1
|
Wu Y, Jia X, Wu N, Zhang X, Wu Y, Liu Y, Zhou M, Shen Y, Li E, Wang W, Lan J, Wang Y, Chiu S. Boosting with Omicron-specific mRNA vaccine or historical SARS-CoV-2 vaccines elicits discriminating immune responses against Omicron variants. Acta Pharm Sin B 2025; 15:947-962. [PMID: 40177579 PMCID: PMC11959960 DOI: 10.1016/j.apsb.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 11/05/2024] [Indexed: 04/05/2025] Open
Abstract
Booster vaccinations are highly recommended in combating the SARS-CoV-2 Omicron variant and its subvariants. However, the optimal booster vaccination strategies and related immune mechanisms with different prior vaccinations are under-revealed. In this study, we systematically evaluated the immune responses in mice and hamsters with different prime-boost regimens before their protective efficacies against Omicron were detected. We found that boosting with Ad5-nCoV, SWT-2P or SOmicron-6P induced significantly higher levels of neutralization activities against Omicron variants than CoronaVac and ZF2001 by eliciting stronger germinal center (GC) responses. Specifically, SOmicron-6P induced even stronger antibody responses against Omicron variants in CoronaVac and Ad5-nCoV-primed animals than non-Omicron-specific vaccines but with limited differences as compared to Ad5-nCoV and SWT-2P. In addition, boosting with a specific vaccine has the potential to remodel the existing immune profiles. These findings indicated that adenovirus-vectored vaccines and mRNA vaccines would be more effective than other types of vaccines as booster shots in combating Omicron infections. Moreover, the protective efficacies of the vaccines in booster vaccinations are highly related to GC reactions in secondary lymphatic organs. In summary, these findings provide timely important information on prime-boost regimens and future vaccine design.
Collapse
Affiliation(s)
- Yi Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaoying Jia
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Namei Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
| | - Xinghai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Minmin Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Entao Li
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China
| | - Wei Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaming Lan
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yucai Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- RNAlfa Biotech, Hefei 230088, China
| | - Sandra Chiu
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Hefei 230031, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230026, China
| |
Collapse
|
2
|
Ma Q, Yang J, Zhang X, Li H, Hao Y, Feng X. Immunogenicity of HIV-1 Env mRNA and Env-Gag VLP mRNA Vaccines in Mice. Vaccines (Basel) 2025; 13:84. [PMID: 39852863 PMCID: PMC11768961 DOI: 10.3390/vaccines13010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND The development of a protective vaccine is critical for conclusively ending the human immunodeficiency virus (HIV) epidemic. METHODS We constructed nucleotide-modified mRNA vaccines expressing HIV-1 Env and Gag proteins. Env-gag virus-like particles (VLPs) were generated through co-transfection with env and gag mRNA vaccines. BALB/c mice were immunized with env mRNA, env-gag VLP mRNA, env plasmid DNA vaccine, or lipid nanoparticle (LNP) controls. HIV Env-specific binding and neutralizing antibodies in mouse sera were assessed via enzyme-linked immunosorbent assay (ELISA) and pseudovirus-based neutralization assays, respectively. Env-specific cellular immune responses in mouse splenocytes were evaluated using an Enzyme-linked immunosorbent assay (ELISpot) and in vivo cytotoxic T cell-killing assays. RESULTS The Env-specific humoral and cellular immune responses elicited by HIV-1 env mRNA and env-gag VLP mRNA vaccine were stronger than those induced by the DNA vaccine. Specific immune responses induced by the env mRNA vaccine were significantly stronger in the high-dose group than in the low-dose group. Immunization with co-formulated env and gag mRNAs elicited superior cellular immune responses compared to env mRNA alone. CONCLUSIONS These findings suggest that the env-gag VLP mRNA platform holds significant promise for HIV-1 vaccine development.
Collapse
Affiliation(s)
| | | | | | | | - Yanzhe Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (Q.M.); (J.Y.); (X.Z.); (H.L.)
| | - Xia Feng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100052, China; (Q.M.); (J.Y.); (X.Z.); (H.L.)
| |
Collapse
|
3
|
Ye Q, Zhang D, Zhang RR, Xu Q, Huang XY, Huang B, Sun MX, Cong Z, Zhu L, Ma J, Li N, Zhang J, Chen T, Lu J, Hou Y, Chen X, Liu HT, Zhou C, Li RT, Wu M, Wang ZJ, Yin J, Qiu YF, Ying B, Tan WJ, Xue J, Qin CF. A penta-component mpox mRNA vaccine induces protective immunity in nonhuman primates. Nat Commun 2024; 15:10611. [PMID: 39639037 PMCID: PMC11621575 DOI: 10.1038/s41467-024-54909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
The recent worldwide outbreaks of mpox prioritize the development of a safe and effective mRNA vaccine. The contemporary mpox virus (MPXV) exhibits changing virological and epidemiological features, notably affecting populations already vulnerable to human immunodeficiency virus (HIV). Herein, we profile the immunogenicity of AR-MPXV5, a penta-component mRNA vaccine targeting five specific proteins (M1R, E8L, A29L, A35R, and B6R) from the representative contemporary MPXV clade II strain, in both naive and simian immunodeficiency virus (SIV)-infected nonhuman primates. Immunization with two doses of AR-MPXV5 to cynomolgus macaques effectively elicits antibody responses and cellular responses. Importantly, based on the challenge model with a contemporary MPXV clade II strain, AR-MPXV5 demonstrates effective efficacy in preventing skin lesions, eliminating viremia and reducing viral loads in multiple tissues after challenge in naive male animals. More importantly, AR-MPXV5 is well-tolerated in stable chronic SIV-infected rhesus monkeys, while eliciting comparable MPXV-specific humoral and cellular responses in both naive and SIV-infected monkeys. Together, these results support further clinical development of the AR-MPXV5 vaccine.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Dong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Qian Xu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xing-Yao Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng-Xu Sun
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zhe Cong
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianrong Ma
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Na Li
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Ting Chen
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiahan Lu
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yongzhi Hou
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Xiang Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Hai-Tao Liu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Chao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Mei Wu
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Zheng-Jian Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Jiye Yin
- National Beijing Center for Drug Safety Evaluation and Research, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ye-Feng Qiu
- Laboratory Animal Center, Academy of Military Medical Science, Beijing, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Wen-Jie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Jing Xue
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
Hsiung KC, Chiang HJ, Reinig S, Shih SR. Vaccine Strategies Against RNA Viruses: Current Advances and Future Directions. Vaccines (Basel) 2024; 12:1345. [PMID: 39772007 PMCID: PMC11679499 DOI: 10.3390/vaccines12121345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
The development of vaccines against RNA viruses has undergone a rapid evolution in recent years, particularly driven by the COVID-19 pandemic. This review examines the key roles that RNA viruses, with their high mutation rates and zoonotic potential, play in fostering vaccine innovation. We also discuss both traditional and modern vaccine platforms and the impact of new technologies, such as artificial intelligence, on optimizing immunization strategies. This review evaluates various vaccine platforms, ranging from traditional approaches (inactivated and live-attenuated vaccines) to modern technologies (subunit vaccines, viral and bacterial vectors, nucleic acid vaccines such as mRNA and DNA, and phage-like particle vaccines). To illustrate these platforms' practical applications, we present case studies of vaccines developed for RNA viruses such as SARS-CoV-2, influenza, Zika, and dengue. Additionally, we assess the role of artificial intelligence in predicting viral mutations and enhancing vaccine design. The case studies underscore the successful application of RNA-based vaccines, particularly in the fight against COVID-19, which has saved millions of lives. Current clinical trials for influenza, Zika, and dengue vaccines continue to show promise, highlighting the growing efficacy and adaptability of these platforms. Furthermore, artificial intelligence is driving improvements in vaccine candidate optimization and providing predictive models for viral evolution, enhancing our ability to respond to future outbreaks. Advances in vaccine technology, such as the success of mRNA vaccines against SARS-CoV-2, highlight the potential of nucleic acid platforms in combating RNA viruses. Ongoing trials for influenza, Zika, and dengue demonstrate platform adaptability, while artificial intelligence enhances vaccine design by predicting viral mutations. Integrating these innovations with the One Health approach, which unites human, animal, and environmental health, is essential for strengthening global preparedness against future RNA virus threats.
Collapse
Affiliation(s)
- Kuei-Ching Hsiung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Huan-Jung Chiang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Sebastian Reinig
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (K.-C.H.); (H.-J.C.); (S.R.)
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Medical Biotechnology & Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food & Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science & Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
5
|
Wang L, Wan J, He W, Wang Z, Wu Q, Zhou M, Fu ZF, Zhao L. IL-7 promotes mRNA vaccine-induced long-term immunity. J Nanobiotechnology 2024; 22:716. [PMID: 39550592 PMCID: PMC11568559 DOI: 10.1186/s12951-024-02993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, improving the immunogenicity and durability of mRNA vaccines remains a challenge. To elicit optimal immune responses, integrating antigen-encoded mRNA and immunostimulatory adjuvants into a single formulation is a promising approach to enhancing the efficacy of mRNA vaccines. Here, we report an adjuvant strategy to enhance the efficacy of mRNA vaccines by co-loading mRNA encoding the antigen (rabies virus glycoprotein, RABV-G) and mRNA encoding IL-7 into lipid nanoparticles, achieving co-delivery to the same antigen-presenting cells. A single immunization with G&IL-7 mRNA vaccine elicited robust humoral immune responses in mice and conferred complete protection against RABV challenge. Notably, the high levels of neutralizing antibody induced by the G&IL-7 mRNA vaccine were maintained for at least 6 months, providing mice with long-term significant and complete protection against RABV. Additionally, IL-7 also enhanced antibody responses against the SARS-CoV-2. These data demonstrate that IL-7 is a potent mRNA vaccine adjuvant that can provide the required immune stimulation in various mRNA vaccine formulations.
Collapse
Affiliation(s)
- Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenna He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Qin Q, Yan H, Gao W, Cao R, Liu G, Zhang X, Wang N, Zuo W, Yuan L, Gao P, Liu Q. Engineered mRNAs With Stable Structures Minimize Double-stranded RNA Formation and Increase Protein Expression. J Mol Biol 2024; 436:168822. [PMID: 39427983 DOI: 10.1016/j.jmb.2024.168822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The therapeutic use of synthetic message RNA (mRNA) has been validated in COVID-19 vaccines and shows enormous potential in developing infectious and oncological vaccines. However, double-stranded RNA (dsRNA) byproducts generated during the in vitro transcription (IVT) process can diminish the efficacy of mRNA-based therapeutics and provoke innate immune responses. Existing methods to eliminate dsRNA byproducts are often cumbersome and labor-intensive. In this study, we revealed that a loose mRNA secondary structure and more unpaired U bases in the sequence generally lead to the formation of more dsRNA byproducts during the IVT process. We further developed a predictive model for dsRNA byproducts formation based on sequence characteristics to guide the optimization of mRNA sequences, helping to minimize unwanted immune response and improve the protein expression of mRNA products. Collectively, our study provides novel clues and methodologies for developing effective mRNA therapeutics with minimized dsRNA byproducts and increased protein expression.
Collapse
Affiliation(s)
- Qianshan Qin
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Huayuan Yan
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Weixiang Gao
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Ruyin Cao
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Guopeng Liu
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Xiaojing Zhang
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Niangang Wang
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Wenjie Zuo
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Lei Yuan
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China
| | - Peng Gao
- Suzhou Abogen Biosciences Co., Ltd., Suzhou, Jiangsu 215123, China.
| | - Qi Liu
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Orthopaedic Department of Tongji Hospital, Frontier Science Center for Stem Cell Research, Bioinformatics Department, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
7
|
Zhang X, Li M, Zhang N, Li Y, Teng F, Li Y, Zhang X, Xu X, Li H, Zhu Y, Wang Y, Jia Y, Qin C, Wang B, Guo S, Wang Y, Yu X. SARS-CoV-2 Evolution: Immune Dynamics, Omicron Specificity, and Predictive Modeling in Vaccinated Populations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402639. [PMID: 39206813 PMCID: PMC11516136 DOI: 10.1002/advs.202402639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Host immunity is central to the virus's spread dynamics, which is significantly influenced by vaccination and prior infection experiences. In this work, we analyzed the co-evolution of SARS-CoV-2 mutation, angiotensin-converting enzyme 2 (ACE2) receptor binding, and neutralizing antibody (NAb) responses across various variants in 822 human and mice vaccinated with different non-Omicron and Omicron vaccines is analyzed. The link between vaccine efficacy and vaccine type, dosing, and post-vaccination duration is revealed. The classification of immune protection against non-Omicron and Omicron variants is co-evolved with genetic mutations and vaccination. Additionally, a model, the Prevalence Score (P-Score) is introduced, which surpasses previous algorithm-based models in predicting the potential prevalence of new variants in vaccinated populations. The hybrid vaccination combining the wild-type (WT) inactivated vaccine with the Omicron BA.4/5 mRNA vaccine may provide broad protection against both non-Omicron variants and Omicron variants, albeit with EG.5.1 still posing a risk. In conclusion, these findings enhance understanding of population immunity variations and provide valuable insights for future vaccine development and public health strategies.
Collapse
Affiliation(s)
- Xiaohan Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Mansheng Li
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Nana Zhang
- Department of VirologyState Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Yunhui Li
- Department of Clinical LaboratoryBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Fei Teng
- Emergency Medicine Clinical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijing100020China
| | - Yongzhe Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Xiaomei Zhang
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Xingming Xu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Haolong Li
- Department of Clinical LaboratoryPeking Union Medical College HospitalChinese Academy of Medical Science & Peking Union Medical CollegeBeijing100730China
| | - Yunping Zhu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
| | - Yumin Wang
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Yan Jia
- ProteomicsEra Medical Co. Ltd.Beijing102206China
| | - Chengfeng Qin
- Department of VirologyState Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical SciencesBeijing100071China
| | - Bingwei Wang
- School of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Shubin Guo
- Emergency Medicine Clinical Research CenterBeijing Chao‐Yang HospitalCapital Medical UniversityBeijing Key Laboratory of Cardiopulmonary Cerebral ResuscitationBeijing100020China
| | - Yajie Wang
- Department of Clinical LaboratoryBeijing Ditan HospitalCapital Medical UniversityBeijing100015China
| | - Xiaobo Yu
- State Key Laboratory of Medical ProteomicsBeijing Proteome Research CenterNational Center for Protein Sciences‐Beijing (PHOENIX Center)Beijing Institute of LifeomicsBeijing102206China
- The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| |
Collapse
|
8
|
Nithin C, Fornari RP, Pilla SP, Wroblewski K, Zalewski M, Madaj R, Kolinski A, Macnar JM, Kmiecik S. Exploring protein functions from structural flexibility using CABS-flex modeling. Protein Sci 2024; 33:e5090. [PMID: 39194135 PMCID: PMC11350595 DOI: 10.1002/pro.5090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 08/29/2024]
Abstract
Understanding protein function often necessitates characterizing the flexibility of protein structures. However, simulating protein flexibility poses significant challenges due to the complex dynamics of protein systems, requiring extensive computational resources and accurate modeling techniques. In response to these challenges, the CABS-flex method has been developed as an efficient modeling tool that combines coarse-grained simulations with all-atom detail. Available both as a web server and a standalone package, CABS-flex is dedicated to a wide range of users. The web server version offers an accessible interface for straightforward tasks, while the standalone command-line program is designed for advanced users, providing additional features, analytical tools, and support for handling large systems. This paper examines the application of CABS-flex across various structure-function studies, facilitating investigations into the interplay among protein structure, dynamics, and function in diverse research fields. We present an overview of the current status of the CABS-flex methodology, highlighting its recent advancements, practical applications, and forthcoming challenges.
Collapse
Affiliation(s)
- Chandran Nithin
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Rocco Peter Fornari
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Smita P. Pilla
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Karol Wroblewski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Mateusz Zalewski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Rafał Madaj
- Institute of Evolutionary Biology, Biological and Chemical Research Centre, Faculty of BiologyUniversity of WarsawWarsawPoland
| | - Andrzej Kolinski
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| | - Joanna M. Macnar
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
- Present address:
Ryvu TherapeuticsCracowPoland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of ChemistryUniversity of WarsawWarsawPoland
| |
Collapse
|
9
|
Kim W. Germinal Center Response to mRNA Vaccination and Impact of Immunological Imprinting on Subsequent Vaccination. Immune Netw 2024; 24:e28. [PMID: 39246619 PMCID: PMC11377948 DOI: 10.4110/in.2024.24.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/29/2024] [Indexed: 09/10/2024] Open
Abstract
Vaccines are the most effective intervention currently available, offering protective immunity against targeted pathogens. The emergence of the coronavirus disease 2019 pandemic has prompted rapid development and deployment of lipid nanoparticle encapsulated, mRNA-based vaccines. While these vaccines have demonstrated remarkable immunogenicity, concerns persist regarding their ability to confer durable protective immunity to continuously evolving severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. This review focuses on human B cell responses induced by SARS-CoV-2 mRNA vaccination, with particular emphasis on the crucial role of germinal center reactions in shaping enduring protective immunity. Additionally, we explored observations of immunological imprinting and dynamics of recalled pre-existing immunity following variants of concern-based booster vaccination. Insights from this review contribute to comprehensive understanding B cell responses to mRNA vaccination in humans, thereby refining vaccination strategies for optimal and sustained protection against evolving coronavirus variants.
Collapse
Affiliation(s)
- Wooseob Kim
- Department of Microbiology, Korea University College of Medicine, Seoul 02841, Korea
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Korea
| |
Collapse
|
10
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
11
|
Salehi M, Alavi Darazam I, Nematollahi A, Alimohammadi M, Pouya S, Alimohammadi R, Khajavirad N, Porgoo M, Sedghi M, Mahdi Sepahi M, Azimi M, Hosseini H, Mahmoud Hashemi S, Dehghanizadeh S, Khoddami V. Safety and immunogenicity of COReNAPCIN, a SARS-CoV-2 mRNA vaccine, as a fourth heterologous booster in healthy Iranian adults: A double-blind, randomized, placebo-controlled, phase 1 clinical trial with a six-month follow-up. Int Immunopharmacol 2024; 134:112192. [PMID: 38761778 DOI: 10.1016/j.intimp.2024.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/20/2024]
Abstract
The recurrent COVID-19 infection, despite global vaccination, highlights the need for booster doses. A heterologous booster has been suggested to enhance immunity and protection against emerging variants of concern of the SARS-CoV-2 virus. In this report, we aimed to assess the safety, and immunogenicity of COReNAPCIN, as a fourth booster dose after three doses of inactivated vaccines. METHODS The study was conducted as a double-blind, randomized, placebo-controlled phase 1 clinical trial of the mRNA-based vaccine candidate, COReNAPCIN. The vaccine was injected as a heterologous booster in healthy Iranian adults aged 18-50 who had previously received three doses of inactivated SARS-CoV-2 vaccines. In the study, 30 participants were randomly assigned to receive either COReNAPCIN in two different doses (25 µg and 50 µg) or placebo. The vaccine candidate contained mRNA encoding the complete sequence of the pre-fusion stabilized Spike protein of SARS-CoV-2, formulated within lipid nanoparticles. The primary endpoint was safety and the secondary objective was humoral immunogenicity until 6 months post-vaccination. The cellular immunogenicity was pursued as an exploratory outcome. RESULTS COReNAPCIN was well tolerated in vaccinated individuals in both doses with no life-threatening or other serious adverse events. The most noticeable solicited adverse events were pain at the site of injection, fatigue and myalgia. Regarding the immunogenicity, despite the seroprevalence of SARS-CoV-2 antibodies due to the vaccination history for all and previous SARS-CoV-2 infection for some participants, the recipients of 25 and 50 µg COReNAPCIN, two weeks post-vaccination, showed 6·6 and 8·1 fold increase in the level of anti-RBD, and 11·5 and 21·7 fold increase in the level of anti-spike antibody, respectively. The geometric mean virus neutralizing titers reached 10.2 fold in the 25 µg group and 8.4 fold in 50 µg group of pre-boost levels. After 6 months, the measured anti-spike antibody concentration still maintains a geometric mean fold rise of 2.8 and 6.3, comparing the baseline levels in 25 and 50 µg groups, respectively. Additionally, the significant increase in the spike-specific IFN-ϒ T-cell response upon vaccination underscores the activation of cellular immunity. CONCLUSION COReNAPCIN booster showed favorable safety, tolerability, and immunogenicity profile, supporting its further clinical development (Trial registration: IRCT20230131057293N1).
Collapse
Affiliation(s)
- Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ilad Alavi Darazam
- Department of Infectious Diseases, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | - Nasim Khajavirad
- Department of Internal Medicine, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Maryam Azimi
- Department of Medical Affairs, Pharmed Pajoohan Viera, Tehran, Iran
| | - Hamed Hosseini
- Clinical Trial Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
12
|
Kim D, Lai CJ, Cha I, Jung JU. Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development. Viruses 2024; 16:128. [PMID: 38257828 PMCID: PMC10818334 DOI: 10.3390/v16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
SFTSV is an emerging tick-borne virus causing hemorrhagic fever with a case fatality rate (CFR) that can reach up to 27%. With endemic infection in East Asia and the recent spread of the vector tick to more than 20 states in the United States, the SFTSV outbreak is a globally growing public health concern. However, there is currently no targeted antiviral therapy or licensed vaccine against SFTSV. Considering the age-dependent SFTS pathogenesis and disease outcome, a sophisticated vaccine development approach is required to safeguard the elderly population from lethal SFTSV infection. Given the recent emergence of SFTSV, the establishment of animal models to study immunogenicity and protection from SFTS symptoms has only occurred recently. The latest research efforts have applied diverse vaccine development approaches-including live-attenuated vaccine, DNA vaccine, whole inactivated virus vaccine, viral vector vaccine, protein subunit vaccine, and mRNA vaccine-in the quest to develop a safe and effective vaccine against SFTSV. This review aims to outline the current progress in SFTSV vaccine development and suggest future directions to enhance the safety and efficacy of these vaccines, ensuring their suitability for clinical application.
Collapse
Affiliation(s)
- Dokyun Kim
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chih-Jen Lai
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Inho Cha
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Wan J, Wang Z, Wang L, Wu L, Zhang C, Zhou M, Fu ZF, Zhao L. Circular RNA vaccines with long-term lymph node-targeting delivery stability after lyophilization induce potent and persistent immune responses. mBio 2024; 15:e0177523. [PMID: 38078742 PMCID: PMC10790773 DOI: 10.1128/mbio.01775-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, the inherent instability of mRNA and the nonspecificity of lipid nanoparticle-encapsulated (LNP) delivery systems result in the need for cold storage and a relatively short-duration immune response to mRNA vaccines. Herein, we develop a novel vaccine in the form of circRNAs encapsulated in LNPs, and the circular structure of the circRNAs enhances their stability. Lyophilization is considered the most effective method for the long-term preservation of RNA vaccines. However, this process may result in irreversible damage to the nanoparticles, particularly the potential disruption of targeting modifications on LNPs. During the selection of lymph node-targeting ligands, we found that LNPs modified with mannose maintained their physical properties almost unchanged after lyophilization. Additionally, the targeting specificity and immunogenicity remained unaffected. In contrast, even with the addition of cryoprotectants such as sucrose, the physical properties of LNPs were impaired, leading to an obvious decrease in immunogenicity. This may be attributed to the protective role of mannose on the surface of LNPs during lyophilization. Freshly prepared and lyophilized mLNP-circRNA vaccines elicited comparable immune responses in both the rabies virus model and the SARS-CoV-2 model. Our data demonstrated that mLNP-circRNA vaccines elicit robust immune responses while improving stability after lyophilization, with no compromise in tissue targeting specificity. Therefore, mannose-modified LNP-circRNA vaccines represent a promising vaccine design strategy.
Collapse
Affiliation(s)
- Jiawu Wan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zongmei Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lingli Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen F. Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
14
|
Yisimayi A, Song W, Wang J, Jian F, Yu Y, Chen X, Xu Y, Yang S, Niu X, Xiao T, Wang J, Zhao L, Sun H, An R, Zhang N, Wang Y, Wang P, Yu L, Lv Z, Gu Q, Shao F, Jin R, Shen Z, Xie XS, Wang Y, Cao Y. Repeated Omicron exposures override ancestral SARS-CoV-2 immune imprinting. Nature 2024; 625:148-156. [PMID: 37993710 PMCID: PMC10764275 DOI: 10.1038/s41586-023-06753-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/17/2023] [Indexed: 11/24/2023]
Abstract
The continuing emergence of SARS-CoV-2 variants highlights the need to update COVID-19 vaccine compositions. However, immune imprinting induced by vaccination based on the ancestral (hereafter referred to as WT) strain would compromise the antibody response to Omicron-based boosters1-5. Vaccination strategies to counter immune imprinting are critically needed. Here we investigated the degree and dynamics of immune imprinting in mouse models and human cohorts, especially focusing on the role of repeated Omicron stimulation. In mice, the efficacy of single Omicron boosting is heavily limited when using variants that are antigenically distinct from WT-such as the XBB variant-and this concerning situation could be mitigated by a second Omicron booster. Similarly, in humans, repeated Omicron infections could alleviate WT vaccination-induced immune imprinting and generate broad neutralization responses in both plasma and nasal mucosa. Notably, deep mutational scanning-based epitope characterization of 781 receptor-binding domain (RBD)-targeting monoclonal antibodies isolated from repeated Omicron infection revealed that double Omicron exposure could induce a large proportion of matured Omicron-specific antibodies that have distinct RBD epitopes to WT-induced antibodies. Consequently, immune imprinting was largely mitigated, and the bias towards non-neutralizing epitopes observed in single Omicron exposures was restored. On the basis of the deep mutational scanning profiles, we identified evolution hotspots of XBB.1.5 RBD and demonstrated that these mutations could further boost the immune-evasion capability of XBB.1.5 while maintaining high ACE2-binding affinity. Our findings suggest that the WT component should be abandoned when updating COVID-19 vaccines, and individuals without prior Omicron exposure should receive two updated vaccine boosters.
Collapse
Affiliation(s)
- Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Jing Wang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Fanchong Jian
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | | | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Sijie Yang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, P. R. China
| | - Xiao Niu
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Joint Graduate Program of Peking-Tsinghua-NIBS, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, P. R. China
| | - Jing Wang
- Changping Laboratory, Beijing, P. R. China
| | | | - Haiyan Sun
- Changping Laboratory, Beijing, P. R. China
| | - Ran An
- Changping Laboratory, Beijing, P. R. China
| | - Na Zhang
- Changping Laboratory, Beijing, P. R. China
| | - Yao Wang
- Changping Laboratory, Beijing, P. R. China
| | - Peng Wang
- Changping Laboratory, Beijing, P. R. China
| | | | - Zhe Lv
- Sinovac Biotech, Beijing, P. R. China
| | | | - Fei Shao
- Changping Laboratory, Beijing, P. R. China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, P. R. China
| | - Zhongyang Shen
- Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, P. R. China
| | - Xiaoliang Sunney Xie
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Youchun Wang
- Changping Laboratory, Beijing, P. R. China
- Institute of Medical Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, P. R. China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
| |
Collapse
|
15
|
Wan J, Yang J, Wang Z, Shen R, Zhang C, Wu Y, Zhou M, Chen H, Fu ZF, Sun H, Yi Y, Shen H, Li H, Zhao L. A single immunization with core-shell structured lipopolyplex mRNA vaccine against rabies induces potent humoral immunity in mice and dogs. Emerg Microbes Infect 2023; 12:2270081. [PMID: 37819147 PMCID: PMC10768744 DOI: 10.1080/22221751.2023.2270081] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
The persistence and clinical consequences of rabies virus (RABV) infection have prompted global efforts to develop a safe and effective vaccines against rabies. mRNA vaccines represent a promising option against emerging and re-emerging infectious diseases, gaining particular interest since the outbreak of COVID-19. Herein, we report the development of a highly efficacious rabies mRNA vaccine composed of sequence-modified mRNA encoding RABV glycoprotein (RABV-G) packaged in core-shell structured lipopolyplex (LPP) nanoparticles, named LPP-mRNA-G. The bilayer structure of LPP improves protection and delivery of RABV-G mRNA and allows gradual release of mRNA molecules as the polymer degrades. The unique core-shell structured nanoparticle of LPP-mRNA-G facilitates vaccine uptake and demonstrates a desirable biodistribution pattern with low liver targeting upon intramuscular immunization. Single administration of low-dose LPP-mRNA-G in mice elicited potent humoral immune response and provided complete protection against intracerebral challenge with lethal RABV. Similarly, single immunization of low-dose LPP-mRNA-G induced high levels of virus-neutralizing antibody titers in dogs. Collectively, our data demonstrate the potential of LPP-mRNA-G as a promising next-generation rabies vaccine used in human and companion animals.
Collapse
Affiliation(s)
- Jiawu Wan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Jianmei Yang
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Zongmei Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Ruizhong Shen
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Chengguang Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Yuntao Wu
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Zhen F. Fu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| | - Haiwei Sun
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Yinglei Yi
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Haifa Shen
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Hangwen Li
- Stemirna Therapeutics, Shanghai, People’s Republic of China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, People’s Republic of China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, People’s Republic of China
| |
Collapse
|
16
|
Kim D, Lai CJ, Cha I, Kang S, Yang WS, Choi Y, Jung JU. SFTSV Gn-Head mRNA vaccine confers efficient protection against lethal viral challenge. J Med Virol 2023; 95:e29203. [PMID: 37909776 DOI: 10.1002/jmv.29203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus, causing thrombocytopenia and hemorrhagic fever, with a fatality rate ranging from 12% to 30%. SFTSV possesses Gn and Gc glycoproteins, which are responsible for host cell receptor attachment and membrane fusion, respectively, to infect host cells. We have previously reported a protein subunit vaccine candidate (sGn-H-FT) of the SFTSV soluble Gn head region (sGn-H) fused with self-assembling ferritin (FT) nanoparticles, displaying strong protective immunogenicity. In this study, we present messenger RNA (mRNA) vaccine candidates encoding sGn-H or sGn-H-FT, both of which exhibit potent in vivo immunogenicity and protection capacity. Mice immunized with either sGn-H or sGn-H-FT mRNA lipid nanoparticle (LNP) vaccine produced strong total antibodies and neutralizing antibodies (NAbs) against sGn-H. Importantly, NAb titers remained high for an extended period. Finally, mice immunized with sGn-H or sGn-H-FT mRNA LNP vaccine were fully protected from a lethal dose of SFTSV challenge, showing no fatality. These findings underscore the promise of sGn-H and sGn-H-FT as vaccine antigen candidates capable of providing protective immunity against SFTSV infection.
Collapse
Affiliation(s)
- Dokyun Kim
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Chih-Jen Lai
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Inho Cha
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Seokmin Kang
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Wan-Shan Yang
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| | - Younho Choi
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, Florida, USA
| | - Jae U Jung
- Department of Cancer Biology and Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Global Center for Pathogen Research and Human Health, Lerner Research Institute, Cleveland Clinic, Ohio, USA
| |
Collapse
|
17
|
Wang T, Zheng J, Xu H, Wang Z, Sun P, Hou X, Gong X, Zhang B, Wu J, Liu B. A Delta-Omicron Bivalent Subunit Vaccine Elicited Antibody Responses in Mice against Both Ancestral and Variant Strains of SARS-CoV-2. Vaccines (Basel) 2023; 11:1539. [PMID: 37896942 PMCID: PMC10611268 DOI: 10.3390/vaccines11101539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Continued mutation of the SARS-CoV-2 genome has led to multiple waves of COVID-19 infections, and new variants have continued to emerge and dominate. The emergence of Omicron and its subvariants has substantially increased the infectivity of SARS-CoV-2. RBD genes of the wild-type SARS-CoV-2 strain and the Delta, Omicron BA.1 and Omicron BA.2 variants were used to construct plasmids and express the proteins in glycoengineered Pichia pastoris. A stable 4 L-scale yeast fermentation and purification process was established to obtain high-purity RBD proteins with a complex glycoform N-glycosyl structure that was fucose-free. The RBD glycoproteins were combined with two adjuvants, Al(OH)3 and CpG, which mitigated the typical disadvantage of low immunogenicity associated with recombinant subunit vaccines. To improve the broad-spectrum antiviral activity of the candidate vaccine, Delta RBD proteins were mixed with BA.2 RBD proteins at a ratio of 1:1 and then combined with two adjuvants-Al(OH)3 and CpG-to prepare a bivalent vaccine. The bivalent vaccine effectively induced mice to produce pseudovirus-neutralizing antibodies against SARS-CoV-2 variants, Delta, Beta, and Omicron sublineages BA.1, BA.2, BA.5. The bivalent vaccine could neutralize the authentic wild-type SARS-CoV-2 strain, Delta, BA.1.1, BA.2.2, BA2.3, and BA.2.12.1 viruses, providing a new approach for improving population immunity and delivering broad-spectrum protection under the current epidemic conditions.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Jing Zheng
- Xiamen Center for Disease Control and Prevention, Xiamen 361000, China;
| | - Huifang Xu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Zhongyi Wang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Peng Sun
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Xuchen Hou
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Xin Gong
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Bin Zhang
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Jun Wu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| | - Bo Liu
- Department of Microorganism Engineering, Beijing Institute of Biotechnology, Beijing 100071, China; (T.W.); (H.X.); (Z.W.); (P.S.); (X.H.); (X.G.); (B.Z.)
| |
Collapse
|
18
|
Guo M, Xiong M, Peng J, Guan T, Su H, Huang Y, Yang CG, Li Y, Boraschi D, Pillaiyar T, Wang G, Yi C, Xu Y, Chen C. Multi-omics for COVID-19: driving development of therapeutics and vaccines. Natl Sci Rev 2023; 10:nwad161. [PMID: 37936830 PMCID: PMC10627145 DOI: 10.1093/nsr/nwad161] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 11/09/2023] Open
Abstract
The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and economy. The development of therapeutics and vaccines to combat this virus is continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Collapse
Affiliation(s)
- Mengyu Guo
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muya Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinying Peng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tong Guan
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haixia Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Centre for Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Immunology and Nanomedicine, and China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli 80131, Italy
| | - Thanigaimalai Pillaiyar
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tuebingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Guanbo Wang
- Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 528107, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yechun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunying Chen
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
19
|
Yang Q, Jiang T, Ma S, Liu W, Wang B, Wang J, Chen S, Li M, Li F. Acupressure in the treatment of patients with mild infection of COVID-19 omicron variant: A prospectively observational study. Medicine (Baltimore) 2023; 102:e34610. [PMID: 37565844 PMCID: PMC10419346 DOI: 10.1097/md.0000000000034610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
During the coronavirus disease 2019 epidemic, acupressure has been widely used as a complementary treatment for coronavirus disease 2019 in China, but its safety and effectiveness have not been determined until now. This was a prospectively observational study containing 400 cases of mild infection of Omicron who were admitted to Chongming Flower Expo Makeshift Hospital from April 1, 2022 to May 1, 2022. Patients were assigned to receive basic treatment or a combination with acupressure treatment (5 minutes per acupoint, at least twice daily), from admission to discharge. The conversion time of viral RNA assay, the recovery time of symptoms and the clinical cure rate at day 7 were compared in 2 groups. All cases were included in the final analysis. The time to conversion of viral RNA assay (6 vs 7 days, P < .001) and time to symptom recovery (2 vs 4 days, P < .001) were markedly shortened in the acupressure treatment group compared to controls. The time to recovery from individual symptoms of coughing, a sore throat, a fever, fatigue, poor appetite, and insomnia were shorter in the treatment group compared to the control (all P < .05), but there was no statistical difference in reducing the recovery time from headache, muscle ache, anxiety, loss of taste between 2 groups (all P > .05). In addition, acupressure therapy also revealed a higher clinical cure rate at day 7 than basic treatment alone (91% vs 65%, P < .001) and reported no serious adverse events. This study provided evidence for acupressure therapy in treatment of Omicron infection concerning the viral load disappearance and the clinical symptoms improvements. Findings were expected to help guide efforts to position acupressure therapy as a therapeutic option for patients with Omicron variant.
Collapse
Affiliation(s)
- Qiqi Yang
- Graduate Faculty, Anhui University of Chinese Medicine, Hefei, China
| | - Tianxin Jiang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shouliang Ma
- Department of Encephalopathy, First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Wen Liu
- First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Baoguo Wang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jie Wang
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Shaofei Chen
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Meng Li
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Fei Li
- Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
20
|
Zhang Y, Mao H, Li J, Li J, Huang C, Li J, Chu M, Xue F, Wang L, Fang Z, Wang Z, Wu J, Chen K. Delta (B.1.617.2) inactivated vaccine candidate elicited neutralizing antibodies to SARS-CoV-2 and circulating variants in rhesus macaques. Virol Sin 2023; 38:627-630. [PMID: 37244519 PMCID: PMC10212592 DOI: 10.1016/j.virs.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
•The Delta inactivated vaccine constructed in this study has high immunogenicity and good safety. •The inactivated vaccine has good cross-protection against SARS-CoV-2 variants. •The vaccine exhibited high productivity and good genetic stability in production.
Collapse
Affiliation(s)
- Yanjun Zhang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Haiyan Mao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Ju Li
- Rong an Bio-pharmaceutical Co, Ltd., Ningbo, 315000, China
| | - Jianhua Li
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Chen Huang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310000, China
| | - Minglei Chu
- Rong an Bio-pharmaceutical Co, Ltd., Ningbo, 315000, China
| | - Fengbo Xue
- Rong an Bio-pharmaceutical Co, Ltd., Ningbo, 315000, China
| | - Linhui Wang
- Rong an Bio-pharmaceutical Co, Ltd., Ningbo, 315000, China
| | - Zhongbiao Fang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310000, China
| | - Zhen Wang
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Jinan Wu
- Rong an Bio-pharmaceutical Co, Ltd., Ningbo, 315000, China.
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310000, China.
| |
Collapse
|
21
|
Hannawi S, Zhang R, Abuquta A, Safeldin L, Hassan A, Alamadi A, Hossain T, Mostafa M, Ghoneim Y, Solo J, Zheng H, Wu D, Yu D, Yuan J, Zhao D, Lin R, Ying B, Qin C. Safety and immunogenicity of boosting with a severe acute respiratory syndrome coronavirus 2 omicron variant mRNA vaccine in healthy adults: An open-label, and single-arm Phase 1 study. Clin Transl Med 2023; 13:e1387. [PMID: 37612802 PMCID: PMC10447877 DOI: 10.1002/ctm2.1387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Suad Hannawi
- Internal Medicine DepartmentAl Kuwait‐Dubai HospitalEmirates Health Services (EHS)Ministry of Health and PreventionDubaiUnited Arab Emirates
| | - Rong‐Rong Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical Sciences (AMMS)BeijingChina
| | - Alaa Abuquta
- Accident and Emergency DepartmentAl Kuwait‐Dubai HospitalEHSMinistry of Health and PreventionDubaiUnited Arab Emirates
| | - Linda Safeldin
- General Surgery DepartmentAl Kuwait‐Dubai HospitalEHSMinistry of Health and PreventionDubaiUnited Arab Emirates
| | - Aala Hassan
- General Surgery DepartmentAl Kuwait‐Dubai HospitalEHSMinistry of Health and PreventionDubaiUnited Arab Emirates
| | - Ahmad Alamadi
- General Surgery DepartmentAl Kuwait‐Dubai HospitalEHSMinistry of Health and PreventionDubaiUnited Arab Emirates
| | - Tasmiah Hossain
- General Surgery DepartmentAl Kuwait‐Dubai HospitalEHSMinistry of Health and PreventionDubaiUnited Arab Emirates
| | - Mohamed Mostafa
- PDC FZ‐LLCContract Research OrganizationDubaiUnited Arab Emirates
| | - Yasser Ghoneim
- PDC FZ‐LLCContract Research OrganizationDubaiUnited Arab Emirates
| | - Jennifer Solo
- PDC FZ‐LLCContract Research OrganizationDubaiUnited Arab Emirates
| | - Hong‐Xia Zheng
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Ding‐Feng Wu
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Dan‐Dan Yu
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Jia‐Cheng Yuan
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Di Zhao
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Rui Lin
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Bo Ying
- Abogen BiosciencesSuzhou Abogen Biosciences Co., Ltd.SuzhouChina
| | - Cheng‐Feng Qin
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyAcademy of Military Medical Sciences (AMMS)BeijingChina
| |
Collapse
|
22
|
Ao D, He X, Hong W, Wei X. The rapid rise of SARS-CoV-2 Omicron subvariants with immune evasion properties: XBB.1.5 and BQ.1.1 subvariants. MedComm (Beijing) 2023; 4:e239. [PMID: 36938325 PMCID: PMC10015854 DOI: 10.1002/mco2.239] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
As the fifth variant of concern of the SARS-CoV-2 virus, the Omicron variant (B.1.1.529) has quickly become the dominant type among the previous circulating variants worldwide. During the Omicron wave, several subvariants have emerged, with some exhibiting greater infectivity and immune evasion, accounting for their fast spread across many countries. Recently, two Omicron subvariants, BQ.1 and XBB lineages, including BQ.1.1, XBB.1, and XBB.1.5, have become a global public health issue given their ability to escape from therapeutic monoclonal antibodies and herd immunity induced by prior coronavirus disease 2019 (COVID-19) vaccines, boosters, and infection. In this respect, XBB.1.5, which has been established to harbor a rare mutation F486P, demonstrates superior transmissibility and immune escape ability compared to other subvariants and has emerged as the dominant strain in several countries. This review provides a comprehensive overview of the epidemiological features, spike mutations, and immune evasion of BQ.1 and XBB lineages. We expounded on the mechanisms underlying mutations and immune escape from neutralizing antibodies from vaccinated or convalescent COVID-19 individuals and therapeutic monoclonal antibodies (mAbs) and proposed strategies for prevention against BQ.1 and XBB sublineages.
Collapse
Affiliation(s)
- Danyi Ao
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xuemei He
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
23
|
Swart M, van der Lubbe J, Schmit-Tillemans S, van Huizen E, Verspuij J, Gil AI, Choi Y, Daal C, Perkasa A, de Wilde A, Claassen E, de Jong R, Wiese KE, Cornelissen L, van Es M, van Heerden M, Kourkouta E, Tahiri I, Mulders M, Vreugdenhil J, Feddes-de Boer K, Muchene L, Tolboom J, Dekking L, Juraszek J, Vellinga J, Custers J, Bos R, Schuitemaker H, Wegmann F, Roozendaal R, Kuipers H, Zahn R. Booster vaccination with Ad26.COV2.S or an Omicron-adapted vaccine in pre-immune hamsters protects against Omicron BA.2. NPJ Vaccines 2023; 8:40. [PMID: 36927774 PMCID: PMC10018069 DOI: 10.1038/s41541-023-00633-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/20/2023] [Indexed: 03/18/2023] Open
Abstract
Since the original outbreak of the SARS-CoV-2 virus, several rapidly spreading SARS-CoV-2 variants of concern (VOC) have emerged. Here, we show that a single dose of Ad26.COV2.S (based on the Wuhan-Hu-1 spike variant) protects against the Gamma and Delta variants in naive hamsters, supporting the observed maintained vaccine efficacy in humans against these VOC. Adapted spike-based booster vaccines targeting Omicron variants have now been authorized in the absence of human efficacy data. We evaluated the immunogenicity and efficacy of Ad26.COV2.S.529 (encoding a stabilized Omicron BA.1 spike) in naive mice and in hamsters with pre-existing immunity to the Wuhan-Hu-1 spike. In naive mice, Ad26.COV2.S.529 elicited higher neutralizing antibody titers against SARS-CoV-2 Omicron BA.1 and BA.2, compared with Ad26.COV2.S. However, neutralizing titers against the SARS-CoV-2 B.1 (D614G) and Delta variants were lower after primary vaccination with Ad26.COV2.S.529 compared with Ad26.COV2.S. In contrast, we found comparable Omicron BA.1 and BA.2 neutralizing titers in hamsters with pre-existing Wuhan-Hu-1 spike immunity after vaccination with Ad26.COV2.S, Ad26.COV2.S.529 or a combination of the two vaccines. Moreover, all three vaccine modalities induced equivalent protection against Omicron BA.2 challenge in these animals. Overall, our data suggest that an Omicron BA.1-based booster in rodents does not improve immunogenicity and efficacy against Omicron BA.2 over an Ad26.COV2.S booster in a setting of pre-existing immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Maarten Swart
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | - Ying Choi
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | - Erwin Claassen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Rineke de Jong
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Katrin E Wiese
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Lisette Cornelissen
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Marieke van Es
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad, The Netherlands
| | - Marjolein van Heerden
- Janssen Research and Development, Preclinical Sciences and Translational Safety, Beerse, Belgium
| | | | - Issam Tahiri
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | | | | | | | | | | | - Jort Vellinga
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Rinke Bos
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | - Frank Wegmann
- Janssen Vaccines & Prevention, Leiden, The Netherlands
| | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, The Netherlands.
| |
Collapse
|
24
|
Li X, Liu J, Li W, Peng Q, Li M, Ying Z, Zhang Z, Liu X, Wu X, Zhao D, Yang L, Cao S, Huang Y, Shi L, Xu H, Wang Y, Yue G, Suo Y, Nie J, Huang W, Li J, Li Y. Heterologous prime-boost immunisation with mRNA- and AdC68-based 2019-nCoV variant vaccines induces broad-spectrum immune responses in mice. Front Immunol 2023; 14:1142394. [PMID: 37006275 PMCID: PMC10050358 DOI: 10.3389/fimmu.2023.1142394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) variants has been associated with the transmission and pathogenicity of COVID-19. Therefore, exploring the optimal immunisation strategy to improve the broad-spectrum cross-protection ability of COVID-19 vaccines is of great significance. Herein, we assessed different heterologous prime-boost strategies with chimpanzee adenovirus vector-based COVID-19 vaccines plus Wuhan-Hu-1 (WH-1) strain (AdW) and Beta variant (AdB) and mRNA-based COVID-19 vaccines plus WH-1 strain (ARW) and Omicron (B.1.1.529) variant (ARO) in 6-week-old female BALB/c mice. AdW and AdB were administered intramuscularly or intranasally, while ARW and ARO were administered intramuscularly. Intranasal or intramuscular vaccination with AdB followed by ARO booster exhibited the highest levels of cross-reactive IgG, pseudovirus-neutralising antibody (PNAb) responses, and angiotensin-converting enzyme-2 (ACE2)-binding inhibition rates against different 2019-nCoV variants among all vaccination groups. Moreover, intranasal AdB vaccination followed by ARO induced higher levels of IgA and neutralising antibody responses against live 2019-nCoV than intramuscular AdB vaccination followed by ARO. A single dose of AdB administered intranasally or intramuscularly induced broader cross-NAb responses than AdW. Th1-biased cellular immune response was induced in all vaccination groups. Intramuscular vaccination-only groups exhibited higher levels of Th1 cytokines than intranasal vaccination-only and intranasal vaccination-containing groups. However, no obvious differences were found in the levels of Th2 cytokines between the control and all vaccination groups. Our findings provide a basis for exploring vaccination strategies against different 2019-nCoV variants to achieve high broad-spectrum immune efficacy.
Collapse
Affiliation(s)
- Xingxing Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Jingjing Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenjuan Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Qinhua Peng
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Miao Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zhifang Ying
- Department of Respiratory Virus Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Zelun Zhang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xinyu Liu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohong Wu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Danhua Zhao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Lihong Yang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Shouchun Cao
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yanqiu Huang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Leitai Shi
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Hongshan Xu
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yunpeng Wang
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Guangzhi Yue
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yue Suo
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Jianhui Nie
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Department of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| | - Yuhua Li
- Department of Arboviral Vaccine, National Institutes for Food and Drug Control, Beijing, China
| |
Collapse
|
25
|
Townsend JP, Hassler HB, Dornburg A. Infection by SARS-CoV-2 with alternate frequencies of mRNA vaccine boosting. J Med Virol 2023; 95:e28461. [PMID: 36602045 DOI: 10.1002/jmv.28461] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023]
Abstract
One of the most consequential unknowns of the COVID-19 pandemic is the frequency at which vaccine boosting provides sufficient protection from infection. We quantified the statistical likelihood of breakthrough infections over time following different boosting schedules with messenger RNA (mRNA)-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech). We integrated anti-Spike IgG antibody optical densities with profiles of the waning of antibodies and corresponding probabilities of infection associated with coronavirus endemic transmission. Projecting antibody levels over time given boosting every 6 months, 1, 1.5, 2, or 3 years yielded respective probabilities of fending off infection over a 6-year span of >93%, 75%, 55%, 40%, and 24% (mRNA-1273) and >89%, 69%, 49%, 36%, and 23% (BNT162b2). Delaying the administration of updated boosters has bleak repercussions. It increases the probability of individual infection by SARS-CoV-2, and correspondingly, ongoing disease spread, prevalence, morbidity, hospitalization, and mortality. Instituting regular, population-wide booster vaccination updated to predominant variants has the potential to substantially forestall-and with global, widespread uptake, eliminate-COVID-19.
Collapse
Affiliation(s)
- Jeffrey P Townsend
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA.,Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA.,Program in Microbiology, Yale University, New Haven, Connecticut, USA
| | - Hayley B Hassler
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, North Carolina, USA
| |
Collapse
|
26
|
Li J, Li X, Wang E, Yang J, Li J, Huang C, Zhang Y, Chen K. Neutralizing Antibodies against the SARS-CoV-2 Delta and Omicron BA.1 following Homologous CoronaVac Booster Vaccination. Vaccines (Basel) 2022; 10:2111. [PMID: 36560521 PMCID: PMC9788055 DOI: 10.3390/vaccines10122111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have reduced susceptibility to neutralization by vaccines. In response to the constantly updated variants, a global vaccine booster vaccination program has been launched. In this study, we detected neutralizing antibody levels against wild-type (WT), Delta (B1.617.2), and Omicron BA.1 viruses in serum after each dose of CoronaVac vaccination. We found that booster vaccination significantly increased the levels of neutralizing antibodies against WT, Delta, and Omicron BA.1. Compared with only one vaccination, neutralizing antibody levels increased by 19.2-21.6-fold after a booster vaccination, whilst two vaccinations only produced a 1.5-3.4-fold increase. Our results support the conclusion that the CoronaVac vaccine booster can increase neutralizing antibody levels and cross-reactivity and enhance the body's ability to effectively resist the infection of new coronavirus variants, emphasizing the need for booster vaccination.
Collapse
Affiliation(s)
- Jianhua Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Xiaoyan Li
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | | | - Jinye Yang
- Sinovac Biotech Ltd., Beijing 100085, China
| | - Jiaxuan Li
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| | - Chen Huang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310000, China
| | - Keda Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310000, China
| |
Collapse
|
27
|
Viveiros-Rosa SG, Mendes CDS, Farfán-Cano GG, El-Shazly M. The race for clinical trials on Omicron-based COVID-19 vaccine candidates: Updates from global databases. NARRA J 2022; 2:e88. [PMID: 38449904 PMCID: PMC10914133 DOI: 10.52225/narra.v2i3.88] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/30/2022] [Indexed: 11/07/2022]
Abstract
The coronavirus disease 2019 (COVID-19) has caused more than 6.5 million deaths globally as of June 10, 2022. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529) has the greatest transmission rate and can cause hospitalization in vaccinated individuals. It has been the most distinct SARS-CoV-2 variant of concern to date. The existing inactivated vaccines made with the wild-type strain are less efficient to prevent disease and/or hospitalization associated with the Omicron variant, even after a booster dose. Hence, it is crucial to develop new vaccines that are effective against this variant. The objective of this study was to summarize the data on existing clinical trials for new COVID-19 vaccines formulated against Omicron variant. Clinical trials from the international clinical trials registry platforms were searched and analyzed. As of June 10, 2022, a total of 15 clinical trials are available consisting of six and nine clinical trials of inactivated and messenger RNA (mRNA)-based vaccine candidates containing the Omicron variant, respectively. Those trials are evaluating four inactivated and four mRNA-based vaccine candidates. Although Omicron-specific vaccines are highly desired, their development is challenging since the SARS-CoV-2 variant formation is still unpredictable. Although two vaccines from Pfizer and Moderna have been approved for emergency use in the US and the UK for Omicron variant, the Asian pharmaceutical companies such as CNBG (Sinopharm), Sinovac, and Shifa Pharmed also have Phase 3 clinical trials under development and almost all clinical trials are expected to be completed in 2023. These results should help guide academics and policymakers in the COVID-19 vaccine field regarding investments in updated booster doses against the SARS-CoV-2 Omicron variant.
Collapse
|
28
|
Wang H, Chen Z, Wang Z, Li J, Yan Z, Yuan J, Zhu A, Chen L, Liu Y, Hu C, Zhu A, Li G, Li Y, Deng J, Ma L, Sui X, Miao W, Li J, Zheng X, Piao J, Yao Y, Rao J, Shan C, Yuan Z, Zhao J, Zhu T. mRNA based vaccines provide broad protection against different SARS-CoV-2 variants of concern. Emerg Microbes Infect 2022; 11:1550-1553. [PMID: 35604772 PMCID: PMC9176361 DOI: 10.1080/22221751.2022.2081616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022]
Abstract
In order to overcome the pandemic of COVID-19, messenger RNA (mRNA)-based vaccine has been extensively researched as a rapid and versatile strategy. Herein, we described the immunogenicity of mRNA-based vaccines for Beta and the most recent Omicron variants. The homologous mRNA-Beta and mRNA-Omicron and heterologous Ad5-nCoV plus mRNA vaccine exhibited high-level cross-reactive neutralization for Beta, original, Delta, and Omicron variants. It indicated that the COVID-19 mRNA vaccines have great potential in the clinical use against different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Haomeng Wang
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Zhenghua Wang
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Jin Li
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Zhihong Yan
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Jinbo Yuan
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Lan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Ye Liu
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Chenlong Hu
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Ali Zhu
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
| | - Guowei Li
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Yuehu Li
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| | - Jie Deng
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Liqiao Ma
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Xiuwen Sui
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Wei Miao
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Junqiang Li
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Xiuyu Zheng
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Jinhua Piao
- CanSino Biologics, Tianjin, People’s Republic of China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- Hubei Jiangxia Laboratory, Wuhan, People’s Republic of China
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Institute of Infectious Disease, Guangzhou Eighth People’s Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Guangzhou Laboratory, Bio-Island, Guangzhou, People’s Republic of China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, People’s Republic of China
| | - Tao Zhu
- CanSino (Shanghai) Biotechnologies Co., Ltd, Shanghai, People’s Republic of China
- CanSino Biologics, Tianjin, People’s Republic of China
- CanSino (Shanghai) Biological Research Co., Ltd, Shanghai, People’s Republic of China
| |
Collapse
|
29
|
Rahimi F, Abadi ATB. Emergence of the Omicron SARS-CoV-2 subvariants during the COVID-19 pandemic. Int J Surg 2022; 108:106994. [PMID: 36375791 PMCID: PMC9650678 DOI: 10.1016/j.ijsu.2022.106994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Affiliation(s)
- Farid Rahimi
- Research School of Biology, The Australian National University, Ngunnawal and Ngambri Country, Canberra, Australia Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
30
|
Luo D, Yang X, Li T, Ning N, Jin S, Shi Z, Gu H, Li D, Gao Y, Wang H. An updated RBD-Fc fusion vaccine booster increases neutralization of SARS-CoV-2 Omicron variants. Signal Transduct Target Ther 2022; 7:327. [PMID: 36115830 PMCID: PMC9482636 DOI: 10.1038/s41392-022-01185-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
|
31
|
Luo D, Pan H, He P, Yang X, Li T, Ning N, Fang X, Yu W, Wei M, Gao H, Wang X, Gu H, Mei M, Li X, Zhang L, Li D, Gao C, Gao J, Fei G, Li Y, Yang Y, Xu Y, Wei W, Sun Y, Zhu F, Hu Z, Wang H. A randomized, double-blind, placebo-controlled phase 1 and phase 2 clinical trial to evaluate efficacy and safety of a SARS-CoV-2 vaccine SCoK in adults. Clin Transl Med 2022; 12:e1016. [PMID: 36103390 PMCID: PMC9473350 DOI: 10.1002/ctm2.1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To determine an appropriate dose of, and immunization schedule for, a vaccine SCoK against COVID-19 for an efficacy study; herein, we conducted randomized controlled trials to assess the immunogenicity and safety of this vaccine in adults. METHODS These randomized, double-blind, placebo-controlled phase 1 and 2 trials of vaccine SCoK were conducted in Binhai District, Yan City, Jiangsu Province, China. Younger and older adult participants in phase 1 and 2 trials were sequentially recruited into different groups to be intramuscularly administered 20 or 40 μg vaccine SCoK or placebo. Participants were enrolled into our phase 1 and 2 studies to receive vaccine or placebo. RESULTS No serious vaccine-related adverse events were observed in either trial. In both trials, local and systemic adverse reactions were absent or mild in most participants. In our phase 1 and 2 studies, the vaccine induced significantly increased neutralizing antibody responses to pseudovirus and live SARS-CoV-2. The vaccine induced significant neutralizing antibody responses to live SARS-CoV-2 on day 14 after the last immunization, with NT50s of 80.45 and 92.46 in participants receiving 20 and 40 μg doses, respectively; the seroconversion rates were 95.83% and 100%. The vaccine SCoK showed a similar safety and immunogenicity profiles in both younger participants and older participants. The vaccine showed better immunogenicity in phase 2 than in phase 1 clinical trial. Additionally, the incidence of adverse reactions decreased significantly in phase 2 clinical trial. The vaccine SCoK was well tolerated and immunogenic.
Collapse
Affiliation(s)
- Deyan Luo
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Hongxing Pan
- NHC Key Laboratory of Enteric Pathogenic MicrobiologyJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Peng He
- National Institute for Food and Drug ControlBeijingChina
| | - Xiaolan Yang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Tao Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Nianzhi Ning
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Xin Fang
- National Institute for Food and Drug ControlBeijingChina
| | - Wenjing Yu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Mingwei Wei
- NHC Key Laboratory of Enteric Pathogenic MicrobiologyJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Hui Gao
- ZHONGYIANKE Biotech Co. LTDTianjinChina
| | - Xin Wang
- ZHONGYIANKE Biotech Co. LTDTianjinChina
| | - Hongjing Gu
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Maodong Mei
- Binhai Center for Disease Control and PreventionYan CityChina
| | | | - Liangyan Zhang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Deyu Li
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | | | | | | | - Ying Li
- ZHONGYIANKE Biotech Co. LTDTianjinChina
| | | | - Yi Xu
- ZHONGYIANKE Biotech Co. LTDTianjinChina
| | | | - Yansong Sun
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| | - Fengcai Zhu
- NHC Key Laboratory of Enteric Pathogenic MicrobiologyJiangsu Provincial Center for Disease Control and PreventionNanjingChina
| | - Zhongyu Hu
- National Institute for Food and Drug ControlBeijingChina
| | - Hui Wang
- State Key Laboratory of Pathogen and BiosecurityBeijing Institute of Microbiology and EpidemiologyBeijingChina
| |
Collapse
|
32
|
Rauf A, Abu-Izneid T, Khalil AA, Hafeez N, Olatunde A, Rahman M, Semwal P, Al-Awthan YS, Bahattab OS, Khan IN, Khan MA, Sharma R. Nanoparticles in clinical trials of COVID-19: An update. Int J Surg 2022; 104:106818. [PMID: 35953020 PMCID: PMC9359769 DOI: 10.1016/j.ijsu.2022.106818] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 11/01/2022]
Abstract
Once the World Health Organization (WHO) declared the COVID-19 (Coronavirus Infectious Disease-19) outbreak to be pandemic, massive efforts have been launched by researchers around the globe to combat this emerging infectious disease. Strategies that must be investigated such as expanding testing capabilities, developing effective medicines, as well as developing safe and effective vaccines for COVID-19 disease that produce long-lasting immunity to human system. Now-a-days, bio-sensing, medication delivery, imaging, and antimicrobial treatment are just a few of the medical applications for nanoparticles (NPs). Since the early 1990s, nanoparticle drug delivery methods have been employed in clinical trials. Since then, the discipline of nanomedicine has evolved in tandem with expanding technological demands to better medicinal delivery. Newer generations of NPs have emerged in recent decades that are capable of performing additional delivery tasks, allowing for therapy via novel therapeutic modalities. Many of these next generation NPs and associated products have entered clinical trials and have been approved for diverse indications in the present clinical environment. For systemic applications, NPs or nanomedicine-based drug delivery systems have substantial benefits over their non-formulated and free drug counterparts. Nanoparticle systems, for example, are capable of delivering medicines and treating parts of the body that are inaccessible to existing delivery systems. As a result, NPs medication delivery is one of the most studied preclinical and clinical systems. NPs-based vaccines delivering SARS-CoV-2 antigens will play an increasingly important role in prolonging or improving COVID-19 vaccination outcomes. This review provides insights about employing NPs-based drug delivery systems for the treatment of COVID-19 to increase the bioavailability of current drugs, reducing their toxicity, and to increase their efficiency. This article also exhibits their capability and efficacy, and highlighting the future aspects and challenges on nanoparticle products in clinical trials of COVID-19.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University for Science and Technology, Al Ain, United Arab Emirates
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, 54000, Pakistan
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar-KPK, 25120, KPK, Pakistan
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, 1207 Dhaka, Bangladesh
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India
| | | | - Omar Salem Bahattab
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ishaq N Khan
- Institute of Basic Medical Sciences Khyber Medical University, Peshawar, 25100, Pakistan
| | - Muhammad Arslan Khan
- Department of Pharmacy, Faculty of Pharmacy, The University of Lahore, 54000, Pakistan
| | - Rohit Sharma
- Department of Rasa Shastra &Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
33
|
Liu X, Li Y, Wang Z, Cao S, Huang W, Yuan L, Huang YJ, Zheng Y, Chen J, Ying B, Xiang Z, Shi J, Zhao J, Huang Z, Qin CF. Safety and superior immunogenicity of heterologous boosting with an RBD-based SARS-CoV-2 mRNA vaccine in Chinese adults. Cell Res 2022; 32:777-780. [PMID: 35701541 PMCID: PMC9197092 DOI: 10.1038/s41422-022-00681-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Xiaoqiang Liu
- Yunnan Province Centre for Disease Control and Prevention, Kunming, Yunnan, China
| | - Yuhua Li
- National Institutes for Food and Drug Control, Beijing, China
| | - Zhongfang Wang
- Respiratory Medicine, Guangzhou Institute of Respiratory Health, Guangzhou, Guangdong, China
| | - Shouchun Cao
- National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- National Institutes for Food and Drug Control, Beijing, China
| | - Lin Yuan
- Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Yi-Jiao Huang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Yan Zheng
- Yunnan Province Centre for Disease Control and Prevention, Kunming, Yunnan, China
| | - Jingjing Chen
- Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Bo Ying
- Suzhou Abogen Biosciences Co., Ltd, Suzhou, Jiangsu, China
| | - Zuoyun Xiang
- Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Jin Shi
- Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China
| | - Jincun Zhao
- Respiratory Medicine, Guangzhou Institute of Respiratory Health, Guangzhou, Guangdong, China.
| | - Zhen Huang
- Walvax Biotechnology Co., Ltd., Kunming, Yunnan, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China.
- Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
34
|
Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. Nat Commun 2022; 13:3250. [PMID: 35668119 PMCID: PMC9169595 DOI: 10.1038/s41467-022-30878-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
The Omicron variant of SARS-CoV-2 recently swept the globe and showed high level of immune evasion. Here, we generate an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate, and test its activity in animals, both alone and as a heterologous booster to WT mRNA vaccine. Our Omicron-specific LNP-mRNA vaccine elicits strong antibody response in vaccination-naïve mice. Mice that received two-dose WT LNP-mRNA show a > 40-fold reduction in neutralization potency against Omicron than WT two weeks post boost, which further reduce to background level after 3 months. The WT or Omicron LNP-mRNA booster increases the waning antibody response of WT LNP-mRNA vaccinated mice against Omicron by 40 fold at two weeks post injection. Interestingly, the heterologous Omicron booster elicits neutralizing titers 10-20 fold higher than the homologous WT booster against Omicron variant, with comparable titers against Delta variant. All three types of vaccination, including Omicron alone, WT booster and Omicron booster, elicit broad binding antibody responses against SARS-CoV-2 WA-1, Beta, Delta variants and SARS-CoV. These data provide direct assessments of an Omicron-specific mRNA vaccination in vivo, both alone and as a heterologous booster to WT mRNA vaccine.
Collapse
Affiliation(s)
- Zhenhao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Renata Filler
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Andrew McNamara
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Bridget Menasche
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Angie Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Ping Ren
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qiancheng Xiong
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Madison Strine
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Craig B Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA.
- Department of Immunobiology, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
35
|
In-Person Schooling Amidst Children’s COVID-19 Vaccination: Exploring Parental Perceptions Just after Omicron Variant Announcement. Vaccines (Basel) 2022; 10:vaccines10050768. [PMID: 35632524 PMCID: PMC9147905 DOI: 10.3390/vaccines10050768] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/16/2022] Open
Abstract
Background: The SARS-CoV-2 Omicron spread fast globally and became the predominant variant in many countries. Resumption of public regular life activities, including in-person schooling, presented parents with new sources of worry. Thus, it is important to study parental worry about the Omicron variant, willingness to vaccinate their children, and knowledge about school-based COVID-19 precautionary measures. Methods: A national, cross-sectional, pilot-validated online questionnaire targeting parents in the Kingdom of Saudi Arabia (KSA) was distributed between 31 December 2021, and 7 January 2022. The survey included sociodemographic, COVID-19 infection data, parental and children vaccination status, attitudes towards booster vaccine, parents’ Omicron-related perceptions and worries, and attitude towards in-person schooling. Results: A total of 1340 participants completed the survey, most (65.3%) of whom were mothers. Of the parents, 96.3% either received two or three doses of the COVID-19 vaccine. Only 32.1% of the parents were willing to vaccinate their young children (5–11 years of age). In relation to their children 12–18 years of age, 48% had already had them vaccinated, 31% were planning to vaccinate them, and 42.8% were willing to administer a booster dose. Only 16% were more worried about the Omicron variant compared to the Delta variant. Residents of western KSA were more worried about Omicron compared to Delta. Parents worried about the Omicron variant and male participants were significantly less aware of school-based COVID-19 precautionary measures. Parents with post-graduate degrees and those having more children were significantly more inclined to send their children to school even if COVID-19 outbreaks could occur in schools, while parents who were more worried about the Omicron variant and were more committed to infection prevention measures were significantly less inclined to do so. Conclusions: Overall, parents had lower worry levels about the Omicron variant compared to the Delta variant. They had a higher willingness to vaccinate their older children compared to the younger ones. In addition, our cohort of parents showed high willingness to send their children to schools and trusted the school-based preventative measures. These findings can inform policy makers when considering school related decisions during the current or future public health crises.
Collapse
|
36
|
Fang Z, Peng L, Filler R, Suzuki K, McNamara A, Lin Q, Renauer PA, Yang L, Menasche B, Sanchez A, Ren P, Xiong Q, Strine M, Clark P, Lin C, Ko AI, Grubaugh ND, Wilen CB, Chen S. Omicron-specific mRNA vaccination alone and as a heterologous booster against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.14.480449. [PMID: 35194606 PMCID: PMC8863141 DOI: 10.1101/2022.02.14.480449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has high transmissibility and recently swept the globe. Due to the extensive number of mutations, this variant has high level of immune evasion, which drastically reduced the efficacy of existing antibodies and vaccines. Thus, it is important to test an Omicron-specific vaccine, evaluate its immune response against Omicron and other variants, and compare its immunogenicity as boosters with existing vaccine designed against the reference wildtype virus (WT). Here, we generated an Omicron-specific lipid nanoparticle (LNP) mRNA vaccine candidate, and tested its activity in animals, both alone and as a heterologous booster to existing WT mRNA vaccine. Our Omicron-specific LNP-mRNA vaccine elicited strong and specific antibody response in vaccination-naive mice. Mice that received two-dose WT LNP-mRNA, the one mimicking the commonly used Pfizer/Moderna mRNA vaccine, showed a >40-fold reduction in neutralization potency against Omicron variant than that against WT two weeks post second dose, which further reduced to background level >3 months post second dose. As a booster shot for two-dose WT mRNA vaccinated mice, a single dose of either a homologous booster with WT LNP-mRNA or a heterologous booster with Omicron LNP-mRNA restored the waning antibody response against Omicron, with over 40-fold increase at two weeks post injection as compared to right before booster. Interestingly, the heterologous Omicron LNP-mRNA booster elicited neutralizing titers 10-20 fold higher than the homologous WT booster against the Omicron variant, with comparable titers against the Delta variant. All three types of vaccination, including Omicron mRNA alone, WT mRNA homologous booster, and Omicron heterologous booster, elicited broad binding antibody responses against SARS-CoV-2 WA-1, Beta, and Delta variants, as well as other Betacoronavirus species such as SARS-CoV, but not Middle East respiratory syndrome coronavirus (MERS-CoV). These data provided direct proof-of-concept assessments of an Omicron-specific mRNA vaccination in vivo, both alone and as a heterologous booster to the existing widely-used WT mRNA vaccine form.
Collapse
Affiliation(s)
- Zhenhao Fang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Renata Filler
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Kazushi Suzuki
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Andrew McNamara
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Qianqian Lin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A. Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Bridget Menasche
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Angie Sanchez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Yale College, New Haven, CT, USA
| | - Ping Ren
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Qiancheng Xiong
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Madison Strine
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Paul Clark
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Chenxiang Lin
- Department of Cell Biology, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, New Haven, CT, USA
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Craig B. Wilen
- Department of Laboratory Medicine, Yale University, New Haven, CT, USA
- Department of Immunobiology, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
- Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
- Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|