1
|
Radić L, Offersgaard A, Kadavá T, Zon I, Capella-Pujol J, Mulder F, Koekkoek S, Spek V, Chumbe A, Bukh J, van Gils MJ, Sanders RW, Yin VC, Heck AJR, Gottwein JM, Sliepen K, Schinkel J. Bispecific antibodies against the hepatitis C virus E1E2 envelope glycoprotein. Proc Natl Acad Sci U S A 2025; 122:e2420402122. [PMID: 40193609 PMCID: PMC12012487 DOI: 10.1073/pnas.2420402122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Hepatitis C virus (HCV) currently causes about one million infections and 240,000 deaths worldwide each year. To reach the goal set by the World Health Organization of global HCV elimination by 2030, it is critical to develop a prophylactic vaccine. Broadly neutralizing antibodies (bNAbs) target the E1E2 envelope glycoproteins on the viral surface, can neutralize a broad range of the highly diverse circulating HCV strains, and are essential tools to inform vaccine design. However, bNAbs targeting a single E1E2 epitope might be limited in neutralization breadth, which can be enhanced by using combinations of bNAbs that target different envelope epitopes. We have generated 60 immunoglobulin G (IgG)-like bispecific antibodies (bsAbs) that can simultaneously target two distinct epitopes on E1E2. We combine non- or partially overlapping E1E2 specificities into three types of bsAbs, each containing a different hinge length. The majority of bsAbs shows retained or increased potency and breadth against a diverse panel of HCV pseudoparticles and HCV produced in cell culture compared to monospecific and cocktail controls. Additionally, we demonstrate that changes in the hinge length of bsAbs can alter the binding stoichiometry to E1E2. These results provide insights into the binding modes and the role of avidity in bivalent targeting of diverse E1E2 epitopes.This study illustrates how potential cooperative effects of HCV bNAbs can be utilized by strategically designing bispecific constructs. These HCV bsAbs can guide vaccine development and unlock novel therapeutic and prophylactic strategies against HCV and other (flavi)viruses.
Collapse
Affiliation(s)
- Laura Radić
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Tereza Kadavá
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Ian Zon
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Joan Capella-Pujol
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Fabian Mulder
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Sylvie Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Vera Spek
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Jens Bukh
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Marit J. van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Rogier W. Sanders
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY10065
| | - Victor C. Yin
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht3584 CH, the Netherlands
- Netherlands Proteomics Center, Utrecht3584 CH, the Netherlands
| | - Judith M. Gottwein
- Copenhagen Hepatitis C Program, Department of Infectious Diseases, Copenhagen University Hospital–Hvidovre, Hvidovre2650, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N2200, Denmark
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105 AZ, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam1105 AZ, the Netherlands
| |
Collapse
|
2
|
Vukovich MJ, Shiakolas AR, Lindenberger J, Richardson RA, Bass LE, Barr M, Liu Y, Go EP, Park CS, May AJ, Sammour S, Kambarami C, Huang X, Janowska K, Edwards RJ, Mansouri K, Spence TN, Abu-Shmais AA, Manamela NP, Richardson SI, Leonard SEW, Gripenstraw KR, Setliff I, Saunders KO, Bonami RH, Ross TM, Desaire H, Moore PL, Parks R, Haynes BF, Sheward DJ, Acharya P, Sautto GA, Georgiev IS. Isolation and characterization of IgG3 glycan-targeting antibodies with exceptional cross-reactivity for diverse viral families. PLoS Pathog 2024; 20:e1012499. [PMID: 39292703 PMCID: PMC11410209 DOI: 10.1371/journal.ppat.1012499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/13/2024] [Indexed: 09/20/2024] Open
Abstract
Broadly reactive antibodies that target sequence-diverse antigens are of interest for vaccine design and monoclonal antibody therapeutic development because they can protect against multiple strains of a virus and provide a barrier to evolution of escape mutants. Using LIBRA-seq (linking B cell receptor to antigen specificity through sequencing) data for the B cell repertoire of an individual chronically infected with human immunodeficiency virus type 1 (HIV-1), we identified a lineage of IgG3 antibodies predicted to bind to HIV-1 Envelope (Env) and influenza A Hemagglutinin (HA). Two lineage members, antibodies 2526 and 546, were confirmed to bind to a large panel of diverse antigens, including several strains of HIV-1 Env, influenza HA, coronavirus (CoV) spike, hepatitis C virus (HCV) E protein, Nipah virus (NiV) F protein, and Langya virus (LayV) F protein. We found that both antibodies bind to complex glycans on the antigenic surfaces. Antibody 2526 targets the stem region of influenza HA and the N-terminal domain (NTD) region of SARS-CoV-2 spike. A crystal structure of 2526 Fab bound to mannose revealed the presence of a glycan-binding pocket on the light chain. Antibody 2526 cross-reacted with antigens from multiple pathogens and displayed no signs of autoreactivity. These features distinguish antibody 2526 from previously described glycan-reactive antibodies. Further study of this antibody class may aid in the selection and engineering of broadly reactive antibody therapeutics and can inform the development of effective vaccines with exceptional breadth of pathogen coverage.
Collapse
Affiliation(s)
- Matthew J. Vukovich
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jared Lindenberger
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert A. Richardson
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Lindsay E. Bass
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maggie Barr
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Yanshun Liu
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Eden P. Go
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Chan Soo Park
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Aaron J. May
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Salam Sammour
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Chipo Kambarami
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Xiao Huang
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katarzyna Janowska
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Robert J. Edwards
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Katayoun Mansouri
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Taylor N. Spence
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Alexandra A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nelia P. Manamela
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Simone I. Richardson
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Sabina E. W. Leonard
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kathryn R. Gripenstraw
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ian Setliff
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kevin O. Saunders
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Rachel H. Bonami
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Heather Desaire
- Department of Chemistry, University of Kansas, Lawrence, Kansas, United States of America
| | - Penny L. Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Robert Parks
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Medicine and Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Daniel J. Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Priyamvada Acharya
- Duke Human Vaccine Institute, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, United States of America
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Xu J, Zhou T, McKee K, Zhang B, Liu C, Nazzari AF, Pegu A, Shen CH, Becker JE, Bender MF, Chan P, Changela A, Chaudhary R, Chen X, Einav T, Kwon YD, Lin BC, Louder MK, Merriam JS, Morano NC, O'Dell S, Olia AS, Rawi R, Roark RS, Stephens T, Teng IT, Tourtellott-Fogt E, Wang S, Yang ES, Shapiro L, Tsybovsky Y, Doria-Rose NA, Casellas R, Kwong PD. Ultrapotent Broadly Neutralizing Human-llama Bispecific Antibodies against HIV-1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309268. [PMID: 38704686 PMCID: PMC11234422 DOI: 10.1002/advs.202309268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Indexed: 05/07/2024]
Abstract
Broadly neutralizing antibodies are proposed as therapeutic and prophylactic agents against HIV-1, but their potency and breadth are less than optimal. This study describes the immunization of a llama with the prefusion-stabilized HIV-1 envelope (Env) trimer, BG505 DS-SOSIP, and the identification and improvement of potent neutralizing nanobodies recognizing the CD4-binding site (CD4bs) of vulnerability. Two of the vaccine-elicited CD4bs-targeting nanobodies, G36 and R27, when engineered into a triple tandem format with llama IgG2a-hinge region and human IgG1-constant region (G36×3-IgG2a and R27×3-IgG2a), neutralized 96% of a multiclade 208-strain panel at geometric mean IC80s of 0.314 and 0.033 µg mL-1, respectively. Cryo-EM structures of these nanobodies in complex with Env trimer revealed the two nanobodies to neutralize HIV-1 by mimicking the recognition of the CD4 receptor. To enhance their neutralizing potency and breadth, nanobodies are linked to the light chain of the V2-apex-targeting broadly neutralizing antibody, CAP256V2LS. The resultant human-llama bispecific antibody CAP256L-R27×3LS exhibited ultrapotent neutralization and breadth exceeding other published HIV-1 broadly neutralizing antibodies, with pharmacokinetics determined in FcRn-Fc mice similar to the parent CAP256V2LS. Vaccine-elicited llama nanobodies, when combined with V2-apex broadly neutralizing antibodies, may therefore be able to fulfill anti-HIV-1 therapeutic and prophylactic clinical goals.
Collapse
Affiliation(s)
- Jianliang Xu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alexandra F Nazzari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chen-Hsiang Shen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jordan E Becker
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Michael F Bender
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Anita Changela
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ridhi Chaudhary
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tal Einav
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA, 92037, USA
| | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mark K Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jonah S Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nicholas C Morano
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Adam S Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ryan S Roark
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Tyler Stephens
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Emily Tourtellott-Fogt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rafael Casellas
- Laboratory of Lymphocyte Nuclear Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD, 20892, USA
- Hematopoietic Biology and Malignancy, MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
4
|
Thavarajah JJ, Hønge BL, Wejse CM. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024; 16:911. [PMID: 38932203 PMCID: PMC11209272 DOI: 10.3390/v16060911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Although antiretroviral therapy (ART) effectively halts disease progression in HIV infection, the complete eradication of the virus remains elusive. Additionally, challenges such as long-term ART toxicity, drug resistance, and the demanding regimen of daily and lifelong adherence required by ART highlight the imperative need for alternative therapeutic and preventative approaches. In recent years, broadly neutralizing antibodies (bNAbs) have emerged as promising candidates, offering potential for therapeutic, preventative, and possibly curative interventions against HIV infection. OBJECTIVE This review aims to provide a comprehensive overview of the current state of knowledge regarding the passive immunization of bNAbs in HIV-1-infected individuals. MAIN FINDINGS Recent findings from clinical trials have highlighted the potential of bNAbs in the treatment, prevention, and quest for an HIV-1 cure. While monotherapy with a single bNAb is insufficient in maintaining viral suppression and preventing viral escape, ultimately leading to viral rebound, combination therapy with potent, non-overlapping epitope-targeting bNAbs have demonstrated prolonged viral suppression and delayed time to rebound by effectively restricting the emergence of escape mutations, albeit largely in individuals with bNAb-sensitive strains. Additionally, passive immunization with bNAb has provided a "proof of concept" for antibody-mediated prevention against HIV-1 acquisition, although complete prevention has not been obtained. Therefore, further research on the use of bNAbs in HIV-1 treatment and prevention remains imperative.
Collapse
Affiliation(s)
- Jannifer Jasmin Thavarajah
- Faculty of Health, Aarhus University, 8000 Aarhus C, Denmark
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Bo Langhoff Hønge
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
| | - Christian Morberg Wejse
- Clinical Medicine, Department of Infectious Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark; (B.L.H.); (C.M.W.)
- GloHAU, Center of Global Health, Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Asano R, Takeuchi M, Nakakido M, Ito S, Aikawa C, Yokoyama T, Senoo A, Ueno G, Nagatoishi S, Tanaka Y, Nakagawa I, Tsumoto K. Characterization of a novel format scFv×VHH single-chain biparatopic antibody against metal binding protein MtsA. Protein Sci 2024; 33:e5017. [PMID: 38747382 PMCID: PMC11094767 DOI: 10.1002/pro.5017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/19/2024]
Abstract
Biparatopic antibodies (bpAbs) are engineered antibodies that bind to multiple different epitopes within the same antigens. bpAbs comprise diverse formats, including fragment-based formats, and choosing the appropriate molecular format for a desired function against a target molecule is a challenging task. Moreover, optimizing the design of constructs requires selecting appropriate antibody modalities and adjusting linker length for individual bpAbs. Therefore, it is crucial to understand the characteristics of bpAbs at the molecular level. In this study, we first obtained single-chain variable fragments and camelid heavy-chain variable domains targeting distinct epitopes of the metal binding protein MtsA and then developed a novel format single-chain bpAb connecting these fragment antibodies with various linkers. The physicochemical properties, binding activities, complex formation states with antigen, and functions of the bpAb were analyzed using multiple approaches. Notably, we found that the assembly state of the complexes was controlled by a linker and that longer linkers tended to form more compact complexes. These observations provide detailed molecular information that should be considered in the design of bpAbs.
Collapse
Affiliation(s)
- Risa Asano
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
| | - Miyu Takeuchi
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
| | - Makoto Nakakido
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
| | - Sho Ito
- Rigaku Corporation ROD Single Crystal Analysis Group Application LaboratoriesTokyoJapan
| | - Chihiro Aikawa
- Section of Applied Veterinary Sciences, Division of Veterinary Sciences, Department of Veterinary MedicineObihiro University of Agriculture and Veterinary MedicineHokkaidoJapan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku UniversityMiyagiJapan
- The advanced center for innovations in next‐generation medicine (INGEM)Tohoku UniversityMiyagiJapan
| | - Akinobu Senoo
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
| | - Go Ueno
- RIKEN SPring‐8 CenterHyogoJapan
| | - Satoru Nagatoishi
- Medical Device Development and Regulation Research CenterSchool of Engineering, The University of TokyoTokyoJapan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku UniversityMiyagiJapan
- The advanced center for innovations in next‐generation medicine (INGEM)Tohoku UniversityMiyagiJapan
| | - Ichiro Nakagawa
- Department of MicrobiologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| | - Kouhei Tsumoto
- Department of BioengineeringSchool of Engineering, The University of TokyoTokyoJapan
- Department of Chemistry and BiotechnologySchool of Engineering, The University of TokyoTokyoJapan
- Medical Device Development and Regulation Research CenterSchool of Engineering, The University of TokyoTokyoJapan
- The Institute of Medical Science, The University of TokyoTokyoJapan
| |
Collapse
|
6
|
Li Z, Zhang Z, Rosen ST, Feng M. Function and mechanism of bispecific antibodies targeting SARS-CoV-2. CELL INSIGHT 2024; 3:100150. [PMID: 38374826 PMCID: PMC10875118 DOI: 10.1016/j.cellin.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
As the dynamic evolution of SARS-CoV-2 led to reduced efficacy in monoclonal neutralizing antibodies and emergence of immune escape, the role of bispecific antibodies becomes crucial in bolstering antiviral activity and suppressing immune evasion. This review extensively assesses a spectrum of representative bispecific antibodies targeting SARS-CoV-2, delving into their characteristics, design formats, mechanisms of action, and associated advantages and limitations. The analysis encompasses factors influencing the selection of parental antibodies and strategies for incorporating added benefits in bispecific antibody design. Furthermore, how different classes of parental antibodies contribute to augmenting the broad-spectrum neutralization capability within bispecific antibodies is discussed. In summary, this review presents analyses and discussions aimed at offering valuable insights for shaping future strategies in bispecific antibody design to effectively confront the challenges posed by SARS-CoV-2 and propel advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zengyuan Zhang
- Department of Molecular Microbiology & Immunology, University of Southern California, CA, USA
| | - Steven T. Rosen
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
7
|
Schriek AI, Aldon YLT, van Gils MJ, de Taeye SW. Next-generation bNAbs for HIV-1 cure strategies. Antiviral Res 2024; 222:105788. [PMID: 38158130 DOI: 10.1016/j.antiviral.2023.105788] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Despite the ability to suppress viral replication using anti-retroviral therapy (ART), HIV-1 remains a global public health problem. Curative strategies for HIV-1 have to target and eradicate latently infected cells across the body, i.e. the viral reservoir. Broadly neutralizing antibodies (bNAbs) targeting the HIV-1 envelope glycoprotein (Env) have the capacity to neutralize virions and bind to infected cells to initiate elimination of these cells. To improve the efficacy of bNAbs in terms of viral suppression and viral reservoir eradication, next generation antibodies (Abs) are being developed that address the current limitations of Ab treatment efficacy; (1) low antigen (Env) density on (reactivated) HIV-1 infected cells, (2) high viral genetic diversity, (3) exhaustion of immune cells and (4) short half-life of Abs. In this review we summarize and discuss preclinical and clinical studies in which anti-HIV-1 Abs demonstrated potent viral control, and describe the development of engineered Abs that could address the limitations described above. Next generation Abs with optimized effector function, avidity, effector cell recruitment and immune cell activation have the potential to contribute to an HIV-1 cure or durable control.
Collapse
Affiliation(s)
- A I Schriek
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| | - Y L T Aldon
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - M J van Gils
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands
| | - S W de Taeye
- Amsterdam UMC Location University of Amsterdam, Department of Medical Microbiology, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Liang J, Zhai L, Liang Z, Chen X, Jiang Y, Lin Y, Feng S, Liu Y, Zhao W, Wang F. Rational Design and Characterization of Trispecific Antibodies Targeting the HIV-1 Receptor and Envelope Glycoprotein. Vaccines (Basel) 2023; 12:19. [PMID: 38250832 PMCID: PMC10819093 DOI: 10.3390/vaccines12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Multitudinous broadly neutralizing antibodies (bNAbs) against HIV-1 have been developed as novel antiviral prophylactic and therapeutic agents. Combinations of bNAbs are generally even more effective than when they are applied individually, showing excellent neutralization coverage and limiting the emergence of escape mutants. In this study, we investigated the design and characterization of three trispecific antibodies that allow a single molecule to interact with independent HIV-1 envelope determinants-(1) the host receptor CD4, (2) the host co-receptor CCR5 and (3) distinct domains in the envelope glycoprotein of HIV-1-using an ELISA, an HIV-1 pseudovirus neutralization assay and in vivo antiviral experiments in humanized mice. We found that trispecific bNAbs and monovalent ones all had satisfactory binding activities against the corresponding antigens in the ELISA, exhibited higher potency and breadth than any previously described single bnAb in the HIV-1 pseudovirus neutralization assay and showed an excellent antiviral effect in vivo. The trispecific antibodies simultaneously recognize the host receptor CD4, host co-receptor CCR5 and HIV-1 envelope glycoprotein, which could mean they have promise as prophylactic and therapeutic agents against HIV-1.
Collapse
Affiliation(s)
- Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Linlin Zhai
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Zuxin Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Xiaoling Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Yuanlong Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Shiyan Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| |
Collapse
|
9
|
Kimura K, Kuwahara A, Suzuki S, Nakanishi T, Kumagai I, Asano R. Cancer therapeutic trispecific antibodies recruiting both T and natural killer cells to cancer cells. Oncol Rep 2023; 50:212. [PMID: 37859608 PMCID: PMC10620844 DOI: 10.3892/or.2023.8649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
T cells and natural killer (NK) cells are major effector cells recruited by cancer therapeutic bispecific antibodies; however, differences in the populations of these cells in individual tumors limit the general use of these antibodies. In the present study, trispecific antibodies were created, namely T cell and NK cell engagers (TaKEs), that recruit both T cells and NK cells. Notably, three Fc‑fused TaKEs were designed, TaKE1‑Fc, TaKE2‑Fc and TaKE3‑Fc, using variable fragments targeting the epidermal growth factor receptor on tumor cells, CD3 on T cells, and CD16 on NK cells. Among them, TaKE1‑Fc was predicted to form a circular tetrabody‑like configuration and exhibited the highest production and greatest cancer growth inhibitory effects. TaKE1 was prepared from TaKE1‑Fc by digesting the Fc region for further functional evaluation. The resulting TaKE1 exhibited trispecificity via its ability to bind cancer cells, T cells and NK cells, as well as comparable or greater cancer growth inhibitory effects to those of two bispecific antibodies that recruit T cells and NK cells, respectively. A functional trispecific antibody with the potential to exert strong therapeutic effects independent of T cell and NK cell populations was developed.
Collapse
Affiliation(s)
- Kouki Kimura
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Atsushi Kuwahara
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Saori Suzuki
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Takeshi Nakanishi
- Department of Chemistry and Bioengineering, Division of Science and Engineering for Materials, Chemistry and Biology, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Izumi Kumagai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
10
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
11
|
Kreer C, Lupo C, Ercanoglu MS, Gieselmann L, Spisak N, Grossbach J, Schlotz M, Schommers P, Gruell H, Dold L, Beyer A, Nourmohammad A, Mora T, Walczak AM, Klein F. Probabilities of developing HIV-1 bNAb sequence features in uninfected and chronically infected individuals. Nat Commun 2023; 14:7137. [PMID: 37932288 PMCID: PMC10628170 DOI: 10.1038/s41467-023-42906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
HIV-1 broadly neutralizing antibodies (bNAbs) are able to suppress viremia and prevent infection. Their induction by vaccination is therefore a major goal. However, in contrast to antibodies that neutralize other pathogens, HIV-1-specific bNAbs frequently carry uncommon molecular characteristics that might prevent their induction. Here, we perform unbiased sequence analyses of B cell receptor repertoires from 57 uninfected and 46 chronically HIV-1- or HCV-infected individuals and learn probabilistic models to predict the likelihood of bNAb development. We formally show that lower probabilities for bNAbs are predictive of higher HIV-1 neutralization activity. Moreover, ranking bNAbs by their probabilities allows to identify highly potent antibodies with superior generation probabilities as preferential targets for vaccination approaches. Importantly, we find equal bNAb probabilities across infected and uninfected individuals. This implies that chronic infection is not a prerequisite for the generation of bNAbs, fostering the hope that HIV-1 vaccines can induce bNAb development in uninfected people.
Collapse
Affiliation(s)
- Christoph Kreer
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Cosimo Lupo
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Roma I, 00185, Rome, Italy
| | - Meryem S Ercanoglu
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Lutz Gieselmann
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
| | - Natanael Spisak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Jan Grossbach
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
| | - Maike Schlotz
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Philipp Schommers
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Henning Gruell
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Leona Dold
- Department of Internal Medicine I, University Hospital of Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Andreas Beyer
- Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases & Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany
| | - Armita Nourmohammad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077, Göttingen, Germany
- Department of Physics, University of Washington, 3910 15th Ave Northeast, Seattle, WA, 98195, USA
- Department of Applied Mathematics, University of Washington, 4182 W Stevens Way NE, Seattle, WA, 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 85 E Stevens Way NE, Seattle, WA, 98195, USA
- Fred Hutchinson Cancer Center, 1241 Eastlake Ave E, Seattle, WA, 98102, USA
| | - Thierry Mora
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'Ecole normale supérieure, CNRS, PSL University, Sorbonne Université, and Université Paris Cité, 75005, Paris, France
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- German Center for Infection Research, Partner Site Bonn-Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
12
|
Pihlstrom N, Bournazos S. Engineering strategies of Anti-HIV antibody therapeutics in clinical development. Curr Opin HIV AIDS 2023; 18:184-190. [PMID: 37144557 PMCID: PMC10247531 DOI: 10.1097/coh.0000000000000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Anti-human immunodeficiency virus (HIV) antibody-based therapeutics offer an alternative treatment option to current antiretroviral drugs. This review aims to provide an overview of the Fc- and Fab-engineering strategies that have been developed to optimize broadly neutralizing antibodies and discuss recent findings from preclinical and clinical studies. RECENT FINDINGS Multispecific antibodies, including bispecific and trispecific antibodies, DART molecules, and BiTEs, as well as Fc-optimized antibodies, have emerged as promising therapeutic candidates for the treatment of HIV. These engineered antibodies engage multiple epitopes on the HIV envelope protein and human receptors, resulting in increased potency and breadth of activity. Additionally, Fc-enhanced antibodies have demonstrated extended half-life and improved effector function. SUMMARY The development of Fc and Fab-engineered antibodies for the treatment of HIV continues to show promising progress. These novel therapies have the potential to overcome the limitations of current antiretroviral pharmacologic agents by more effectively suppressing viral load and targeting latent reservoirs in individuals living with HIV. Further studies are needed to fully understand the safety and efficacy of these therapies, but the growing body of evidence supports their potential as a new class of therapeutics for the treatment of HIV.
Collapse
Affiliation(s)
- Nicole Pihlstrom
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
13
|
Yuan M, Zhu Y, Liu G, Wang Y, Wang G, Zhang G, Ye L, Qian Z, Liu P. An RBD bispecific antibody effectively neutralizes a SARS-CoV-2 Omicron variant. ONE HEALTH ADVANCES 2023; 1:12. [PMID: 37521533 PMCID: PMC10173222 DOI: 10.1186/s44280-023-00012-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 08/01/2023]
Abstract
Potent neutralizing antibodies (nAbs) against SARS-CoV-2 are a promising therapeutic against the ongoing COVID-19 pandemic. However, the continuous emergence of neutralizing antibody escape variants makes it challenging for antibody therapeutics based on monospecific nAbs. Here, we generated an IgG-like bispecific antibody (bsAb), Bi-Nab, based on a pair of human neutralizing antibodies targeting multiple and invariant sites of the spike receptor binding domain (RBD): 35B5 and 32C7. We demonstrated that Bi-Nab exhibited higher binding affinity to the Delta spike protein than its parental antibodies and presented an extended inhibition breadth of preventing RBD binding to angiotensin-converting enzyme 2 (ACE2), the cellular receptor of SARS-CoV-2. In addition, pseudovirus neutralization results showed that Bi-Nab improved the neutralization potency and breadth with a lower half maximum inhibitory concentration (IC50) against wild-type SARS-CoV-2, variants being monitored (VBMs) and variants of concern (VOCs). Notably, the IgG-like Bi-Nab enhanced the neutralizing activity against Omicron variants with potent capabilities for transmission and immune evasion in comparison with its parental monoclonal antibody (mAb) 32C7 and a cocktail (with the lowest IC50 values of 31.6 ng/mL against the Omicron BA.1 and 399.2 ng/mL against the Omicron BA.2), showing evidence of synergistic neutralization potency of Bi-Nab against the Omicron variants. Thus, Bi-Nab represents a feasible and effective strategy against SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Mengqi Yuan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yanzhi Zhu
- College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Guanlan Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Yujie Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Guanxi Wang
- College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Guozhong Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Lilin Ye
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038 China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100176 China
| | - Pinghuang Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
14
|
Li S, Moog C, Zhang T, Su B. HIV reservoir: antiviral immune responses and immune interventions for curing HIV infection. Chin Med J (Engl) 2022; 135:2667-2676. [PMID: 36719355 PMCID: PMC9943973 DOI: 10.1097/cm9.0000000000002479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 02/01/2023] Open
Abstract
ABSTRACT Antiretroviral therapy against human immunodeficiency virus (HIV) is effective in controlling viral replication but cannot completely eliminate HIV due to the persistence of the HIV reservoir. Innate and adaptive immune responses have been proposed to contribute to preventing HIV acquisition, controlling HIV replication and eliminating HIV-infected cells. However, the immune responses naturally induced in HIV-infected individuals rarely eradicate HIV infection, which may be caused by immune escape, an inadequate magnitude and breadth of immune responses, and immune exhaustion. Optimizing these immune responses may solve the problems of epitope escape and insufficient sustained memory responses. Moreover, immune interventions aimed at improving host immune response can reduce HIV reservoirs, which have become one focus in the development of innovative strategies to eliminate HIV reservoirs. In this review, we focus on the immune response against HIV and how antiviral immune responses affect HIV reservoirs. We also discuss the development of innovative strategies aiming to eliminate HIV reservoirs and promoting functional cure of HIV infection.
Collapse
Affiliation(s)
- Shuang Li
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Christiane Moog
- Laboratoire d’ImmunoRhumatologie Moléculaire, Institut national de la santé et de la recherche médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
15
|
Agrahari V, Anderson SM, Peet MM, Wong AP, Singh ON, Doncel GF, Clark MR. Long-acting HIV Pre-exposure Prophylaxis (PrEP) approaches: Recent advances, emerging technologies and development challenges. Expert Opin Drug Deliv 2022; 19:1365-1380. [PMID: 36252277 PMCID: PMC9639748 DOI: 10.1080/17425247.2022.2135699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Introduction: Poor or inconsistent adherence to daily oral pre-exposure prophylaxis (PrEP) has emerged as a key barrier to effective HIV prevention. The advent of potent long-acting (LA) antiretrovirals (ARVs) in conjunction with advances in controlled release technologies has enabled LA ARV drug delivery systems (DDS) capable of providing extended dosing intervals and overcome the challenge of suboptimal drug adherence with daily oral dosing. Areas covered: This review discusses the current state of the LA PrEP field, recent advances, and emerging technologies, including ARV prodrug modifications and new DDS. Technological challenges, knowledge gaps, preclinical testing considerations, and future directions important in the context of clinical translation and implementation of LA HIV PrEP are discussed. Expert opinion: The HIV prevention field is evolving faster than ever and the bar for developing next-generation LA HIV prevention options continues to rise. The requirements for viable LA PrEP products to be implemented in resource-limited settings are challenging, necessitating proactive consideration and product modifications during the design and testing of promising new candidates. If successfully translated, next-generation LA PrEP that are safe, affordable, highly effective, and accepted by both end-users and key stakeholders will offer significant potential to curb the HIV pandemic.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | | - Andrew P. Wong
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Onkar N. Singh
- CONRAD, Eastern Virginia Medical School, Norfolk, VA, USA
| | | | | |
Collapse
|
16
|
Ku Z, Xie X, Lin J, Gao P, Wu B, El Sahili A, Su H, Liu Y, Ye X, Tan EY, Li X, Fan X, Goh BC, Xiong W, Boyd H, Muruato AE, Deng H, Xia H, Zou J, Kalveram BK, Menachery VD, Zhang N, Lescar J, Shi PY, An Z. Engineering SARS-CoV-2 specific cocktail antibodies into a bispecific format improves neutralizing potency and breadth. Nat Commun 2022; 13:5552. [PMID: 36138032 PMCID: PMC9499943 DOI: 10.1038/s41467-022-33284-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/12/2022] [Indexed: 01/20/2023] Open
Abstract
One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce emergence of antibody resistance. Here we engineer two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) shows increased antigen-binding and virus-neutralizing activities against multiple SARS-CoV-2 variants as well as increased breadth of neutralizing activity compared to the cocktail. X-ray crystallography and cryo-EM reveal distinct binding models for individual cocktail antibodies, and computational simulations suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and multiple variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.
Collapse
Affiliation(s)
- Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Infectious Disease Research, Science of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jianqing Lin
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Peng Gao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bin Wu
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Abbas El Sahili
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hang Su
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xiaohua Ye
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Infectious Disease Research, Science of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Eddie Yongjun Tan
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xin Li
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Boon Chong Goh
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology Centre, Singapore, Singapore
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hannah Boyd
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonio E Muruato
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Hui Deng
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Birte K Kalveram
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Julien Lescar
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, Institute for Human Infection and Immunity, Sealy Institute for Vaccine Sciences, Sealy Center for Structural Biology & Molecular Biophysics, Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
17
|
Insausti S, Garcia-Porras M, Torralba J, Morillo I, Ramos-Caballero A, de la Arada I, Apellaniz B, Caaveiro JMM, Carravilla P, Eggeling C, Rujas E, Nieva JL. Functional Delineation of a Protein-Membrane Interaction Hotspot Site on the HIV-1 Neutralizing Antibody 10E8. Int J Mol Sci 2022; 23:ijms231810767. [PMID: 36142694 PMCID: PMC9504841 DOI: 10.3390/ijms231810767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Antibody engagement with the membrane-proximal external region (MPER) of the envelope glycoprotein (Env) of HIV-1 constitutes a distinctive molecular recognition phenomenon, the full appreciation of which is crucial for understanding the mechanisms that underlie the broad neutralization of the virus. Recognition of the HIV-1 Env antigen seems to depend on two specific features developed by antibodies with MPER specificity: (i) a large cavity at the antigen-binding site that holds the epitope amphipathic helix; and (ii) a membrane-accommodating Fab surface that engages with viral phospholipids. Thus, besides the main Fab-peptide interaction, molecular recognition of MPER depends on semi-specific (electrostatic and hydrophobic) interactions with membranes and, reportedly, on specific binding to the phospholipid head groups. Here, based on available cryo-EM structures of Fab-Env complexes of the anti-MPER antibody 10E8, we sought to delineate the functional antibody-membrane interface using as the defining criterion the neutralization potency and binding affinity improvements induced by Arg substitutions. This rational, Arg-based mutagenesis strategy revealed the position-dependent contribution of electrostatic interactions upon inclusion of Arg-s at the CDR1, CDR2 or FR3 of the Fab light chain. Moreover, the contribution of the most effective Arg-s increased the potency enhancement induced by inclusion of a hydrophobic-at-interface Phe at position 100c of the heavy chain CDR3. In combination, the potency and affinity improvements by Arg residues delineated a protein-membrane interaction site, whose surface and position support a possible mechanism of action for 10E8-induced neutralization. Functional delineation of membrane-interacting patches could open new lines of research to optimize antibodies of therapeutic interest that target integral membrane epitopes.
Collapse
Affiliation(s)
- Sara Insausti
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Miguel Garcia-Porras
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Johana Torralba
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Izaskun Morillo
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Ander Ramos-Caballero
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Igor de la Arada
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Beatriz Apellaniz
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad, 7, 01006 Vitoria-Gasteiz, Spain
| | - Jose M. M. Caaveiro
- Laboratory of Global Healthcare, School of Pharmaceutical Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Pablo Carravilla
- Leibniz Institute of Photonic Technology e.V., 07745 Jena, Germany
| | - Christian Eggeling
- Leibniz Institute of Photonic Technology e.V., 07745 Jena, Germany
- Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, 07743 Jena, Germany
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Edurne Rujas
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Pharmacokinetic, Nanotechnology and Gene Therapy Group, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Microbiology, Infectious Disease, Antimicrobial Agents, and Gene Therapy, Bioaraba, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.R.); (J.L.N.)
| | - Jose L. Nieva
- Instituto Biofisika (CSIC-UPV/EHU), University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
- Correspondence: (E.R.); (J.L.N.)
| |
Collapse
|
18
|
Moshoette T, Papathanasopoulos MA, Killick MA. HIV-1 bispecific antibody iMab-N6 exhibits enhanced breadth but not potency over its parental antibodies iMab and N6. Virol J 2022; 19:143. [PMID: 36071449 PMCID: PMC9450465 DOI: 10.1186/s12985-022-01876-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
The recently published AMP trial (HVTN 703/HPTN 081 and HVTN704/HPTN 085) results have validated broad neutralising antibodies (bNAbs) as potential anti-HIV-1 agents. However, single bNAb preparations are unlikely to cope with the onslaught of existing and de novo resistance mutations, thus necessitating the use of bNAb combinations to achieve clinically relevant results. Specifically engineered antibodies incorporating two bNAbs into a single antibody structure have been developed. These bispecific antibodies (bibNAbs) retain the benefits of bNAb combinations, whilst several conformations exhibit improved neutralisation potency over the parental bNAbs. Here we report on the engineering of a bibNAb comprising of an HIV-1 spike targeting bNAb N6 and a host CD4 targeting antibody ibalizumab (iMab). Antibodies were expressed in HEK293T cells and purified by protein-A affinity chromatography followed by size exclusion chromatography to achieve homogenous, monomeric, bibNAb preparations. Antibody purity was confirmed by SDS-PAGE whilst epitope specificity and binding were confirmed by ELISA. Finally, antibody breadth and potency data were generated by HIV-1 neutralisation assay (n = 21, inclusive of the global panel). iMab-N6 exhibited better neutralisation breadth (100% coverage) in comparison to its parental bNAbs iMab (90%) and N6 (95%). This is encouraging as exceptional neutralisation breadth is necessary for HIV-1 treatment or prevention. Unfortunately, iMab-N6 did not exhibit any enhancement in potency over the most potent parental antibody, iMab (p = 0.1674, median IC50 of 0.0475 µg/ml, and 0.0665 µg/ml respectively) or the parental combination, iMab + N6 (p = 0.1964, median IC50: combination 0.0457 µg/ml). This result may point to a lack of dual engagement of the bibNAb Fab moieties necessary for potency enhancement. Against the previously reported bibNAbs; iMab-CAP256, 10E08-iMab, and PG9-iMab; iMab-N6 was the lowest performing bibNAb. The re-engineering of iMab-N6 to enhance its potency, while retaining breadth, is a worthwhile endeavour due to its clinical potential.
Collapse
Affiliation(s)
- Tumelo Moshoette
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Maria Antonia Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mark Andrew Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
19
|
Yuan M, Chen X, Zhu Y, Dong X, Liu Y, Qian Z, Ye L, Liu P. A Bispecific Antibody Targeting RBD and S2 Potently Neutralizes SARS-CoV-2 Omicron and Other Variants of Concern. J Virol 2022; 96:e0077522. [PMID: 35916510 PMCID: PMC9400488 DOI: 10.1128/jvi.00775-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/13/2022] [Indexed: 12/04/2022] Open
Abstract
Emerging severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) variants, especially the Omicron variant, have impaired the efficacy of existing vaccines and most therapeutic antibodies, highlighting the need for additional antibody-based tools that can efficiently neutralize emerging SARS-CoV-2 variants. The use of a "single" agent to simultaneously target multiple distinct epitopes on the spike is desirable in overcoming the neutralizing escape of SARS-CoV-2 variants. Herein, we generated a human-derived IgG-like bispecific antibody (bsAb), Bi-Nab35B5-47D10, which successfully retained parental specificity and simultaneously bound to the two distinct epitopes on receptor-binding domain (RBD) and S2. Bi-Nab35B5-47D10 showed improved spike binding breadth among wild-type (WT) SARS-CoV-2, variants of concern (VOCs), and variants being monitored (VBMs) compared with its parental monoclonal antibodies (MAbs). Furthermore, pseudotyped virus neutralization demonstrated that Bi-Nab35B5-47D10 can efficiently neutralize VBMs, including Alpha (B.1.1.7), Beta (B.1.351), and Kappa (B.1.617.1), as well as VOCs, including Delta (B.1.617.2), Omicron BA.1, and Omicron BA.2. Crucially, Bi-Nab35B5-47D10 substantially improved neutralizing activity against Omicron BA.1 (IC50 = 0.15 nM) and Omicron BA.2 (IC50 = 0.67 nM) compared with its parental MAbs. Therefore, Bi-Nab35B5-47D10 represents a potential effective countermeasure against SARS-CoV-2 Omicron and other variants of concern. IMPORTANCE The new, highly contagious SARS-CoV-2 Omicron variant caused substantial breakthrough infections and has become the dominant strain in countries across the world. Omicron variants usually bear high mutations in the spike protein and exhibit considerable escape of most potent neutralization monoclonal antibodies and reduced efficacy of current COVID-19 vaccines. The development of neutralizing antibodies with potent efficacy against the Omicron variant is still an urgent priority. Here, we generated a bsAb, Bi-Nab35B5-47D10, which simultaneously targets SARS-CoV-2 RBD and S2 and improves the neutralizing potency and breadth against SARS-CoV-2 WT and the tested variants compared with their parental antibodies. Notably, Bi-Nab35B5-47D10 has more potent neutralizing activity against the VOC Omicron pseudotyped virus. Therefore, Bi-Nab35B5-47D10 is a feasible and potentially effective strategy by which to treat and prevent COVID-19.
Collapse
Affiliation(s)
- Mengqi Yuan
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangyu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yanzhi Zhu
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoqing Dong
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yan Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilin Ye
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, China
| | - Pinghuang Liu
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Berendam SJ, Nelson AN, Yagnik B, Goswami R, Styles TM, Neja MA, Phan CT, Dankwa S, Byrd AU, Garrido C, Amara RR, Chahroudi A, Permar SR, Fouda GG. Challenges and Opportunities of Therapies Targeting Early Life Immunity for Pediatric HIV Cure. Front Immunol 2022; 13:885272. [PMID: 35911681 PMCID: PMC9325996 DOI: 10.3389/fimmu.2022.885272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Early initiation of antiretroviral therapy (ART) significantly improves clinical outcomes and reduces mortality of infants/children living with HIV. However, the ability of infected cells to establish latent viral reservoirs shortly after infection and to persist during long-term ART remains a major barrier to cure. In addition, while early ART treatment of infants living with HIV can limit the size of the virus reservoir, it can also blunt HIV-specific immune responses and does not mediate clearance of latently infected viral reservoirs. Thus, adjunctive immune-based therapies that are geared towards limiting the establishment of the virus reservoir and/or mediating the clearance of persistent reservoirs are of interest for their potential to achieve viral remission in the setting of pediatric HIV. Because of the differences between the early life and adult immune systems, these interventions may need to be tailored to the pediatric settings. Understanding the attributes and specificities of the early life immune milieu that are likely to impact the virus reservoir is important to guide the development of pediatric-specific immune-based interventions towards viral remission and cure. In this review, we compare the immune profiles of pediatric and adult HIV elite controllers, discuss the characteristics of cellular and anatomic HIV reservoirs in pediatric populations, and highlight the potential values of current cure strategies using immune-based therapies for long-term viral remission in the absence of ART in children living with HIV.
Collapse
Affiliation(s)
- Stella J. Berendam
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| | - Ashley N. Nelson
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States
| | - Bhrugu Yagnik
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ria Goswami
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Tiffany M. Styles
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Margaret A. Neja
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Sedem Dankwa
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Alliyah U. Byrd
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Carolina Garrido
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States
| | - Rama R. Amara
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ann Chahroudi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, United States,Center for Childhood Infections and Vaccines of Children’s Healthcare of Atlanta and Emory University, Atlanta, GA, United States
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York, NY, United States
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, United States,Department of Pediatrics, Duke University School of Medicine, Durham, NC, United States,*Correspondence: Stella J. Berendam, ; Genevieve G. Fouda,
| |
Collapse
|
21
|
Oostindie SC, Lazar GA, Schuurman J, Parren PWHI. Avidity in antibody effector functions and biotherapeutic drug design. Nat Rev Drug Discov 2022; 21:715-735. [PMID: 35790857 PMCID: PMC9255845 DOI: 10.1038/s41573-022-00501-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/16/2022]
Abstract
Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions. The manipulation of antibody avidity has since emerged as an important design principle for enhancing or engineering novel properties in antibody biotherapeutics. In this Review, we describe the multiple levels of avidity interactions that trigger the overall efficacy and control of functional responses in both natural antibody biology and their therapeutic applications. Within this framework, we comprehensively review therapeutic antibody mechanisms of action, with particular emphasis on engineered optimizations and platforms. Overall, we describe how affinity and avidity tuning of engineered antibody formats are enabling a new wave of differentiated antibody drugs with tailored properties and novel functions, promising improved treatment options for a wide variety of diseases.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Greg A Lazar
- Department of Antibody Engineering, Genentech, San Francisco, CA, USA
| | | | - Paul W H I Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands. .,Sparring Bioconsult, Odijk, Netherlands. .,Lava Therapeutics, Utrecht, Netherlands.
| |
Collapse
|
22
|
Yan H, Wu T, Chen Y, Jin H, Li L, Zhu Y, Chong H, He Y. Design of a Bispecific HIV Entry Inhibitor Targeting the Cell Receptor CD4 and Viral Fusion Protein Gp41. Front Cell Infect Microbiol 2022; 12:916487. [PMID: 35711654 PMCID: PMC9197378 DOI: 10.3389/fcimb.2022.916487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Given the high variability and drug-resistance problem by human immunodeficiency virus type 1 (HIV-1), the development of bispecific or multi-specific inhibitors targeting different steps of HIV entry is highly appreciated. We previously generated a very potent short-peptide-based HIV fusion inhibitor 2P23. In this study, we designed and characterized a bifunctional inhibitor termed 2P23-iMab by genetically conjugating 2P23 to the single-chain variable fragment (scFv) of ibalizumab (iMab), a newly approved antibody drug targeting the cell receptor CD4. As anticipated, 2P23-iMab could bind to the cell membrane through CD4 anchoring and inhibit HIV-1 infection as well as viral Env-mediated cell-cell fusion efficiently. When tested against a large panel of HIV-1 pseudoviruses with different subtypes and phenotypes, 2P23-iMab exhibited dramatically improved inhibitory activity than the parental inhibitors; especially, it potently inhibited the viruses not being susceptible to iMab. Moreover, 2P23-iMab had a dramatically increased potency in inhibiting two panels of HIV-1 mutants that are resistant to T-20 or 2P23 and the infections of HIV-2 and simian immunodeficiency virus (SIV). In conclusion, our studies have provided new insights into the design of novel bispecific HIV entry inhibitors with highly potent and broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Hongxia Yan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tong Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongliang Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Li
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanmei Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Chong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxian He
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Schriek AI, van Haaren MM, Poniman M, Dekkers G, Bentlage AEH, Grobben M, Vidarsson G, Sanders RW, Verrips T, Geijtenbeek TBH, Heukers R, Kootstra NA, de Taeye SW, van Gils MJ. Anti-HIV-1 Nanobody-IgG1 Constructs With Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Front Immunol 2022; 13:893648. [PMID: 35651621 PMCID: PMC9150821 DOI: 10.3389/fimmu.2022.893648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
The most effective treatment for HIV-1, antiretroviral therapy, suppresses viral replication and averts the disease from progression. Nonetheless, there is a need for alternative treatments as it requires daily administration with the possibility of side effects and occurrence of drug resistance. Broadly neutralizing antibodies or nanobodies targeting the HIV-1 envelope glycoprotein are explored as alternative treatment, since they mediate viral suppression and contribute to the elimination of virus-infected cells. Besides neutralization potency and breadth, Fc-mediated effector functions of bNAbs also contribute to the in vivo efficacy. In this study multivalent J3, 2E7 and 1F10 anti-HIV-1 broadly neutralizing nanobodies were generated to improve neutralization potency and IgG1 Fc fusion was utilized to gain Fc-mediated effector functions. Bivalent and trivalent nanobodies, coupled using long glycine-serine linkers, showed increased binding to the HIV-1 Env and enhanced neutralization potency compared to the monovalent variant. Fusion of an IgG1 Fc domain to J3 improved neutralization potency compared to the J3-bihead and restored Fc-mediated effector functions such as antibody-dependent cellular phagocytosis and trogocytosis, and natural killer cell activation. Due to their neutralization breadth and potency and their ability to induce effector functions these nanobody-IgG1 constructs may prove to be valuable towards alternative HIV-1 therapies.
Collapse
Affiliation(s)
- Angela I Schriek
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Marlies M van Haaren
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Meliawati Poniman
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | | - Arthur E H Bentlage
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marloes Grobben
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Rogier W Sanders
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY, United States
| | - Theo Verrips
- Department of Biology, Faculty of Sciences, Utrecht University, Utrecht, Netherlands.,VerLin BV, Utrecht, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | | | - Neeltje A Kootstra
- Department of Experimental Immunology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Steven W de Taeye
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
24
|
Engineering pan-HIV-1 neutralization potency through multispecific antibody avidity. Proc Natl Acad Sci U S A 2022; 119:2112887119. [PMID: 35064083 PMCID: PMC8795538 DOI: 10.1073/pnas.2112887119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 02/08/2023] Open
Abstract
The high genetic diversity of HIV-1 continues to be a major barrier to the development of therapeutics for prevention and treatment. Here, we describe the design of an antibody platform that allows assembly of a highly avid, multispecific molecule that targets, simultaneously, the most conserved epitopes on the HIV-1 envelope glycoprotein. The combined multivalency and multispecificity translates into extraordinary neutralization potency and pan-neutralization of HIV-1 strains, surpassing that of the most potent anti-HIV broadly neutralizing antibody cocktails. Deep mining of B cell repertoires of HIV-1–infected individuals has resulted in the isolation of dozens of HIV-1 broadly neutralizing antibodies (bNAbs). Yet, it remains uncertain whether any such bNAbs alone are sufficiently broad and potent to deploy therapeutically. Here, we engineered HIV-1 bNAbs for their combination on a single multispecific and avid molecule via direct genetic fusion of their Fab fragments to the human apoferritin light chain. The resulting molecule demonstrated a remarkable median IC50 value of 0.0009 µg/mL and 100% neutralization coverage of a broad HIV-1 pseudovirus panel (118 isolates) at a 4 µg/mL cutoff—a 32-fold enhancement in viral neutralization potency compared to a mixture of the corresponding HIV-1 bNAbs. Importantly, Fc incorporation on the molecule and engineering to modulate Fc receptor binding resulted in IgG-like bioavailability in vivo. This robust plug-and-play antibody design is relevant against indications where multispecificity and avidity are leveraged simultaneously to mediate optimal biological activity.
Collapse
|
25
|
Bai G, Ge Y, Su Y, Chen S, Zeng X, Lu H, Ma B. Computational Construction of a Single-Chain Bi-Paratopic Antibody Allosterically Inhibiting TCR-Staphylococcal Enterotoxin B Binding. Front Immunol 2021; 12:732938. [PMID: 34887850 PMCID: PMC8649926 DOI: 10.3389/fimmu.2021.732938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022] Open
Abstract
Staphylococcal enterotoxin B (SEB) simultaneously crosslinks MHC class II antigen and TCR, promoting proliferation of T cells and releasing a large number of toxic cytokines. In this report, we computationally examined the possibility of using a single-chain biparatopic bispecific antibody to target SEB and prevent TCR binding. The design was inspired by the observation that mixing two anti-SEB antibodies 14G8 and 6D3 can block SEB-TCR activation, and we used 14G8-6D3-SEB tertiary crystal structure as a template. Twelve simulation systems were constructed to systematically examine the effects of the designed bispecific scFV MB102a, including isolated SEB, MB102a with different linkers, MB102a-SEB complex, MB102a-SEB-TCRβ complex, MB102a-SEB-TCR-MHC II complex, and MB102a-SEB-MHC II. Our all atom molecular dynamics simulations (total 18,900 ns) confirmed that the designed single-chain bispecific antibody may allosterically prevent SEB-TCRβ chain binding and inhibit SEB-TCR-MHC II formation. Subsequent analysis indicated that the binding of scFV to SEB correlates with SEB-TCR binding site motion and weakens SEB-TCR interactions.
Collapse
Affiliation(s)
- Ganggang Bai
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yanhong Ge
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhong Su
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Chen
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Xingcheng Zeng
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Huixia Lu
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody (MOE), School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Molcell Biodesign, Inc., Frederick, MD, United States
| |
Collapse
|
26
|
Miner MD, Corey L, Montefiori D. Broadly neutralizing monoclonal antibodies for HIV prevention. J Int AIDS Soc 2021; 24 Suppl 7:e25829. [PMID: 34806308 PMCID: PMC8606861 DOI: 10.1002/jia2.25829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION The last 12 years have seen remarkable progress in the isolation and characterization of at least five different epitope classes of HIV-specific broadly neutralizing antibodies (bnAbs). Detailed analyses of these bnAb lineages, maturation pathways and epitopes have created new opportunities for vaccine development. In addition, interest exists in passive administration of monoclonal antibodies as a viable option for HIV prevention. DISCUSSION Recently, two antibody-mediated prevention (AMP) trials of a passively administered monoclonal antibody targeting the HIV envelope CD4 binding site, called VRC01, provided proof-of-concept that monoclonal antibody infusion could offer protection against HIV acquisition. While the trials failed to show overall protection against HIV acquisition, sub-analyses revealed that VRC01 infusion provided a 75% prevention efficacy against HIV strains that were susceptible to the antibody. The study also demonstrated that in vitro neutralizing activity, measured by the TZM-bl/pseudovirus assay, was able to predict HIV prevention efficacy in humans. In addition, the AMP trials defined a threshold protective concentration, or neutralization titer, for the VRC01 class of bnAbs, explaining the observed low overall efficacy and serving as a benchmark for the clinical testing of new bnAbs, bnAb cocktails and neutralizing antibody-inducing vaccines. Newer bnAbs that exhibit greater potency and breadth of neutralization in vitro than VRC01 are available for clinical testing. Combinations of best-in-class bnAbs with complementary magnitude, breadth and extent of complete neutralization are predicted to far exceed the prevention efficacy of VRC01. Some engineered bi- and trispecific mAbs exhibit similar desirable neutralizing activity and afford advantages for manufacturing and delivery. Modifications that prolong the serum half-life and improve genital tissue persistence offer additional advantages. CONCLUSIONS Iterative phase 1 trials are acquiring safety and pharmacokinetic data on dual and triple bnAbs and bi- and trispecific antibodies in preparation for future AMP studies that seek to translate findings from the VRC01 efficacy trials and achieve acceptable levels of overall prevention efficacy.
Collapse
Affiliation(s)
- Maurine D. Miner
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - Lawrence Corey
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleWashingtonUSA
| | - David Montefiori
- Department of Surgery and Duke Human Vaccine InstituteDuke University Medical CenterDurhamNorth CarolinaUSA
| |
Collapse
|
27
|
Watanabe Y, Tanabe A, Hamakubo T, Nagatoishi S, Tsumoto K. Development of biparatopic bispecific antibody possessing tetravalent scFv-Fc capable of binding to ROBO1 expressed in hepatocellular carcinoma cells. J Biochem 2021; 170:307-315. [PMID: 33844018 DOI: 10.1093/jb/mvab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
There is no standard structural format of the biparatopic bispecific antibody (bbsAb) which is used against the target molecule because of the diversity of biophysical features of bispecific antibodies (bsAbs). It is therefore essential that the interaction between the antibody and antigen is quantitatively analyzed to design antibodies that possess the desired properties. Here, we generated bsAbs, namely, a tandem scFv-Fc, a diabody-Fc, and an immunofusion-scFv-Fc-scFv, that possessed four scFv arms at different positions and were capable of recognizing the extracellular domains of ROBO1. We examined the interactions between these bsAbs and ROBO1 at the biophysical and cellular levels. Of these, immunofusion-B2212A scFv-Fc-B5209B scFv was stably expressed with the highest relative yield. The kinetic and thermodynamic features of the interactions of each bsAb with soluble ROBO1 (sROBO1) were validated using surface plasmon resonance and isothermal titration calorimetry. In all bsAbs, the immunofusion-scFv-Fc-scFv format showed homogeneous interaction with the antigen with higher affinity compared with that of monospecific antibodies. In conclusion, our study presents constructive information to design druggable bbsAbs in drug applications.
Collapse
Affiliation(s)
- Yuji Watanabe
- Departmant of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Aki Tanabe
- Departmant of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Hamakubo
- Department of Protein-Protein Interaction Research, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugimachi, Nakahara-ku, Kawasaki 211-8533, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Departmant of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
28
|
Niu M, Wong YC, Wang H, Li X, Chan CY, Zhang Q, Ling L, Cheng L, Wang R, Du Y, Yim LY, Jin X, Zhang H, Zhang L, Chen Z. Tandem bispecific antibody prevents pathogenic SHIV SF162P3CN infection and disease progression. Cell Rep 2021; 36:109611. [PMID: 34433029 DOI: 10.1016/j.celrep.2021.109611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although progress has been made on constructing potent bi-specific broadly neutralizing antibody (bi-bNAb), few bi-bNAbs have been evaluated against HIV-1/AIDS in non-human primates (NHPs). Here, we report the efficacy of a tandem bi-bNAb, namely BiIA-SG, in Chinese-origin rhesus macaques (CRM) against the CRM-adapted R5-tropic pathogenic SHIVSF162P3CN challenge. Pre-exposure BiIA-SG injection prevents productive viral infection in 6 of 6 CRMs with unmeasurable proviral load, T cell responses, and seroconversion. Single BiIA-SG injection, at day 1 or 3 post viral challenge, significantly reduces peak viremia, achieves undetectable setpoint viremia in 8 of 13 CRMs, and delays disease progression for years in treated CRMs. In contrast, 6 of 8 untreated CRMs develop simian AIDS within 2 years. BiIA-SG-induced long-term protection is associated with CD8+ T cells as determined by anti-CD8β antibody depletion experiments. Our findings provide a proof-of-concept that bi-bNAb treatment elicits T cell immunity in NHPs, which warrant the clinical development of BiIA-SG for HIV-1 prevention and immunotherapy.
Collapse
Affiliation(s)
- Mengyue Niu
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yik Chun Wong
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Xin Li
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; Department of Veterinary Medicine, Foshan University, Foshan, People's Repubic of China
| | - Chun Yin Chan
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Qi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Lijun Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lin Cheng
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China
| | - Ruoke Wang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Yanhua Du
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Lok Yan Yim
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xia Jin
- Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China
| | - Haoji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, People's Repubic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing, People's Republic of China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Shenzhen, People's Republic of China.
| |
Collapse
|
29
|
Lee TJ, Vazquez JA, Rao ASRS. Mathematical modeling of impact of eCD4-Ig molecule in control and management of HIV within a host. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:6887-6906. [PMID: 34517562 DOI: 10.3934/mbe.2021342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Eradication and eventually cure of the HIV virus from the infected individual should be the primary goal in all HIV therapy. This has yet to be achieved, however development of broadly neutralizing antibodies (bNabs) and eCD4-Ig and its related particles are promising therapeutic alternatives to eliminate the HIV virus from the host. Past studies have found superior protectivity and efficacy eradicating the HIV virus with the use of eCD4-Igs over bNabs, which has proposed the antibody-dependent cell-mediated cytotoxicity (ADCC) effect as one of the key-factors for antibody design. In this study, we evaluated the dynamics of the HIV virus, CD4 T-cells, and eCD4-Ig in humans using a gene-therapy approach which has been evaluated in primates previously. We utilized a mathematical model to investigate the relationship between eCD4-Ig levels, ADCC effects, and the neutralization effect on HIV elimination. In addition, a balance between ADCC and viral neutralization effect of eCD4-Ig has been investigated in order to understand the condition of which HIV eliminating antibodies needs to satisfy. Our analysis indicated some level of ADCC effect, which was missing from ART, was required for viral elimination. The results will be helpful in designing future drugs or therapeutic strategies.
Collapse
Affiliation(s)
- Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Jose A Vazquez
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Arni S R Srinivasa Rao
- Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Laboratory for Theory and Mathematical Modeling, Division of Infectious Diseases, Department of Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
- Department of Mathematics, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| |
Collapse
|
30
|
Spencer DA, Shapiro MB, Haigwood NL, Hessell AJ. Advancing HIV Broadly Neutralizing Antibodies: From Discovery to the Clinic. Front Public Health 2021; 9:690017. [PMID: 34123998 PMCID: PMC8187619 DOI: 10.3389/fpubh.2021.690017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Despite substantial progress in confronting the global HIV-1 epidemic since its inception in the 1980s, better approaches for both treatment and prevention will be necessary to end the epidemic and remain a top public health priority. Antiretroviral therapy (ART) has been effective in extending lives, but at a cost of lifelong adherence to treatment. Broadly neutralizing antibodies (bNAbs) are directed to conserved regions of the HIV-1 envelope glycoprotein trimer (Env) and can block infection if present at the time of viral exposure. The therapeutic application of bNAbs holds great promise, and progress is being made toward their development for widespread clinical use. Compared to the current standard of care of small molecule-based ART, bNAbs offer: (1) reduced toxicity; (2) the advantages of extended half-lives that would bypass daily dosing requirements; and (3) the potential to incorporate a wider immune response through Fc signaling. Recent advances in discovery technology can enable system-wide mining of the immunoglobulin repertoire and will continue to accelerate isolation of next generation potent bNAbs. Passive transfer studies in pre-clinical models and clinical trials have demonstrated the utility of bNAbs in blocking or limiting transmission and achieving viral suppression. These studies have helped to define the window of opportunity for optimal intervention to achieve viral clearance, either using bNAbs alone or in combination with ART. None of these advances with bNAbs would be possible without technological advancements and expanding the cohorts of donor participation. Together these elements fueled the remarkable growth in bNAb development. Here, we review the development of bNAbs as therapies for HIV-1, exploring advances in discovery, insights from animal models and early clinical trials, and innovations to optimize their clinical potential through efforts to extend half-life, maximize the contribution of Fc effector functions, preclude escape through multiepitope targeting, and the potential for sustained delivery.
Collapse
Affiliation(s)
- David A. Spencer
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| | - Mariya B. Shapiro
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Nancy L. Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
- Molecular Microbiology & Immunology Department, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Ann J. Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
| |
Collapse
|
31
|
Abstract
Even after more than 30 years since its discovery, there is no cure for HIV-1 infection. Combination antiretroviral therapy (cART) is currently the only HIV-1 infection management option in clinics. Despite its success in suppressing viral replication and converting HIV-1 from a lethal infection to a chronic and manageable disease, cART treatment is life long and long-term use can result in major drawbacks such as high cost, multiple side effects, and an increase in the development of multidrug-resistant escape mutants. Recently, antibody-based anti-HIV-1 treatment has emerged as a potential alternative therapeutic modality for HIV-1 treatment and cure strategies. These antibody-based anti-HIV-1 treatments comprising either receptor-targeting antibodies or broad neutralizing antibodies (bNAbs) are currently being developed and evaluated in clinical trials. These antibodies have demonstrated potent antiviral effects against multiple strains of HIV-1, and shown promise for prevention, maintenance, and prolonged remission of HIV-1 infection. This review gives an update on the current status of these antibody-based treatments for HIV-1, discusses their mechanism of action and the challenges in developing them, providing insight for their development as novel clinical therapies against HIV-1 infection.
Collapse
Affiliation(s)
- Wanwisa Promsote
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan E DeMouth
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cassandra G Almasri
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
32
|
Lin Y, Wang XF, Wang Y, Du C, Ren H, Liu C, Zhu D, Chen J, Na L, Liu D, Yang Z, Wang X. Env diversity-dependent protection of the attenuated equine infectious anaemia virus vaccine. Emerg Microbes Infect 2021; 9:1309-1320. [PMID: 32525460 PMCID: PMC7473056 DOI: 10.1080/22221751.2020.1773323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Lentiviruses harbour high genetic variability for efficient evasion from host immunity.
An attenuated equine infectious anaemia (EIA) vaccine was developed decades ago in China
and presented remarkably robust protection against EIA. The vaccine was recently proven to
have high genomic diversity, particular in env. However, how
and to what extent the high env diversity relates to immune
protection remains unclear. In this study, we compared immune protections and responses of
three groups of horses stimulated by the high-diversity vaccine EIAV_HD, a single
molecular clone of the vaccine EIAV_LD with low env
diversity, as well as a constructed vaccine strain EIAV_MD with moderate env diversity. The disparity of virus-host interactions between
three env diversity-varied groups (5 horses in each group)
was evaluated using clinical manifestation, pathological scores, and env-specific antibody. We found the highest titres of env antibodies (Abs) or neutralizing Abs (nAbs) in the EIAV_HD group, followed
by the EIAV_MD group, and the lowest titres in the EIAV_LD group (P<0.05). The occurrence of disease/death was different between EIAV_HD
group (1/0), EIAV_MD (2/2), and EIAV_LD group (4/2). A similar env diversity-related linear relationship was observed in the clinical
manifestations and pathological changes. This diversity-dependent disparity in changes
between the three groups was more distinct after immunosuppression, suggesting that
env diversity plays an important role in protection under
low host immunocompetence. In summary, inoculation with vaccines with higher genetic
diversity could present broader and more efficient protection. Our findings strongly
suggest that an abundance of Env antigens are required for efficient protection against
lentiviruses.
Collapse
Affiliation(s)
- Yuezhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xue-Feng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Yuhong Wang
- Department of Geriatrics and Gerontology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Huiling Ren
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Cong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Dantong Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jie Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Diqiu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Zhibiao Yang
- Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| |
Collapse
|
33
|
Abstract
In the last decade, over a dozen potent broadly neutralizing antibodies (bnAbs) to several HIV envelope protein epitopes have been identified, and their in vitro neutralization profiles have been defined. Many have demonstrated prevention efficacy in preclinical trials and favorable safety and pharmacokinetic profiles in early human clinical trials. The first human prevention efficacy trials using 10 sequential, every-two-month administrations of a single anti-HIV bnAb are anticipated to conclude in 2020. Combinations of complementary bnAbs and multi-specific bnAbs exhibit improved breadth and potency over most individual antibodies and are entering advanced clinical development. Genetic engineering of the Fc regions has markedly improved bnAb half-life, increased mucosal tissue concentrations of antibodies (especially in the genital tract), and enhanced immunomodulatory and Fc effector functionality, all of which improve antibodies' preventative and therapeutic potential. Human-derived monoclonal antibodies are likely to enter the realm of primary care prevention and therapy for viral infections in the near future.
Collapse
Affiliation(s)
- Shelly T Karuna
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; ,
| | - Lawrence Corey
- HIV Vaccine Trials Network, Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA; , .,Departments of Medicine and Laboratory Medicine, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The application of immunotherapies to HIV presents a new horizon of treatment options, but little is known about what impact they may have on the central nervous system (CNS). Here we review the most promising immunotherapeutic strategies that can be used to target HIV in the CNS and focus on identifying their potential benefits while exploring the challenges that remain in their application. RECENT FINDINGS We have identified five immunotherapeutic strategies that hold potential in managing CNS disease among HIV-infected patients. These include broadly neutralizing antibodies, multi-affinity antibodies, CAR-T cell therapy, checkpoint inhibitors, and therapeutic vaccines. Each class of immunotherapy presents unique mechanisms by which CNS viremia and latency may be addressed but are faced with several challenges. CAR-T cell therapy and multi-affinity antibodies seem to hold promise, but combination therapy is likely to be most effective. However, more human trials are needed before the clinical benefits of these therapies are realized.
Collapse
Affiliation(s)
- Andrew Kapoor
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - C Sabrina Tan
- Division of Infectious Diseases, Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue E/CLS 1011, Boston, MA, 02215, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Immunotherapy strategies alternative to current antiretroviral therapies will need to address viral diversity while increasing the immune system's ability to efficiently target the latent virus reservoir. Antibody-based molecules can be designed based on broadly neutralizing and non-neutralizing antibodies that target free virions and infected cells. These multispecific molecules, either by IgG-like or non-IgG-like in structure, aim to target several independent HIV-1 epitopes and/or engage effector cells to eliminate the replicating virus and infected cells. This detailed review is intended to stimulate discussion on future requirements for novel immunotherapeutic molecules. RECENT FINDINGS Bispecific and trispecific antibodies are engineered as a single molecules to target two or more independent epitopes on the HIV-1 envelope (Env). These antibody-based molecules have increased avidity for Env, leading to improved neutralization potency and breadth compared with single parental antibodies. Furthermore, bispecific and trispecific antibodies that engage cellular receptors with one arm of the molecule help concentrate inhibitory molecules to the sites of potential infection and facilitate engagement of immune effector cells and Env-expressing target cells for their elimination. SUMMARY Recently engineered antibody-based molecules of different sizes and structures show promise in vitro or in vivo and are encouraging candidates for HIV treatment.
Collapse
Affiliation(s)
- Marina Tuyishime
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
36
|
Ahangarzadeh S, Payandeh Z, Arezumand R, Shahzamani K, Yarian F, Alibakhshi A. An update on antiviral antibody-based biopharmaceuticals. Int Immunopharmacol 2020; 86:106760. [PMID: 32645633 PMCID: PMC7336121 DOI: 10.1016/j.intimp.2020.106760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023]
Abstract
Due to the vastness of the science virology, it is no longer an offshoot solely of the microbiology. Viruses have become as the causative agents of major epidemics throughout history. Many therapeutic strategies have been used for these microorganisms, and in this way the recognizing of potential targets of viruses is of particular importance for success. For decades, antibodies and antibody fragments have occupied a significant body of the treatment approaches against infectious diseases. Because of their high affinity, they can be designed and engineered against a variety of purposes, mainly since antibody fragments such as scFv, nanobody, diabody, and bispecific antibody have emerged owing to their small size and interesting properties. In this review, we have discussed the antibody discovery and molecular and biological design of antibody fragments as inspiring therapeutic and diagnostic agents against viral targets.
Collapse
Affiliation(s)
- Shahrzad Ahangarzadeh
- Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Arezumand
- Department of Medical Biotechnology and Molecular Science, North Khorasan University of Medical Science, Bojnurd, Iran
| | - Kiana Shahzamani
- Isfahan Gastroenterology and Hepatology Research Center (IGHRC), Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Alibakhshi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Lim RM, Rong L, Zhen A, Xie J. A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299-2310. [PMID: 32667183 DOI: 10.1021/acschembio.0c00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering T cells and natural killer (NK) cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to eradicate HIV-infected cells. However, current anti-HIV CARs are limited by targeting a single epitope of the HIV envelope glycoprotein gp160, which cannot counter the enormous diversity and mutability of viruses. Here, we report the development of a universal CAR-NK cell, which recognizes 2,4-dinitrophenyl (DNP) and can subsequently be redirected to target various epitopes of gp160 using DNP-conjugated antibodies as adaptor molecules. We show that this CAR-NK cell can recognize and kill mimic HIV-infected cell lines expressing subtypes B and C gp160. We additionally find that anti-gp160 antibodies targeting membrane-distal epitopes (including V1/V2, V3, and CD4bs) are more likely to activate universal CAR-NK cells against gp160+ target cells, compared with those targeting membrane-proximal epitopes located in the gp41 MPER. Finally, we confirm that HIV-infected primary human CD4+ T cells can be effectively killed using the same approach. Given that numerous anti-gp160 antibodies with different antigen specificities are readily available, this modular universal CAR-NK cell platform can potentially overcome HIV diversity, thus providing a promising strategy to eradicate HIV-infected cells.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Liang Rong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095, United States
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
38
|
Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulić B. Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med 2020; 11:11/504/eaav5685. [PMID: 31391322 DOI: 10.1126/scitranslmed.aav5685] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/20/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Adoptive immunotherapy using chimeric antigen receptor-modified T cells (CAR-T) has made substantial contributions to the treatment of certain B cell malignancies. Such treatment modalities could potentially obviate the need for long-term antiretroviral drug therapy in HIV/AIDS. Here, we report the development of HIV-1-based lentiviral vectors that encode CARs targeting multiple highly conserved sites on the HIV-1 envelope glycoprotein using a two-molecule CAR architecture, termed duoCAR. We show that transduction with lentiviral vectors encoding multispecific anti-HIV duoCARs confer primary T cells with the capacity to potently reduce cellular HIV infection by up to 99% in vitro and >97% in vivo. T cells are the targets of HIV infection, but the transduced T cells are protected from genetically diverse HIV-1 strains. The CAR-T cells also potently eliminated PBMCs infected with broadly neutralizing antibody-resistant HIV strains, including VRC01/3BNC117-resistant HIV-1. Furthermore, multispecific anti-HIV duoCAR-T cells demonstrated long-term control of HIV infection in vivo and prevented the loss of CD4+ T cells during HIV infection using a humanized NSG mouse model of intrasplenic HIV infection. These data suggest that multispecific anti-HIV duoCAR-T cells could be an effective approach for the treatment of patients with HIV-1 infection.
Collapse
Affiliation(s)
| | - Ariola Bardhi
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alex Ray
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nina Flerin
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mengyan Li
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Weizao Chen
- Protein Interactions Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John C Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35294, USA
| | - Winfried Krueger
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Andrew Worden
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dina Schneider
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Zhongyu Zhu
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Rimas Orentas
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA
| | - Dimiter S Dimitrov
- Center for Antibody Therapeutics, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Harris Goldstein
- Department of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Boro Dropulić
- Lentigen, a Miltenyi Biotec Company, Gaithersburg, MD 20878, USA.
| |
Collapse
|
39
|
Lamendour L, Deluce-Kakwata-Nkor N, Mouline C, Gouilleux-Gruart V, Velge-Roussel F. Tethering Innate Surface Receptors on Dendritic Cells: A New Avenue for Immune Tolerance Induction? Int J Mol Sci 2020; 21:E5259. [PMID: 32722168 PMCID: PMC7432195 DOI: 10.3390/ijms21155259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) play a key role in immunity and are highly potent at presenting antigens and orienting the immune response. Depending on the environmental signals, DCs could turn the immune response toward immunity or immune tolerance. Several subsets of DCs have been described, with each expressing various surface receptors and all participating in DC-associated immune functions according to their specific skills. DC subsets could also contribute to the vicious circle of inflammation in immune diseases and establishment of immune tolerance in cancer. They appear to be appropriate targets in the control of inflammatory diseases or regulation of autoimmune responses. For all these reasons, in situ DC targeting with therapeutic antibodies seems to be a suitable way of modulating the entire immune system. At present, the field of antibody-based therapies has mainly been developed in oncology, but it is undergoing remarkable expansion thanks to a wide variety of antibody formats and their related functions. Moreover, current knowledge of DC biology may open new avenues for targeting and modulating the different DC subsets. Based on an update of pathogen recognition receptor expression profiles in human DC subsets, this review evaluates the possibility of inducing tolerant DCs using antibody-based therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | - Florence Velge-Roussel
- GICC EA 7501, Université de Tours, UFR de Médecine, 10 Boulevard Tonnellé, F-37032 Tours, France; (L.L.); (N.D.-K.-N.); (C.M.); (V.G.-G.)
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Broadly neutralizing antibodies (bnAbs) are considered a key component of an effective HIV-1 vaccine, but despite intensive efforts, induction of bnAbs by vaccination has thus far not been possible. Potent bnAb activity is rare in natural infection and a deeper understanding of factors that promote or limit bnAb evolution is critical to guide bnAb vaccine development. This review reflects on recent key discoveries on correlates of bnAb development and discusses what further insights are needed to move forward. RECENT FINDINGS An increasing number of parameters have been implicated to influence bnAb development in natural infection. Most recent findings highlight a range of immune factors linked with bnAb evolution. Novel approaches have brought exciting progress in defining signatures of the viral envelope associated with bnAb activity. SUMMARY Focused efforts of recent years have unraveled a multiply layered process of HIV-1 bnAb development. As it is understood today, bnAb evolution can be triggered and influenced by a range of factors and several different pathways may exist how bnAb induction and maturation can occur. To capitalize on the gained knowledge, future research needs to validate factors to identify independent drivers of bnAb induction to advance vaccine design.
Collapse
|
41
|
Gardner MR. Promise and Progress of an HIV-1 Cure by Adeno-Associated Virus Vector Delivery of Anti-HIV-1 Biologics. Front Cell Infect Microbiol 2020; 10:176. [PMID: 32391289 PMCID: PMC7190809 DOI: 10.3389/fcimb.2020.00176] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART) at suppressing HIV-1 infection, a cure that eradicates all HIV-1-infected cells has been elusive. The latent viral reservoir remains intact in tissue compartments that are not readily targeted by the host immune response that could accelerate the rate of reservoir decline during ART. However, over the past decade, numerous broadly neutralizing antibodies (bNAbs) have been discovered and characterized. These bNAbs have also given rise to engineered antibody-like inhibitors that are just as or more potent than bNAbs themselves. The question remains whether bNAbs and HIV-1 inhibitors will be the effective “kill” to a shock-and-kill approach to eliminate the viral reservoir. Additional research over the past few years has sought to develop recombinant adeno-associated virus (rAAV) vectors to circumvent the need for continual administration of bNAbs and maintain persistent expression in a host. This review discusses the advancements made in using rAAV vectors for the delivery of HIV-1 bNAbs and inhibitors and the future of this technology in HIV-1 cure research. Numerous groups have demonstrated with great efficacy that rAAV vectors can successfully express protective concentrations of bNAbs and HIV-1 inhibitors. Yet, therapeutic concentrations, especially in non-human primate (NHP) models, are not routinely achieved. As new studies have been reported, more challenges have been identified for utilizing rAAV vectors, specifically how the host immune response limits the attainable concentrations of bNAbs and inhibitors. The next few years should provide improvements to rAAV vector delivery that will ultimately show whether they can be used for expressing bNAbs and HIV-1 inhibitors to eliminate the HIV-1 viral reservoir.
Collapse
Affiliation(s)
- Matthew R Gardner
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, United States
| |
Collapse
|
42
|
Antiviral Activity of a Llama-Derived Single-Domain Antibody against Enterovirus A71. Antimicrob Agents Chemother 2020; 64:AAC.01922-19. [PMID: 32152074 DOI: 10.1128/aac.01922-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/19/2020] [Indexed: 12/28/2022] Open
Abstract
In the past few decades, enterovirus A71 (EVA71) has caused devastating outbreaks in the Asia-Pacific region, resulting in serious sequelae in infected young children. No preventive or therapeutic interventions are currently available for curing EVA71 infection, highlighting a great unmet medical need for this disease. Here, we showed that one novel single-domain antibody (sdAb), F1, isolated from an immunized llama, could alleviate EVA71 infection both in vitro and in vivo We also confirmed that the sdAb clone F1 recognizes EVA71 through a novel conformational epitope comprising the highly conserved region of VP3 capsid protein by using competitive-binding and overlapping-peptide enzyme-linked immunosorbent assays (ELISAs). Because of the virion's icosahedral structure, we reasoned that adjacent epitopes must be clustered within molecular ranges that may be simultaneously bound by an engineered antibody with multiple valency. Therefore, two single-domain binding modules (F1) were fused to generate an sdAb-in-tandem design so that the capture of viral antigens could be further increased by valency effects. We showed that the tetravalent construct F1×F1-hFc, containing two sdAb-in-tandem on a fragment crystallizable (Fc) scaffold, exhibits more potent neutralization activity against EVA71 than does the bivalent sdAb F1-hFc by at least 5.8-fold. We also demonstrated that, using a human scavenger receptor class B member 2 (hSCARB2) transgenic mouse model, a half dose of the F1×F1-hFc provided better protection against EVA71 infection than did the F1-hFc. Thus, our study furnishes important insights into multivalent sdAb engineering against viral infection and provides a novel strategic deployment approach for preparedness of emerging infectious diseases such as EVA71.
Collapse
|
43
|
Lindsay KE, Vanover D, Thoresen M, King H, Xiao P, Badial P, Araínga M, Park SB, Tiwari PM, Peck HE, Blanchard EL, Feugang JM, Olivier AK, Zurla C, Villinger F, Woolums AR, Santangelo PJ. Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies against HIV. Mol Ther 2020; 28:805-819. [PMID: 31995741 PMCID: PMC7054722 DOI: 10.1016/j.ymthe.2020.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/14/2019] [Indexed: 12/20/2022] Open
Abstract
There is a clear need for low-cost, self-applied, long-lasting approaches to prevent human immunodeficiency virus (HIV) infection in both men and women, even with the advent of pre-exposure prophylaxis (PrEP). Broadly neutralizing antibodies represent an option to improve HIV prophylaxis, but intravenous delivery, cold-chain stability requirements, low cervicovaginal concentrations, and cost may preclude their use. Here, we present an approach to express the anti-GP120 broadly neutralizing antibody PGT121 in the primary site of inoculation, the female reproductive tract, using synthetic mRNA. Expression is achieved through aerosol delivery of unformulated mRNA in water. We demonstrated high levels of antibody expression for over 28 days with a single mRNA administration in the reproductive tract of sheep. In rhesus macaques, neutralizing antibody titers in secretions developed within 4 h and simian-HIV (SHIV) infection of ex vivo explants was prevented. Persistence of PGT121 in vaginal secretions and epithelium was achieved through the incorporation of a glycosylphosphatidylinositol (GPI) anchor into the heavy chain of the antibody. Overall, we present a new paradigm to deliver neutralizing antibodies to the female reproductive tract for the prevention of HIV infections.
Collapse
Affiliation(s)
- Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Heath King
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Peres Badial
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Seong Bin Park
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Pooja M Tiwari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jean M Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Alicia K Olivier
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA 70560, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Starkville, MS 39762, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
44
|
Jones LD, Moody MA, Thompson AB. Innovations in HIV-1 Vaccine Design. Clin Ther 2020; 42:499-514. [PMID: 32035643 PMCID: PMC7102617 DOI: 10.1016/j.clinthera.2020.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/20/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The field of HIV-1 vaccinology has evolved during the last 30 years from the first viral vector HIV gene insert constructs to vaccination regimens using a myriad of strategies. These strategies now include germline-targeting, lineage-based, and structure-guided immunogen design. This narrative review outlines the historical context of HIV vaccinology and subsequently highlights the scientific discoveries during the last 6 years that promise to propel the field forward. METHODS We conducted a search of 2 electronic databases, PubMed and EMBASE, for experimental studies that involved new HIV immunogen designs between 2013 and 2019. During the title and abstract reviews, publications were excluded if they were written in language other than English and/or were a letter to the editor, a commentary, or a conference-only presentation. We then used ClinicalTrials.gov to identify completed and ongoing clinical trials using these strategies. FINDINGS The HIV vaccinology field has undergone periods of significant growth during the last 3 decades. Findings elucidated in preclinical studies have revealed the importance of the interaction between the cellular and humoral immune system. As a result, several new rationally designed vaccine strategies have been developed and explored in the last 6 years, including native-like envelope trimers, nanoparticle, and mRNA vaccine design strategies among others. Several of these strategies have shown enough promise in animal models to progress toward first-in-human Phase I clinical trials. IMPLICATIONS Rapid developments in preclinical and early-phase clinical studies suggest that a tolerable and effective HIV vaccine may be on the horizon.
Collapse
Affiliation(s)
- Letitia D Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - M Anthony Moody
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA
| | - Amelia B Thompson
- Duke University School of Medicine and Duke Human Vaccine Institute, Durham, NC, USA.
| |
Collapse
|
45
|
Liu Y, Cao W, Sun M, Li T. Broadly neutralizing antibodies for HIV-1: efficacies, challenges and opportunities. Emerg Microbes Infect 2020; 9:194-206. [PMID: 31985356 PMCID: PMC7040474 DOI: 10.1080/22221751.2020.1713707] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 01/26/2023]
Abstract
Combination antiretroviral therapy (cART) is effective but not curative, and no successful vaccine is currently available for human immunodeficiency virus-1 (HIV-1). Broadly neutralizing antibodies (bNAbs) provide a new approach to HIV-1 prevention and treatment, and these promising candidates advancing into clinical trials have shown certain efficacies in infected individuals. In addition, bNAbs have the potential to kill HIV-1-infected cells and to affect the course of HIV-1 infection by directly engaging host immunity. Nonetheless, challenges accompany the use of bNAbs, including transient suppression of viraemia, frequent emergence of resistant viruses in rebound viraemia, suboptimal efficacy in virus cell-to-cell transmission, and unclear effects on the cell-associated HIV-1 reservoir. In this review, we discuss opportunities and potential strategies to address current challenges to promote the future use of immunotherapy regimens.
Collapse
Affiliation(s)
- Yubin Liu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming, People’s Republic of China
- Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Diseases, Kunming, People’s Republic of China
| | - Taisheng Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Tsinghua University Medical College, Beijing, People’s Republic of China
| |
Collapse
|
46
|
A Bispecific Antibody That Simultaneously Recognizes the V2- and V3-Glycan Epitopes of the HIV-1 Envelope Glycoprotein Is Broader and More Potent than Its Parental Antibodies. mBio 2020; 11:mBio.03080-19. [PMID: 31937648 PMCID: PMC6960291 DOI: 10.1128/mbio.03080-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Broadly neutralizing antibodies (bNAbs) can prevent a new HIV-1 infection and can at least temporarily suppress an established infection. However, antibody-resistant viruses rapidly emerge in infected persons treated with any single bNAb. Several bispecific antibodies have been developed to increase the breadth of these antibodies, but typically only one arm of these bispecific constructs binds the HIV-1 envelope glycoprotein trimer (Env). Here, we develop and characterize bispecific constructs based on well-characterized V2-glycan and V3-glycan bNAbs and show that at least one member of this class is more potent than its parental antibodies, indicating that they can simultaneously bind both of these epitopes of a single Env trimer. These data show that bispecific antibody-like proteins can achieve greater neutralization potency than the bNAbs from which they were derived. Broadly neutralizing antibodies (bNAbs) can prevent and control an HIV-1 infection, but their breadth is invariably too limited for use as monotherapy. To address this problem, bi- and trispecific antibody-like constructs have been developed. These engineered antibodies typically have greater breadth than the native bNAbs from which they were derived, but they are not more potent because they do not, in most cases, simultaneously engage more than a single epitope of the HIV-1 envelope glycoprotein (Env). Here, we describe a new class of bispecific antibodies targeting the V2-glycan (apex) and V3-glycan regions of the HIV-1 envelope glycoprotein (Env). Specifically, bispecific antibodies with a single-chain (scFv) form of the CAP256.VRC26.25 V2-glycan (apex) antibody on one antibody arm and a full V3-glycan Fab on the other arm neutralizes more HIV-1 isolates than the bNAbs from which they were derived. Moreover, these bispecific antibodies are markedly more potent than their parental bNAbs, likely because they simultaneously engage both the apex and V3-glycan epitopes of Env. Our data show that simultaneous engagement of two critical epitopes of a single Env trimer can markedly increase the potency of a bispecific antibody.
Collapse
|
47
|
Pan L, Cao C, Run C, Zhou L, Chou JJ. DNA-Mediated Assembly of Multispecific Antibodies for T Cell Engaging and Tumor Killing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900973. [PMID: 31993277 PMCID: PMC6974939 DOI: 10.1002/advs.201900973] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/22/2019] [Indexed: 05/08/2023]
Abstract
Targeting T-cells against cancer cells is a direct means of treating cancer, and has already shown great responses in clinical treatment of B-cell malignancies. A simple way to redirect T-cells to cancer cells is by using multispecific antibody (MsAb) that contains different arms for specifically "grabbing" the T-cells and cancer cells; as such, the T-cells are activated upon target engagement and the killing begins. Here, a nucleic acid mediated protein-protein assembly (NAPPA) approach is implemented to construct a MsAb for T-cell engaging and tumor killing. Anti -CD19 and -CD3 single-chain variable fragments (scFvs) are conjugated to different l-DNAs with sequences that form the Holliday junction, thus allowing spontaneous assembly of homogeneous protein-DNA oligomers containing two anti-CD19 and one anti-CD3 scFvs. The new MsAb shows strong efficacy in inducing Raji tumor cell cytotoxicity in the presence of T-cells with EC50 ≈ 0.2 × 10-9 m; it also suppresses tumor growth in a Raji xenograft mouse model. The data indicates that MsAbs assembled from protein-DNA conjugates are effective macromolecules for directing T-cells for tumor killing. The modular nature of the NAPPA platform allows rapid generation of complex MsAbs from simple antibody fragments, while offering a general solution for preparing antibodies with high-order specificity.
Collapse
Affiliation(s)
- Liqiang Pan
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Province Key Laboratory of Anti‐cancer Drug ResearchCollege of Pharmaceutical SciencesZhejiang University310058HangzhouChina
| | - Chan Cao
- Assembly Medicine, LLCShanghai201203China
| | | | | | - James J. Chou
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
| |
Collapse
|
48
|
Moshoette T, Ali SA, Papathanasopoulos MA, Killick MA. Engineering and characterising a novel, highly potent bispecific antibody iMab-CAP256 that targets HIV-1. Retrovirology 2019; 16:31. [PMID: 31703699 PMCID: PMC6842167 DOI: 10.1186/s12977-019-0493-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/29/2019] [Indexed: 01/07/2023] Open
Abstract
The existing repertoire of HIV-1 patient derived broadly neutralising antibodies (bNAbs) that target the HIV-1 envelope glycoprotein (Env) present numerous and exciting opportunities for immune-based therapeutic and preventative strategies against HIV-1. Combination antibody therapy is required to ensure greater neutralization coverage and limit Env mediated escape mutations following treatment pressure. Engineered bispecific bNAbs (bibNAbs) assimilate the advantages of combination therapy into a single antibody molecule with several configurations reporting potency enhancement as a result of the increased avidity and simultaneous engagement of targeted epitopes. We report the engineering of a novel bibNAb (iMab-CAP256) comprising the highly potent, CAP256.VRC26.25 bNAb with anticipated extension in neutralization coverage through pairing with the host directed, anti-CD4 antibody, ibalizumab (iMab). Recombinant expression of parental monoclonal antibodies and the iMab-CAP256 bibNAb was performed in HEK293T (Human embryonic kidney 293 T antigen) cells, purified to homogeneity by Protein-A affinity chromatography followed by size exclusion chromatography. Antibody assembly and binding functionality of Fab moieties was confirmed by SDS-PAGE (sodium dodecyl sulphate polyacrylamide gel electrophoresis) and ELISA, respectively. Breadth and potency were evaluated against a geographical diverse HIV-1 pseudovirus panel (n = 20). Overall, iMab-CAP256 demonstrated an expanded neutralizing coverage, neutralizing single, parental antibody resistant pseudovirus strains and an enhanced neutralization potency against all dual sensitive strains (average fold increase over the more potent parental antibody of 11.4 (range 2 to 31.8). Potency enhancement was not observed for the parental antibody combination treatment (iMab + CAP256) suggesting the presence of a synergistic relationship between the CAP256 and iMab paratope combination in this bibNAb configuration. In addition, iMab-CAP256 bibNAbs exhibited comparable efficacy to other bibNAbs PG9-iMab and 10E08-iMab previously reported in the literature. The enhanced neutralization coverage and potency of iMAb-CAP256 over the parental bNAbs should facilitate superior clinical performance as a therapeutic or preventative strategy against HIV-1.
Collapse
Affiliation(s)
- Tumelo Moshoette
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Stuart Alvaro Ali
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Maria Antonia Papathanasopoulos
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mark Andrew Killick
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
49
|
GSK3732394: a Multi-specific Inhibitor of HIV Entry. J Virol 2019; 93:JVI.00907-19. [PMID: 31375580 DOI: 10.1128/jvi.00907-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Long-acting antiretrovirals could provide a useful alternative to daily oral therapy for HIV-1-infected individuals. Building on a bi-specific molecule with adnectins targeting CD4 and gp41, a potential long-acting biologic, GSK3732394, was developed with three independent and synergistic modes of HIV entry inhibition that potentially could be self-administered as a long-acting subcutaneous injection. Starting with the bi-specific inhibitor, an α-helical peptide inhibitor was optimized as a linked molecule to the anti-gp41 adnectin, with each separate inhibitor exhibiting at least single-digit nanomolar (or lower) potency and a broad spectrum. Combination of the two adnectins and peptide activities into a single molecule was shown to have synergistic advantages in potency, the resistance barrier, and the ability to inhibit HIV-1 infections at low levels of CD4 receptor occupancy, showing that GSK3732394 can work in trans on a CD4+ T cell. Addition of a human serum albumin molecule prolongs the half-life in a human CD4 transgenic mouse, suggesting that it may have potential as a long-acting agent. GSK3732394 was shown to be highly effective in a humanized mouse model of infection. GSK3732394 is currently in clinical trials.IMPORTANCE There continue to be significant unmet medical needs for patients with HIV-1 infection. One way to improve adherence and decrease the likelihood of drug-drug interactions in HIV-1-infected patients is through the development of long-acting biologic inhibitors. Building on a bi-specific inhibitor approach targeting CD4 and gp41, a tri-specific molecule was generated with three distinct antiviral activities. The linkage of these three biologic inhibitors creates synergy that offers a series of advantages to the molecule. The addition of human serum albumin to the tri-specific inhibitor could allow it to function as a long-acting self-administered treatment for patients with HIV infection. This molecule is currently in early clinical trials.
Collapse
|
50
|
The potential of engineered antibodies for HIV-1 therapy and cure. Curr Opin Virol 2019; 38:70-80. [PMID: 31421319 DOI: 10.1016/j.coviro.2019.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 12/21/2022]
Abstract
Broadly neutralizing antibodies (bnAbs) are currently under investigation as a therapy for HIV-1 infection and recent clinical trials have shown prolonged viral suppression by bnAbs during antiretroviral treatment interruption. Interestingly, these bnAbs also showed the ability to activate the host immune system to clear HIV-1 infected cells. There are many possibilities to further increase the potential efficacy of bnAbs. Most notably, Fc domain engineering to improve half-life and increase engagement of effector cells will augment two advantages of bnAbs. Moreover, antibody engineering can improve affinity and recognition of conserved epitopes and allows the combination of multiple epitope specificities in a single molecule. These increasingly potent and broad antibodies may prove valuable as alternative HIV-1 therapeutic and possibly in curative approaches.
Collapse
|