1
|
Guo Z, Dong RW, Wu Y, Dong S, Alahari SK. Cyclin-dependent kinase 4 and 6 inhibitors in breast cancer treatment. Oncogene 2025; 44:1135-1152. [PMID: 40200094 DOI: 10.1038/s41388-025-03378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/03/2025] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Breast cancer is the second largest cancer in the world, and it has highest mortality rate in women worldwide. The aberrant activation of the cyclin-dependent kinase 4 and 6 (CDK4/6) pathway plays an important role in uncontrolled breast cancer cell proliferation. Therefore, targeting CDK4/6 to improve overall survival rates has been a strong interest in breast cancer therapeutics. Till date, four CDK4/6 inhibitors have been developed and approved for hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer therapies with great success. However, acquired resistance to CDK4/6 inhibitors has emerged and limits their effectiveness in breast cancer. In this review, we systematically discussed the mechanisms of resistance to CDK4/6 inhibitors including the cell cycle-specific and cell cycle-nonspecific mechanisms. Also, we analyzed combination strategies with other signaling inhibitors in clinical and preclinical settings that further expand the clinical application of CDK4/6 inhibitors in future breast cancer therapies.
Collapse
Affiliation(s)
- Zhengfei Guo
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Richard W Dong
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Yusheng Wu
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China
| | - Shengli Dong
- TYK Medicines, Inc., Huzhou, Zhejiang, 313100, China.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Zhang Y, Li Q, Lan J, Xie G, Zhang G, Cui J, Leng P, Wang Y. Triple-negative breast cancer molecular subtypes and potential detection targets for biological therapy indications. Carcinogenesis 2025; 46:bgaf006. [PMID: 39977309 DOI: 10.1093/carcin/bgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer associated with poor prognosis. While chemotherapy remains the conventional treatment approach, its efficacy is limited and often accompanied by significant toxicity. Advances in precision-targeted therapies have expanded treatment options for TNBC, including immunotherapy, poly (ADP-ribose) polymerase inhibitors, androgen receptor inhibitors, cell cycle-dependent kinase inhibitors, and signaling pathway inhibitors. However, the heterogeneous nature of TNBC contributes to variations in treatment outcomes, underscoring the importance of identifying intrinsic molecular subtypes for personalized therapy. Additionally, due to patient-specific variability, the therapeutic response to targeted treatments is inconsistent. This highlights the need to strategize patients based on potential therapeutic targets for targeted drugs to optimize treatment strategies. This review summarizes the classification strategies and immunohistochemical (IHC) biomarkers for TNBC subtypes, along with potential targets for identifying indications for targeted drug therapy. These insights aim to support the development of personalized treatment approaches for TNBC patients.
Collapse
Affiliation(s)
- Yanchuan Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinghua Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Lan
- Division of Head & Neck Tumor Multimodality Treatment, Cancer Center, Institute of Breast Health Medicine, West China Hospital, Sichuan University, Chengdu, P.R. China
| | - Guojing Xie
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangjie Zhang
- Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, China
| | - Junhao Cui
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
| | - Ping Leng
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yingshuang Wang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chengdu, China
- Sichuan Key Laboratory of Medical Molecular Testing, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Karaosmanoğlu O. Recurrent hepatocellular carcinoma is associated with the enrichment of MYC targets gene sets, elevated high confidence deleterious mutations and alternative splicing of DDB2 and BRCA1 transcripts. Adv Med Sci 2025; 70:17-26. [PMID: 39486583 DOI: 10.1016/j.advms.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/12/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Recurrence is the main cause of hepatocellular carcinoma (HCC) related deaths. Underlying recurrence biology can be better understood by comparative analysis of the complete set of transcripts between recurrent and non-recurrent HCC. In this study, transcriptomic data (GSE56545) from 21 male patients diagnosed with either recurrent or non-recurrent HCC were reanalyzed to identify deregulated pathways, somatic mutations, fusion transcripts, alternative splicing events, and the immune context in recurrent HCC. MATERIALS AND METHODS DESeq2 was used for differential expression analysis, Mutect2 for somatic mutation analysis, Arriba and STAR-Fusion for fusion transcript analysis, and rMATs for alternative splicing analysis. RESULTS The results revealed that MYC targets gene sets (Hallmark_MYC_targets_V1 and Hallmark_MYC_targets_V2) were significantly enriched in recurrent HCC. Among the MYC targets, CBX3, NOP56, CDK4, NPM1, MCM5, MCM4 and PA2G4 upregulation was significantly associated with poor survival. Somatic mutation analysis demonstrated that the numbers of high confidence deleterious mutations were significantly increased in recurrent HCC. Alternative splicing-mediated production of non-functional DDB2 and oncogenic BRCA1 D11q were discovered in recurrent HCC. Finally, CD8+ T-cells were significantly decreased in recurrent HCC. CONCLUSIONS These results indicated that the enrichment of MYC targets gene sets is one of the most critical factors that leads to the development of recurrent HCC. In addition, elevated deleterious mutation numbers and alternative spliced DDB2 and BRCA1 isoforms have been identified as prominent contributors to increasing genomic instability in male patients with recurrent HCC.
Collapse
Affiliation(s)
- Oğuzhan Karaosmanoğlu
- Department of Biology, Kamil Özdağ Faculty of Science, Karamanoğlu Mehmetbey University, İbrahim Öktem Avenue, No. 124, 70200, Karaman, Turkey.
| |
Collapse
|
4
|
Shanabag A, Armand J, Son E, Yang HW. Targeting CDK4/6 in breast cancer. Exp Mol Med 2025; 57:312-322. [PMID: 39930131 PMCID: PMC11873051 DOI: 10.1038/s12276-025-01395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Dysregulation of the cell cycle machinery, particularly the overactivation of cyclin-dependent kinases 4 and 6 (CDK4/6), is a hallmark of breast cancer pathogenesis. The introduction of CDK4/6 inhibitors has transformed the treatment landscape for hormone receptor-positive breast cancer by effectively targeting abnormal cell cycle progression. However, despite their initial clinical success, drug resistance remains a significant challenge, with no reliable biomarkers available to predict treatment response or guide strategies for managing resistant populations. Consequently, numerous studies have sought to investigate the mechanisms driving resistance to optimize the therapeutic use of CDK4/6 inhibitors and improve patient outcomes. Here we examine the molecular mechanisms regulating the cell cycle, current clinical applications of CDK4/6 inhibitors in breast cancer, and key mechanisms contributing to drug resistance. Furthermore, we discuss emerging predictive biomarkers and highlight potential directions for overcoming resistance and enhancing therapeutic efficacy.
Collapse
Affiliation(s)
- Anusha Shanabag
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Jessica Armand
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Eugene Son
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Amiri R, Nabi PN, Fazilat A, Roshani F, Nouhi Kararoudi A, Hemmati-Dinarvand M, Valilo M. Crosstalk between miRNAs and signaling pathways in the development of drug resistance in breast cancer. Horm Mol Biol Clin Investig 2024:hmbci-2024-0066. [PMID: 39665256 DOI: 10.1515/hmbci-2024-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/28/2024] [Indexed: 12/13/2024]
Abstract
One of the biggest challenges of today's society is cancer, which imposes a significant financial, emotional and spiritual burden on human life. Breast cancer (BC) is one of the most common cancers that affects people in society, especially women, and due to advanced treatment strategies and primary prevention, it is still the second cause of cancer-related deaths in society. Various genetic and environmental factors are involved in the development of BC. MicroRNAs (miRNA)s are non-coding RNAs, that the degradation or inhibition of them plays an important role in the prevention or development of cancer by modulating many cellular pathways including apoptosis, drug resistance, and tumorigenesis. Drug resistance is one of the important defense mechanisms of cancer cells against anticancer drugs and is considered one of the main causes of cancer treatment failure. Different miRNAs, including mir-7, mir-21, mir-31, and mir-124 control different cell activities, including drug resistance, through different pathways, including PI3K/AKT/mTOR, TGF-β, STAT3, and NF-kB. Therefore, cell signaling pathways are one of the important factors that miRNAs control cellular activities. Hence, in this study, we decided to highlight an overview of the relationship between miRNAs and signaling pathways in the development of drug resistance in BC.
Collapse
Affiliation(s)
- Reza Amiri
- Nargund College of Pharmacy, Rajiv Gandhi University of Health Sciences, Bengaluru, Karnataka, India
| | | | - Ahmad Fazilat
- Department of Genetics, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fatemeh Roshani
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohsen Hemmati-Dinarvand
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Valilo
- Department of Biochemistry, 37555 Faculty of Medicine, Urmia University of Medical Sciences , Urmia, Iran
| |
Collapse
|
6
|
Huang Z, Lou K, Qi M, Wang J, Li L, Sun B, Wang C, Zhou X, Chen D, Liu H. RERE-AS1 enhances the effect of CDK4/6 inhibitor Ribociclib and suppresses malignant phenotype in breast cancer via MEK/ERK pathway. J Transl Med 2024; 22:1052. [PMID: 39574120 PMCID: PMC11583401 DOI: 10.1186/s12967-024-05828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Currently, there is a lack of biomarkers to identify breast cancer (BC) patients who would benefit from CDK4/6 inhibitors. This study combined machine learning (ML) algorithms based on transcriptomic data with both in vivo and in vitro experiments to identify therapeutic efficacy-related biomarkers of the CDK4/6 inhibitor ribociclib from the perspective of long non-coding RNA (lncRNA). METHODS We used the Genomics of Drug Sensitivity in Cancer database along with the "oncoPredict" algorithm to calculate the half maximal inhibitory concentration (IC50) values for ribociclib based on transcriptome data. ML algorithms were utilized to select key lncRNAs related to ribociclib and to establish a model which could be used for selection of potential beneficiaries of ribociclib. Cellular experiments were conducted to validate the ML analysis and explore the potential biological mechanisms by which RERE-AS1 influences ribociclib efficacy and malignant phenotype of BC cells. Correlation analysis with clinical pathological factors, RT-qPCR experiments on tissue specimens, and pan-cancer analysis were carried out to explore the expression pattern, and the prognostic and diagnostic potential of RERE-AS1 in cancers. RESULTS We have identified 11 key ribociclib-related lncRNAs and constructed an artificial neural network model (ANNM) based on lncRNA. Cellular experiments demonstrated that overexpression of RERE-AS1 promoted the anti-tumor activity of ribociclib in BC cells. Furthermore, RERE-AS1 is crucial in suppressing the malignant traits of BC cells through the reduction of MEK and ERK phosphorylation levels. Patients with smaller primary tumors and lower pathological stage exhibited higher levels of RERE-AS1 expression. Lastly, a pan-cancer analysis revealed that RERE-AS1 exhibits distinctly abnormal expression patterns, prognostic significance, and clinical diagnostic value in BC, compared to other cancers. CONCLUSIONS The ANNM established through ML algorithms can serve as predictive indicators for the efficacy of ribociclib in BC patients. LncRNA RERE-AS1, a newly discovered biomarker, holds significant promise for diagnosis, treatment, and enhancing the therapeutic response to ribociclib in BC.
Collapse
Affiliation(s)
- Zhidong Huang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kaixin Lou
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Mengyang Qi
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinhui Wang
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Linwei Li
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bo Sun
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen Wang
- The School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Xirui Zhou
- The School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Debo Chen
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
- Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.
| | - Hong Liu
- The Second Surgical Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
7
|
Armand J, Kim S, Kim K, Son E, Kim M, Yang HW. Therapeutic benefits of maintaining CDK4/6 inhibitors and incorporating CDK2 inhibitors beyond progression in breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.11.623139. [PMID: 39605351 PMCID: PMC11601343 DOI: 10.1101/2024.11.11.623139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The combination of CDK4/6 inhibitors (CDK4/6i) and endocrine therapy has revolutionized treatment for hormone receptor-positive (HR+) metastatic breast cancer. However, the emergence of resistance in most patients often leads to treatment discontinuation with no consensus on effective second-line therapies. The therapeutic benefits of maintaining CDK4/6i or incorporating CDK2 inhibitors (CDK2i) after disease progression remain unclear. Here, we demonstrate that sustained CDK4/6i therapy, either alone or combined with CDK2i, significantly suppresses the growth of drug-resistant HR+ breast cancer. Continued CDK4/6i treatment induces a non-canonical pathway for retinoblastoma protein (Rb) inactivation via post-translational degradation, resulting in diminished E2F activity and delayed G1 progression. Importantly, our data highlight that CDK2i should be combined with CDK4/6i to effectively suppress CDK2 activity and overcome resistance. We also identify cyclin E overexpression as a key driver of resistance to CDK4/6 and CDK2 inhibition. These findings provide crucial insights into overcoming resistance in HR+ breast cancer, supporting the continued use of CDK4/6i and the strategic incorporation of CDK2i to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Jessica Armand
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Kibum Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Eugene Son
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| |
Collapse
|
8
|
Ozarlou MM, Dehghan R, Mansoori B, Baradaran B. MicroRNA-142-3p chemo-sensitizing breast cancer to docetaxel: apoptosis and cell cycle arrest induction, and migration suppression. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2024; 15:629-643. [PMID: 39807396 PMCID: PMC11725297 DOI: 10.30466/vrf.2024.2022533.4165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/29/2024] [Indexed: 01/16/2025]
Abstract
Docetaxel (DTX) is widely utilized in breast cancer treatment. However, cancer cell resistance has limited its anti-tumor efficacy. Some molecules called microRNAs (miRNAs), acting like fine-tuned switches, can influence how breast cancer develops and spreads. We conducted a study to examine if augmenting breast cancer cells with a particular molecule, known as miRNA-142-3p, could improve the efficacy of a widely used treatment called DTX. The expression level of miR-142-3p was initially assessed in MDA-MB-468 cells. The miRNA transfection was performed to conduct additional experiments. The impact of a combined treatment involving DTX and miRNA-142-3p on both cell migration (by wound healing assay) and apoptosis (using annexin V/Propidium iodide staining) was examined. Cell viability was determined through the MTT assay, and gene expression was quantified using quantitative real-time polymerase chain reaction. The combined application of DTX and miRNA-142-3p resulted in a significant decrease in the expression of factors promoting tumor growth, such as SOX2, Octamer 4, HMGA2, Kruppel-like factor 4, and Bach-1. Additionally, the combination of miRNA-142-3p and DTX initiated apoptotic cell death. Moreover, the progression of breast cancer cells was impeded by inducing cell cycle arrest at the G1 phase. This combination also efficiently restrained the migration and invasion of breast cancer cells. The DTX or miRNA-142-3p alone can suppress malignant behavior and progression of breast cancer cells, but their combination elicits a synergistic effect that further enhances breast cancer inhibition. In summary, miRNA-142-3p transfection can be administered in conjunction with DTX therapy to enhance its cytotoxicity against breast cancer cells and prevent chemoresistance.
Collapse
Affiliation(s)
- Masoumeh Moradi Ozarlou
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;
| | - Razeieh Dehghan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran;
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran;
| |
Collapse
|
9
|
Park S, Silva E, Singhal A, Kelly MR, Licon K, Panagiotou I, Fogg C, Fong S, Lee JJY, Zhao X, Bachelder R, Parker BA, Yeung KT, Ideker T. A deep learning model of tumor cell architecture elucidates response and resistance to CDK4/6 inhibitors. NATURE CANCER 2024; 5:996-1009. [PMID: 38443662 PMCID: PMC11286358 DOI: 10.1038/s43018-024-00740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6is) have revolutionized breast cancer therapy. However, <50% of patients have an objective response, and nearly all patients develop resistance during therapy. To elucidate the underlying mechanisms, we constructed an interpretable deep learning model of the response to palbociclib, a CDK4/6i, based on a reference map of multiprotein assemblies in cancer. The model identifies eight core assemblies that integrate rare and common alterations across 90 genes to stratify palbociclib-sensitive versus palbociclib-resistant cell lines. Predictions translate to patients and patient-derived xenografts, whereas single-gene biomarkers do not. Most predictive assemblies can be shown by CRISPR-Cas9 genetic disruption to regulate the CDK4/6i response. Validated assemblies relate to cell-cycle control, growth factor signaling and a histone regulatory complex that we show promotes S-phase entry through the activation of the histone modifiers KAT6A and TBL1XR1 and the transcription factor RUNX1. This study enables an integrated assessment of how a tumor's genetic profile modulates CDK4/6i resistance.
Collapse
Affiliation(s)
- Sungjoon Park
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Erica Silva
- Program in Biomedical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Akshat Singhal
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Marcus R Kelly
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Kate Licon
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Isabella Panagiotou
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Catalina Fogg
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Samson Fong
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - John J Y Lee
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoyu Zhao
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Robin Bachelder
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Barbara A Parker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Kay T Yeung
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California, San Diego, San Diego, CA, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Hardin LT, Abid N, Vang D, Han X, Thor D, Ojcius DM, Xiao N. miRNAs mediate the impact of smoking on dental pulp stem cells via the p53 pathway. Toxicol Sci 2024; 200:47-56. [PMID: 38636493 DOI: 10.1093/toxsci/kfae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Cigarette smoke changes the genomic and epigenomic imprint of cells. In this study, we investigated the biological consequences of extended cigarette smoke exposure on dental pulp stem cells (DPSCs) and the potential roles of miRNAs. DPSCs were treated with various doses of cigarette smoke condensate (CSC) for up to 6 weeks. Cell proliferation, survival, migration, and differentiation were evaluated. Cytokine and miRNA expression were profiled. The results showed that extended exposure to CSC significantly impaired the regenerative capacity of the DPSCs. Bioinformatic analysis showed that the cell cycle pathway, cancer pathways (small cell lung cancer, pancreatic, colorectal, and prostate cancer), and pathways for TNF, TGF-β, p53, PI3K-Akt, mTOR, and ErbB signal transduction, were associated with altered miRNA profiles. In particular, 3 miRNAs has-miR-26a-5p, has-miR-26b-5p, and has-miR-29b-3p fine-tune the p53 and cell cycle signaling pathways to regulate DPSC cellular activities. The work indicated that miRNAs are promising targets to modulate stem cell regeneration and understanding miRNA-targeted genes and their associated pathways in smoking individuals have significant implications for disease control and prevention.
Collapse
Affiliation(s)
- Leyla Tahrani Hardin
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nabil Abid
- Department of Molecular and Cellular Biology, High Institute of Biotechnology of Monastir, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of Transmissible Diseases and Biological Active Substances LR99ES27, Faculty of Pharmacy of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - David Vang
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Xiaoyuan Han
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Der Thor
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - David M Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California 94103, USA
| |
Collapse
|
11
|
Kase AM, Gleba J, Miller JL, Miller E, Petit J, Barrett MT, Zhou Y, Parent EE, Cai H, Knight JA, Orme J, Reynolds J, Durham WF, Metz TM, Meurice N, Edenfield B, Alasonyalilar Demirer A, Bilgili A, Hickman PG, Pawlush ML, Marlow L, Wickland DP, Tan W, Copland JA. Patient-Derived Tumor Xenograft Study with CDK4/6 Inhibitor Plus AKT Inhibitor for the Management of Metastatic Castration-Resistant Prostate Cancer. Mol Cancer Ther 2024; 23:823-835. [PMID: 38442920 DOI: 10.1158/1535-7163.mct-23-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/04/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an aggressive malignancy with poor outcomes. To investigate novel therapeutic strategies, we characterized three new metastatic prostate cancer patient derived-tumor xenograft (PDTX) models and developed 3D spheroids from each to investigate molecular targeted therapy combinations including CDK4/6 inhibitors (CDK4/6i) with AKT inhibitors (ATKi). Metastatic prostate cancer tissue was collected and three PDTX models were established and characterized using whole-exome sequencing. PDTX 3D spheroids were developed from these three PDTXs to show resistance patterns and test novel molecular-targeted therapies. CDK4/6i's were combined with AKTi's to assess synergistic antitumor response to prove our hypothesis that blockade of AKT overcomes drug resistance to CDK4/6i. This combination was evaluated in PDTX three-dimensional (3D) spheroids and in vivo experiments with responses measured by tumor volumes, PSA, and Ga-68 PSMA-11 PET-CT imaging. We demonstrated CDK4/6i's with AKTi's possess synergistic antitumor activity in three mCRPC PDTX models. These models have multiple unique pathogenic and deleterious genomic alterations with resistance to single-agent CDK4/6i's. Despite this, combination therapy with AKTi's was able to overcome resistance mechanisms. The IHC and Western blot analysis confirmed on target effects, whereas tumor volume, serum PSA ELISA, and radionuclide imaging demonstrated response to therapy with statistically significant SUV differences seen with Ga-68 PSMA-11 PET-CT. These preclinical data demonstrating antitumor synergy by overcoming single-agent CDK 4/6i as well as AKTi drug resistance provide the rational for a clinical trial combining a CDK4/6i with an AKTi in patients with mCRPC whose tumor expresses wild-type retinoblastoma 1.
Collapse
Affiliation(s)
- Adam M Kase
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - Justyna Gleba
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - James L Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Erin Miller
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Joachim Petit
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Yumei Zhou
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | - Hancheng Cai
- Radiology Department, Mayo Clinic Jacksonville, Florida
| | - Joshua A Knight
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Jacob Orme
- Division of Hematology-Oncology, Mayo Clinic Rochester, Minnesota
| | - Jordan Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic Jacksonville, Florida
| | | | - Thomas M Metz
- Charles River Discovery Research Services Germany, Freiburg, Germany
| | - Nathalie Meurice
- Division of Hematology-Oncology, Mayo Clinic Scottsdale, Arizona
| | | | | | - Ahmet Bilgili
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | | | | | - Laura Marlow
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| | - Daniel P Wickland
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic Jacksonville, Florida
| | - Winston Tan
- Division of Hematology-Oncology, Mayo Clinic Jacksonville, Florida
| | - John A Copland
- Cancer Biology Department, Mayo Clinic Jacksonville, Florida
| |
Collapse
|
12
|
Wander SA, Bardia A. Cracking the Genomic Code of CDK4/6 Inhibitor Resistance. Clin Cancer Res 2024; 30:2008-2010. [PMID: 38319645 DOI: 10.1158/1078-0432.ccr-23-3413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
The therapeutic approach to metastatic hormone receptor-positive, human epidermal growth factor-2-negative metastatic breast cancer (HR+/HER2- MBC) has evolved rapidly over recent years. The cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) have become first-line targeted agents of choice, in combination with an antiestrogen. Simultaneously, the clinical landscape of therapeutic options has been rapidly shifting, with novel antiestrogens, signal transduction inhibitors, and next-generation CDK inhibitors in various stages of development. Given these dynamic changes, understanding the genomic and molecular landscape of resistance to currently available antiestrogen therapy and CDK4/6 inhibitors represents a major focus of translational breast cancer research globally. See related article by Goetz et al., p. 2233.
Collapse
Affiliation(s)
- Seth A Wander
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Aditya Bardia
- David Geffen School of Medicine at UCLA and UCLA Health Jonsson Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
13
|
Kubeczko M, Tudrej P, Tyszkiewicz T, Krzywon A, Oczko-Wojciechowska M, JarzĄb M. Liquid biopsy utilizing miRNA in patients with advanced breast cancer treated with cyclin‑dependent kinase 4/6 inhibitors. Oncol Lett 2024; 27:181. [PMID: 38464342 PMCID: PMC10921259 DOI: 10.3892/ol.2024.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/26/2024] [Indexed: 03/12/2024] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6is) are the mainstay of treatment of hormone receptor+/human epidermal growth factor receptor 2-patients with advanced breast cancer (ABC). Despite improvements in overall survival, most patients experience disease progression. Biomarkers derived from a liquid biopsy are appealing for their potential to detect resistance to treatment earlier than computed tomography imaging. However, clinical data concerning microRNAs (miRNAs/miRs) in the context of CDK4/6is are lacking. Thus, the present study assessed the use of miRNAs in patients with ABC treated with CDK4/6is. Patients treated for ABC with CDK4/6is between June and August 2022 were eligible. miRNA expression analyses were performed using a TaqMan™ low-density miRNA array. A total of 80 consecutive patients with ABC treated with CDK4/6is at Maria Sklodowska-Curie National Research Institute of Oncology (Gliwice, Poland) were assessed, with 14 patients diagnosed with progressive disease at the time of sampling, 55 patients exhibited clinical benefit from CDK4/6i treatment and 11 patients were at the beginning of CDK4/6i treatment. Patients with disease progression had significantly higher levels of miR-21 (P=0.027), miR-34a (P=0.011), miR-193b (P=0.032), miR-200a (P=0.027) and miR-200b (P=0.003) compared with patients who benefitted from CDK4/6i treatment. Significantly higher levels of miR-34a expression were observed in patients with progressive disease than in patients beginning treatment (P=0.031). The present study demonstrated the potential innovative role of circulating miRNAs during CDK4/6i treatment. Plasma-based expression of miR-21, -34a, -193b, -200a and -200b effectively distinguished patients with ABC who responded to CDK4/6i treatment from patients who were resistant. However, longitudinal studies are required to verify the predictive and prognostic potential of miRNA.
Collapse
Affiliation(s)
- Marcin Kubeczko
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Patrycja Tudrej
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Tomasz Tyszkiewicz
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - Aleksandra Krzywon
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MaŁgorzata Oczko-Wojciechowska
- Department of Clinical and Molecular Genetics, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| | - MichaŁ JarzĄb
- Breast Cancer Center, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Gliwice, Upper Silesia 44-102, Poland
| |
Collapse
|
14
|
Wang R, Li G, Gao F, Xu F, Li X, Zhang J, Li J, Guan X. Ultrasound-responsive spherical nucleic acid against c-Myc/PD-L1 to enhance anti-tumoral macrophages in triple-negative breast cancer progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:698-710. [PMID: 38151609 DOI: 10.1007/s11427-023-2433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 12/29/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most challenging breast cancer subtype because of its aggressive behavior and limited therapeutic targets. c-Myc is hyperactivated in the majority of TNBC tissues, however, it has been considered an "undruggable" target due to its disordered structure. Herein, we developed an ultrasound-responsive spherical nucleic acid (SNA) against c-Myc and PD-L1 in TNBC. It is a self-assembled and carrier-free system composed of a hydrophilic small-interfering RNA (siRNA) shell and a hydrophobic core made of a peptide nucleic acid (PNA)-based antisense oligonucleotide (ASO) and a sonosensitizer. We accomplished significant enrichment in the tumor by enhanced permeability and retention (EPR) effect, the controllable release of effective elements by ultrasound activation, and the combination of targeted therapy, immunotherapy and physiotherapy. Our study demonstrated significant anti-tumoral effects in vitro and in vivo. Mass cytometry showed an invigorated tumor microenvironment (TME) characterized by a significant alteration in the composition of tumor-associated macrophages (TAM) and decreased proportion of PD-1-positive (PD-1+) T effector cells after appropriate treatment of the ultrasound-responsive SNA (USNA). Further experiments verified that tumor-conditioned macrophages residing in the TME were transformed into the anti-tumoral population. Our finding offers a novel therapeutic strategy against the "undruggable" c-Myc, develops a new targeted therapy for c-Myc/PD-L1 and provides a treatment option for the TNBC.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Gaigai Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Yousefi A, Sotoodehnejadnematalahi F, Nafissi N, Zeinali S, Azizi M. MicroRNA-561-3p indirectly regulates the PD-L1 expression by targeting ZEB1, HIF1A, and MYC genes in breast cancer. Sci Rep 2024; 14:5845. [PMID: 38462658 PMCID: PMC10925600 DOI: 10.1038/s41598-024-56511-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Globally, breast cancer is the second most common cause of cancer-related deaths among women. In breast cancer, microRNAs (miRNAs) are essential for both the initiation and development of tumors. It has been suggested that the tumor suppressor microRNA-561-3p (miR-561-3p) is crucial in arresting the growth of cancer cells. Further research is necessary to fully understand the role and molecular mechanism of miR-561 in human BC. The aim of this study was to investigate the inhibitory effect of miR-561-3p on ZEB1, HIF1A, and MYC expression as oncogenes that have the most impact on PD-L1 overexpression and cellular processes such as proliferation, apoptosis, and cell cycle in breast cancer (BC) cell lines. The expression of ZEB1, HIF1A, and MYC genes and miR-561-3p were measured in BC clinical samples and cell lines via qRT-PCR. The luciferase assay, MTT, Annexin-PI staining, and cell cycle experiments were used to assess the effect of miR-561-3p on candidate gene expression, proliferation, apoptosis, and cell cycle progression. Flow cytometry was used to investigate the effects of miR-561 on PD-L1 suppression in the BC cell line. The luciferase assay showed that miRNA-561-3p targets the 3'-UTRs of ZEB1, HIF1A and MYC genes significantly. In BC tissues, the qRT-PCR results demonstrated that miR-561-3p expression was downregulated and the expression of ZEB1, HIF1A and MYC genes was up-regulated. It was shown that overexpression of miR-561-3p decreased PD-L1 expression and BC cell proliferation, and induced apoptosis and cell cycle arrest through downregulation of candidate oncogenes. Furthermore, inhibition of candidate genes by miR-561-3p reduced PD-L1 at both mRNA and protein levels. Our research investigated the impact of miR-561-3p on the expression of ZEB1, HIF1A and MYC in breast cancer cells for the first time. Our findings may help clarify the role of miR-561-3p in PD-L1 regulation and point to this miR as a potential biomarker and novel therapeutic target for cancer immunotherapy.
Collapse
Affiliation(s)
- Atena Yousefi
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Nahid Nafissi
- Breast Surgery Department, Iran University of Medical Sciences, Tehran, Iran
| | - Sirous Zeinali
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, 69th Pasteur Street, Kargar Avenue, Tehran, Iran.
| |
Collapse
|
16
|
Wekking D, Leoni VP, Lambertini M, Dessì M, Pretta A, Cadoni A, Atzori L, Scartozzi M, Solinas C. CDK4/6 inhibition in hormone receptor-positive/HER2-negative breast cancer: Biological and clinical aspects. Cytokine Growth Factor Rev 2024; 75:57-64. [PMID: 37838584 DOI: 10.1016/j.cytogfr.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023]
Abstract
A dysregulated cell division, one of the key hallmarks of cancer, results in uncontrolled cellular proliferation. This aberrant process, mediated by a dysregulated cell-cycle machinery and overactivation of cyclin-dependent kinase (CDK) 4 and 6, can potentially promote tumorigenesis. The clinical application of CDK 4/6 inhibitors, developed to inhibit cell-cycle progression, in the treatment regimens of breast cancer (BC) patients is expanding. Currently, three agents, ribociclib, palbociclib, and abemaciclib, are approved for treating patients with hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic BC. In addition, abemaciclib is FDA and EMA-approved for patients with hormone receptor-positive HER2-negative, node-positive, early BC at high risk of recurrence. Emerging data suggest potential anti-tumor effects beyond cell cycle arrest, providing novel insights into the agent's mechanisms of action. As a result, a broader application of the CDK4/6 inhibitors in patients with cancer is achieved, contributing to enhanced optimized treatment in the adjuvant and neoadjuvant settings. Herein, the immunomodulatory activities of CDK4/6 inhibitors, their impact on the cell's metabolic state, and the effect on the decision of the cell to undergo quiescence or senescence are discussed. Moreover, this review provides an update on clinical trial outcomes and the differences in the underlying mechanisms between the distinct CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Demi Wekking
- Amsterdam UMC, Location Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands.
| | - Vera Piera Leoni
- Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Italy
| | - Matteo Lambertini
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genova, Genova, Italy; Department of Medical Oncology, UOC Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mariele Dessì
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, Cagliari, Italy
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Andrea Cadoni
- Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Luigi Atzori
- Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, Italy
| | - Mario Scartozzi
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, Cagliari, Italy; Medical Oncology Unit, University Hospital and University of Cagliari, Italy
| | - Cinzia Solinas
- Medical Oncology AOU Cagliari Policlinico Duilio Casula, Monserrato, Cagliari, Italy
| |
Collapse
|
17
|
Lv S, Yang J, Lin J, Huang X, Zhao H, Zhao C, Yang L. CDK4/6 inhibitors in lung cancer: current practice and future directions. Eur Respir Rev 2024; 33:230145. [PMID: 38355149 PMCID: PMC10865100 DOI: 10.1183/16000617.0145-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/11/2023] [Indexed: 02/16/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and ∼85% of lung cancers are classified as nonsmall cell lung cancer (NSCLC). These malignancies can proliferate indefinitely, in part due to dysregulation of the cell cycle and the resulting abnormal cell growth. The specific activation of cyclin-dependent kinases 4 and 6 (CDK4/6) is closely linked to tumour proliferation. Approximately 80% of human tumours exhibit abnormalities in the cyclin D-CDK4/6-INK4-RB pathway. Specifically, CDK4/6 inhibitors either as monotherapy or combination therapy have been investigated in pre-clinical and clinical studies for the treatment of NSCLC, and promising results have been achieved. This review article focuses on research regarding the use of CDK4/6 inhibitors in NSCLC, including the characteristics and mechanisms of action of approved drugs and progress of pre-clinical and clinical research.
Collapse
Affiliation(s)
- Shuoshuo Lv
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jie Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
- These authors contributed equally to this work
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Xiaoying Huang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Haiyang Zhao
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengguang Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Azzahra F, Amalia R, Karsono AH, Tjandrawinata RR, Ismaya WT, Rachmawati H. The mannose-binding protein from Agaricus bisporus inhibits the growth of MDA-MB-231 spheroids. Chem Biol Drug Des 2024; 103:e14365. [PMID: 37749066 DOI: 10.1111/cbdd.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/02/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
A mannose-binding protein from the mushroom Agaricus bisporus (Abmb) inhibits the growth of MDA-MB-231 cells, which is of an aggressive breast cancer subtype. This ability was observed in a monolayer cell (2D) culture setup, which often is unable to capture changes in cell morphology, polarity and division. That shortcoming may overestimate Abmb potency for its development as a pharmaceutical agent and its use in a therapy. Hence, Abmb's inhibition to the cell growth was performed in the 3D cell (spheroid) culture, which is more representative to the situation in vivo. The result showed that, although the presence of Abmb at ~14.7 μM already disrupted the MDA-MB-231 cell morphology in the 2D culture, its presence at ~16.5 μM only ceased the growth of the MDA-MB-231 spheroid. Further, Abmb is unique because structurally it belongs to the R-type lectin (RTL) family; most of mannose-binding protein is of the C-type lectin (CTL). As the natural ligand of Abmb is unknown thus the mechanism of action is unclear, Abmb effect on the cancer cells was assessed via observation of the altered expression of genes involved in the Wnt/β-catenin signalling, which is one of the canonical pathways in the proliferation of cancer cells. The results suggested that Abmb did not alter the pathway upon exerting its anti-proliferative activity to the MDA-MB-231 cells.
Collapse
Affiliation(s)
- Fauzia Azzahra
- Research Group of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Agung Heru Karsono
- Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, Indonesia
| | - Raymond Rubianto Tjandrawinata
- Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, Indonesia
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Tangerang, Indonesia
| | - Wangsa Tirta Ismaya
- Dexa Laboratories of Biomolecular Sciences, Dexa Medica, Cikarang, Indonesia
| | - Heni Rachmawati
- Research Group of Pharmaceutics, School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia
- Research Center for Nanosciences and Nanotechnology, Bandung Institute of Technology, Bandung, Indonesia
| |
Collapse
|
19
|
Kim S, Armand J, Safonov A, Zhang M, Soni RK, Schwartz G, McGuinness JE, Hibshoosh H, Razavi P, Kim M, Chandarlapaty S, Yang HW. Sequential activation of E2F via Rb degradation and c-Myc drives resistance to CDK4/6 inhibitors in breast cancer. Cell Rep 2023; 42:113198. [PMID: 37865915 PMCID: PMC10757862 DOI: 10.1016/j.celrep.2023.113198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/27/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) are key therapeutic agents in the management of metastatic hormone-receptor-positive breast cancer. However, the emergence of drug resistance limits their long-term efficacy. Here, we show that breast cancer cells develop CDK4/6i resistance via a sequential two-step process of E2F activation. This process entails retinoblastoma (Rb)-protein degradation, followed by c-Myc-mediated amplification of E2F transcriptional activity. CDK4/6i treatment halts cell proliferation in an Rb-dependent manner but dramatically reduces Rb-protein levels. However, this reduction in Rb levels insufficiently induces E2F activity. To develop CDK4/6i resistance, upregulation or activating mutations in mitogenic or hormone signaling are required to stabilize c-Myc levels, thereby augmenting E2F activity. Our analysis of pre-treatment tumor samples reveals a strong correlation between c-Myc levels, rather than Rb levels, and poor therapeutic outcomes after CDK4/6i treatment. Moreover, we propose that proteasome inhibitors can potentially reverse CDK4/6i resistance by restoring Rb levels.
Collapse
Affiliation(s)
- Sungsoo Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Jessica Armand
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Anton Safonov
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Mimi Zhang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Rajesh K Soni
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Gary Schwartz
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Julia E McGuinness
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Pedram Razavi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Minah Kim
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hee Won Yang
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
20
|
Gomes I, Abreu C, Costa L, Casimiro S. The Evolving Pathways of the Efficacy of and Resistance to CDK4/6 Inhibitors in Breast Cancer. Cancers (Basel) 2023; 15:4835. [PMID: 37835528 PMCID: PMC10571967 DOI: 10.3390/cancers15194835] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
The approval of cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) in combination with endocrine therapy (ET) has remarkably improved the survival outcomes of patients with advanced hormone receptor-positive (HR+) breast cancer (BC), becoming the new standard of care treatment in these patients. Despite the efficacy of this therapeutic combination, intrinsic and acquired resistance inevitably occurs and represents a major clinical challenge. Several mechanisms associated with resistance to CDK4/6i have been identified, including both cell cycle-related and cell cycle-nonspecific mechanisms. This review discusses new insights underlying the mechanisms of action of CDK4/6i, which are more far-reaching than initially thought, and the currently available evidence of the mechanisms of resistance to CDK4/6i in BC. Finally, it highlights possible treatment strategies to improve CDK4/6i efficacy, summarizing the most relevant clinical data on novel combination therapies involving CDK4/6i.
Collapse
Affiliation(s)
- Inês Gomes
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Catarina Abreu
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Luis Costa
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
- Oncology Division, Hospital de Santa Maria—Centro Hospitalar Universitário Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Sandra Casimiro
- Luis Costa Lab, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
21
|
Afifi MM, Crncec A, Cornwell JA, Cataisson C, Paul D, Ghorab LM, Hernandez MO, Wong M, Kedei N, Cappell SD. Irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation. Cell Rep 2023; 42:113079. [PMID: 37656618 PMCID: PMC10591853 DOI: 10.1016/j.celrep.2023.113079] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023] Open
Abstract
Cells can irreversibly exit the cell cycle and become senescent to safeguard against uncontrolled proliferation. While the p53-p21 and p16-Rb pathways are thought to mediate senescence, they also mediate reversible cell cycle arrest (quiescence), raising the question of whether senescence is actually reversible or whether alternative mechanisms underly the irreversibility associated with senescence. Here, we show that senescence is irreversible and that commitment to and maintenance of senescence are mediated by irreversible MYC degradation. Senescent cells start dividing when a non-degradable MYC mutant is expressed, and quiescent cells convert to senescence when MYC is knocked down. In early oral carcinogenesis, epithelial cells exhibit MYC loss and become senescent as a safeguard against malignant transformation. Later stages of oral premalignant lesions exhibit elevated MYC levels and cellular dysplasia. Thus, irreversible cell cycle exit associated with senescence is mediated by constitutive MYC degradation, but bypassing this degradation may allow tumor cells to escape during cancer initiation.
Collapse
Affiliation(s)
- Marwa M Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Adrijana Crncec
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - James A Cornwell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Debasish Paul
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Laila M Ghorab
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maria O Hernandez
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Madeline Wong
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Noemi Kedei
- Collaborative Protein Technology Resource, Office of Science and Technology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Steven D Cappell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|
22
|
Villa F, Crippa A, Pelizzoni D, Ardizzoia A, Scartabellati G, Corbetta C, Cipriani E, Lavitrano M, Ardizzoia A. Progression after First-Line Cyclin-Dependent Kinase 4/6 Inhibitor Treatment: Analysis of Molecular Mechanisms and Clinical Data. Int J Mol Sci 2023; 24:14427. [PMID: 37833875 PMCID: PMC10572355 DOI: 10.3390/ijms241914427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023] Open
Abstract
Cyclin-dependent kinase 4/6 inhibitors (CDK4/6iss) are widely used in first-line metastatic breast cancer. For patients with progression under CDK4/6is, there is currently no standard treatment recommended at the category 1 level in international guidelines. The purpose of this article is to review the cellular mechanisms underlying the resistance to CDK4/6is, as well as treatment strategies and the clinical data about the efficacy of subsequent treatments after CDK4/6is-based therapy. In the first part, this review mainly discusses cell-cycle-specific and cell-cycle-non-specific resistance to CDK4/6is, with a focus on early and late progression. In the second part, this review analyzes potential therapeutic approaches and the available clinical data on them: switching to other CDK4/6is, to another single hormonal therapy, to other target therapies (PI3K, mTOR and AKT) and to chemotherapy.
Collapse
Affiliation(s)
- Federica Villa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Crippa
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Davide Pelizzoni
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Alessandra Ardizzoia
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Giulia Scartabellati
- Medical Oncology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy;
- Department of Medical and Surgical Specialties, Medical Oncology, University of Brescia, 25121 Brescia, Italy
| | - Cristina Corbetta
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Eleonora Cipriani
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milano, Italy; (A.A.); (M.L.)
| | - Antonio Ardizzoia
- Medical Oncology, Oncology Department ASST Lecco, 23900 Lecco, Italy; (A.C.); (D.P.); (C.C.); (E.C.); (A.A.)
| |
Collapse
|
23
|
Chen H, Xie G, Luo Q, Yang Y, Hu S. Regulatory miRNAs, circRNAs and lncRNAs in cell cycle progression of breast cancer. Funct Integr Genomics 2023; 23:233. [PMID: 37432486 DOI: 10.1007/s10142-023-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/12/2023]
Abstract
Breast cancer is a complex and heterogeneous disease that poses a significant public health concern worldwide, and it remains a major challenge despite advances in treatment options. One of the main properties of cancer cells is the increased proliferative activity that has lost regulation. Dysregulation of various positive and negative modulators in the cell cycle has been identified as one of the driving factors of breast cancer. In recent years, non-coding RNAs have garnered much attention in the regulation of cell cycle progression, with microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs) being of particular interest. MiRNAs are a class of highly conserved and regulatory small non-coding RNAs that play a crucial role in the modulation of various cellular and biological processes, including cell cycle regulation. CircRNAs are a novel form of non-coding RNAs that are highly stable and capable of modulating gene expression at posttranscriptional and transcriptional levels. LncRNAs have also attracted considerable attention because of their prominent roles in tumor development, including cell cycle progression. Emerging evidence suggests that miRNAs, circRNAs and lncRNAs play important roles in the regulation of cell cycle progression in breast cancer. Herein, we summarized the latest related literatures in breast cancer that emphasize the regulatory roles of miRNAs, circRNAs and lncRNAs in cell cycle progress of breast cancer. Further understanding of the precise roles and mechanisms of non-coding RNAs in breast cancer cell cycle regulation could lead to the development of new diagnostic and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Clinical Laboratory, Wuhan Institute of Technology Hospital, Wuhan Institute of Technology, Wuhan, China
| | - Guoping Xie
- Department of Clinical Laboratory, The Second Staff Hospital of Wuhan Iron and Steel (Group) Corporation, Wuhan, China
| | - Qunying Luo
- Department of Internal Medicine-Neurology, Huarun Wuhan Iron and Steel General Hospital, Wuhan, China
| | - Yisha Yang
- Luoyang Campus, Henan Vocational College of Agriculture, Luoyang, China
| | - Siheng Hu
- Department of Clinical Laboratory, Honggangcheng Street Community Health Service Center, Wuhan, China.
| |
Collapse
|
24
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Li X, Zhang Z, Gao F, Ma Y, Wei D, Lu Z, Chen S, Wang M, Wang Y, Xu K, Wang R, Xu F, Chen JY, Zhu C, Li Z, Yu H, Guan X. c-Myc-Targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-Negative Breast Cancer. J Am Chem Soc 2023; 145:9334-9342. [PMID: 37068218 DOI: 10.1021/jacs.3c02619] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with a poor clinical prognosis and no targeted therapy. The c-Myc protein is a master transcription factor and a potential therapeutic target for TNBC. In this study, we develop a PROTAC (PROteolysis TArgeting Chimera) based on TNA (threose nucleic acid) and DNA that effectively targets and degrades c-Myc. The TNA aptamer is selected in vitro to bind the c-Myc/Max heterodimer and appended to the E-box DNA sequence to create a high-affinity, biologically stable bivalent binder. The TNA-E box-pomalidomide (TEP) conjugate specifically degrades endogenous c-Myc/Max, inhibits TNBC cell proliferation, and sensitizes TNBC cells to the cyclin-dependent kinase inhibitor palbociclib in vitro. In a mouse TNBC model, combination therapy with TEP and palbociclib potently suppresses tumor growth. This study offers a promising nucleic acid-based PROTAC modality for both chemical biology studies and therapeutic interventions of TNBC.
Collapse
Affiliation(s)
- Xintong Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ze Zhang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuxuan Ma
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Dongying Wei
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhangwei Lu
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Siqi Chen
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Mengqi Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yueyao Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Chengjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhe Li
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hanyang Yu
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
26
|
Yang FF, Xu XL, Hu T, Liu JQ, Zhou JZ, Ma LY, Liu HM. Lysine-Specific Demethylase 1 Promises to Be a Novel Target in Cancer Drug Resistance: Therapeutic Implications. J Med Chem 2023; 66:4275-4293. [PMID: 37014989 DOI: 10.1021/acs.jmedchem.2c01527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin-Zhu Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian 463000, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
27
|
Stanciu IM, Parosanu AI, Orlov-Slavu C, Iaciu IC, Popa AM, Olaru CM, Pirlog CF, Vrabie RC, Nitipir C. Mechanisms of Resistance to CDK4/6 Inhibitors and Predictive Biomarkers of Response in HR+/HER2-Metastatic Breast Cancer-A Review of the Literature. Diagnostics (Basel) 2023; 13:diagnostics13050987. [PMID: 36900131 PMCID: PMC10000620 DOI: 10.3390/diagnostics13050987] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The latest and newest discoveries for advanced and metastatic hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-) breast cancer are the three cyclin-dependent kinases 4 and 6 inhibitors (CDK4/6i) in association with endocrine therapy (ET). However, even if this treatment revolutionized the world and continued to be the first-line treatment choice for these patients, it also has its limitations, caused by de novo or acquired drug resistance which leads to inevitable progression after some time. Thus, an understanding of the overview of the targeted therapy which represents the gold therapy for this subtype of cancer is essential. The full potential of CDK4/6i is yet to be known, with many trials ongoing to expand their utility to other breast cancer subtypes, such as early breast cancer, and even to other cancers. Our research establishes the important idea that resistance to combined therapy (CDK4/6i + ET) can be due to resistance to endocrine therapy, to treatment with CDK4/6i, or to both. Individuals' responses to treatment are based mostly on genetic features and molecular markers, as well as the tumor's hallmarks; therefore, a future perspective is represented by personalized treatment based on the development of new biomarkers, and strategies to overcome drug resistance to combinations of ET and CDK4/6 inhibitors. The aim of our study was to centralize the mechanisms of resistance, and we believe that our work will have utility for everyone in the medical field who wants to deepen their knowledge about ET + CDK4/6 inhibitors resistance.
Collapse
Affiliation(s)
- Ioana-Miruna Stanciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
- Correspondence: ; Tel.: +40-725-683-118
| | - Cristina Orlov-Slavu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Ion Cristian Iaciu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Ana Maria Popa
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Mihaela Olaru
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cristina Florina Pirlog
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Radu Constantin Vrabie
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cornelia Nitipir
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
28
|
Banerjee N, Chatterjee O, Roychowdhury T, Basu D, Dutta A, Chowdhury M, Dastidar SG, Chatterjee S. Sequence driven interaction of amino acids in de-novo designed peptides determines c-Myc G-quadruplex unfolding inducing apoptosis in cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130267. [PMID: 36334788 DOI: 10.1016/j.bbagen.2022.130267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
c-MYC proto-oncogene harbors a putative G-quadruplex structure (Pu27) at the NHEIII1 domain, which can shuffle between transcriptional inhibitor quadruplex and transcriptionally active duplex. In cancer cells this quadruplex destabilization is preferred and NHEIII1 domain assume a duplex topology thereby inducing c-MYC overexpression and tumorigenesis. Hence, the c-MYC quadruplex acts as an excellent target for anti-cancer therapy. Though researcher have tried to develop G-quadruplex targeted small molecules, work with G-quadruplex targeting peptides is very limited. Here we present a peptide that can bind to c-MYC quadruplex, destabilize the tetrad core, and permit the formation of a substantially different structure from the quartet core seen in the canonical G-quadruplexes. Such conformation potentially acted as a roadblock for transcription factors thereby reducing cMYC expression. This event sensitizes the cancer cell to activate apoptotic cascade via the c-MYC-VEGF-A-BCL2 axis. This study provides a detailed insight into the peptide-quadruplex interface that encourages better pharmacophore design to target dynamic quadruplex structure. We believe that our results will contribute to the development, characterization, and optimization of G-quadruplex binding peptides for potential clinical application.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Debadrita Basu
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Madhurima Chowdhury
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India.
| |
Collapse
|
29
|
Huang Z, Hu H, Xian T, Xu Z, Tang D, Wang B, Zhang Y. Carrier-free nanomedicines self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer. RSC Adv 2023; 13:1617-1626. [PMID: 36688062 PMCID: PMC9827281 DOI: 10.1039/d2ra05932k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023] Open
Abstract
Palbociclib is the world's first CDK4/6 kinase inhibitor to be marketed. However, it is not effective in the treatment of triple negative breast cancer (TNBC) due to the loss of retinoblastoma protein expression. Thus, combinatorial chemotherapy is indispensable for TNBC treatment. Herein, a carrier-free nanomedicine self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer is reported. The dimeric prodrug (Palb-TK-Palb) was synthesized by conjugating two palbociclib molecules to the connecting skeleton containing a ROS-responsive cleavable thioketal bond. The Palb-TK-Palb/Ce6 NP co-delivery nanoplatform was prepared through the self-assembly of Palb-TK-Palb, Ce6 and DSPE-PEG2000. This novel carrier-free formulation as an efficient therapeutic agent showed efficient therapeutic agent loading capacity, high cellular uptake and huge therapeutic performance against breast cancer cells. The results of in vitro antitumor activity and cell apoptosis demonstrated that Palb-TK-Palb/Ce6 NPs presented a better inhibitory effect on the growth of cancer cells due to the palbociclib and Ce6 co-delivery nanomedicine-mediated synergistic chemo-photodynamic therapy. The IC50 values of Palb-TK-Palb/Ce6 NPs in MDA-MB-231 cells were around 1-2 μM and 2 μM and the Palb-TK-Palb/Ce6 NPs showed an increase in apoptosis up to 91.9%. In general, the carrier-free nanomedicine self-assembled from palbociclib dimers and Ce6 provides options for combinatorial chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Zheng Huang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| | - Huaisong Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Tong Xian
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Bochu Wang
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| | - Yimei Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| |
Collapse
|
30
|
Wang S, Bei Y, Tian Q, He J, Wang R, Wang Q, Sun L, Ke J, Xie C, Shen P. PFKFB4 facilitates palbociclib resistance in oestrogen receptor-positive breast cancer by enhancing stemness. Cell Prolif 2023; 56:e13337. [PMID: 36127291 PMCID: PMC9816941 DOI: 10.1111/cpr.13337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND ER+ breast cancer (ER+ BC) is the most common subtype of BC. Recently, CDK4/6 inhibitors combined with aromatase inhibitors have been approved by FDA as the first-line therapy for patients with ER+ BC, and showed promising therapeutic efficacy in clinical treatment. However, resistance to CDK4/6 inhibitors is frequently observed. A better understanding of the drug resistance mechanism is beneficial to improving therapeutic strategies by identifying optimal combinational treatments. METHODS Western blotting, qPCR, flow cytometry and a series of cell experiments were performed to evaluate the phenotype of MCF-7/R cells. RNA sequencing, non-targeted metabolomics, shRNA knockdown and tumour cell-bearing mouse models were used to clarify the drug resistance mechanism. RESULTS Here, we found that ER+ BC cells have shown an adaptive resistance to palbociclib-induced cell cycle arrest by activating an alternative signal pathway, independent of the CDK4/6-RB signal transduction. Continuing treatment of palbociclib evoked cellular senescence of ER+ BC cells. Subsequently, the senescence-like phenotype promoted stemness of ER+ BC cells, accompanied by increased chemoresistance and tumour-initiating potential. Based on transcriptome analysis, we found that PFKFB4 played an important role in stemness transformation and drug resistance. A close correlation was determined between PFKFB4 expression by ER+ BC cells and cell senescence and stemness. Mechanistically, metabolomic profiling revealed that PFKFB4 reprogramed glucose metabolism and promoted cell stemness by enhancing glycolysis. Strikingly, diminishing PFKFB4 levels improved drug sensitivity and overcame chemoresistance during palbociclib treatment in ER+ BC. CONCLUSIONS These findings not only demonstrated the novel mechanism underlying which ER+ BC cells resisted to palbociclib, but also provided a possible therapeutic strategy in the intervention of ER+ BC to overcome drug resistance.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Qiang Tian
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Jian He
- Department of Nuclear MedicineNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Rui Wang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Qiuping Wang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| | - Luchen Sun
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jiangqiong Ke
- Department of Geriatric MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Congying Xie
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Pingping Shen
- Department of Radiation and Medical OncologyThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing UniversityNanjingChina
| |
Collapse
|
31
|
Roy A, Chatterjee O, Banerjee N, Roychowdhury T, Dhar G, Mukherjee G, Chatterjee S. Curcumin arrests G-quadruplex in the nuclear hyper-sensitive III 1 element of c-MYC oncogene leading to apoptosis in metastatic breast cancer cells. J Biomol Struct Dyn 2022; 40:10203-10219. [PMID: 34192476 DOI: 10.1080/07391102.2021.1940284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
c-MYC is deregulated in triple negative breast cancer (TNBC) pointing to be a promising biomarker for breast cancer treatment. Precise level of MYC expression is important in the control of cellular growth and proliferation. Designing of c-MYC-targeted antidotes to restore its basal level of cellular expression holds an optimistic approach towards anti-cancer treatment. MYC transcription is dominantly controlled by Nuclear Hypersensitive Element III-1 (NHEIII1) upstream of the promoter region possessing G-Quadruplex silencer element (Pu-27). We have investigated the selective binding-interaction profile of a natural phytophenolic compound Curcumin with native MYC G-quadruplex by conducting an array of biophysical experiments and in silico based Molecular Docking and Molecular Dynamic (MDs) simulation studies. Curcumin possesses immense anti-cancerous properties. We have observed significantly increased stability of MYC-G Quadruplex and thermodynamic spontaneity of Curcumin-MYC GQ binding with negative ΔG value. Transcription of MYC is tightly regulated by a complex mechanism involving promoters, enhancers and multiple transcription factors. We have used Curcumin as a model drug to understand the innate mechanism of controlling deregulated MYC back to its basal expression level. We have checked MYC-expression at transcriptional and translational level and proceeded for Chromatin Immuno-Precipitation assay (ChIP) to study the occupancy level of SP1, Heterogeneous nuclear ribonucleoprotein K (hnRNPK), Nucleoside Diphosphate Kinase 2 (NM23-H2) and Nucleolin at NHEIII1 upon Curcumin treatment of MDA-MB-231 cells. We have concluded that Curcumin binding tends to drive the equilibrium towards stable G-quadruplex formation repressing MYC back to its threshold-level. On retrospection of the synergistic effect of upregulated c-MYC and BCL-2 in cancer, we have also reported a new pathway [MYC-E2F-1-BCL-2-axis] through which Curcumin trigger apoptosis in cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ananya Roy
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, India
| | - Gopa Dhar
- Department of Biophysics, Bose Institute, Kolkata, India
| | | | | |
Collapse
|
32
|
Ma L, Li G, Yang T, Zhang L, Wang X, Xu X, Ni H. An inhibitor of BRD4, GNE987, inhibits the growth of glioblastoma cells by targeting C-Myc and S100A16. Cancer Chemother Pharmacol 2022; 90:431-444. [PMID: 36224471 PMCID: PMC9637061 DOI: 10.1007/s00280-022-04483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Among children, glioblastomas (GBMs) are a relatively common type of brain tumor. BRD4 expression was elevated in GBM and negatively correlated with the prognosis of glioma. We investigated the anti-GBM effects of a novel BRD4 inhibitor GNE987. METHODS We evaluated the anti-tumor effect of GNE987 in vitro and in vivo by Western blot, CCK8, flow cytometry detection, clone formation, the size of xenografts, and Ki67 immunohistochemical staining, and combined ChIP-seq with RNA-seq techniques to find its anti-tumor mechanism. RESULTS In vitro experiments showed that GNE987 significantly degraded BRD4, inhibited the proliferation of GBM cells, blocked the cell cycle, and induced apoptosis. Similarly, in vivo experiments, GNE987 also inhibited GBM growth as seen from the size of xenografts and Ki67 immunohistochemical staining. Based on Western blotting, GNE987 can significantly reduce the protein level of C-Myc; meanwhile, we combined ChIP-seq with RNA-seq techniques to confirm that GNE987 downregulated the transcription of S100A16 by disturbing H3K27Ac. Furthermore, we validated that S100A16 is indispensable in GBM growth. CONCLUSION GNE987 may be effective against GBM that targets C-Myc expression and influences S100A16 transcription through downregulation of BRD4.
Collapse
Affiliation(s)
- Liya Ma
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
- Medical College of Soochow University, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Tianquan Yang
- Department of Neurosurgery, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Li Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xinxin Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Xiaowen Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China
| | - Hong Ni
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215003, People's Republic of China.
| |
Collapse
|
33
|
Graziosi A, Sita G, Corrieri C, Angelini S, d’Emmanuele di Villa Bianca R, Mitidieri E, Sorrentino R, Hrelia P, Morroni F. Effects of Subtoxic Concentrations of Atrazine, Cypermethrin, and Vinclozolin on microRNA-Mediated PI3K/Akt/mTOR Signaling in SH-SY5Y Cells. Int J Mol Sci 2022; 23:ijms232314538. [PMID: 36498866 PMCID: PMC9737829 DOI: 10.3390/ijms232314538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are different natural and synthetic chemicals that may interfere with several mechanisms of the endocrine system producing adverse developmental, metabolic, reproductive, and neurological effects in both human beings and wildlife. Among pesticides, numerous chemicals have been identified as EDCs. MicroRNAs (miRNAs) can regulate gene expression, making fine adjustments in mRNA abundance and regulating proteostasis. We hypothesized that exposure to low doses of atrazine, cypermethrin, and vinclozolin may lead to effects on miRNA expression in SH-SY5Y cells. In particular, the exposure of SH-SY5Y cells to subtoxic concentrations of vinclozolin is able to downregulate miR-29b-3p expression leading to the increase in the related gene expression of ADAM12 and CDK6, which may promote a pro-oncogenic response through the activation of the PI3K/Akt/mTOR pathway and counteracting p53 activity. A better understanding of the molecular mechanisms of EDCs could provide important insight into their role in human disease.
Collapse
Affiliation(s)
- Agnese Graziosi
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Giulia Sita
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Camilla Corrieri
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Study of Naples—Federico II, via Montesano 49, 80131 Naples, Italy
| | - Raffaella Sorrentino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Study of Naples—Federico II, via Pansini 5, 80131 Naples, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
- Correspondence: ; Tel.: +39-051-209-1798
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology—FaBiT, Alma Mater Studiorum—University of Bologna, via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
34
|
Biomarkers of Response and Resistance to CDK4/6 Inhibitors in Breast Cancer: Hints from Liquid Biopsy and microRNA Exploration. Int J Mol Sci 2022; 23:ijms232314534. [PMID: 36498861 PMCID: PMC9739115 DOI: 10.3390/ijms232314534] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients' response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.
Collapse
|
35
|
Donati G, Amati B. MYC and therapy resistance in cancer: risks and opportunities. Mol Oncol 2022; 16:3828-3854. [PMID: 36214609 PMCID: PMC9627787 DOI: 10.1002/1878-0261.13319] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
The MYC transcription factor, encoded by the c-MYC proto-oncogene, is activated by growth-promoting signals, and is a key regulator of biosynthetic and metabolic pathways driving cell growth and proliferation. These same processes are deregulated in MYC-driven tumors, where they become critical for cancer cell proliferation and survival. As other oncogenic insults, overexpressed MYC induces a series of cellular stresses (metabolic, oxidative, replicative, etc.) collectively known as oncogenic stress, which impact not only on tumor progression, but also on the response to therapy, with profound, multifaceted consequences on clinical outcome. On one hand, recent evidence uncovered a widespread role for MYC in therapy resistance in multiple cancer types, with either standard chemotherapeutic or targeted regimens. Reciprocally, oncogenic MYC imparts a series of molecular and metabolic dependencies to cells, thus giving rise to cancer-specific vulnerabilities that may be exploited to obtain synthetic-lethal interactions with novel anticancer drugs. Here we will review the current knowledge on the links between MYC and therapeutic responses, and will discuss possible strategies to overcome resistance through new, targeted interventions.
Collapse
Affiliation(s)
- Giulio Donati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| | - Bruno Amati
- European Institute of Oncology (IEO) – IRCCSMilanItaly
| |
Collapse
|
36
|
Andrographolide Induces G2/M Cell Cycle Arrest and Apoptosis in Human Glioblastoma DBTRG-05MG Cell Line via ERK1/2 /c-Myc/p53 Signaling Pathway. Molecules 2022; 27:molecules27196686. [PMID: 36235222 PMCID: PMC9572224 DOI: 10.3390/molecules27196686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/18/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Human glioblastoma multiforme (GBM) is one of the most malignant brain tumors, with a high mortality rate worldwide. Conventional GBM treatment is now challenged by the presence of the blood-brain barrier (BBB), drug resistance, and post-treatment adverse effects. Hence, developing bioactive compounds isolated from plant species and identifying molecular pathways in facilitating effective treatment has become crucial in GBM. Based on pharmacodynamic studies, andrographolide has sparked the interest of cancer researchers, who believe it may alleviate difficulties in GBM therapy; however, it still requires further study. Andrographolide is a bicyclic diterpene lactone derived from Andrographis paniculata (Burm.f.) Wallich ex Nees that has anticancer properties in various cancer cell lines. The present study aimed to evaluate andrographolide's anticancer effectiveness and potential molecular pathways using a DBTRG-05MG cell line. The antiproliferative activity of andrographolide was determined using the WST-1 assay, while scratch assay and clonogenic assay were used to evaluate andrographolide's effectiveness against the cancer cell line by examining cell migration and colony formation. Flowcytometry was also used to examine the apoptosis and cell cycle arrest induced by andrographolide. The mRNA and protein expression level involved in the ERK1/2/c-Myc/p53 signaling pathway was then assessed using qRT-PCR and Western blot. The protein-protein interaction between c-Myc and p53 was determined by a reciprocal experiment of the co-immunoprecipitation (co-IP) using DBTRG-05MG total cell lysate. Andrographolide significantly reduced the viability of DBTRG-05MG cell lines in a concentration- and time-dependent manner. In addition, scratch and clonogenic assays confirmed the effectiveness of andrographolide in reducing cell migration and colony formation of DBTRG-05MG, respectively. Andrographolide also promoted cell cycle arrest in the G2/M phase, followed by apoptosis in the DBTRG-05MG cell line, by inducing ERK1/2, c-Myc, and p53 expression at the mRNA level. Western blot results demonstrated that c-Myc overexpression also increased the production of the anti-apoptotic protein p53. Our findings revealed that c-Myc and p53 positively interact in triggering the apoptotic signaling pathway. This study successfully discovered the involvement of ERK1/2/c-Myc/p53 in the suppression of the DBTRG-05MG cell line via cell cycle arrest followed by the apoptosis signaling pathway following andrographolide treatment.
Collapse
|
37
|
Huang J, Zheng L, Sun Z, Li J. CDK4/6 inhibitor resistance mechanisms and treatment strategies (Review). Int J Mol Med 2022; 50:128. [PMID: 36043521 PMCID: PMC9448295 DOI: 10.3892/ijmm.2022.5184] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
In recent years, the incidence rate of breast cancer has increased year by year, and it has become a major threat to the health of women globally. Among all breast cancer subtypes, the hormone receptor (HR)+/human epidermal growth factor receptor 2 (HER2)− luminal subtype breast cancer is the most common form of breast cancer. Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, the hotspots in the field of targeted therapy for breast cancer, have proved to exhibit a good effect on patients with HR+/HER2− breast cancer in a number of clinical trials, but the problem of drug resistance is inevitable. At present, three specific CDK4/6 inhibitors (palbociclib, ribociclib and abemaciclib) have been approved by the USA Food and Drug Administration for the first-line treatment of HR+/HER2− breast cancer. The drug resistance mechanisms of CDK4/6 inhibitors can be divided into cell cycle-specific resistance and cell cycle non-specific resistance. With the discovery of the drug resistance mechanism of CDK4/6 inhibitors, various targeted strategies have been proposed. The present review mainly discusses the mechanism of CDK4/6 inhibitors, drug resistance mechanisms and treatment strategies after resistance.
Collapse
Affiliation(s)
- Jinyao Huang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Zheng
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zicheng Sun
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Jie Li
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| |
Collapse
|
38
|
Mir-29b in Breast Cancer: A Promising Target for Therapeutic Approaches. Diagnostics (Basel) 2022; 12:diagnostics12092139. [PMID: 36140539 PMCID: PMC9497770 DOI: 10.3390/diagnostics12092139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
The miR-29 family comprises miR-29a, miR-29b, and miR-29c, and these molecules play crucial and partially overlapped functions in solid tumors, in which the different isoforms are variously de-regulated and mainly correlated with tumor suppression. miR-29b is the most expressed family member in cancer, in which it is involved in regulating gene expression at both transcriptional and post-transcriptional levels. This review focuses on the role of miR-29b in breast cancer, in which it plays a controversial role as tumor suppressor or onco-miRNA. Here we have highlighted the dual effect of miR-29b on breast tumor features, which depend on the prevailing function of this miRNA, on the mature miR-29b evaluated, and on the breast tumor characteristics. Remarkably, the analyzed miR-29b form emerged as a crucial element in the results obtained by various research groups, as the most abundant miR-29b-3p and the less expressed miR-29b1-5p seem to play distinct roles in breast tumors with different phenotypes. Of particular interest are the data showing that miR-29b1-5p counteracts cell proliferation and migration and reduces stemness in breast tumor cells with a triple negative phenotype. Even if further studies are required to define exactly the role of each miR-29b, our review highlights its possible implication in phenotype-specific management of breast tumors.
Collapse
|
39
|
Zhao D, Hu G, Chen R, Xiao G, Teng S. Molecular cloning, characterization, and tissue distribution of c-Myc from blood clam Tegillarca granosa and its role in cadmium-induced stress response. Gene 2022; 834:146611. [PMID: 35618219 DOI: 10.1016/j.gene.2022.146611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) pollution threatens the cultivation of the blood clam Tegillarca granosa (T. granosa) in coastal regions of the East China Sea. The molecular mechanisms regulating Cd stress response and detoxification in blood clams are largely unclear. In the present study, the full-length T. granosa c-Myc (Tgc-Myc) cDNA was cloned for the first time. The 3063-bp cDNA consisted of a 129-bp 5' untranslated region (UTR), a 1746-bp 3' UTR, and a 1188-bp open reading frame encoding a predicted protein of 395 amino acid residues. The predicted protein had a calculated molecular weight of 44.9 kDa and an estimated isoelectric point of 6.82. The predicted protein contained an N-terminal transactivation domain and a C-terminal basic helix-loop-helix leucine zipper domain, which are conserved functional domains of c-Myc proteins. Tgc-Myc showed broad tissue distribution in blood clams, with the highest expression detected in the gill and hepatopancreas. Exposure to Cd, a major heavy metal pollutant in coastal regions of the East China Sea, induced Tgc-Myc expression in gill tissues. Tgc-Myc knockdown led to reduced expression of a variety of stress response/detoxification genes in blood clams cultivated in Cd-contaminated seawater. Tgc-Myc knockdown also led to decreased expression of IGF1R, a proto-oncogene that promotes cell proliferation. These findings indicated that Tgc-Myc regulates Cd-induced stress response and detoxification in blood clams. The upregulation of Tgc-Myc may serve as an approach to generate strains with an enhanced detoxification response and consequently a low heavy metal buildup.
Collapse
Affiliation(s)
- Defeng Zhao
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China; Zhejiang Ocean University, Zhoushan 316022, China
| | - Gaoyu Hu
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China
| | - Ran Chen
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China; Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuangshuang Teng
- Zhejiang Mariculture Research Institute, Zhejiang Key Lab of Exploitation and Preservation of Coastal Bio-Resource, Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Wenzhou 325005, China.
| |
Collapse
|
40
|
Jin P, Zhang H, Zhu X, Sun K, Jiang T, Shi L, Zhi L, Zhang H. Bioinformatics analysis of mRNA profiles and identification of microRNA-mRNA network in CD4 + T cells in seasonal allergic rhinitis. J Int Med Res 2022; 50:3000605221113918. [PMID: 35942560 PMCID: PMC9373143 DOI: 10.1177/03000605221113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective We aimed to discover potential circulating genes and non-coding molecules
(micro RNA [miRNA] and circular RNA [circRNA]) in CD4+ T cells in
relation to seasonal allergic rhinitis (SAR). Methods Microarray data of GSE50223 were obtained from the Gene Expression Omnibus
database. Differentially expressed genes (DEGs) during and outside the
pollen season were analyzed using R software and by Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes pathway analyses. The
protein–protein interactions, modules, miRNAs targeting DEGs, merged
miRNA–DEG networks, and circRNAs targeted with miRNAs were further
analyzed. Results We identified 211 DEGs during the pollen season and eight DEGs outside the
season, of which only MMP12, NR4A2, and
CD69 were differentially expressed both during and
outside the pollen season. DEGs during the pollen season were enriched in
the GO categories ‘neutrophil degranulation’, ‘neutrophil activation
involved in immune response’, ‘neutrophil mediated immunity’, and
‘neutrophil activation’. A significant module was identified with key nodes
of CDK6 and hsa-miR-29b-3p. Six significant circRNAs were
also identified. Conclusions Some genes, miRNAs, and circRNAs in CD4+ T may play vital roles in
SAR and may thus be potential targets for the prevention and treatment of
SAR.
Collapse
Affiliation(s)
- Peng Jin
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Hongping Zhang
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| | - Xilin Zhu
- Department of Otolaryngology, Central Hospital of Lijin, Dongying, China
| | - Kaiyue Sun
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Jiang
- Department of Otolaryngology, YingCheng Hospital, Yantai, China
| | - Li Shi
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China.,Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Zhi
- Department of Allergy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, China
| | - Hailing Zhang
- Department of Otolaryngology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
41
|
Asghar US, Kanani R, Roylance R, Mittnacht S. Systematic Review of Molecular Biomarkers Predictive of Resistance to CDK4/6 Inhibition in Metastatic Breast Cancer. JCO Precis Oncol 2022; 6:e2100002. [PMID: 35005994 PMCID: PMC8769124 DOI: 10.1200/po.21.00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/30/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have revolutionized the treatment of hormone-positive metastatic breast cancers (mBCs). They are currently established as standard therapies in combination with endocrine therapy as first- and second-line systemic treatment options for both endocrine-sensitive and endocrine-resistant mBC populations. In the first-line metastatic setting, the median progression-free survival for the three currently approved CDK4/6 inhibitors, palbociclib, ribociclib, and abemaciclib, with aromatase inhibitors is greater than 2 years (palbociclib 27.6 months; ribociclib 25.3 months; and abemaciclib 28.18 months). Although CDK4/6 inhibitors have significant clinical benefits and enable physicians to delay starting chemotherapy, they are expensive and can be associated with drug toxicities. Here, we have performed a systemic review of the reported molecular markers predictive of drug response including intrinsic and acquired resistance for CDK4/6 inhibition in mBC. The rapidly emerging molecular landscape is captured through next-generation sequencing of breast cancers (DNA with or without RNA), liquid biopsies (circulating tumor DNA), and protein analyses. Individual molecular candidates with robust and reliable evidence are discussed in more depth.
Collapse
Affiliation(s)
- Uzma S. Asghar
- Breast Unit, Royal Marsden Hospital, Sutton, United Kingdom
- Croydon University Hospital, Thornton Heath, United Kingdom
- Concr LTD, Babraham Research Campus Limited, Babraham Research Campus, Cambridge, United Kingdom
- Cohort Innovation Space, Southport, QLD, Australia
| | - Ruhi Kanani
- University College London Hospital, London, United Kingdom
| | - Rebecca Roylance
- NIHR Biomedical Research Centre UCLH/UCL, and Breast Unit, University College London Hospital, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
42
|
Ali A, Shafarin J, Abu Jabal R, Aljabi N, Hamad M, Sualeh Muhammad J, Unnikannan H, Hamad M. Ferritin heavy chain (FTH1) exerts significant antigrowth effects in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio 2021; 11:3101-3114. [PMID: 34551213 PMCID: PMC8564339 DOI: 10.1002/2211-5463.13303] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 12/24/2022] Open
Abstract
Overexpression of ferritin heavy chain (FTH1) often associates with good prognosis in breast cancer (BCa), particularly in the triple‐negative subtype (triple‐negative breast cancer). However, the mechanism by which FTH1 exerts its possible tumor suppressor effects in BCa is not known. Here, we examined the bearing of FTH1 silencing or overexpression on several aspects of BCa cell growth in vitro. FTH1 silencing promoted cell growth and mammosphere formation, increased c‐MYC expression, and reduced cell sensitivity to chemotherapy. In contrast, FTH1 overexpression inhibited cell growth, decreased c‐MYC expression, and sensitized cancer cells to chemotherapy; silencing of c‐MYC recapitulated the effects of FTH1 overexpression. These findings show for the first time that FTH1 suppresses tumor growth by inhibiting the expression of key oncogenes, such as c‐MYC.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jasmin Shafarin
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Nour Aljabi
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Mohamad Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Basic Medical SciencesCollege of MedicineUniversity of SharjahUnited Arab Emirates
| | - Hema Unnikannan
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
| | - Mawieh Hamad
- Research Institute for Medical and Health SciencesUniversity of SharjahUnited Arab Emirates
- Department of Medical Laboratory SciencesCollege of Health SciencesUniversity of SharjahUnited Arab Emirates
| |
Collapse
|
43
|
Andrikopoulou A, Shalit A, Zografos E, Koutsoukos K, Korakiti AM, Liontos M, Dimopoulos MA, Zagouri F. MicroRNAs as Potential Predictors of Response to CDK4/6 Inhibitor Treatment. Cancers (Basel) 2021; 13:cancers13164114. [PMID: 34439268 PMCID: PMC8391635 DOI: 10.3390/cancers13164114] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary MicroRNAs are endogenous non-coding 20–22 nucleotide long RNAs that play a fundamental role in the post-transcriptional control of gene expression. Consequently, microRNAs are involved in multiple biological processes of cancer and could be used as biomarkers with prognostic and predictive significance. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have become a mainstay of treatment for patients with advanced hormone receptor-positive (HR) breast cancer. Despite the initial high response rates, approximately 10% of patients demonstrate primary resistance to CDK4/6 inhibitors while acquired resistance is almost inevitable. Considering the fundamental role of miRNAs in tumorigenesis, we aimed to explore the potential involvement of microRNAs in response to CDK4/6 inhibition in solid tumors. A number of microRNAs were shown to confer resistance or sensitivity to CDK4/6 inhibitors in preclinical studies, although this remains to be proved in human studies. Abstract Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as novel treatment options in the management of advanced or metastatic breast cancer. MicroRNAs are endogenous non-coding 19–22-nucleotide-long RNAs that regulate gene expression in development and tumorigenesis. Herein, we systematically review all microRNAs associated with response to CDK4/6 inhibitors in solid tumors and hematological malignancies. Eligible articles were identified by a search of the MEDLINE and ClinicalTrials.gov databases for the period up to1 January 2021; the algorithm consisted of a predefined combination of the words “microRNAs”, “cancer” and “CDK 4/6 inhibitors”. Overall, 15 studies were retrieved. Six microRNAs (miR-126, miR-326, miR3613-3p, miR-29b-3p, miR-497 and miR-17-92) were associated with sensitivity to CDK4/6 inhibitors. Conversely, six microRNAs (miR-193b, miR-432-5p, miR-200a, miR-223, Let-7a and miR-21) conferred resistance to treatment with CDK4/6 inhibitors. An additional number of microRNAs (miR-124a, miR9, miR200b and miR-106b) were shown to mediate cellular response to CDK4/6 inhibitors without affecting sensitivity to treatment. Collectively, our review provides evidence that microRNAs could serve as predictive biomarkers for treatment with CDK4/6 inhibitors. Moreover, microRNA-targeted therapy could potentially maximize sensitivity to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Angeliki Andrikopoulou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Almog Shalit
- Medical School, National and Kapodistrian University of Athens, 80 Vasilissis Sofias Avenue, 11528 Athens, Greece;
| | - Eleni Zografos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Konstantinos Koutsoukos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Anna-Maria Korakiti
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Meletios-Athanasios Dimopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
| | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, 11528 Athens, Greece; (A.A.); (E.Z.); (K.K.); (A.-M.K.); (M.L.); (M.-A.D.)
- Correspondence: ; Tel.: +30-21-0338-1554; Fax: +30-21-3216-2511
| |
Collapse
|
44
|
Wang R, Xu K, Gao F, Huang J, Guan X. Clinical considerations of CDK4/6 inhibitors in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188590. [PMID: 34271137 DOI: 10.1016/j.bbcan.2021.188590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
Abstract
The formation of cyclinD-CDK4/6 complex plays vital roles in the cell cycle transition from G1 phase to S phase which is characterized by vigorous transcription and synthesis. Through cyclinD-CDK4/6-Rb axis, CDK4/6 inhibitors arrest the cell cycle in the G1 phase and block the proliferation of aggressive cells, exhibiting promising effects in containing the aggressiveness of breast cancers. To date, there are three CDK4/6 inhibitors approved by the U.S. Food and Drug Administration in treating advanced hormone receptor-positive breast cancer, including palbociclib, abemaciclib, and ribociclib. In fact, several preclinical experiments and clinical trials presented therapeutic effects of CDK4/6 inhibitor-based treatment in triple-negative breast cancer.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyi Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Niu YN, Zeng Y, Zhong FF, Long SL, Ren DW, Qin X, Liu WJ. Salidroside overcomes dexamethasone resistance in T-acute lymphoblastic leukemia cells. Exp Ther Med 2021; 21:636. [PMID: 33968167 PMCID: PMC8097222 DOI: 10.3892/etm.2021.10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to analyze whether the use of salidroside (SAL) could overcome dexamethasone (DEX) resistance in T-acute lymphocytic leukemia cells. The human T-ALL DEX-resistant cell line, CEM-C1 and the DEX-sensitive cell line, CEM-C7 were used in the current study. The proliferation inhibition rates in these cells, treated with SAL and DEX alone, and in combination were detected using a Cell Counting Kit-8 assay, while the morphological changes of the cells were observed using an inverted microscope. Reverse transcription-quantitative PCR was used to detect the mRNA expression levels of the c-Myc and LC3 genes, while flow cytometry was used to detect the cell cycle distribution and the rate of apoptosis. In addition, western blot analysis was used to detect the protein expression levels of c-Myc, BCL-2, Bax, cleaved PARP and LC3. and acridine orange staining was used to detect the changes in acidic autophagy vesicles. It was found that SAL could effectively inhibit cell proliferation and induce apoptosis in the CEM-C1 and CEM-C7 cells. In addition, SAL promoted the induction of autophagy. The protein expression levels of c-Myc in the CEM-C1 cells were significantly higher compared with that in the CEM-C7 cells. SAL downregulated the mRNA expression levels of the c-Myc gene and protein in a dose-dependent manner. This suggested that SAL could inhibit the proliferation of the CEM-C1 and CEM-C7 cells, induce apoptosis and autophagy and overcome DEX resistance in the CEM-C1 cells. The mechanism may be associated with the downregulation of c-Myc.
Collapse
Affiliation(s)
- Ya-Na Niu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Yan Zeng
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Fang-Fang Zhong
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Si-Li Long
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Dan-Wei Ren
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Xiang Qin
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Jun Liu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
46
|
Raghunath M, Zeugolis DI. Transforming eukaryotic cell culture with macromolecular crowding. Trends Biochem Sci 2021; 46:805-811. [PMID: 33994289 DOI: 10.1016/j.tibs.2021.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/07/2021] [Accepted: 04/16/2021] [Indexed: 01/10/2023]
Abstract
In multicellular organisms, the intracellular and extracellular spaces are considerably packed with a diverse range of macromolecular species. Yet, standard eukaryotic cell culture is performed in dilute, and deprived of macromolecules culture media, that barely imitate the density and complex macromolecular composition of tissues. Essentially, we drown cells in a sea of media and then expect them to perform physiologically. Herein, we argue the use of macromolecular crowding (MMC) in eukaryotic cell culture for regenerative medicine and drug discovery purposes.
Collapse
Affiliation(s)
- Michael Raghunath
- Center for Cell Biology and Tissue Engineering, Institute for Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland; Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland; Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), School of Mechanical and Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
47
|
Yousuf M, Shamsi A, Queen A, Shahbaaz M, Khan P, Hussain A, Alajmi MF, Rizwanul Haque QM, Imtaiyaz Hassan M. Targeting cyclin-dependent kinase 6 by vanillin inhibits proliferation of breast and lung cancer cells: Combined computational and biochemical studies. J Cell Biochem 2021; 122:897-910. [PMID: 33829554 DOI: 10.1002/jcb.29921] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Cyclin-dependent kinase 6 (CDK6) is a member of serine/threonine kinase family, and its overexpression is associated with cancer development. Thus, it is considered as a potential drug target for anticancer therapies. This study showed the CDK6 inhibitory potential of vanillin using combined experimental and computational methods. Structure-based docking and 200 ns molecular dynamics simulation studies revealed that the binding of vanillin stabilizes the CDK6 structure and provides mechanistic insights into the binding mechanism. Enzyme inhibition and fluorescence-binding studies showed that vanillin inhibits CDK6 with an half maximal inhibitory concentration = 4.99 μM and a binding constant (K) 4.1 × 107 M-1 . Isothermal titration calorimetry measurements further complemented our observations. Studies on human cancer cell lines (MCF-7 and A549) showed that vanillin decreases cell viability and colonization properties. The protein expression studies have further revealed that vanillin reduces the CDK6 expression and induces apoptosis in the cancer cells. In conclusion, our study presents the CDK6-mediated therapeutic implications of vanillin for anticancer therapies.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Anas Shamsi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Aarfa Queen
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Mohd Shahbaaz
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Bellville, Cape Town, South Africa.,Laboratory of Computational Modeling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Parvez Khan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Afzal Hussain
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed F Alajmi
- Department of Pharmacognosy, King Saud University, Riyadh, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
48
|
Chen Y, Wu T, Zhu Z, Huang H, Zhang L, Goel A, Yang M, Wang X. An integrated workflow for biomarker development using microRNAs in extracellular vesicles for cancer precision medicine. Semin Cancer Biol 2021; 74:134-155. [PMID: 33766650 DOI: 10.1016/j.semcancer.2021.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Abstract
EV-miRNAs are microRNA (miRNA) molecules encapsulated in extracellular vesicles (EVs), which play crucial roles in tumor pathogenesis, progression, and metastasis. Recent studies about EV-miRNAs have gained novel insights into cancer biology and have demonstrated a great potential to develop novel liquid biopsy assays for various applications. Notably, compared to conventional liquid biomarkers, EV-miRNAs are more advantageous in representing host-cell molecular architecture and exhibiting higher stability and specificity. Despite various available techniques for EV-miRNA separation, concentration, profiling, and data analysis, a standardized approach for EV-miRNA biomarker development is yet lacking. In this review, we performed a substantial literature review and distilled an integrated workflow encompassing important steps for EV-miRNA biomarker development, including sample collection and EV isolation, EV-miRNA extraction and quantification, high-throughput data preprocessing, biomarker prioritization and model construction, functional analysis, as well as validation. With the rapid growth of "big data", we highlight the importance of efficient mining of high-throughput data for the discovery of EV-miRNA biomarkers and integrating multiple independent datasets for in silico and experimental validations to increase the robustness and reproducibility. Furthermore, as an efficient strategy in systems biology, network inference provides insights into the regulatory mechanisms and can be used to select functionally important EV-miRNAs to refine the biomarker candidates. Despite the encouraging development in the field, a number of challenges still hinder the clinical translation. We finally summarize several common challenges in various biomarker studies and discuss potential opportunities emerging in the related fields.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Zhongxu Zhu
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, 31 To Yuen Street, Kowloon Tong, Hong Kong; Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong Province, China.
| |
Collapse
|