1
|
Obeng BM, Kouyos RD, Kusejko K, Salazar-Vizcaya L, Günthard HF, Kelleher AD, Di Giallonardo F. Threshold sensitivity analysis for HIV-1 transmission cluster detection using different genomic regions and subtypes. Virology 2025; 608:110558. [PMID: 40327918 DOI: 10.1016/j.virol.2025.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 03/17/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025]
Abstract
HIV-1 cluster analysis has been widely used in characterizing HIV-1 transmission and some countries have implemented such molecular epidemiology as part of their prevention strategy. However, HIV-1 sequences derive from varying genome regions, which affects phylogenetic clustering outputs. Here, we apply different tools to run a sensitivity analysis for assessing which threshold give the most cohesive clustering outputs for different data sources. We used a dataset of 174 full-length sequences of subtype B from the Swiss HIV Cohort Study and publicly available subtype C from South Africa. Each dataset was divided into sub-genomic sub-datasets covering gag, pol, and env. pol was further subdivided into regions commonly used in HIV-1 genotyping laboratories (pr-rt, rt-int, and pr-rt-int). Cluster analyses for each sub-genomic region was performed specifying varying distance thresholds of 0.5 %-4.5 % and tree branch support of 70 %, 90 % and 99 % in ClusterPicker. Tree topologies and clustering outputs were compared against each other to assess cluster similarity. Pylogenies using pol, pr-rt-int, or rt-int had more robust tree topologies compared to gag and env. Cluster composition changed with increasing genetic distance threshold but was not affected by branch support. Cluster identity was most similar around genetic distances of 2.5 (±0.5)% for all sub-genomic regions and for both subtype B and C. Our study demonstrated the value of performing a sensitivity analysis before setting a genetic distance threshold for clustering output and that the pol region is appropriate for clustering outputs and can be used for near real-time HIV-1 cluster detection.
Collapse
Affiliation(s)
| | - Roger D Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Luisa Salazar-Vizcaya
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
2
|
Martin MA, Brizzi A, Xi X, Galiwango RM, Moyo S, Ssemwanga D, Blenkinsop A, Redd AD, Abeler-Dörner L, Fraser C, Reynolds SJ, Quinn TC, Kagaayi J, Bonsall D, Serwadda D, Nakigozi G, Kigozi G, Grabowski MK, Ratmann O. Quantifying prevalence and risk factors of HIV multiple infection in Uganda from population-based deep-sequence data. PLoS Pathog 2025; 21:e1013065. [PMID: 40262080 PMCID: PMC12055032 DOI: 10.1371/journal.ppat.1013065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 05/06/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
People living with HIV can acquire secondary infections through a process called superinfection, giving rise to simultaneous infection with genetically distinct variants (multiple infection). Multiple infection provides the necessary conditions for the generation of novel recombinant forms of HIV and may worsen clinical outcomes and increase the rate of transmission to HIV seronegative sexual partners. To date, studies of HIV multiple infection have relied on insensitive bulk-sequencing, labor intensive single genome amplification protocols, or deep-sequencing of short genome regions. Here, we identified multiple infections in whole-genome or near whole-genome HIV RNA deep-sequence data generated from plasma samples of 2,029 people living with viremic HIV who participated in the population-based Rakai Community Cohort Study (RCCS). We estimated individual- and population-level probabilities of being multiply infected and assessed epidemiological risk factors using the novel Bayesian deep-phylogenetic multiple infection model (deep - phyloMI) which accounts for bias due to partial sequencing success and false-negative and false-positive detection rates. We estimated that between 2010 and 2020, 4.09% (95% highest posterior density interval (HPD) 2.95%-5.45%) of RCCS participants with viremic HIV multiple infection at time of sampling. Participants living in high-HIV prevalence communities along Lake Victoria were 2.33-fold (95% HPD 1.3-3.7) more likely to harbor a multiple infection compared to individuals in lower prevalence neighboring communities. This work introduces a high-throughput surveillance framework for identifying people with multiple HIV infections and quantifying population-level prevalence and risk factors of multiple infection for clinical and epidemiological investigations.
Collapse
Affiliation(s)
- Michael A. Martin
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Andrea Brizzi
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - Xiaoyue Xi
- Department of Mathematics, Imperial College London, London, United Kingdom
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | | | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Botswana Harvard HIV Reference Laboratory, Gaborone, Botswana
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Deogratius Ssemwanga
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Andrew D. Redd
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lucie Abeler-Dörner
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Christophe Fraser
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Steven J. Reynolds
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas C. Quinn
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Joseph Kagaayi
- Rakai Health Sciences Program, Kalisizo, Uganda
- Makerere University School of Public Health, Kampala, Uganda
| | - David Bonsall
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - M. Kate Grabowski
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Rakai Health Sciences Program, Kalisizo, Uganda
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Oliver Ratmann
- Department of Mathematics, Imperial College London, London, United Kingdom
| | | |
Collapse
|
3
|
Zsichla L, Zeeb M, Fazekas D, Áy É, Müller D, Metzner KJ, Kouyos RD, Müller V. Comparative Evaluation of Open-Source Bioinformatics Pipelines for Full-Length Viral Genome Assembly. Viruses 2024; 16:1824. [PMID: 39772134 PMCID: PMC11680378 DOI: 10.3390/v16121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The increasingly widespread application of next-generation sequencing (NGS) in clinical diagnostics and epidemiological research has generated a demand for robust, fast, automated, and user-friendly bioinformatics workflows. To guide the choice of tools for the assembly of full-length viral genomes from NGS datasets, we assessed the performance and applicability of four open-source bioinformatics pipelines (shiver-for which we created a user-friendly Dockerized version, referred to as dshiver; SmaltAlign; viral-ngs; and V-pipe) using both simulated and real-world HIV-1 paired-end short-read datasets and default settings. All four pipelines produced consensus genome assemblies with high quality metrics (genome fraction recovery, mismatch and indel rates, variant calling F1 scores) when the reference sequence used for assembly had high similarity to the analyzed sample. The shiver and SmaltAlign pipelines (but not viral-ngs and V-Pipe) also showed robust performance with more divergent samples (non-matching subtypes). With empirical datasets, SmaltAlign and viral-ngs exhibited an order of magnitude shorter runtime compared to V-Pipe and shiver. In terms of applicability, V-Pipe provides the broadest functionalities, SmaltAlign and dshiver combine user-friendliness with robustness, while the use of viral-ngs requires less computational resources compared to other pipelines. In conclusion, if a closely matched reference sequence is available, all pipelines can reliably reconstruct viral consensus genomes; therefore, differences in user-friendliness and runtime may guide the choice of the pipeline in a particular setting. If a matched reference sequence cannot be selected, we recommend shiver or SmaltAlign for robust performance. The new Dockerized version of shiver offers ease of use in addition to the accuracy and robustness of the original pipeline.
Collapse
Affiliation(s)
- Levente Zsichla
- Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (L.Z.); (D.F.); (D.M.)
- National Laboratory for Health Security, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
| | - Marius Zeeb
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.Z.); (K.J.M.); (R.D.K.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Dávid Fazekas
- Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (L.Z.); (D.F.); (D.M.)
- Earlham Institute, Norwich NR4 7UZ, UK
| | - Éva Áy
- National Laboratory for Health Security, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
- National Reference Laboratory for Retroviruses, Department of Virology, National Center for Public Health and Pharmacy, 1097 Budapest, Hungary
| | - Dalma Müller
- Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (L.Z.); (D.F.); (D.M.)
- National Laboratory for Health Security, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Bioinformatics, Semmelweis University, 1094 Budapest, Hungary
| | - Karin J. Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.Z.); (K.J.M.); (R.D.K.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland; (M.Z.); (K.J.M.); (R.D.K.)
- Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland
| | - Viktor Müller
- Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary; (L.Z.); (D.F.); (D.M.)
- National Laboratory for Health Security, ELTE Eötvös Loránd University, 1117 Budapest, Hungary;
| |
Collapse
|
4
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Heredia A, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. EBioMedicine 2024; 109:105410. [PMID: 39427414 PMCID: PMC11533037 DOI: 10.1016/j.ebiom.2024.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/08/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, virus detection and characterization were not at the earliest stages of acute infection. METHODS We identified an X4-tropic T/F HIV-1 in a participant (40700) in the RV217 acute infection cohort. Coreceptor usage was determined in TZM-bl cell line, NP-2 cell lines, and primary CD4+ T cells using pseudovirus and infectious molecular clones. CD4 subset dynamics were analyzed using flow cytometry. Viral load in each CD4 subset was quantified using cell-associated HIV RNA assay and total and integrated HIV DNA assay. FINDINGS Participant 40700 was infected by an X4 tropic HIV-1 without CCR5 using ability. This participant experienced significantly faster CD4 depletion compared to R5 virus infected individuals in the same cohort. Naïve and central memory (CM) CD4 subsets declined faster than effector memory (EM) and transitional memory (TM) subsets. All CD4 subsets, including the naïve, were productively infected. Increased CD4+ T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions, while most of the R5 T/F viruses in the same cohort are sensitive to the same panel of bNAbs. INTERPRETATION X4-tropic HIV-1 is transmissible through mucosal route in people with wild-type CCR5 genotype. The CD4 subset tropism of HIV-1 may be an important determinant for HIV-1 transmissibility and virulence. FUNDING Institute of Human Virology, National Institutes of Health, Henry M. Jackson Foundation for the Advancement of Military Medicine.
Collapse
Affiliation(s)
| | - Saini Setua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Felisa Diaz-Mendez
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Rasmi Thomas
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hongshuo Song
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Hayashida T, Tsuchiya K, Oka S, Gatanaga H. Identification of new circulating recombinant form of HIV-1 CRF139_02B in Japan, and search for the origin. Glob Health Med 2024; 6:345-351. [PMID: 39483447 PMCID: PMC11514631 DOI: 10.35772/ghm.2024.01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/16/2024] [Accepted: 09/11/2024] [Indexed: 11/03/2024]
Abstract
Many circulating recombinant forms (CRFs) of HIV-1 have been reported, resulting in complex molecular epidemiology of HIV-1 infection. In this study, we newly identified CRF139_02B in Japan from 4 cases of anti-retroviral therapy naïve people living with HIV. Near full-length genome sequences of CRF139_02B were determined using Illumina MiSeq. Basic Local Alignment Search Tool (BLAST) revealed that there were several sequences having the same breakpoints as CRF139_02B in the UK and Nepal, though its full-length genome sequences were not available. Maximum clade credibility tree analysis using the region of protease and reverse transcriptase of HIV- 1 estimated that the time to the most recent common ancestor of CRF139_02B variants found in Japan was 2017.6 (95% highest posterior density interval: 2015.9-2019.3), and that among the UK, Nepal, and Japan was 2010.4 (2007.8- 2012.5). These results suggested that CRF139_02B circulated in Japan recently and domestically. Furthermore, the origin of CRF139_02B could be in the UK. Because there is a possibility that further international circulation of CRF139_02B may be observed in the near future, continuous monitoring of HIV-1 molecular epidemiology will be needed.
Collapse
Affiliation(s)
- Tsunefusa Hayashida
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kiyoto Tsuchiya
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Shimagaki KS, Barton JP. Efficient epistasis inference via higher-order covariance matrix factorization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618287. [PMID: 39464126 PMCID: PMC11507688 DOI: 10.1101/2024.10.14.618287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epistasis can profoundly influence evolutionary dynamics. Temporal genetic data, consisting of sequences sampled repeatedly from a population over time, provides a unique resource to understand how epistasis shapes evolution. However, detecting epistatic interactions from sequence data is technically challenging. Existing methods for identifying epistasis are computationally demanding, limiting their applicability to real-world data. Here, we present a novel computational method for inferring epistasis that significantly reduces computational costs without sacrificing accuracy. We validated our approach in simulations and applied it to study HIV-1 evolution over multiple years in a data set of 16 individuals. There we observed a strong excess of negative epistatic interactions between beneficial mutations, especially mutations involved in immune escape. Our method is general and could be used to characterize epistasis in other large data sets.
Collapse
Affiliation(s)
- Kai S. Shimagaki
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Department of Physics and Astronomy, University of Pittsburgh, USA
| | - John P. Barton
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, USA
- Department of Physics and Astronomy, University of Pittsburgh, USA
| |
Collapse
|
7
|
Baxter J, Villabona-Arenas CJ, Thompson RN, Hué S, Regoes RR, Kouyos RD, Günthard HF, Albert J, Leigh Brown A, Atkins KE. Reconciling founder variant multiplicity of HIV-1 infection with the rate of CD4 + decline. J R Soc Interface 2024; 21:20240255. [PMID: 39471873 PMCID: PMC11606301 DOI: 10.1098/rsif.2024.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 11/01/2024] Open
Abstract
HIV-1 transmission precipitates a stringent genetic bottleneck, with 75% of new infections initiated by a single genetic variant. Where multiple variants initiate infection, recipient set point viral load (SpVL) and the rate of CD4+ T cell decline may be elevated, but these findings remain inconsistent. Here, we summarised the evidence for this phenomenon, then tested whether previous studies possessed sufficient statistical power to reliably identify a true effect of multiple variant infection leading to higher SpVL. Next, we combined models of HIV-1 transmission, heritability and disease progression to understand whether available data suggest a faster CD4+ T cell decline would be expected to associated with multiple variant infection, without an explicit dependency between the two. First, we found that most studies had insufficient power to identify a true significant difference, prompting an explanation for previous inconsistencies. Next, our model framework revealed we would not expect to observe a positive association between multiple variant infections and faster CD4+ T cell decline, in the absence of an explicit dependency. Consequently, while empirical evidence may be consistent with a positive association between multiple variant infection and faster CD4+ T cell decline, further investigation is required to establish a causal basis.
Collapse
Affiliation(s)
- James Baxter
- Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
| | - Ch. Julián Villabona-Arenas
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Stéphane Hué
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Roland R. Regoes
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Roger D. Kouyos
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Huldrych F. Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Andrew Leigh Brown
- Institute of Evolutionary Ecology, The University of Edinburgh, Edinburgh, UK
| | - Katherine E. Atkins
- Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
8
|
Travieso T, Stadtler H, Alavian N, Gao F, Klotman M, Wolfe CR, Blasi M. Longitudinal analysis of viral dynamics in HIV+-to-HIV+ HOPE Act kidney-transplant recipients. J Clin Invest 2024; 134:e181560. [PMID: 39255037 PMCID: PMC11473162 DOI: 10.1172/jci181560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUNDThe HIV Organ Policy Equity (HOPE) Act allows individuals living with HIV to accept organs from donors with HIV. This practice widens the pool of available organs, but also presents important virological issues, including the potential for HIV superinfection of the recipient, viral persistence in the kidney, and loss of virological control.METHODSWe addressed these issues by performing in-depth longitudinal viral sequence analyses on urine, blood, and urine-derived renal epithelial cells from 12 recipients of HIV+ kidney allografts.RESULTSWe amplified donor-derived HIV-1 env sequences in 5 out of 12 recipients after transplant. These donor-derived env sequences were amplified from recipient urine, urine-derived renal epithelial cells, and plasma between 12 and 96 hours after transplant and remained detectable up to 16 days after transplant. Env sequences were also detected in kidney biopsies taken from the allografts before implantation in 6 out of the 12 transplant cases, indicating the presence of donor virus within the organ. One recipient had a viremic episode 3.5 years after transplantation as a result of antiretroviral therapy (ART) interruption. Only recipient strain viral sequences were detected in blood, suggesting that the donor virus, if still present, was not reactivated during the temporary ART withdrawal.CONCLUSIONSThis study demonstrates that the HIV env sequences in a donor kidney can be amplified from biopsies taken from the allograft before implantation and can be detected transiently in blood and urine samples collected from the organ recipients after transplantation.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant number R01DK131497.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Hannah Stadtler
- Department of Medicine, Division of Infectious Diseases and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Naseem Alavian
- Department of Medicine, Division of Infectious Diseases and
| | - Feng Gao
- Department of Medicine, Division of Infectious Diseases and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
- Institute of Molecular and Medical Virology, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Mary Klotman
- Department of Medicine, Division of Infectious Diseases and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cameron Robert Wolfe
- Department of Medicine, Division of Infectious Diseases and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases and
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Omar S, Woodman ZL. The evolution of envelope function during coinfection with phylogenetically distinct human immunodeficiency virus. BMC Infect Dis 2024; 24:934. [PMID: 39251948 PMCID: PMC11385138 DOI: 10.1186/s12879-024-09805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 08/23/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Coinfection with two phylogenetically distinct Human Immunodeficiency Virus-1 (HIV-1) variants might provide an opportunity for rapid viral expansion and the emergence of fit variants that drive disease progression. However, autologous neutralising immune responses are known to drive Envelope (Env) diversity which can either enhance replicative capacity, have no effect, or reduce viral fitness. This study investigated whether in vivo outgrowth of coinfecting variants was linked to pseudovirus and infectious molecular clones' infectivity to determine whether diversification resulted in more fit virus with the potential to increase disease progression. RESULTS For most participants, emergent recombinants displaced the co-transmitted variants and comprised the major population at 52 weeks postinfection with significantly higher entry efficiency than other co-circulating viruses. Our findings suggest that recombination within gp41 might have enhanced Env fusogenicity which contributed to the increase in pseudovirus entry efficiency. Finally, there was a significant correlation between pseudovirus entry efficiency and CD4 + T cell count, suggesting that the enhanced replicative capacity of recombinant variants could result in more virulent viruses. CONCLUSION Coinfection provides variants with the opportunity to undergo rapid recombination that results in more infectious virus. This highlights the importance of monitoring the replicative fitness of emergent viruses.
Collapse
Affiliation(s)
- Shatha Omar
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, TB Genomics Group, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Zenda L Woodman
- Department of Integrative Biomedical Sciences (IBMS), Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
10
|
Kyobe S, Mwesigwa S, Nkurunungi G, Retshabile G, Egesa M, Katagirya E, Amujal M, Mlotshwa BC, Williams L, Sendagire H, Kiragga D, Mardon G, Matshaba M, Hanchard NA, Kyosiimire-Lugemwa J, Robinson D. Identification of a Clade-Specific HLA-C*03:02 CTL Epitope GY9 Derived from the HIV-1 p17 Matrix Protein. Int J Mol Sci 2024; 25:9683. [PMID: 39273630 PMCID: PMC11395705 DOI: 10.3390/ijms25179683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 09/15/2024] Open
Abstract
Efforts towards an effective HIV-1 vaccine have remained mainly unsuccessful. There is increasing evidence for a potential role of HLA-C-restricted CD8+ T cell responses in HIV-1 control, including our recent report of HLA-C*03:02 among African children. However, there are no documented optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C*03:02; additionally, the structural influence of HLA-C*03:02 on epitope binding is undetermined. Immunoinformatics approaches provide a fast and inexpensive method to discover HLA-restricted epitopes. Here, we employed immunopeptidomics to identify HLA-C*03:02 CD8+ T cell epitopes. We identified a clade-specific Gag-derived GY9 (GTEELRSLY) HIV-1 p17 matrix epitope potentially restricted to HLA-C*03:02. Residues E62, T142, and E151 in the HLA-C*03:02 binding groove and positions p3, p6, and p9 on the GY9 epitope are crucial in shaping and stabilizing the epitope binding. Our findings support the growing evidence of the contribution of HLA-C molecules to HIV-1 control and provide a prospect for vaccine strategies.
Collapse
Affiliation(s)
- Samuel Kyobe
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Gyaviira Nkurunungi
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street London, London WC1E 7HT, UK
| | - Gaone Retshabile
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Moses Egesa
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street London, London WC1E 7HT, UK
| | - Eric Katagirya
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Marion Amujal
- Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (E.K.)
| | - Busisiwe C. Mlotshwa
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Lesedi Williams
- Department of Biological Sciences, University of Botswana, Gaborone Private Bag UB 0022, Botswana; (G.R.); (B.C.M.); (L.W.)
| | - Hakim Sendagire
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala P.O. Box 7072, Uganda; (S.M.); (H.S.)
| | | | - Dithan Kiragga
- Baylor College of Medicine Children’s Foundation, Kampala P.O. Box 72052, Uganda;
| | - Graeme Mardon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mogomotsi Matshaba
- Pediatric Retrovirology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Botswana-Baylor Children’s Clinical Centre of Excellence, Gaborone Private Bag BR 129, Botswana
| | - Neil A. Hanchard
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA;
| | - Jacqueline Kyosiimire-Lugemwa
- The Medical Research Council/Uganda Virus Research Institute & London School Hygine Tropical Medicine Uganda Research Unit, Entebbe P.O. Box 49, Uganda; (G.N.); (J.K.-L.)
| | - David Robinson
- Department of Chemistry and Forensics, School of Science and Technology, Nottingham Trent University Clifton Lane, Nottingham NG11 8NS, UK;
| |
Collapse
|
11
|
Zhang Y, Otte F, Stoeckle M, Thielen A, Däumer M, Kaiser R, Kusejko K, Metzner KJ, Klimkait T. HIV-1 diversity in viral reservoirs obtained from circulating T-cell subsets during early ART and beyond. PLoS Pathog 2024; 20:e1012526. [PMID: 39292732 PMCID: PMC11410260 DOI: 10.1371/journal.ppat.1012526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Even during extended periods of effective immunological control, a substantial dynamic of the viral genome can be observed in different cellular compartments in HIV-1 positive individuals, indicating the persistence of active viral reservoirs. To obtain further insights, we studied changes in the proviral as well as in the viral HIV-1 envelope (Env) sequence along with transcriptional, translational and viral outgrowth activity as indicators for viral dynamics and genomic intactness. Our study identified distinct reservoir patterns that either represented highly sequence-diverse HIV-1 populations or only a single / few persisting virus variants. The single dominating variants were more often found in individuals starting ART during early infection phases, indicating that early treatment might limit reservoir diversification. At the same time, more sequence-diverse HIV reservoirs correlated with a poorer immune status, indicated by lower CD4 count, a higher number of regimen changes and more co-morbidities. Furthermore, we noted that in T-cell populations in the peripheral blood, replication-competent HIV-1 is predominantly present in Lymph node homing TN (naïve) and TCM (central memory) T cells. Provirus genomes archived in TTM (transitional memory) and TEM (effector memory) T cells more frequently tended to carry inactivating mutations and, population-wise, possess changes in the genetic diversity. These discriminating properties of the viral reservoir in T-cell subsets may have important implications for new early therapy strategies, underscoring the critical role of early therapy in preserving robust immune surveillance and constraining the viral reservoir.
Collapse
Affiliation(s)
- Yuepeng Zhang
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Fabian Otte
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | - Rolf Kaiser
- Institute of Virology, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Rashid A, Kang L, Yi F, Getaneh Y, Chu Q, Shah SA, Abidi SH, Shao Y. Identification of a novel first-generation HIV-1 circulating recombinant form (CRF152_DG) among people living with HIV in Karachi, Pakistan. Microbiol Spectr 2024; 12:e0052924. [PMID: 38771033 PMCID: PMC11218485 DOI: 10.1128/spectrum.00529-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024] Open
Abstract
The objective of this study was to characterize a novel circulating recombinant form of human immunodeficiency virus type 1 (HIV-1) among people living with HIV in Karachi, Pakistan. We conducted near-full-length genome (NFLG) sequencing on eight samples exhibiting D/G recombination signals in the pol gene region. We successfully obtained NFLG sequences (790-9,614; with reference to the HXB2 genome) from four of the eight samples and then conducted phylogenetic and recombination analyses on them. The four NFLG sequences from our study and one DG unique recombinant form previously identified in the United Kingdom (GenBank accession: MF109700) formed a distinct monophyletic cluster with an Shimodaira-Hasegawa approximate likelihood ratio test node support value of 100%. Bootscan analyses of the five NFLG sequences of DG recombinants showed that all five NFLGs shared the same unique mosaic pattern of recombination breakpoints between D and G clades, with two D fragments in the pol and vif regions inserted into a G backbone. Subregion phylogenetic analyses confirmed these sequences to be a novel circulating recombinant form (CRF) composed of subtypes D and G. The DG recombinant sequences were eventually designated as CRF152_DG by the Los Alamos HIV Sequence Database staff. IMPORTANCE In Pakistan, the genetic diversity of human immunodeficiency virus type 1 (HIV-1) is becoming increasingly complex, compared to the early years of the epidemic that started after the detection of the first cases of HIV-1 in 1987 in Karachi. Based on the available molecular studies, two dominant HIV-1 clades, sub-subtype A1 and CRF02_AG, have been found to co-circulate with other clades, namely B, C, D, G, CRF01_AE, CRF35_A1D, and CRF56_cpx, in various urban areas of Pakistan. Several novel recombinant forms have also been detected. This first report of CRF152_DG highlights the complex nature of the HIV epidemic in Pakistan and emphasizes the importance of continual molecular surveillance (ideally based on whole-genome sequences) of HIV.
Collapse
Affiliation(s)
- Abdur Rashid
- School of Medicine, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Li Kang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Life Sciences, Nankai University, Tianjin, China
| | - Feng Yi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yimam Getaneh
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Qingfei Chu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Syed Hani Abidi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, Beijing, China
- College of Life Sciences, Nankai University, Tianjin, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Changping Laboratory, Beijing, China
| |
Collapse
|
13
|
Giorgi EE, Li H, Hora B, Shaw GM, Wagh K, Williams WB. Viral Envelope Evolution in Simian-HIV-Infected Neonate and Adult-Dam Pairs of Rhesus Macaques. Viruses 2024; 16:1014. [PMID: 39066177 PMCID: PMC11281369 DOI: 10.3390/v16071014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
We recently demonstrated that Simian-HIV (SHIV)-infected neonate rhesus macaques (RMs) generated heterologous HIV-1 neutralizing antibodies (NAbs) with broadly-NAb (bNAb) characteristics at a higher frequency compared with their corresponding dam. Here, we characterized genetic diversity in Env sequences from four neonate or adult/dam RM pairs: in two pairs, neonate and dam RMs made heterologous HIV-1 NAbs; in one pair, neither the neonate nor the dam made heterologous HIV-1 NAbs; and in another pair, only the neonate made heterologous HIV-1 NAbs. Phylogenetic and sequence diversity analyses of longitudinal Envs revealed that a higher genetic diversity, within the host and away from the infecting SHIV strain, was correlated with heterologous HIV-1 NAb development. We identified 22 Env variable sites, of which 9 were associated with heterologous HIV-1 NAb development; 3/9 sites had mutations previously linked to HIV-1 Env bNAb development. These data suggested that viral diversity drives heterologous HIV-1 NAb development, and the faster accumulation of viral diversity in neonate RMs may be a potential mechanism underlying bNAb induction in pediatric populations. Moreover, these data may inform candidate Env immunogens to guide precursor B cells to bNAb status via vaccination by the Env-based selection of bNAb lineage members with the appropriate mutations associated with neutralization breadth.
Collapse
Affiliation(s)
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.); (G.M.S.)
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA;
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.L.); (G.M.S.)
| | - Kshitij Wagh
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA;
| | - Wilton B. Williams
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
14
|
Mainou E, Ribeiro RM, Conway JM. Modeling dynamics of acute HIV infection incorporating density-dependent cell death and multiplicity of infection. PLoS Comput Biol 2024; 20:e1012129. [PMID: 38848426 PMCID: PMC11189221 DOI: 10.1371/journal.pcbi.1012129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/20/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
Understanding the dynamics of acute HIV infection can offer valuable insights into the early stages of viral behavior, potentially helping uncover various aspects of HIV pathogenesis. The standard viral dynamics model explains HIV viral dynamics during acute infection reasonably well. However, the model makes simplifying assumptions, neglecting some aspects of HIV infection. For instance, in the standard model, target cells are infected by a single HIV virion. Yet, cellular multiplicity of infection (MOI) may have considerable effects in pathogenesis and viral evolution. Further, when using the standard model, we take constant infected cell death rates, simplifying the dynamic immune responses. Here, we use four models-1) the standard viral dynamics model, 2) an alternate model incorporating cellular MOI, 3) a model assuming density-dependent death rate of infected cells and 4) a model combining (2) and (3)-to investigate acute infection dynamics in 43 people living with HIV very early after HIV exposure. We find that all models qualitatively describe the data, but none of the tested models is by itself the best to capture different kinds of heterogeneity. Instead, different models describe differing features of the dynamics more accurately. For example, while the standard viral dynamics model may be the most parsimonious across study participants by the corrected Akaike Information Criterion (AICc), we find that viral peaks are better explained by a model allowing for cellular MOI, using a linear regression analysis as analyzed by R2. These results suggest that heterogeneity in within-host viral dynamics cannot be captured by a single model. Depending on the specific aspect of interest, a corresponding model should be employed.
Collapse
Affiliation(s)
- Ellie Mainou
- Department of Biology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jessica M. Conway
- Department of Mathematics, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
15
|
Duffey M, Shafer RW, Timm J, Burrows JN, Fotouhi N, Cockett M, Leroy D. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat Rev Drug Discov 2024; 23:461-479. [PMID: 38750260 DOI: 10.1038/s41573-024-00933-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 06/07/2024]
Abstract
Antimicrobial resistance poses a significant threat to the sustainability of effective treatments against the three most prevalent infectious diseases: malaria, human immunodeficiency virus (HIV) infection and tuberculosis. Therefore, there is an urgent need to develop novel drugs and treatment protocols capable of reducing the emergence of resistance and combating it when it does occur. In this Review, we present an overview of the status and underlying molecular mechanisms of drug resistance in these three diseases. We also discuss current strategies to address resistance during the research and development of next-generation therapies. These strategies vary depending on the infectious agent and the array of resistance mechanisms involved. Furthermore, we explore the potential for cross-fertilization of knowledge and technology among these diseases to create innovative approaches for minimizing drug resistance and advancing the discovery and development of new anti-infective treatments. In conclusion, we advocate for the implementation of well-defined strategies to effectively mitigate and manage resistance in all interventions against infectious diseases.
Collapse
Affiliation(s)
- Maëlle Duffey
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
- The Global Antibiotic Research & Development Partnership, Geneva, Switzerland
| | - Robert W Shafer
- Department of Medicine/Infectious Diseases, Stanford University, Palo Alto, CA, USA
| | | | - Jeremy N Burrows
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland
| | | | | | - Didier Leroy
- Medicines for Malaria Venture (MMV), R&D Department/Drug Discovery, ICC, Geneva, Switzerland.
| |
Collapse
|
16
|
Guo X, Yu D, Liu M, Li H, Chen M, Wang X, Zhai X, Zhang B, Wang Y, Yang C, Wang C, Liu Y, Han J, Wang X, Li J, Jia L, Li L. A unified classification system for HIV-1 5' long terminal repeats. PLoS One 2024; 19:e0301809. [PMID: 38696412 PMCID: PMC11065288 DOI: 10.1371/journal.pone.0301809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/22/2024] [Indexed: 05/04/2024] Open
Abstract
The HIV-1 provirus mainly consists of internal coding region flanked by 1 long terminal repeats (LTRs) at each terminus. The LTRs play important roles in HIV-1 reverse transcription, integration, and transcription. However, despite of the significant study advances of the internal coding regions of HIV-1 by using definite reference classification, there are no systematic and phylogenetic classifications for HIV-1 5' LTRs, which hinders our elaboration on 5' LTR and a better understanding of the viral origin, spread and therapy. Here, by analyzing all available resources of 5' LTR sequences in public databases following 4 recognized principles for the reference classification, 83 representatives and 14 consensus sequences were identified as representatives of 2 groups, 6 subtypes, 6 sub-subtypes, and 9 CRFs. To test the reliability of the supplemented classification system, the constructed references were applied to identify the 5' LTR assignment of the 22 clinical isolates in China. The results revealed that 16 out of 22 tested strains showed a consistent subtype classification with the previous LTR-independent classification system. However, 6 strains, for which recombination events within 5' LTR were demonstrated, unexpectedly showed a different subtype classification, leading a significant change of binding sites for important transcription factors including SP1, p53, and NF-κB. The binding change of these transcriptional factors would probably affect the transcriptional activity of 5' LTR. This study supplemented a unified classification system for HIV-1 5' LTRs, which will facilitate HIV-1 characterization and be helpful for both basic and clinical research fields.
Collapse
Affiliation(s)
- Xing Guo
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Dan Yu
- Laboratory of Dermatology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Mengying Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Hanping Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Mingyue Chen
- National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Xinyu Wang
- Laboratory of Dermatology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Xiuli Zhai
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Bohan Zhang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yanglan Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Caiqing Yang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Chunlei Wang
- Department of Microbiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Yongjian Liu
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingwan Han
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Xiaolin Wang
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Jingyun Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lei Jia
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| | - Lin Li
- Department of Virology, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing, China
| |
Collapse
|
17
|
Alfonsi T, Bernasconi A, Chiara M, Ceri S. Data-driven recombination detection in viral genomes. Nat Commun 2024; 15:3313. [PMID: 38632281 PMCID: PMC11024102 DOI: 10.1038/s41467-024-47464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Recombination is a key molecular mechanism for the evolution and adaptation of viruses. The first recombinant SARS-CoV-2 genomes were recognized in 2021; as of today, more than ninety SARS-CoV-2 lineages are designated as recombinant. In the wake of the COVID-19 pandemic, several methods for detecting recombination in SARS-CoV-2 have been proposed; however, none could faithfully confirm manual analyses by experts in the field. We hereby present RecombinHunt, an original data-driven method for the identification of recombinant genomes, capable of recognizing recombinant SARS-CoV-2 genomes (or lineages) with one or two breakpoints with high accuracy and within reduced turn-around times. ReconbinHunt shows high specificity and sensitivity, compares favorably with other state-of-the-art methods, and faithfully confirms manual analyses by experts. RecombinHunt identifies recombinant viral genomes from the recent monkeypox epidemic in high concordance with manually curated analyses by experts, suggesting that our approach is robust and can be applied to any epidemic/pandemic virus.
Collapse
Affiliation(s)
- Tommaso Alfonsi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| | - Anna Bernasconi
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Stefano Ceri
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy
| |
Collapse
|
18
|
Marichannegowda M, Heredia A, Wang Y, Song H. Genetic signatures in the highly virulent subtype B HIV-1 conferring immune escape to V1/V2 and V3 broadly neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584899. [PMID: 38559199 PMCID: PMC10980024 DOI: 10.1101/2024.03.13.584899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
HIV-1 is considered to become less susceptible to existing neutralizing antibodies over time. Our study on the virulent B (VB) HIV-1 identified genetic signatures responsible for immune escape from broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 glycan epitopes. We found that the absence of N295 and N332 glycans in the high mannose patch, which are crucial for neutralization by V3 glycan bNAbs and are typically conserved in subtype B HIV-1, is a notable feature in more than half of the VB variants. Neutralization assays confirmed that the loss of these two glycans in VB HIV-1 leads to escape from V3 glycan bNAbs. Additionally, all VB variants we investigated have an insertion in V2, contributing to immune escape from V1/V2 bNAbs PG9 and PG16. These findings suggest potential co-evolution of HIV-1 virulence and antigenicity, underscoring the need to monitor both the pathogenicity and neutralization susceptibility of newly emerged HIV-1 strains.
Collapse
|
19
|
Romero EV, Feder AF. Elevated HIV Viral Load is Associated with Higher Recombination Rate In Vivo. Mol Biol Evol 2024; 41:msad260. [PMID: 38197289 PMCID: PMC10777272 DOI: 10.1093/molbev/msad260] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024] Open
Abstract
HIV's exceptionally high recombination rate drives its intrahost diversification, enabling immune escape and multidrug resistance within people living with HIV. While we know that HIV's recombination rate varies by genomic position, we have little understanding of how recombination varies throughout infection or between individuals as a function of the rate of cellular coinfection. We hypothesize that denser intrahost populations may have higher rates of coinfection and therefore recombination. To test this hypothesis, we develop a new approach (recombination analysis via time series linkage decay or RATS-LD) to quantify recombination using autocorrelation of linkage between mutations across time points. We validate RATS-LD on simulated data under short read sequencing conditions and then apply it to longitudinal, high-throughput intrahost viral sequencing data, stratifying populations by viral load (a proxy for density). Among sampled viral populations with the lowest viral loads (<26,800 copies/mL), we estimate a recombination rate of 1.5×10-5 events/bp/generation (95% CI: 7×10-6 to 2.9×10-5), similar to existing estimates. However, among samples with the highest viral loads (>82,000 copies/mL), our median estimate is approximately 6 times higher. In addition to co-varying across individuals, we also find that recombination rate and viral load are associated within single individuals across different time points. Our findings suggest that rather than acting as a constant, uniform force, recombination can vary dynamically and drastically across intrahost viral populations and within them over time. More broadly, we hypothesize that this phenomenon may affect other facultatively asexual populations where spatial co-localization varies.
Collapse
Affiliation(s)
- Elena V Romero
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Alison F Feder
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
20
|
Bacqué J, Delgado E, Gil H, Ibarra S, Benito S, García-Arata I, Moreno-Lorenzo M, de Adana ES, Gómez-González C, Sánchez M, Montero V, Thomson MM. Identification of a HIV-1 circulating BF1 recombinant form (CRF75_BF1) of Brazilian origin that also circulates in Southwestern Europe. Front Microbiol 2023; 14:1301374. [PMID: 38125564 PMCID: PMC10731470 DOI: 10.3389/fmicb.2023.1301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The high recombinogenic potential of HIV-1 has resulted in the generation of countless unique recombinant forms (URFs) and around 120 reported circulating recombinant forms (CRFs). Here we identify through analyses of near full-length genomes (NFLG) a new HIV-1 CRF derived from subtypes B and F1. Methods HIV-1 protease-reverse transcriptase (Pr-RT) sequences were obtained by RT-PCR amplification from plasma RNA. Near full-length genome sequences were obtained after amplification by RT-PCR in 5 overlapping fragments. Phylogenetic sequence analyses were performed via maximum likelihood. Mosaic structures were analyzed by bootscanning and phylogenetic analyses of genome segments. Temporal and geographical estimations of clade emergence were performed with a Bayesian coalescent method. Results Through phylogenetic analyses of HIV-1 Pr-RT sequences obtained by us from samples collected in Spain and downloaded from databases, we identified a BF1 recombinant cluster segregating from previously reported CRFs comprising 52 viruses, most from Brazil (n = 26), Spain (n = 11), and Italy (n = 9). The analyses of NFLG genomes of 4 viruses of the cluster, 2 from Spain and 2 from Italy, allowed to identify a new CRF, designated CRF75_BF1, which exhibits a complex mosaic structure with 20 breakpoints. All 4 patients harboring CRF75_BF1 viruses studied by us had CD4+ T-cell lymphocyte counts below 220/mm3 less than one year after diagnosis, a proportion significantly higher (p = 0.0074) than the 29% found in other patients studied in Spain by us during the same period. The origin of the clade comprising CRF75_BF1 and related viruses was estimated around 1984 in Brazil, with subsequent introduction of CRF75_BF1 in Italy around 1992, and migration from Italy to Spain around 1999. Conclusion A new HIV-1 CRF, designated CRF75_BF1, has been identified. CRF75_BF1 is the 6th CRF of South American origin initially identified in Western Europe, reflecting the increasing relationship of South American and European HIV-1 epidemics. The finding of low CD4+ T-cell lymphocyte counts early after diagnosis in patients harboring CRF75_BF1 viruses warrants further investigation on the virulence of this variant.
Collapse
Affiliation(s)
- Joan Bacqué
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Ibarra
- Department of Infectious Diseases, Hospital Universitario Basurto, Bilbao, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel García-Arata
- Department of Microbiology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - María Moreno-Lorenzo
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Sáez de Adana
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobials and Gene Therapy Research Group, Vitoria-Gasteiz, Spain
- Osakidetza-Basque Health Service, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Carmen Gómez-González
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobials and Gene Therapy Research Group, Vitoria-Gasteiz, Spain
- Osakidetza-Basque Health Service, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Thind AS, Sinha S. Using Chaos-Game-Representation for Analysing the SARS-CoV-2 Lineages, Newly Emerging Strains and Recombinants. Curr Genomics 2023; 24:187-195. [PMID: 38178984 PMCID: PMC10761335 DOI: 10.2174/0113892029264990231013112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/09/2023] [Accepted: 09/15/2023] [Indexed: 01/06/2024] Open
Abstract
Background Viruses have high mutation rates, facilitating rapid evolution and the emergence of new species, subspecies, strains and recombinant forms. Accurate classification of these forms is crucial for understanding viral evolution and developing therapeutic applications. Phylogenetic classification is typically performed by analyzing molecular differences at the genomic and sub-genomic levels. This involves aligning homologous proteins or genes. However, there is growing interest in developing alignment-free methods for whole-genome comparisons that are computationally efficient. Methods Here we elaborate on the Chaos Game Representation (CGR) method, based on concepts of statistical physics and free of sequence alignment assumptions. We adopt the CGR method for classification of the closely related clades/lineages A and B of the SARS-Corona virus 2019 (SARS-CoV-2), which is one of the fastest evolving viruses. Results Our study shows that the CGR approach can easily yield the SARS-CoV-2 phylogeny from the available whole genomes of lineage A and lineage B sequences. It also shows an accurate classification of eight different strains and the newly evolved XBB variant from its parental strains. Compared to alignment-based methods (Neighbour-Joining and Maximum Likelihood), the CGR method requires low computational resources, is fast and accurate for long sequences, and, being a K-mer based approach, allows simultaneous comparison of a large number of closely-related sequences of different sizes. Further, we developed an R pipeline CGRphylo, available on GitHub, which integrates the CGR module with various other R packages to create phylogenetic trees and visualize them. Conclusion Our findings demonstrate the efficacy of the CGR method for accurate classification and tracking of rapidly evolving viruses, offering valuable insights into the evolution and emergence of new SARS-CoV-2 strains and recombinants.
Collapse
Affiliation(s)
- Amarinder Singh Thind
- Department of Biological Sciences, Indian Institute of Science Education & Research, Mohali, India
- Illawarra Shoalhaven Local Health District (ISLHD), NSW Health, Australia
| | - Somdatta Sinha
- Department of Biological Sciences, Indian Institute of Science Education & Research, Mohali, India
| |
Collapse
|
22
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557832. [PMID: 37745406 PMCID: PMC10515894 DOI: 10.1101/2023.09.15.557832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, detection was not at the earliest stages of acute infection. Here, we identified an X4-tropic T/F HIV-1 in a participant in acute infection cohort. Coreceptor assays demonstrated that this T/F virus is strictly CXCR4 tropic. The participant experienced significantly faster CD4 depletion compared with R5 virus infected participants in the same cohort. Naïve and central memory CD4 subsets declined faster than effector and transitional memory subsets. All CD4 subsets, including naïve, were productively infected. Increased CD4 + T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions. These findings demonstrate that X4-tropic HIV-1 is transmissible through the mucosal route in people with the wild-type CCR5 genotype and have implications for understanding the transmissibility and immunopathogenesis of X4-tropic HIV-1.
Collapse
|
23
|
Otte F, Zhang Y, Spagnuolo J, Thielen A, Däumer M, Wiethe C, Stoeckle M, Kusejko K, Klein F, Metzner KJ, Klimkait T. Revealing viral and cellular dynamics of HIV-1 at the single-cell level during early treatment periods. CELL REPORTS METHODS 2023; 3:100485. [PMID: 37426753 PMCID: PMC10326345 DOI: 10.1016/j.crmeth.2023.100485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/30/2023] [Accepted: 04/28/2023] [Indexed: 07/11/2023]
Abstract
While combination therapy completely suppresses HIV-1 replication in blood, functional virus persists in CD4+ T cell subsets in non-peripheral compartments that are not easily accessible. To fill this gap, we investigated tissue-homing properties of cells that transiently appear in the circulating blood. Through cell separation and in vitro stimulation, the HIV-1 "Gag and Envelope reactivation co-detection assay" (GERDA) enables sensitive detection of Gag+/Env+ protein-expressing cells down to about one cell per million using flow cytometry. By associating GERDA with proviral DNA and polyA-RNA transcripts, we corroborate the presence and functionality of HIV-1 in critical body compartments utilizing t-distributed stochastic neighbor embedding (tSNE) and density-based spatial clustering of applications with noise (DBSCAN) clustering with low viral activity in circulating cells early after diagnosis. We demonstrate transcriptional HIV-1 reactivation at any time, potentially giving rise to intact, infectious particles. With single-cell level resolution, GERDA attributes virus production to lymph-node-homing cells with central memory T cells (TCMs) as main players, critical for HIV-1 reservoir eradication.
Collapse
Affiliation(s)
- Fabian Otte
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Yuepeng Zhang
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | - Julian Spagnuolo
- Experimental Immunology, Department Biomedicine, University of Basel, 4056 Basel, Switzerland
| | | | | | | | - Marcel Stoeckle
- Infectiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Katharina Kusejko
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and Institute of Medical Virology, University of Zurich, 8091 Zurich, Switzerland
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Karin J. Metzner
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, and Institute of Medical Virology, University of Zurich, 8091 Zurich, Switzerland
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine, University of Basel, 4009 Basel, Switzerland
| | | |
Collapse
|
24
|
Castro LA, Leitner T, Romero-Severson E. Recombination smooths the time signal disrupted by latency in within-host HIV phylogenies. Virus Evol 2023; 9:vead032. [PMID: 37397911 PMCID: PMC10313349 DOI: 10.1093/ve/vead032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Within-host Human immunodeficiency virus (HIV) evolution involves several features that may disrupt standard phylogenetic reconstruction. One important feature is reactivation of latently integrated provirus, which has the potential to disrupt the temporal signal, leading to variation in the branch lengths and apparent evolutionary rates in a tree. Yet, real within-host HIV phylogenies tend to show clear, ladder-like trees structured by the time of sampling. Another important feature is recombination, which violates the fundamental assumption that evolutionary history can be represented by a single bifurcating tree. Thus, recombination complicates the within-host HIV dynamic by mixing genomes and creating evolutionary loop structures that cannot be represented in a bifurcating tree. In this paper, we develop a coalescent-based simulator of within-host HIV evolution that includes latency, recombination, and effective population size dynamics that allows us to study the relationship between the true, complex genealogy of within-host HIV evolution, encoded as an ancestral recombination graph (ARG), and the observed phylogenetic tree. To compare our ARG results to the familiar phylogeny format, we calculate the expected bifurcating tree after decomposing the ARG into all unique site trees, their combined distance matrix, and the overall corresponding bifurcating tree. While latency and recombination separately disrupt the phylogenetic signal, remarkably, we find that recombination recovers the temporal signal of within-host HIV evolution caused by latency by mixing fragments of old, latent genomes into the contemporary population. In effect, recombination averages over extant heterogeneity, whether it stems from mixed time signals or population bottlenecks. Furthermore, we establish that the signals of latency and recombination can be observed in phylogenetic trees despite being an incorrect representation of the true evolutionary history. Using an approximate Bayesian computation method, we develop a set of statistical probes to tune our simulation model to nine longitudinally sampled within-host HIV phylogenies. Because ARGs are exceedingly difficult to infer from real HIV data, our simulation system allows investigating effects of latency, recombination, and population size bottlenecks by matching decomposed ARGs to real data as observed in standard phylogenies.
Collapse
Affiliation(s)
| | - Thomas Leitner
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | |
Collapse
|
25
|
Rong SY, Guo T, Smith JT, Wang X. The role of cell-to-cell transmission in HIV infection: insights from a mathematical modeling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:12093-12117. [PMID: 37501434 DOI: 10.3934/mbe.2023538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
HIV infection remains a serious global public health problem. Although current drug treatment is effective and can reduce plasma viral loads below the level of detection, it cannot eradicate the virus. The reasons for the low virus persistence despite long-term therapy have not been fully elucidated. In addition, multiple HIV infection, i.e., infection of a cell by multiple viruses, is common and can facilitate viral recombination and mutations, evading the immune system and conferring resistance to drug treatment. The mechanisms for multiple HIV infection formation and their respective contributions remain unclear. To answer these questions, we developed a mathematical modeling framework that encompasses cell-free viral infection and cell-to-cell spread. We fit sub-models that only have one transmission route and the full model containing both to the multi-infection data from HIV-infected patients, and show that the multi-infection data can only be reproduced if these two transmission routes are both considered. Computer simulations with the best-fitting parameter values indicate that cell-to-cell spread leads to the majority of multiple infection and also accounts for the majority of overall infection. Sensitivity analysis shows that cell-to-cell spread has reduced susceptibility to treatment and may explain low HIV persistence. Taken together, this work indicates that cell-to-cell spread plays a crucial role in the development of HIV multi-infection and low HIV persistence despite long-term therapy, and therefore has important implications for understanding HIV pathogenesis and developing more effective treatment strategies to control or even eliminate the disease.
Collapse
Affiliation(s)
| | - Ting Guo
- Aliyun School of Big Data, Changzhou University, Changzhou 213164, China
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - J Tyler Smith
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| | - Xia Wang
- School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China
- Department of Mathematics, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
26
|
Crespo-Bellido A, Duffy S. The how of counter-defense: viral evolution to combat host immunity. Curr Opin Microbiol 2023; 74:102320. [PMID: 37075547 DOI: 10.1016/j.mib.2023.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
Viruses are locked in an evolutionary arms race with their hosts. What ultimately determines viral evolvability, or capacity for adaptive evolution, is their ability to efficiently explore and expand sequence space while under the selective regime imposed by their ecology, which includes innate and adaptive host defenses. Viral genomes have significantly higher evolutionary rates than their host counterparts and should have advantages relative to their slower-evolving hosts. However, functional constraints on virus evolutionary landscapes along with the modularity and mutational tolerance of host defense proteins may help offset the advantage conferred to viruses by high evolutionary rates. Additionally, cellular life forms from all domains of life possess many highly complex defense mechanisms that act as hurdles to viral replication. Consequently, viruses constantly probe sequence space through mutation and genetic exchange and are under pressure to optimize diverse counter-defense strategies.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
27
|
Maksoud S, El Hokayem J. The cytokine/chemokine response in Leishmania/HIV infection and co-infection. Heliyon 2023; 9:e15055. [PMID: 37082641 PMCID: PMC10112040 DOI: 10.1016/j.heliyon.2023.e15055] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
HIV infection progressively weakens the immune system by infecting and destroying cells involved in host defense. Viral infection symptoms are generated and aggravated as immunosuppression progresses, triggered by the presence of opportunistic infections: among these is leishmaniasis, a disease caused by the intracellular parasite Leishmania. The incidence of this co-infection is growing progressively due to the geographic distribution overlap. Both pathogens infect monocytes/macrophages and dendritic cells, although they can also modulate the activity of other cells without co-infecting, such as T and B lymphocytes. Leishmania/HIV co-infection could be described as a system comprising modulations of cell surface molecule expression, production of soluble factors, and intracellular death activities, leading ultimately to the potentiation of infectivity, replication, and spread of both pathogens. This review describes the cytokine/chemokine response in Leishmania/HIV infection and co-infection, discussing how these molecules modulate the course of the disease and analyzing the therapeutic potential of targeting this network.
Collapse
|
28
|
It takes a village to build a virus. Proc Natl Acad Sci U S A 2023; 120:e2219052120. [PMID: 36701364 PMCID: PMC9945952 DOI: 10.1073/pnas.2219052120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
29
|
Marichannegowda MH, Zemil M, Wieczorek L, Sanders-Buell E, Bose M, O'Sullivan AM, King D, Francisco L, Diaz-Mendez F, Setua S, Chomont N, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Michael NL, Eller LA, Tovanabutra S, Tagaya Y, Robb ML, Polonis VR, Song H. Tracking coreceptor switch of the transmitted/founder HIV-1 identifies co-evolution of HIV-1 antigenicity, coreceptor usage and CD4 subset targeting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.21.525033. [PMID: 36712089 PMCID: PMC9882280 DOI: 10.1101/2023.01.21.525033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The CCR5 (R5) to CXCR4 (X4) coreceptor switch in natural HIV-1 infection is associated with faster progression to AIDS, but the underlying mechanisms remain unclear. The difficulty in capturing the earliest moment of coreceptor switch in vivo limits our understanding of this phenomenon. Here, by tracking the evolution of the transmitted/founder (T/F) HIV-1 in a prospective cohort of individuals at risk for HIV-1 infection identified very early in acute infection, we investigated this process with high resolution. The earliest X4 variants evolved from the R5 tropic T/F strains. Strong X4 usage can be conferred by a single mutation. The mutations responsible for coreceptor switch can confer escape to neutralization and drive X4 variants to replicate mainly in the central memory and naïve CD4+ T cells. We propose a novel concept to explain the co-evolution of virus antigenicity and entry tropism termed "escape by shifting". This concept posits that for viruses with receptor or coreceptor flexibility, entry tropism alteration represents a mechanism of immune evasion in vivo .
Collapse
|
30
|
HIV and Drug-Resistant Subtypes. Microorganisms 2023; 11:microorganisms11010221. [PMID: 36677513 PMCID: PMC9861097 DOI: 10.3390/microorganisms11010221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a human viral infectious disease caused by the positive-sense single-stranded (ss) RNA Human Immunodeficiency Virus (HIV) (Retroviridae family, Ortervirales order). HIV-1 can be distinguished into various worldwide spread groups and subtypes. HIV-2 also causes human immunodeficiency, which develops slowly and tends to be less aggressive. HIV-2 only partially homologates to HIV-1 despite the similar derivation. Antiretroviral therapy (ART) is the treatment approved to control HIV infection, based on multiple antiretroviral drugs that belong to different classes: (i) NNRTIs, (ii) NRTIs, (iii) PIs, (iv) INSTIs, and (v) entry inhibitors. These drugs, acting on different stages of the HIV life cycle, decrease the patient's total burden of HIV, maintain the function of the immune system, and prevent opportunistic infections. The appearance of several strains resistant to these drugs, however, represents a problem today that needs to be addressed as best as we can. New outbreaks of strains show a widespread geographic distribution and a highly variable mortality rate, even affecting treated patients significantly. Therefore, novel treatment approaches should be explored. The present review discusses updated information on HIV-1- and HIV-2-resistant strains, including details on different mutations responsible for drug resistance.
Collapse
|
31
|
Perico CP, De Pierri CR, Neto GP, Fernandes DR, Pedrosa FO, de Souza EM, Raittz RT. Genomic landscape of the SARS-CoV-2 pandemic in Brazil suggests an external P.1 variant origin. Front Microbiol 2022; 13:1037455. [PMID: 36620039 PMCID: PMC9814972 DOI: 10.3389/fmicb.2022.1037455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Brazil was the epicenter of worldwide pandemics at the peak of its second wave. The genomic/proteomic perspective of the COVID-19 pandemic in Brazil could provide insights to understand the global pandemics behavior. In this study, we track SARS-CoV-2 molecular information in Brazil using real-time bioinformatics and data science strategies to provide a comparative and evolutive panorama of the lineages in the country. SWeeP vectors represented the Brazilian and worldwide genomic/proteomic data from Global Initiative on Sharing Avian Influenza Data (GISAID) between February 2020 and August 2021. Clusters were analyzed and compared with PANGO lineages. Hierarchical clustering provided phylogenetic and evolutionary analyses of the lineages, and we tracked the P.1 (Gamma) variant origin. The genomic diversity based on Chao's estimation allowed us to compare richness and coverage among Brazilian states and other representative countries. We found that epidemics in Brazil occurred in two moments with different genetic profiles. The P.1 lineages emerged in the second wave, which was more aggressive. We could not trace the origin of P.1 from the variants present in Brazil. Instead, we found evidence pointing to its external source and a possible recombinant event that may relate P.1 to a B.1.1.28 variant subset. We discussed the potential application of the pipeline for emerging variants detection and the PANGO terminology stability over time. The diversity analysis showed that the low coverage and unbalanced sequencing among states in Brazil could have allowed the silent entry and dissemination of P.1 and other dangerous variants. This study may help to understand the development and consequences of variants of concern (VOC) entry.
Collapse
Affiliation(s)
- Camila P Perico
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| | - Camilla R De Pierri
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Giuseppe Pasqualato Neto
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| | - Danrley R Fernandes
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Emanuel M de Souza
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Roberto T Raittz
- Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
- Graduate Program in Bioinformatics, Professional and Technological Education Sector (SEPT), Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
32
|
Rajakaruna H, Ganusov VV. Mathematical Modeling to Guide Experimental Design: T Cell Clustering as a Case Study. Bull Math Biol 2022; 84:103. [PMID: 35978047 PMCID: PMC9548402 DOI: 10.1007/s11538-022-01063-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
Mathematical modeling provides a rigorous way to quantify immunological processes and discriminate between alternative mechanisms driving specific biological phenomena. It is typical that mathematical models of immunological phenomena are developed by modelers to explain specific sets of experimental data after the data have been collected by experimental collaborators. Whether the available data are sufficient to accurately estimate model parameters or to discriminate between alternative models is not typically investigated. While previously collected data may be sufficient to guide development of alternative models and help estimating model parameters, such data often do not allow to discriminate between alternative models. As a case study, we develop a series of power analyses to determine optimal sample sizes that allow for accurate estimation of model parameters and for discrimination between alternative models describing clustering of CD8 T cells around Plasmodium liver stages. In our typical experiments, mice are infected intravenously with Plasmodium sporozoites that invade hepatocytes (liver cells), and then activated CD8 T cells are transferred into the infected mice. The number of T cells found in the vicinity of individual infected hepatocytes at different times after T cell transfer is counted using intravital microscopy. We previously developed a series of mathematical models aimed to explain highly variable number of T cells per parasite; one of such models, the density-dependent recruitment (DDR) model, fitted the data from preliminary experiments better than the alternative models, such as the density-independent exit (DIE) model. Here, we show that the ability to discriminate between these alternative models depends on the number of parasites imaged in the analysis; analysis of about [Formula: see text] parasites at 2, 4, and 8 h after T cell transfer will allow for over 95% probability to select the correct model. The type of data collected also has an impact; following T cell clustering around individual parasites over time (called as longitudinal (LT) data) allows for a more precise and less biased estimates of the parameters of the DDR model than that generated from a more traditional way of imaging individual parasites in different liver areas/mice (cross-sectional (CS) data). However, LT imaging comes at a cost of a need to keep the mice alive under the microscope for hours which may be ethically unacceptable. We finally show that the number of time points at which the measurements are taken also impacts the precision of estimation of DDR model parameters; in particular, measuring T cell clustering at one time point does not allow accurately estimating all parameters of the DDR model. Using our case study, we propose a general framework on how mathematical modeling can be used to guide experimental designs and power analyses of complex biological processes.
Collapse
Affiliation(s)
- Harshana Rajakaruna
- Battelle Center for Mathematical Medicine, The Abigail Wexner Research Institute, 575 Children's Crossroad, Columbus, OH, 43215, USA.
| | - Vitaly V Ganusov
- Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
33
|
Gutierrez B, Castelán Sánchez HG, Candido DDS, Jackson B, Fleishon S, Houzet R, Ruis C, Delaye L, Faria NR, Rambaut A, Pybus OG, Escalera-Zamudio M. Emergence and widespread circulation of a recombinant SARS-CoV-2 lineage in North America. Cell Host Microbe 2022; 30:1112-1123.e3. [PMID: 35853454 PMCID: PMC9212848 DOI: 10.1016/j.chom.2022.06.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/18/2022] [Accepted: 06/16/2022] [Indexed: 02/09/2023]
Abstract
Although recombination is a feature of coronavirus evolution, previously detected recombinant lineages of SARS-CoV-2 have shown limited circulation thus far. Here, we present a detailed phylogenetic analysis of four SARS-CoV-2 lineages to investigate the possibility of virus recombination among them. Our analyses reveal well-supported phylogenetic differences between the Orf1ab region encoding viral non-structural proteins and the rest of the genome, including Spike (S) protein and remaining reading frames. By accounting for several deletions in NSP6, Orf3a, and S, we conclude that the B.1.628 major cluster, now designated as lineage XB, originated from a recombination event between viruses of B.1.631 and B.1.634 lineages. This scenario is supported by the spatiotemporal distribution of these lineages across the USA and Mexico during 2021, suggesting that the recombination event originated in this geographical region. This event raises important questions regarding the role and potential effects of recombination on SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Bernardo Gutierrez
- Department of Zoology, University of Oxford, Oxford, UK; Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México; Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador.
| | - Hugo G Castelán Sánchez
- Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México; Consejo Nacional de Ciencia y Tecnología, Ciudad de México, México
| | - Darlan da Silva Candido
- Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ben Jackson
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | | | | | - Christopher Ruis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Luis Delaye
- Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México; Departamento de Ingeniería Genética, Unidad Irapuato, CINVESTAV, Irapuato, Mexico
| | - Nuno R Faria
- Department of Zoology, University of Oxford, Oxford, UK; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK; The Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College London, London, UK
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford, UK; Department of Pathobiology, Royal Veterinary College, London, UK.
| | - Marina Escalera-Zamudio
- Department of Zoology, University of Oxford, Oxford, UK; Consorcio Mexicano de Vigilancia Genómica (CoViGen-Mex), México.
| |
Collapse
|
34
|
Kemp SA, Charles OJ, Derache A, Smidt W, Martin DP, Iwuji C, Adamson J, Govender K, de Oliveira T, Dabis F, Pillay D, Goldstein RA, Gupta RK. HIV-1 Evolutionary Dynamics under Nonsuppressive Antiretroviral Therapy. mBio 2022; 13:e0026922. [PMID: 35446121 PMCID: PMC9239331 DOI: 10.1128/mbio.00269-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
Prolonged virologic failure on 2nd-line protease inhibitor (PI)-based antiretroviral therapy (ART) without emergence of major protease mutations is well recognized and provides an opportunity to study within-host evolution in long-term viremic individuals. Using next-generation sequencing and in silico haplotype reconstruction, we analyzed whole-genome sequences from longitudinal plasma samples of eight chronically infected HIV-1-positive individuals failing 2nd-line regimens from the French National Agency for AIDS and Viral Hepatitis Research (ANRS) 12249 Treatment as Prevention (TasP) trial. On nonsuppressive ART, there were large fluctuations in synonymous and nonsynonymous variant frequencies despite stable viremia. Reconstructed haplotypes provided evidence for selective sweeps during periods of partial adherence, and viral haplotype competition, during periods of low drug exposure. Drug resistance mutations in reverse transcriptase (RT) were used as markers of viral haplotypes in the reservoir, and their distribution over time indicated recombination. We independently observed linkage disequilibrium decay, indicative of recombination. These data highlight dramatic changes in virus population structure that occur during stable viremia under nonsuppressive ART. IMPORTANCE HIV-1 infections are most commonly initiated with a single founder virus and are characterized by extensive inter- and intraparticipant genetic diversity. However, existing literature on HIV-1 intrahost population dynamics is largely limited to untreated infections, predominantly in subtype B-infected individuals. The manuscript characterizes viral population dynamics in long-term viremic treatment-experienced individuals, which has not been previously characterized. These data are particularly relevant for understanding HIV dynamics but can also be applied to other RNA viruses. With this unique data set we propose that the virus is highly unstable, and we have found compelling evidence of HIV-1 within-host viral diversification, recombination, and haplotype competition during nonsuppressive ART.
Collapse
Affiliation(s)
- Steven A. Kemp
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Oscar J. Charles
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Anne Derache
- Africa Health Research Institute, Durban, South Africa
| | - Werner Smidt
- Africa Health Research Institute, Durban, South Africa
| | - Darren P. Martin
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Collins Iwuji
- Africa Health Research Institute, Durban, South Africa
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - John Adamson
- Africa Health Research Institute, Durban, South Africa
| | | | - Tulio de Oliveira
- Africa Health Research Institute, Durban, South Africa
- KRISP - KwaZulu-Natal Research and Innovation Sequencing Platform, UKZN, Durban, South Africa
| | - Francois Dabis
- INSERM U1219-Centre Inserm Bordeaux Population Health, Université de Bordeaux, France
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health, France
| | - Deenan Pillay
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Richard A. Goldstein
- Division of Infection & Immunity, University College London, London, United Kingdom
| | - Ravindra K. Gupta
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
35
|
Miller J, Burch-Smith TM, Ganusov VV. Mathematical Modeling Suggests Cooperation of Plant-Infecting Viruses. Viruses 2022; 14:741. [PMID: 35458472 PMCID: PMC9029262 DOI: 10.3390/v14040741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
Viruses are major pathogens of agricultural crops. Viral infections often start after the virus enters the outer layer of a tissue, and many successful viruses, after local replication in the infected tissue, are able to spread systemically. Quantitative details of virus dynamics in plants, however, are poorly understood, in part, because of the lack of experimental methods which allow the accurate measurement of the degree of infection in individual plant tissues. Recently, a group of researchers followed the kinetics of infection of individual cells in leaves of Nicotiana tabacum plants using Tobacco etch virus (TEV) expressing either Venus or blue fluorescent protein (BFP). Assuming that viral spread occurs from lower to upper leaves, the authors fitted a simple mathematical model to the frequency of cellular infection by the two viral variants found using flow cytometry. While the original model could accurately describe the kinetics of viral spread locally and systemically, we found that many alternative versions of the model, for example, if viral spread starts at upper leaves and progresses to lower leaves or when virus dissemination is stopped due to an immune response, fit the data with reasonable quality, and yet with different parameter estimates. These results strongly suggest that experimental measurements of the virus infection in individual leaves may not be sufficient to identify the pathways of viral dissemination between different leaves and reasons for viral control. We propose experiments that may allow discrimination between the alternatives. By analyzing the kinetics of coinfection of individual cells by Venus and BFP strains of TEV we found a strong deviation from the random infection model, suggesting cooperation between the two strains when infecting plant cells. Importantly, we showed that many mathematical models on the kinetics of coinfection of cells with two strains could not adequately describe the data, and the best fit model needed to assume (i) different susceptibility of uninfected cells to infection by two viruses locally in the leaf vs. systemically from other leaves, and (ii) decrease in the infection rate depending on the fraction of uninfected cells which could be due to a systemic immune response. Our results thus demonstrate the difficulty in reaching definite conclusions from extensive and yet limited experimental data and provide evidence of potential cooperation between different viral variants infecting individual cells in plants.
Collapse
Affiliation(s)
- Joshua Miller
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA;
| | | | - Vitaly V. Ganusov
- Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA;
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
36
|
Giovanetti M, Farcomeni S, Sernicola L, Virtuoso S, Sulekova LF, Maggiorella MT, Buttò S, Taliani G, Ciccozzi M, Borsetti A. Analysis of HIV‐1 integrase genotypes and polymorphisms among integrase inhibitors‐based antiretroviral treatment naïve patients in South Sudan. J Med Virol 2022; 94:3320-3327. [DOI: 10.1002/jmv.27713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Marta Giovanetti
- Reference Laboratory of Flavivirus, Oswaldo Cruz Institute, Fundação Oswaldo CruzRio de JaneiroBrazil
- Laboratório de Genética Celular e Molecular, ICBUniversidade Federal de Minas GeraisBelo HorizonteMinas GeraisBrazil
- Medical Statistics and Molecular EpidemiologyUniversity Campus Bio‐Medico of RomeRomeItaly
| | - Stefania Farcomeni
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Leonardo Sernicola
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Sara Virtuoso
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | | | - Maria T. Maggiorella
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Stefano Buttò
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| | - Gloria Taliani
- Chronic Infectious Diseases Unit, Policlinico Umberto I“Sapienza” University of RomeRomeItaly
| | - Massimo Ciccozzi
- Medical Statistics and Molecular EpidemiologyUniversity Campus Bio‐Medico of RomeRomeItaly
| | - Alessandra Borsetti
- National HIV/AIDS Research Center, Istituto Superiore di SanitàV. le Regina Elena 29900161RomeItaly
| |
Collapse
|
37
|
Evolution during primary HIV infection does not require adaptive immune selection. Proc Natl Acad Sci U S A 2022; 119:2109172119. [PMID: 35145025 PMCID: PMC8851487 DOI: 10.1073/pnas.2109172119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Modern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The optimal model of primary infection required no positive selection, suggesting that the host adaptive immune system reduces viral load but surprisingly does not drive observed viral evolution. Rather, the fitness (infectivity) of mutant variants is drawn from an exponential distribution in which most variants are slightly less infectious than their parents (nearly neutral evolution). This distribution was not largely different from either in vivo fitness distributions recorded beyond primary infection or in vitro distributions that are observed without adaptive immunity, suggesting the intrinsic viral fitness distribution may drive evolution. Simulated phylogenetic trees also agree with independent data and illuminate how phylogenetic inference must consider viral and immune-cell population dynamics to gain accurate mechanistic insights.
Collapse
|
38
|
Balinda SN, Kapaata A, Xu R, Salazar MG, Mezzell AT, Qin Q, Herard K, Dilernia D, Kamali A, Ruzagira E, Kibengo FM, Song H, Ochsenbauer C, Salazar-Gonzalez JF, Gilmour J, Hunter E, Yue L, Kaleebu P. Characterization of Near Full-Length Transmitted/Founder HIV-1 Subtype D and A/D Recombinant Genomes in a Heterosexual Ugandan Population (2006–2011). Viruses 2022; 14:v14020334. [PMID: 35215928 PMCID: PMC8874453 DOI: 10.3390/v14020334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/01/2022] [Accepted: 01/10/2022] [Indexed: 12/04/2022] Open
Abstract
Detailed characterization of transmitted HIV-1 variants in Uganda is fundamentally important to inform vaccine design, yet studies on the transmitted full-length strains of subtype D viruses are limited. Here, we amplified single genomes and characterized viruses, some of which were previously classified as subtype D by sub-genomic pol sequencing that were transmitted in Uganda between December 2006 to June 2011. Analysis of 5′ and 3′ half genome sequences showed 73% (19/26) of infections involved single virus transmissions, whereas 27% (7/26) of infections involved multiple variant transmissions based on predictions of a model of random virus evolution. Subtype analysis of inferred transmitted/founder viruses showed a high transmission rate of inter-subtype recombinants (69%, 20/29) involving mainly A1/D, while pure subtype D variants accounted for one-third of infections (31%, 9/29). Recombination patterns included a predominance of subtype D in the gag/pol region and a highly recombinogenic envelope gene. The signal peptide-C1 region and gp41 transmembrane domain (Tat2/Rev2 flanking region) were hotspots for A1/D recombination events. Analysis of a panel of 14 transmitted/founder molecular clones showed no difference in replication capacity between subtype D viruses (n = 3) and inter-subtype mosaic recombinants (n = 11). However, individuals infected with high replication capacity viruses had a faster CD4 T cell loss. The high transmission rate of unique inter-subtype recombinants is striking and emphasizes the extraordinary challenge for vaccine design and, in particular, for the highly variable and recombinogenic envelope gene, which is targeted by rational designs aimed to elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Sheila N. Balinda
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
- Correspondence: ; Tel.: +25-675-466-0098
| | - Anne Kapaata
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Rui Xu
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Maria G. Salazar
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Allison T. Mezzell
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of Medicine, 3230, Eden Ave, Cincinnati, OH 45267, USA;
| | - Qianhong Qin
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Kimberly Herard
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Dario Dilernia
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Anatoli Kamali
- International AIDS Vaccine Initiative (IAVI), Nairobi 00202, Kenya;
| | - Eugene Ruzagira
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Freddie M. Kibengo
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Heeyah Song
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Jesus F. Salazar-Gonzalez
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| | - Jill Gilmour
- International AIDS Vaccine Initiative (IAVI), Imperial College London, London SW10 9NH, UK;
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30329, USA
| | - Ling Yue
- Emory Vaccine Center, Yerkes National Primate Research Center, Atlanta, GA 30329, USA; (R.X.); (Q.Q.); (K.H.); (D.D.); (H.S.); (E.H.); (L.Y.)
| | - Pontiano Kaleebu
- Medical Research Council, UVRI & LSTHM Uganda Research Unit, Plot 51–59, Entebbe, Uganda; (A.K.); (M.G.S.); (E.R.); (F.M.K.); (J.F.S.-G.); (P.K.)
| |
Collapse
|
39
|
Wymant C, Bezemer D, Blanquart F, Ferretti L, Gall A, Hall M, Golubchik T, Bakker M, Ong SH, Zhao L, Bonsall D, de Cesare M, MacIntyre-Cockett G, Abeler-Dörner L, Albert J, Bannert N, Fellay J, Grabowski MK, Gunsenheimer-Bartmeyer B, Günthard HF, Kivelä P, Kouyos RD, Laeyendecker O, Meyer L, Porter K, Ristola M, van Sighem A, Berkhout B, Kellam P, Cornelissen M, Reiss P, Fraser C, Aubert V, Battegay M, Bernasconi E, Böni J, Braun DL, Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H, Fux CA, Gorgievski M, Günthard H, Haerry D, Hasse B, Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, Martinetti G, de Tejada BM, Marzolini C, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo G, Rauch A, Regenass S, Rudin C, Schöni-Affolter F, Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P, Weber R, Yerly S, van der Valk M, Geerlings SE, Goorhuis A, Hovius JW, Lempkes B, Nellen FJB, van der Poll T, Prins JM, Reiss P, van Vugt M, Wiersinga WJ, Wit FWMN, van Duinen M, van Eden J, Hazenberg A, van Hes AMH, Rajamanoharan S, Robinson T, et alWymant C, Bezemer D, Blanquart F, Ferretti L, Gall A, Hall M, Golubchik T, Bakker M, Ong SH, Zhao L, Bonsall D, de Cesare M, MacIntyre-Cockett G, Abeler-Dörner L, Albert J, Bannert N, Fellay J, Grabowski MK, Gunsenheimer-Bartmeyer B, Günthard HF, Kivelä P, Kouyos RD, Laeyendecker O, Meyer L, Porter K, Ristola M, van Sighem A, Berkhout B, Kellam P, Cornelissen M, Reiss P, Fraser C, Aubert V, Battegay M, Bernasconi E, Böni J, Braun DL, Bucher HC, Burton-Jeangros C, Calmy A, Cavassini M, Dollenmaier G, Egger M, Elzi L, Fehr J, Fellay J, Furrer H, Fux CA, Gorgievski M, Günthard H, Haerry D, Hasse B, Hirsch HH, Hoffmann M, Hösli I, Kahlert C, Kaiser L, Keiser O, Klimkait T, Kouyos R, Kovari H, Ledergerber B, Martinetti G, de Tejada BM, Marzolini C, Metzner K, Müller N, Nadal D, Nicca D, Pantaleo G, Rauch A, Regenass S, Rudin C, Schöni-Affolter F, Schmid P, Speck R, Stöckle M, Tarr P, Trkola A, Vernazza P, Weber R, Yerly S, van der Valk M, Geerlings SE, Goorhuis A, Hovius JW, Lempkes B, Nellen FJB, van der Poll T, Prins JM, Reiss P, van Vugt M, Wiersinga WJ, Wit FWMN, van Duinen M, van Eden J, Hazenberg A, van Hes AMH, Rajamanoharan S, Robinson T, Taylor B, Brewer C, Mayr C, Schmidt W, Speidel A, Strohbach F, Arastéh K, Cordes C, Pijnappel FJJ, Stündel M, Claus J, Baumgarten A, Carganico A, Ingiliz P, Dupke S, Freiwald M, Rausch M, Moll A, Schleehauf D, Smalhout SY, Hintsche B, Klausen G, Jessen H, Jessen A, Köppe S, Kreckel P, Schranz D, Fischer K, Schulbin H, Speer M, Weijsenfeld AM, Glaunsinger T, Wicke T, Bieniek B, Hillenbrand H, Schlote F, Lauenroth-Mai E, Schuler C, Schürmann D, Wesselmann H, Brockmeyer N, Jurriaans S, Gehring P, Schmalöer D, Hower M, Spornraft-Ragaller P, Häussinger D, Reuter S, Esser S, Markus R, Kreft B, Berzow D, Back NKT, Christl A, Meyer A, Plettenberg A, Stoehr A, Graefe K, Lorenzen T, Adam A, Schewe K, Weitner L, Fenske S, Zaaijer HL, Hansen S, Stellbrink HJ, Wiemer D, Hertling S, Schmidt R, Arbter P, Claus B, Galle P, Jäger H, Jä Gel-Guedes E, Berkhout B, Postel N, Fröschl M, Spinner C, Bogner J, Salzberger B, Schölmerich J, Audebert F, Marquardt T, Schaffert A, Schnaitmann E, Cornelissen MTE, Trein A, Frietsch B, Müller M, Ulmer A, Detering-Hübner B, Kern P, Schubert F, Dehn G, Schreiber M, Güler C, Schinkel CJ, Gunsenheimer-Bartmeyer B, Schmidt D, Meixenberger K, Bannert N, Wolthers KC, Peters EJG, van Agtmael MA, Autar RS, Bomers M, Sigaloff KCE, Heitmuller M, Laan LM, Ang CW, van Houdt R, Jonges M, Kuijpers TW, Pajkrt D, Scherpbier HJ, de Boer C, van der Plas A, van den Berge M, Stegeman A, Baas S, Hage de Looff L, Buiting A, Reuwer A, Veenemans J, Wintermans B, Pronk MJH, Ammerlaan HSM, van den Bersselaar DNJ, de Munnik ES, Deiman B, Jansz AR, Scharnhorst V, Tjhie J, Wegdam MCA, van Eeden A, Nellen J, Brokking W, Elsenburg LJM, Nobel H, van Kasteren MEE, Berrevoets MAH, Brouwer AE, Adams A, van Erve R, de Kruijf-van de Wiel BAFM, Keelan-Phaf S, van de Ven B, van der Ven B, Buiting AGM, Murck JL, de Vries-Sluijs TEMS, Bax HI, van Gorp ECM, de Jong-Peltenburg NC, de Mendonç A Melo M, van Nood E, Nouwen JL, Rijnders BJA, Rokx C, Schurink CAM, Slobbe L, Verbon A, Bassant N, van Beek JEA, Vriesde M, van Zonneveld LM, de Groot J, Boucher CAB, Koopmans MPG, van Kampen JJA, Fraaij PLA, van Rossum AMC, Vermont CL, van der Knaap LC, Visser E, Branger J, Douma RA, Cents-Bosma AS, Duijf-van de Ven CJHM, Schippers EF, van Nieuwkoop C, van Ijperen JM, Geilings J, van der Hut G, van Burgel ND, Leyten EMS, Gelinck LBS, Mollema F, Davids-Veldhuis S, Tearno C, Wildenbeest GS, Heikens E, Groeneveld PHP, Bouwhuis JW, Lammers AJJ, Kraan S, van Hulzen AGW, Kruiper MSM, van der Bliek GL, Bor PCJ, Debast SB, Wagenvoort GHJ, Kroon FP, de Boer MGJ, Jolink H, Lambregts MMC, Roukens AHE, Scheper H, Dorama W, van Holten N, Claas ECJ, Wessels E, den Hollander JG, El Moussaoui R, Pogany K, Brouwer CJ, Smit JV, Struik-Kalkman D, van Niekerk T, Pontesilli O, Lowe SH, Oude Lashof AML, Posthouwer D, van Wolfswinkel ME, Ackens RP, Burgers K, Schippers J, Weijenberg-Maes B, van Loo IHM, Havenith TRA, van Vonderen MGA, Kampschreur LM, Faber S, Steeman-Bouma R, Al Moujahid A, Kootstra GJ, Delsing CE, van der Burg-van de Plas M, Scheiberlich L, Kortmann W, van Twillert G, Renckens R, Ruiter-Pronk D, van Truijen-Oud FA, Cohen Stuart JWT, Jansen ER, Hoogewerf M, Rozemeijer W, van der Reijden WA, Sinnige JC, Brinkman K, van den Berk GEL, Blok WL, Lettinga KD, de Regt M, Schouten WEM, Stalenhoef JE, Veenstra J, Vrouenraets SME, Blaauw H, Geerders GF, Kleene MJ, Kok M, Knapen M, van der Meché IB, Mulder-Seeleman E, Toonen AJM, Wijnands S, Wttewaal E, Kwa D, van Crevel R, van Aerde K, Dofferhoff ASM, Henriet SSV, Ter Hofstede HJM, Hoogerwerf J, Keuter M, Richel O, Albers M, Grintjes-Huisman KJT, de Haan M, Marneef M, Strik-Albers R, Rahamat-Langendoen J, Stelma FF, Burger D, Gisolf EH, Hassing RJ, Claassen M, Ter Beest G, van Bentum PHM, Langebeek N, Tiemessen R, Swanink CMA, van Lelyveld SFL, Soetekouw R, van der Prijt LMM, van der Swaluw J, Bermon N, van der Reijden WA, Jansen R, Herpers BL, Veenendaal D, Verhagen DWM, Lauw FN, van Broekhuizen MC, van Wijk M, Bierman WFW, Bakker M, Kleinnijenhuis J, Kloeze E, Middel A, Postma DF, Schölvinck EH, Stienstra Y, Verhage AR, Wouthuyzen-Bakker M, Boonstra A, de Groot-de Jonge H, van der Meulen PA, de Weerd DA, Niesters HGM, van Leer-Buter CC, Knoester M, Hoepelman AIM, Arends JE, Barth RE, Bruns AHW, Ellerbroek PM, Mudrikova T, Oosterheert JJ, Schadd EM, van Welzen BJ, Aarsman K, Griffioen-van Santen BMG, de Kroon I, van Berkel M, van Rooijen CSAM, Schuurman R, Verduyn-Lunel F, Wensing AMJ, Bont LJ, Geelen SPM, Loeffen YGT, Wolfs TFW, Nauta N, Rooijakkers EOW, Holtsema H, Voigt R, van de Wetering D, Alberto A, van der Meer I, Rosingh A, Halaby T, Zaheri S, Boyd AC, Bezemer DO, van Sighem AI, Smit C, Hillebregt M, de Jong A, Woudstra T, Bergsma D, Meijering R, van de Sande L, Rutkens T, van der Vliet S, de Groot L, van den Akker M, Bakker Y, El Berkaoui A, Bezemer M, Brétin N, Djoechro E, Groters M, Kruijne E, Lelivelt KJ, Lodewijk C, Lucas E, Munjishvili L, Paling F, Peeck B, Ree C, Regtop R, Ruijs Y, Schoorl M, Schnörr P, Scheigrond A, Tuijn E, Veenenberg L, Visser KM, Witte EC, Ruijs Y, Van Frankenhuijsen M, Allegre T, Makhloufi D, Livrozet JM, Chiarello P, Godinot M, Brunel-Dalmas F, Gibert S, Trepo C, Peyramond D, Miailhes P, Koffi J, Thoirain V, Brochier C, Baudry T, Pailhes S, Lafeuillade A, Philip G, Hittinger G, Assi A, Lambry V, Rosenthal E, Naqvi A, Dunais B, Cua E, Pradier C, Durant J, Joulie A, Quinsat D, Tempesta S, Ravaux I, Martin IP, Faucher O, Cloarec N, Champagne H, Pichancourt G, Morlat P, Pistone T, Bonnet F, Mercie P, Faure I, Hessamfar M, Malvy D, Lacoste D, Pertusa MC, Vandenhende MA, Bernard N, Paccalin F, Martell C, Roger-Schmelz J, Receveur MC, Duffau P, Dondia D, Ribeiro E, Caltado S, Neau D, Dupont M, Dutronc H, Dauchy F, Cazanave C, Vareil MO, Wirth G, Le Puil S, Pellegrin JL, Raymond I, Viallard JF, Chaigne de Lalande S, Garipuy D, Delobel P, Obadia M, Cuzin L, Alvarez M, Biezunski N, Porte L, Massip P, Debard A, Balsarin F, Lagarrigue M, Prevoteau du Clary F, Aquilina C, Reynes J, Baillat V, Merle C, Lemoing V, Atoui N, Makinson A, Jacquet JM, Psomas C, Tramoni C, Aumaitre H, Saada M, Medus M, Malet M, Eden A, Neuville S, Ferreyra M, Sotto A, Barbuat C, Rouanet I, Leureillard D, Mauboussin JM, Lechiche C, Donsesco R, Cabie A, Abel S, Pierre-Francois S, Batala AS, Cerland C, Rangom C, Theresine N, Hoen B, Lamaury I, Fabre I, Schepers K, Curlier E, Ouissa R, Gaud C, Ricaud C, Rodet R, Wartel G, Sautron C, Beck-Wirth G, Michel C, Beck C, Halna JM, Kowalczyk J, Benomar M, Drobacheff-Thiebaut C, Chirouze C, Faucher JF, Parcelier F, Foltzer A, Haffner-Mauvais C, Hustache Mathieu M, Proust A, Piroth L, Chavanet P, Duong M, Buisson M, Waldner A, Mahy S, Gohier S, Croisier D, May T, Delestan M, Andre M, Zadeh MM, Martinot M, Rosolen B, Pachart A, Martha B, Jeunet N, Rey D, Cheneau C, Partisani M, Priester M, Bernard-Henry C, Batard ML, Fischer P, Berger JL, Kmiec I, Robineau O, Huleux T, Ajana F, Alcaraz I, Allienne C, Baclet V, Meybeck A, Valette M, Viget N, Aissi E, Biekre R, Cornavin P, Merrien D, Seghezzi JC, Machado M, Diab G, Raffi F, Bonnet B, Allavena C, Grossi O, Reliquet V, Billaud E, Brunet C, Bouchez S, Morineau-Le Houssine P, Sauser F, Boutoille D, Besnier M, Hue H, Hall N, Brosseau D, Souala F, Michelet C, Tattevin P, Arvieux C, Revest M, Leroy H, Chapplain JM, Dupont M, Fily F, Patra-Delo S, Lefeuvre C, Bernard L, Bastides F, Nau P, Verdon R, de la Blanchardiere A, Martin A, Feret P, Geffray L, Daniel C, Rohan J, Fialaire P, Chennebault JM, Rabier V, Abgueguen P, Rehaiem S, Luycx O, Niault M, Moreau P, Poinsignon Y, Goussef M, Mouton-Rioux V, Houlbert D, Alvarez-Huve S, Barbe F, Haret S, Perre P, Leantez-Nainville S, Esnault JL, Guimard T, Suaud I, Girard JJ, Simonet V, Debab Y, Schmit JL, Jacomet C, Weinberck P, Genet C, Pinet P, Ducroix S, Durox H, Denes É, Abraham B, Gourdon F, Antoniotti O, Molina JM, Ferret S, Lascoux-Combe C, Lafaurie M, Colin de Verdiere N, Ponscarme D, De Castro N, Aslan A, Rozenbaum W, Pintado C, Clavel F, Taulera O, Gatey C, Munier AL, Gazaigne S, Penot P, Conort G, Lerolle N, Leplatois A, Balausine S, Delgado J, Timsit J, Tabet M, Gerard L, Girard PM, Picard O, Tredup J, Bollens D, Valin N, Campa P, Bottero J, Lefebvre B, Tourneur M, Fonquernie L, Wemmert C, Lagneau JL, Yazdanpanah Y, Phung B, Pinto A, Vallois D, Cabras O, Louni F, Pialoux G, Lyavanc T, Berrebi V, Chas J, Lenagat S, Rami A, Diemer M, Parrinello M, Depond A, Salmon D, Guillevin L, Tahi T, Belarbi L, Loulergue P, Zak Dit Zbar O, Launay O, Silbermann B, Leport C, Alagna L, Pietri MP, Simon A, Bonmarchand M, Amirat N, Pichon F, Kirstetter M, Katlama C, Valantin MA, Tubiana R, Caby F, Schneider L, Ktorza N, Calin R, Merlet A, Ben Abdallah S, Weiss L, Buisson M, Batisse D, Karmochine M, Pavie J, Minozzi C, Jayle D, Castel P, Derouineau J, Kousignan P, Eliazevitch M, Pierre I, Collias L, Viard JP, Gilquin J, Sobel A, Slama L, Ghosn J, Hadacek B, Thu-Huyn N, Nait-Ighil L, Cros A, Maignan A, Duvivier C, Consigny PH, Lanternier F, Shoai-Tehrani M, Touam F, Jerbi S, Bodard L, Jung C, Goujard C, Quertainmont Y, Duracinsky M, Segeral O, Blanc A, Peretti D, Cheret A, Chantalat C, Dulucq MJ, Levy Y, Lelievre JD, Lascaux AS, Dumont C, Boue F, Chambrin V, Abgrall S, Kansau I, Raho-Moussa M, De Truchis P, Dinh A, Davido B, Marigot D, Berthe H, Devidas A, Chevojon P, Chabrol A, Agher N, Lemercier Y, Chaix F, Turpault I, Bouchaud O, Honore P, Rouveix E, Reimann E, Belan AG, Godin Collet C, Souak S, Mortier E, Bloch M, Simonpoli AM, Manceron V, Cahitte I, Hiraux E, Lafon E, Cordonnier F, Zeng AF, Zucman D, Majerholc C, Bornarel D, Uludag A, Gellen-Dautremer J, Lefort A, Bazin C, Daneluzzi V, Gerbe J, Jeantils V, Coupard M, Patey O, Bantsimba J, Delllion S, Paz PC, Cazenave B, Richier L, Garrait V, Delacroix I, Elharrar B, Vittecoq D, Bolliot C, Lepretre A, Genet P, Masse V, Perrone V, Boussard JL, Chardon P, Froguel E, Simon P, Tassi S, Avettand Fenoel V, Barin F, Bourgeois C, Cardon F, Chaix ML, Delfraissy JF, Essat A, Fischer H, Lecuroux C, Meyer L, Petrov-Sanchez V, Rouzioux C, Saez-Cirion A, Seng R, Kuldanek K, Mullaney S, Young C, Zucchetti A, Bevan MA, McKernan S, Wandolo E, Richardson C, Youssef E, Green P, Faulkner S, Faville R, Herman S, Care C, Blackman H, Bellenger K, Fairbrother K, Phillips A, Babiker A, Delpech V, Fidler S, Clarke M, Fox J, Gilson R, Goldberg D, Hawkins D, Johnson A, Johnson M, McLean K, Nastouli E, Post F, Kennedy N, Pritchard J, Andrady U, Rajda N, Donnelly C, McKernan S, Drake S, Gilleran G, White D, Ross J, Harding J, Faville R, Sweeney J, Flegg P, Toomer S, Wilding H, Woodward R, Dean G, Richardson C, Perry N, Gompels M, Jennings L, Bansaal D, Browing M, Connolly L, Stanley B, Estreich S, Magdy A, O'Mahony C, Fraser P, Jebakumar SPR, David L, Mette R, Summerfield H, Evans M, White C, Robertson R, Lean C, Morris S, Winter A, Faulkner S, Goorney B, Howard L, Fairley I, Stemp C, Short L, Gomez M, Young F, Roberts M, Green S, Sivakumar K, Minton J, Siminoni A, Calderwood J, Greenhough D, DeSouza C, Muthern L, Orkin C, Murphy S, Truvedi M, McLean K, Hawkins D, Higgs C, Moyes A, Antonucci S, McCormack S, Lynn W, Bevan M, Fox J, Teague A, Anderson J, Mguni S, Post F, Campbell L, Mazhude C, Russell H, Gilson R, Carrick G, Ainsworth J, Waters A, Byrne P, Johnson M, Fidler S, Kuldanek K, Mullaney S, Lawlor V, Melville R, Sukthankar A, Thorpe S, Murphy C, Wilkins E, Ahmad S, Green P, Tayal S, Ong E, Meaden J, Riddell L, Loay D, Peacock K, Blackman H, Harindra V, Saeed AM, Allen S, Natarajan U, Williams O, Lacey H, Care C, Bowman C, Herman S, Devendra SV, Wither J, Bridgwood A, Singh G, Bushby S, Kellock D, Young S, Rooney G, Snart B, Currie J, Fitzgerald M, Arumainayyagam J, Chandramani S. A highly virulent variant of HIV-1 circulating in the Netherlands. Science 2022; 375:540-545. [PMID: 35113714 DOI: 10.1126/science.abk1688] [Show More Authors] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We discovered a highly virulent variant of subtype-B HIV-1 in the Netherlands. One hundred nine individuals with this variant had a 0.54 to 0.74 log10 increase (i.e., a ~3.5-fold to 5.5-fold increase) in viral load compared with, and exhibited CD4 cell decline twice as fast as, 6604 individuals with other subtype-B strains. Without treatment, advanced HIV-CD4 cell counts below 350 cells per cubic millimeter, with long-term clinical consequences-is expected to be reached, on average, 9 months after diagnosis for individuals in their thirties with this variant. Age, sex, suspected mode of transmission, and place of birth for the aforementioned 109 individuals were typical for HIV-positive people in the Netherlands, which suggests that the increased virulence is attributable to the viral strain. Genetic sequence analysis suggests that this variant arose in the 1990s from de novo mutation, not recombination, with increased transmissibility and an unfamiliar molecular mechanism of virulence.
Collapse
Affiliation(s)
- Chris Wymant
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - François Blanquart
- Centre for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, PSL Research University, Paris, France.,IAME, UMR 1137, INSERM, Université de Paris, Paris, France
| | - Luca Ferretti
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Astrid Gall
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Matthew Hall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tanya Golubchik
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Swee Hoe Ong
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Lele Zhao
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Bonsall
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - George MacIntyre-Cockett
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucie Abeler-Dörner
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jan Albert
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Norbert Bannert
- Division for HIV and Other Retroviruses, Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Precision Medicine Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - M Kate Grabowski
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | | | - Huldrych F Günthard
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Pia Kivelä
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Roger D Kouyos
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.,Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | - Laurence Meyer
- INSERM CESP U1018, Université Paris Saclay, APHP, Service de Santé Publique, Hôpital de Bicêtre, Le Kremlin-Bicêtre, France
| | - Kholoud Porter
- Institute for Global Health, University College London, London, UK
| | - Matti Ristola
- Department of Infectious Diseases, Helsinki University Hospital, Helsinki, Finland
| | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Paul Kellam
- Kymab Ltd., Cambridge, UK.,Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Marion Cornelissen
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.,Molecular Diagnostic Unit, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Reiss
- Stichting HIV Monitoring, Amsterdam, Netherlands.,Department of Global Health, Amsterdam University Medical Centers, University of Amsterdam and Amsterdam Institute for Global Health and Development, Amsterdam, Netherlands
| | - Christophe Fraser
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
He Y, Ma W, Dang S, Chen L, Zhang R, Mei S, Wei X, Lv Q, Peng B, Chen J, Kong D, Sun Y, Tang X, Wu W, Chen Z, Li S, Wan J, Zou X, Li M, Feng T, Ren L, Wang J. Possible recombination between two variants of concern in a COVID-19 patient. Emerg Microbes Infect 2022; 11:552-555. [PMID: 35081877 PMCID: PMC8843165 DOI: 10.1080/22221751.2022.2032375] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We identified an individual who was coinfected with two SARS-CoV-2 variants of concern, the Beta and Delta variants. The ratio of the relative abundance between the two variants was maintained at 1:9 (Beta:Delta) in 14 days. Furthermore, possible evidence of recombinations in the Orf1ab and Spike genes was found.
Collapse
Affiliation(s)
- Yaqing He
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Wentai Ma
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, China
| | - Shengyuan Dang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Long Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Renli Zhang
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Shujiang Mei
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Xinyi Wei
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Qiuying Lv
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Bo Peng
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Jiancheng Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Dongfeng Kong
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Ying Sun
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Xiujuan Tang
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Weihua Wu
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Zhigao Chen
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Shimin Li
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Jia Wan
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Xuan Zou
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Mingkun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China.,University of Chinese Academy of Sciences, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Tiejian Feng
- Shenzhen Research Center for Communicable Disease Control and Prevention Chinese Academy of Medical Sciences.,Center for Disease Control and Prevention, Shenzhen, Guangdong province, China
| | - Lili Ren
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
| | - Jianwei Wang
- National Health Commission of the People's Republic of China Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, P.R. China
| |
Collapse
|
41
|
Safety and antiviral activity of triple combination broadly neutralizing monoclonal antibody therapy against HIV-1: a phase 1 clinical trial. Nat Med 2022; 28:1288-1296. [PMID: 35551291 PMCID: PMC9205771 DOI: 10.1038/s41591-022-01815-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/04/2022] [Indexed: 12/05/2022]
Abstract
HIV-1 therapy with single or dual broadly neutralizing antibodies (bNAbs) has shown viral escape, indicating that at least a triple bNAb therapy may be needed for robust suppression of viremia. We performed a two-part study consisting of a single-center, randomized, double-blind, dose-escalation, placebo-controlled first-in-human trial of the HIV-1 V2-glycan-specific antibody PGDM1400 alone or in combination with the V3-glycan-specific antibody PGT121 in 24 adults without HIV in part 1, as well as a multi-center, open-label trial of the combination of PGDM1400, PGT121 and the CD4-binding-site antibody VRC07-523LS in five viremic adults living with HIV not on antiretroviral therapy (ART) in part 2 ( NCT03205917 ). The primary endpoints were safety, tolerability and pharmacokinetics for both parts and antiviral activity among viremic adults living with HIV and not on ART for part 2 of the study. The secondary endpoints were changes in CD4+ T cell counts and development of HIV-1 sequence variations associated with PGDM1400, PGT121 and VRC07-523LS resistance in part 2. Intravenously administered PGDM1400 was safe and well-tolerated at doses up to 30 mg kg-1 and when given in combination with PGT121 and VRC07-523LS. A single intravenous infusion of 20 mg kg-1 of each of the three antibodies reduced plasma HIV RNA levels in viremic individuals by a maximum mean of 2.04 log10 copies per ml; however, viral rebound occurred in all participants within a median of 20 days after nadir. Rebound viruses demonstrated partial to complete resistance to PGDM1400 and PGT121 in vitro, whereas susceptibility to VRC07-523LS was preserved. Viral rebound occurred despite mean VRC07-523LS serum concentrations of 93 µg ml-1. The trial met the pre-specified endpoints. Our data suggest that future bNAb combinations likely need to achieve broad antiviral activity, while also maintaining high serum concentrations, to mediate viral control.
Collapse
|
42
|
Distinct mechanisms of long-term virologic control in two HIV-infected individuals after treatment interruption of anti-retroviral therapy. Nat Med 2021; 27:1893-1898. [PMID: 34711975 DOI: 10.1038/s41591-021-01503-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023]
Abstract
Certain infected individuals suppress human immunodeficiency virus (HIV) in the absence of anti-retroviral therapy (ART). Elucidating the underlying mechanism(s) is of high interest. Here we present two contrasting case reports of HIV-infected individuals who controlled plasma viremia for extended periods after undergoing analytical treatment interruption (ATI). In Participant 04, who experienced viral blips and initiated undisclosed self-administration of suboptimal ART detected shortly before day 1,250, phylogenetic analyses of plasma HIV env sequences suggested continuous viral evolution and/or reactivation of pre-existing viral reservoirs over time. Antiviral CD8+ T cell activities were higher in Participant 04 than in Participant 30. In contrast, Participant 30 exhibited potent plasma-IgG-mediated neutralization activity against autologous virus that became ineffective when he experienced sudden plasma viral rebound 1,434 d after ATI due to HIV superinfection. Our data provide insight into distinct mechanisms of post-treatment interruption control and highlight the importance of frequent monitoring of undisclosed use of ART and superinfection during the ATI phase.
Collapse
|
43
|
Umviligihozo G, Muok E, Nyirimihigo Gisa E, Xu R, Dilernia D, Herard K, Song H, Qin Q, Bizimana J, Farmer P, Hare J, Gilmour J, Allen S, Karita E, Hunter E, Yue L. Increased Frequency of Inter-Subtype HIV-1 Recombinants Identified by Near Full-Length Virus Sequencing in Rwandan Acute Transmission Cohorts. Front Microbiol 2021; 12:734929. [PMID: 34690973 PMCID: PMC8529237 DOI: 10.3389/fmicb.2021.734929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/07/2021] [Indexed: 12/01/2022] Open
Abstract
Most studies of HIV-1 transmission have focused on subtypes B and C. In this study, we determined the genomic sequences of the transmitted founder (TF) viruses from acutely infected individuals enrolled between 2005 and 2011 into IAVI protocol C in Rwanda and have compared these isolates to viruses from more recent (2016-2019) acute/early infections in three at risk populations - MSM, high risk women (HRW), and discordant couples (DC). For the Protocol C samples, we utilized near full-length single genome (NFLG) amplification to generate 288 HIV-1 amplicons from 26 acutely infected seroconverters (SC), while for the 21 recent seroconverter samples (13 from HRW, two from DC, and six from MSM), we PCR amplified overlapping half-genomes. Using PacBio SMRT technology combined with the MDPseq workflow, we performed multiplex sequencing to obtain high accuracy sequences for each amplicon. Phylogenetic analyses indicated that the majority of recent transmitted viruses from DC and HRW clustered within those of the earlier Protocol C cohort. However, five of six sequences from the MSM cohort branched together and were greater than 97% identical. Recombination analyses revealed a high frequency (6/26; 23%) of unique inter-subtype recombination in Protocol C with 19% AC and 4% CD recombinant viruses, which contrasted with only 6.5% of recombinants defined by sequencing of the pol gene previously. The frequency of recombinants was significantly higher (12/21; 57%) in the more recent isolates, although, the five related viruses from the MSM cohort had identical recombination break points. While major drug resistance mutations were absent from Protocol C viruses, 4/21 of recent isolates exhibited transmitted nevirapine resistance. These results demonstrate the ongoing evolution and increased prevalence of recombinant and drug resistant transmitted viruses in Rwanda and highlight the importance of defining NFLG sequences to fully understand the nature of TF viruses and in particular the prevalence of unique recombinant forms (URFs) in transmission cohorts.
Collapse
Affiliation(s)
| | - Erick Muok
- Centre for Family Health Research, Kigali, Rwanda
| | | | - Rui Xu
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Dario Dilernia
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Kimberley Herard
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Heeyah Song
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | - Qianhong Qin
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | | | - Paul Farmer
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| | | | - Jill Gilmour
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Susan Allen
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | | | - Eric Hunter
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States
| | - Ling Yue
- Emory Vaccine Center at Yerkes National Primate Research Center, Atlanta, GA, United States
| |
Collapse
|
44
|
Stephenson KE, Julg B, Tan CS, Zash R, Walsh SR, Rolle CP, Monczor AN, Lupo S, Gelderblom HC, Ansel JL, Kanjilal DG, Maxfield LF, Nkolola J, Borducchi EN, Abbink P, Liu J, Peter L, Chandrashekar A, Nityanandam R, Lin Z, Setaro A, Sapiente J, Chen Z, Sunner L, Cassidy T, Bennett C, Sato A, Mayer B, Perelson AS, deCamp A, Priddy FH, Wagh K, Giorgi EE, Yates NL, Arduino RC, DeJesus E, Tomaras GD, Seaman MS, Korber B, Barouch DH. Safety, pharmacokinetics and antiviral activity of PGT121, a broadly neutralizing monoclonal antibody against HIV-1: a randomized, placebo-controlled, phase 1 clinical trial. Nat Med 2021; 27:1718-1724. [PMID: 34621054 PMCID: PMC8516645 DOI: 10.1038/s41591-021-01509-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Human immunodeficiency virus (HIV)-1-specific broadly neutralizing monoclonal antibodies are currently under development to treat and prevent HIV-1 infection. We performed a single-center, randomized, double-blind, dose-escalation, placebo-controlled trial of a single administration of the HIV-1 V3-glycan-specific antibody PGT121 at 3, 10 and 30 mg kg-1 in HIV-uninfected adults and HIV-infected adults on antiretroviral therapy (ART), as well as a multicenter, open-label trial of one infusion of PGT121 at 30 mg kg-1 in viremic HIV-infected adults not on ART (no. NCT02960581). The primary endpoints were safety and tolerability, pharmacokinetics (PK) and antiviral activity in viremic HIV-infected adults not on ART. The secondary endpoints were changes in anti-PGT121 antibody titers and CD4+ T-cell count, and development of HIV-1 sequence variations associated with PGT121 resistance. Among 48 participants enrolled, no treatment-related serious adverse events, potential immune-mediated diseases or Grade 3 or higher adverse events were reported. The most common reactions among PGT121 recipients were intravenous/injection site tenderness, pain and headache. Absolute and relative CD4+ T-cell counts did not change following PGT121 infusion in HIV-infected participants. Neutralizing anti-drug antibodies were not elicited. PGT121 reduced plasma HIV RNA levels by a median of 1.77 log in viremic participants, with a viral load nadir at a median of 8.5 days. Two individuals with low baseline viral loads experienced ART-free viral suppression for ≥168 days following antibody infusion, and rebound viruses in these individuals demonstrated full or partial PGT121 sensitivity. The trial met the prespecified endpoints. These data suggest that further investigation of the potential of antibody-based therapeutic strategies for long-term suppression of HIV is warranted, including in individuals off ART and with low viral load.
Collapse
Affiliation(s)
- Kathryn E Stephenson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Boris Julg
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA, USA
| | - C Sabrina Tan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rebecca Zash
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Stephen R Walsh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Ana N Monczor
- McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | - Sofia Lupo
- McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | | | - Jessica L Ansel
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Diane G Kanjilal
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lori F Maxfield
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ramya Nityanandam
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zijin Lin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alessandra Setaro
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Joseph Sapiente
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Zhilin Chen
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa Sunner
- International AIDS Vaccine Initiative, New York, NY, USA
| | - Tyler Cassidy
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chelsey Bennett
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alicia Sato
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Bryan Mayer
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Allan deCamp
- Statistical Center for HIV/AIDS Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Kshitij Wagh
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Elena E Giorgi
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Roberto C Arduino
- McGovern Medical School at The University of Texas Health Science Center, Houston, TX, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
- Departments of Surgery, Immunology and Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Bette Korber
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, USA
- New Mexico Consortium, Los Alamos, NM, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Lewitus E, Sanders-Buell E, Bose M, O'Sullivan AM, Poltavee K, Li Y, Bai H, Mdluli T, Donofrio G, Slike B, Zhao H, Wong K, Chen L, Miller S, Lee J, Ahani B, Lepore S, Muhammad S, Grande R, Tran U, Dussupt V, Mendez-Rivera L, Nitayaphan S, Kaewkungwal J, Pitisuttithum P, Rerks-Ngarm S, O'Connell RJ, Janes H, Gilbert PB, Gramzinski R, Vasan S, Robb ML, Michael NL, Krebs SJ, Herbeck JT, Edlefsen PT, Mullins JI, Kim JH, Tovanabutra S, Rolland M. RV144 vaccine imprinting constrained HIV-1 evolution following breakthrough infection. Virus Evol 2021; 7:veab057. [PMID: 34532060 PMCID: PMC8438874 DOI: 10.1093/ve/veab057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/01/2023] Open
Abstract
The scale of the HIV-1 epidemic underscores the need for a vaccine. The multitude of circulating HIV-1 strains together with HIV-1’s high evolvability hints that HIV-1 could adapt to a future vaccine. Here, we wanted to investigate the effect of vaccination on the evolution of the virus post-breakthrough infection. We analyzed 2,635 HIV-1 env sequences sampled up to a year post-diagnosis from 110 vaccine and placebo participants who became infected in the RV144 vaccine efficacy trial. We showed that the Env signature sites that were previously identified to distinguish vaccine and placebo participants were maintained over time. In addition, fewer sites were under diversifying selection in the vaccine group than in the placebo group. These results indicate that HIV-1 would possibly adapt to a vaccine upon its roll-out.
Collapse
Affiliation(s)
- Eric Lewitus
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Meera Bose
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Kultida Poltavee
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Yifan Li
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Hongjun Bai
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Thembi Mdluli
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Gina Donofrio
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Bonnie Slike
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Hong Zhao
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Kim Wong
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Lennie Chen
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Shana Miller
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Jenica Lee
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Bahar Ahani
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Steven Lepore
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Sevan Muhammad
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Rebecca Grande
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Ursula Tran
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Vincent Dussupt
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Sorachai Nitayaphan
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jaranit Kaewkungwal
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | | - Robert J O'Connell
- US Army Medical Directorate of the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Holly Janes
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Peter B Gilbert
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Robert Gramzinski
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Merlin L Robb
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, WRAIR, Silver Spring, MD 20910, USA
| | - Shelly J Krebs
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | - Joshua T Herbeck
- Department of Global Health, University of Washington, Seattle, WA 98195, USA
| | - Paul T Edlefsen
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Jerome H Kim
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| | | | - Morgane Rolland
- US Military HIV Research Program, WRAIR, Silver Spring, MD 20910, USA
| |
Collapse
|
46
|
VanInsberghe D, Neish AS, Lowen AC, Koelle K. Recombinant SARS-CoV-2 genomes circulated at low levels over the first year of the pandemic. Virus Evol 2021; 7:veab059. [PMID: 36793768 PMCID: PMC8344435 DOI: 10.1093/ve/veab059] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
Viral recombination can generate novel genotypes with unique phenotypic characteristics, including transmissibility and virulence. Although the capacity for recombination among betacoronaviruses is well documented, recombination between strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has not been characterized in detail. Here, we present a lightweight approach for detecting genomes that are potentially recombinant. This approach relies on identifying the mutations that primarily determine SARS-CoV-2 clade structure and then screening genomes for ones that contain multiple mutational markers from distinct clades. Among the over 537,000 genomes queried that were deposited on GISAID.org prior to 16 February 2021, we detected 1,175 potential recombinant sequences. Using a highly conservative criteria to exclude sequences that may have originated through de novo mutation, we find that at least 30 per cent (n = 358) are likely of recombinant origin. An analysis of deep-sequencing data for these putative recombinants, where available, indicated that the majority are high quality. Additional phylogenetic analysis and the observed co-circulation of predicted parent clades in the geographic regions of exposure further support the feasibility of recombination in this subset of potential recombinants. An analysis of these genomes did not reveal evidence for recombination hotspots in the SARS-CoV-2 genome. While most of the putative recombinant sequences we detected were genetic singletons, a small number of genetically identical or highly similar recombinant sequences were identified in the same geographic region, indicative of locally circulating lineages. Recombinant genomes were also found to have originated from parental lineages with substitutions of concern, including D614G, N501Y, E484K, and L452R. Adjusting for an unequal probability of detecting recombinants derived from different parent clades and for geographic variation in clade abundance, we estimate that at most 0.2-2.5 per cent of circulating viruses in the USA and UK are recombinant. Our identification of a small number of putative recombinants within the first year of SARS-CoV-2 circulation underscores the need to sustain efforts to monitor the emergence of new genotypes generated through recombination.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Biology, Emory University, Atlanta, 1510 Clifton Rd, Atlanta, GA, 30322 USA
- Department of Microbiology and Immunology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322 USA
- Department of Pathology, Emory University School of Medicine, 1364 Clifton Rd, Atlanta, GA, 30322 USA
| | - Andrew S Neish
- Department of Pathology, Emory University School of Medicine, 1364 Clifton Rd, Atlanta, GA, 30322 USA
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA, 30322 USA
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, 1510 Clifton Rd, Atlanta, GA, 30322 USA
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, USA
| |
Collapse
|
47
|
Marichannegowda MH, Mengual M, Kumar A, Giorgi EE, Tu JJ, Martinez DR, Romero-Severson EO, Li X, Feng L, Permar SR, Gao F. Different evolutionary pathways of HIV-1 between fetus and mother perinatal transmission pairs indicate unique immune selection in fetuses. Cell Rep Med 2021; 2:100315. [PMID: 34337555 PMCID: PMC8324465 DOI: 10.1016/j.xcrm.2021.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/12/2021] [Accepted: 05/18/2021] [Indexed: 11/04/2022]
Abstract
Study of evolution and selection pressure on HIV-1 in fetuses will lead to a better understanding of the role of immune responses in shaping virus evolution and vertical transmission. Detailed genetic analyses of HIV-1 env gene from 12 in utero transmission pairs show that most infections (67%) occur within 2 months of childbirth. In addition, the env sequences from long-term-infected fetuses are highly divergent and form separate phylogenetic lineages from their cognate maternal viruses. Host-selection sites unique to neonate viruses are identified in regions frequently targeted by neutralizing antibodies and T cell immune responses. Identification of unique selection sites in the env gene of fetal viruses indicates that the immune system in fetuses is capable of exerting selection pressure on viral evolution. Studying selection and evolution of HIV-1 or other viruses in fetuses can be an alternative approach to investigate adaptive immunity in fetuses.
Collapse
Affiliation(s)
| | - Michael Mengual
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Amit Kumar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Elena E. Giorgi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Joshua J. Tu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - David R. Martinez
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Xiaojun Li
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sallie R. Permar
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Feng Gao
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
48
|
Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, Tegally H, San JE, de Oliveira T, Gnanakaran S, Korber B. HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host Microbe 2021; 29:1093-1110. [PMID: 34242582 PMCID: PMC8173590 DOI: 10.1016/j.chom.2021.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Humanity is currently facing the challenge of two devastating pandemics caused by two very different RNA viruses: HIV-1, which has been with us for decades, and SARS-CoV-2, which has swept the world in the course of a single year. The same evolutionary strategies that drive HIV-1 evolution are at play in SARS-CoV-2. Single nucleotide mutations, multi-base insertions and deletions, recombination, and variation in surface glycans all generate the variability that, guided by natural selection, enables both HIV-1's extraordinary diversity and SARS-CoV-2's slower pace of mutation accumulation. Even though SARS-CoV-2 diversity is more limited, recently emergent SARS-CoV-2 variants carry Spike mutations that have important phenotypic consequences in terms of both antibody resistance and enhanced infectivity. We review and compare how these mutational patterns manifest in these two distinct viruses to provide the variability that fuels their evolution by natural selection.
Collapse
Affiliation(s)
- Will Fischer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Elena E Giorgi
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA
| | - Srirupa Chakraborty
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Kien Nguyen
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Tanmoy Bhattacharya
- T-2: Nuclear and Particle Physics, Astrophysics and Cosmology, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545 USA
| | - James Theiler
- ISR-3: Space Data Science and Systems, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Pablo A Goloboff
- Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, S. M. de Tucumán, Miguel Lillo 251 4000, Argentina; Research Associate, American Museum of Natural History, New York 10024, USA
| | - Hyejin Yoon
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Werner Abfalterer
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Brian T Foley
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - James Emmanuel San
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Department of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sandrasegaram Gnanakaran
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Bette Korber
- T-6: Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; New Mexico Consortium, Los Alamos, New Mexico, 87545, USA.
| |
Collapse
|
49
|
Tang R, Yu Z, Ma Y, Wu Y, Phoebe Chen YP, Wong L, Li J. Genetic source completeness of HIV-1 circulating recombinant forms (CRFs) predicted by multi-label learning. Bioinformatics 2021; 37:750-758. [PMID: 33063094 DOI: 10.1093/bioinformatics/btaa887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/12/2020] [Accepted: 09/30/2020] [Indexed: 12/18/2022] Open
Abstract
MOTIVATION Infection with strains of different subtypes and the subsequent crossover reading between the two strands of genomic RNAs by host cells' reverse transcriptase are the main causes of the vast HIV-1 sequence diversity. Such inter-subtype genomic recombinants can become circulating recombinant forms (CRFs) after widespread transmissions in a population. Complete prediction of all the subtype sources of a CRF strain is a complicated machine learning problem. It is also difficult to understand whether a strain is an emerging new subtype and if so, how to accurately identify the new components of the genetic source. RESULTS We introduce a multi-label learning algorithm for the complete prediction of multiple sources of a CRF sequence as well as the prediction of its chronological number. The prediction is strengthened by a voting of various multi-label learning methods to avoid biased decisions. In our steps, frequency and position features of the sequences are both extracted to capture signature patterns of pure subtypes and CRFs. The method was applied to 7185 HIV-1 sequences, comprising 5530 pure subtype sequences and 1655 CRF sequences. Results have demonstrated that the method can achieve very high accuracy (reaching 99%) in the prediction of the complete set of labels of HIV-1 recombinant forms. A few wrong predictions are actually incomplete predictions, very close to the complete set of genuine labels. AVAILABILITY AND IMPLEMENTATION https://github.com/Runbin-tang/The-source-of-HIV-CRFs-prediction. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Runbin Tang
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China.,Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zuguo Yu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China.,School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Yuanlin Ma
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yaoqun Wu
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education and Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University, Hunan 411105, China
| | - Yi-Ping Phoebe Chen
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 117417, Singapore
| | - Jinyan Li
- Advanced Analytics Institute, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
50
|
Identification of CRF89_BF, a new member of an HIV-1 circulating BF intersubtype recombinant form family widely spread in South America. Sci Rep 2021; 11:11442. [PMID: 34075073 PMCID: PMC8169922 DOI: 10.1038/s41598-021-90023-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/28/2021] [Indexed: 01/10/2023] Open
Abstract
Circulating recombinant forms (CRFs) contribute substantially to the HIV-1 pandemic. Among 105 CRFs described in the literature, 16 are BF intersubtype recombinants, most of South American origin, of which CRF12_BF is the most widely spread. A BF recombinant cluster identified in Bolivia was suggested to represent a new CRF_BF. Here we find that it belongs to a larger cluster incorporating 39 viruses collected in 7 countries from 3 continents, 22 of them in Spain, most from Bolivian or Peruvian individuals, and 12 in South America (Bolivia, Argentina, and Peru). This BF cluster comprises three major subclusters, two associated with Bolivian and one with Peruvian individuals. Near full-length genome sequence analyses of nine viruses, collected in Spain, Bolivia, and Peru, revealed coincident BF mosaic structures, with 13 breakpoints, 6 and 7 of which coincided with CRF12_BF and CRF17_BF, respectively. In a phylogenetic tree, they grouped in a clade closely related to these CRFs, and more distantly to CRF38_BF and CRF44_BF, all circulating in South America. These results allowed to identify a new HIV-1 CRF, designated CRF89_BF. Through phylodynamic analyses, CRF89_BF emergence was estimated in Bolivia around 1986. CRF89_BF is the fifth CRF member of the HIV-1 recombinant family related to CRF12_BF.
Collapse
|