellular Ca2+ mobilization stimulated calcineurin to dephosphorylate NFATC1 and induce NFATC1 nuclear translocation. Both blockage of PLCγ-IP3R axis and STIM1 rescued RANK-induced NFATC1 nuclear translocation, ACP5 expression, and cell metastasis. Our study revealed the functional expression of RANK in human CRC cells and demonstrated that RANK induced the Ca2+-calcineurin/NFATC1-ACP5 axis in the regulation of CRC metastasis, that might be amenable to therapeutic targeting.
Collapse
|
45
|
Curcio C, Brugiapaglia S, Bulfamante S, Follia L, Cappello P, Novelli F. The Glycolytic Pathway as a Target for Novel Onco-Immunology Therapies in Pancreatic Cancer. Molecules 2021; 26:1642. [PMID: 33804240 PMCID: PMC7998946 DOI: 10.3390/molecules26061642] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism-resulting in its increased uptake-and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.
Collapse
Affiliation(s)
- Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Sara Bulfamante
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Laura Follia
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Computer Science Department, University of Turin, 10126 Turin, Italy
| | - Paola Cappello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| | - Francesco Novelli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (C.C.); (S.B.); (S.B.); (L.F.); (P.C.)
- Centro Ricerche Medicina Sperimentale, Azienda Ospedaliera Universitaria, Città della Salute e della Scienza di Torino, 10126 Turin, Italy
| |
Collapse
|
46
|
Shen M, Xu M, Zhong F, Crist MC, Prior AB, Yang K, Allaire DM, Choueiry F, Zhu J, Shi H. A Multi-Omics Study Revealing the Metabolic Effects of Estrogen in Liver Cancer Cells HepG2. Cells 2021; 10:cells10020455. [PMID: 33672651 PMCID: PMC7924215 DOI: 10.3390/cells10020455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) that is triggered by metabolic defects is one of the most malignant liver cancers. A much higher incidence of HCC among men than women suggests the protective roles of estrogen in HCC development and progression. To begin to understand the mechanisms involving estrogenic metabolic effects, we compared cell number, viability, cytotoxicity, and apoptosis among HCC-derived HepG2 cells that were treated with different concentrations of 2-deoxy-d-glucose (2-DG) that blocks glucose metabolism, oxamate that inhibits lactate dehydrogenase and glycolysis, or oligomycin that blocks ATP synthesis and mitochondrial oxidative phosphorylation. We confirmed that HepG2 cells primarily utilized glycolysis followed by lactate fermentation, instead of mitochondrial oxidative phosphorylation, for cell growth. We hypothesized that estrogen altered energy metabolism via its receptors to carry out its anticancer effects in HepG2 cells. We treated cells with 17β-estradiol (E2), 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) an estrogen receptor (ER) α (ERα) agonist, or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), an ERβ agonist. We then used transcriptomic and metabolomic analyses and identified differentially expressed genes and unique metabolite fingerprints that are produced by each treatment. We further performed integrated multi-omics analysis, and identified key genes and metabolites in the gene–metabolite interaction contributed by E2 and ER agonists. This integrated transcriptomic and metabolomic study suggested that estrogen acts on estrogen receptors to suppress liver cancer cell growth via altering metabolism. This is the first exploratory study that comprehensively investigated estrogen and its receptors, and their roles in regulating gene expression, metabolites, metabolic pathways, and gene–metabolite interaction in HCC cells using bioinformatic tools. Overall, this study provides potential therapeutic targets for future HCC treatment.
Collapse
Affiliation(s)
- Minqian Shen
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Mengyang Xu
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - Fanyi Zhong
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - McKenzie C. Crist
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Anjali B. Prior
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Kundi Yang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (F.Z.); (K.Y.)
| | - Danielle M. Allaire
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
| | - Fouad Choueiry
- Department of Human Sciences, College of Education and Human Ecology, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, College of Education and Human Ecology, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (J.Z.); (H.S.); Tel.: +1-614-685-2226 (J.Z.); +1-513-529-3162 (H.S.)
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA; (M.S.); (M.X.); (M.C.C.); (A.B.P.); (D.M.A.)
- Correspondence: (J.Z.); (H.S.); Tel.: +1-614-685-2226 (J.Z.); +1-513-529-3162 (H.S.)
| |
Collapse
|
47
|
Chen BL, Li Y, Xu S, Nie Y, Zhang J. NFAT5 Regulated by STUB1, Facilitates Malignant Cell Survival and p38 MAPK Activation by Upregulating AQP5 in Chronic Lymphocytic Leukemia. Biochem Genet 2021; 59:870-883. [PMID: 33544297 DOI: 10.1007/s10528-021-10040-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a clonal proliferative disease of mature B lymphocytes. To further improve the prognosis of patients, it is necessary to further elucidate the pathogenesis of CLL and find more effective therapeutic targets. Nuclear Factor of Activated T cells 5 (NFAT5) is the major activated transcription factor (TF) upon osmotic pressure increase in mammalian cells, and it also regulates many target genes to affect various cellular functions. The effects of NFAT5 on tumor growth and metastasis have also been widely revealed. However, the effects of NFAT5 on the progression of CLL are still unclear. In this study, we found abnormally high expression of NFAT5 in human CLL patients. Additionally, NFAT5 depletion suppressed proliferation and stimulated apoptosis of CLL cells. Our data further confirmed NFAT5 regulated AQP5 expression and the phosphorylation of p38 MAPK. We also found that AQP5 overexpression reversed the inhibitory effect of NFAT5 depletion on cell proliferation in CLL cells. Furthermore, we revealed STUB1 directly bound to NFAT5 and promoted its degradation. Taken together, our results indicate the involvement of NFAT5 in CLL progression and suggest that NFAT5 could serve as a promising therapeutic target for CLL treatment.
Collapse
Affiliation(s)
- Bei Li Chen
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuchuan Li
- Department of Gynaecology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Shujuan Xu
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Yuwei Nie
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi Zhuang Autonomous Region, China
| | - Jiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
48
|
Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol 2021; 14:14. [PMID: 33436044 PMCID: PMC7805044 DOI: 10.1186/s13045-020-01030-w] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/13/2022] Open
Abstract
Attributable to its late diagnosis, early metastasis, and poor prognosis, pancreatic cancer remains one of the most lethal diseases worldwide. Unlike other solid tumors, pancreatic cancer harbors ample stromal cells and abundant extracellular matrix but lacks vascularization, resulting in persistent and severe hypoxia within the tumor. Hypoxic microenvironment has extensive effects on biological behaviors or malignant phenotypes of pancreatic cancer, including metabolic reprogramming, cancer stemness, invasion and metastasis, and pathological angiogenesis, which synergistically contribute to development and therapeutic resistance of pancreatic cancer. Through various mechanisms including but not confined to maintenance of redox homeostasis, activation of autophagy, epigenetic regulation, and those induced by hypoxia-inducible factors, intratumoral hypoxia drives the above biological processes in pancreatic cancer. Recognizing the pivotal roles of hypoxia in pancreatic cancer progression and therapies, hypoxia-based antitumoral strategies have been continuously developed over the recent years, some of which have been applied in clinical trials to evaluate their efficacy and safety in combinatory therapies for patients with pancreatic cancer. In this review, we discuss the molecular mechanisms underlying hypoxia-induced aggressive and therapeutically resistant phenotypes in both pancreatic cancerous and stromal cells. Additionally, we focus more on innovative therapies targeting the tumor hypoxic microenvironment itself, which hold great potential to overcome the resistance to chemotherapy and radiotherapy and to enhance antitumor efficacy and reduce toxicity to normal tissues.
Collapse
Affiliation(s)
- Jinxin Tao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenchuan Zhou
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200092, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Guangyu Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Fangyu Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China.
| |
Collapse
|
49
|
Abstract
Pancreatic cancer (PC) is one of the deadliest malignancies. The high mortality rate of PC largely results from delayed diagnosis and early metastasis. Therefore, identifying novel treatment targets for patients with PC is urgently required to improve survival rates. A major barrier to successful treatment of PC is the presence of a hypoxic tumor microenvironment, which is associated with poor prognosis, treatment resistance, increased invasion and metastasis. Recent studies have identified a number of novel molecules and pathways in PC cells that promote cancer cells progression under hypoxic conditions, which may provide new therapy strategies to inhibit the development and metastasis of PC. This review summarizes the latest research of hypoxia in PC and provides an overview of how the current therapies have the capacity to overcome hypoxia and improve PC patient treatment. These findings will eventually provide guidance for future PC management and clinical trials and hopefully improve the survival of patients with PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
50
|
Cao L, Wu J, Qu X, Sheng J, Cui M, Liu S, Huang X, Xiang Y, Li B, Zhang X, Cui R. Glycometabolic rearrangements--aerobic glycolysis in pancreatic cancer: causes, characteristics and clinical applications. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:267. [PMID: 33256814 PMCID: PMC7708116 DOI: 10.1186/s13046-020-01765-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most malignant tumors worldwide, and pancreatic ductal adenocarcinoma is the most common type. In pancreatic cancer, glycolysis is the primary way energy is produced to maintain the proliferation, invasion, migration, and metastasis of cancer cells, even under normoxia. However, the potential molecular mechanism is still unknown. From this perspective, this review mainly aimed to summarize the current reasonable interpretation of aerobic glycolysis in pancreatic cancer and some of the newest methods for the detection and treatment of pancreatic cancer. More specifically, we reported some biochemical parameters, such as newly developed enzymes and transporters, and further explored their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Lidong Cao
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiacheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xianzhi Qu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Xu Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Bethune Hospital of Jilin University, Changchun, 130021, China
| | - Yien Xiang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Hospital of Jilin University, Changchun, 130041, China. .,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, 130041, China.
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|