1
|
Liu Z, Zeng J, Wang D, Zhu P, Wang L, Bao Y, Xu Y, Peng W, He S, Lei Z, Pang L, Jiang B, Wang J, Song Z, Zhang Y, Wang X, Yan L, Xu B. Spiro-Linked Planar Core Small Molecule Hole Transport Materials Enabling High-Performance Inverted Perovskite Solar Cells. J Am Chem Soc 2025. [PMID: 40364564 DOI: 10.1021/jacs.5c04671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Small-molecule organic semiconductors have demonstrated significant potential for application in hole-transporting materials (HTMs) for perovskite solar cells (PSCs), thanks to their high reproducibility and convenient synthesis routes. Finely designed planar π-π stacking structures have emerged as one of the primary strategies for achieving high-performance small-molecule HTMs. In particular, the incorporation of a helical structure into HTM designs through a linearization approach has proven effective, leading to the development of novel materials with superior properties. In this study, the structure-property relationship of these small molecules has been systematically explored. The newly developed HTM, SPCF-MeTPA, based on a spiro[cyclopentane-1,9'-fluorene] core, features a rigid conjugated system with spiro-linked core. This design provides improved intermolecular charge extraction and transport, optimized energy levels, and effective surface passivation compared to SPTP-MeTPA, which has a nonplanar spatial arrangement. As a result, the champion device based on SPCF-MeTPA achieves efficiencies of 26.35% (certified 25.75%) and 24.55% for aperture areas of 0.07 and 1.01 cm2, respectively. Additionally, these devices demonstrate exceptional long-term stability, further highlighting the potential of SPCF-MeTPA as a high-performance HTM.
Collapse
Affiliation(s)
- Zhixin Liu
- School of Physics and Optoelectronics, Xiangtan Univeristy, Xiangtan 411105, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Zeng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Deng Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peide Zhu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lida Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuqi Bao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yintai Xu
- School of Physics and Optoelectronics, Xiangtan Univeristy, Xiangtan 411105, China
| | - Wenbo Peng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siru He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiwei Lei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lihan Pang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiangfeng Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zonglong Song
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingzhu Wang
- School of Physics and Optoelectronics, Xiangtan Univeristy, Xiangtan 411105, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Putai Technology Co., Ltd., Shenzhen 518110, China
- Engineering and Research Center for Integrated New Energy Photovoltaics & Energy Storage Systems of Hunan Province and School of Electrical Engineering, University of South China, Hengyang 421001, China
| | - Lei Yan
- School of Physics and Optoelectronics, Xiangtan Univeristy, Xiangtan 411105, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- SUSTech Energy Institute for Carbon Neutrality, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Cai Y, Yan S, Lin YJ, Lin T, Qiu L, Pan X, Wang W. Quantum Wells in Magnesium-Manganese Bimetallic Antiperovskites for High Luminescence. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16987-16997. [PMID: 40062984 DOI: 10.1021/acsami.4c18047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Perovskite has attracted extensive attention in the realm of photovoltaic and light-emitting diodes (LEDs) on account of its outstanding photoelectric properties. Perovskite-type quantum wells (QW) have been developed for high-efficiency perovskite-type LEDs. However, there are few reports on the in situ quantum well structure formed by a bimetallic antiperovskite and its properties. In this work, we report a double/bimetallic antiperovskite composed of magnesium and manganese. It is an in situ homogeneous junction composed of a p-type manganese well layer and an n-type magnesium barrier layer, which promotes the recombination of carriers and increases the luminous efficiency. The in situ quantum wells enable the green antiperovskite LED to have a maximum external quantum efficiency reaching 20.2% and a maximum luminance as high as 19000 cd m-2. These research results provide the chance to produce high-performance LEDs based on an in situ quantum well structure. Meanwhile, the strategy developed in this work is helpful for the design of other highly luminescent lead-free materials.
Collapse
Affiliation(s)
- Yangyang Cai
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Siyu Yan
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yue-Jian Lin
- Advanced Materials Laboratory, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | - Tingting Lin
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Optoelectronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaoyong Pan
- School of Material & Science Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Weizhi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Zhang G, Lu R, Liu Z, Ni K, Jiang T, Tao X, Zheng G, Yi C, Wang J. Pure-Phase Perovskite Quantum Well for Green Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51195-51200. [PMID: 39262208 DOI: 10.1021/acsami.4c12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Perovskite multiple quantum wells (MQWs) have shown great potential in the field of light-emitting diodes (LEDs). However, the random formation of QWs with varying well widths (n numbers) often leads to suboptimal interface defects and charge transport issues. Here, we reveal that the crystallization sequence of bromide-based perovskite MQWs is large-n QWs preceding small-n QWs. With this insight, we prevent the crystallization of subsequent small-n QWs by reducing the crystallization rate, ultimately resulting in the crystallization of only n = 5 QWs. This reduction in the crystallization rate is achieved through the chemical interaction of dual additives with perovskite constituents. Additionally, the chemical interaction effectively passivates the uncoordinated lead ions defects. Consequently, pure-phase perovskite QWs with a high photoluminescence quantum efficiency of 75% are achieved. The resulting green LEDs achieve a peak external quantum efficiency of 17.1% and a maximum luminance of 29,480 cd m-2, which is attractive for full-color display applications of perovskites.
Collapse
Affiliation(s)
- Guolin Zhang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Runqing Lu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Ziping Liu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Kaijie Ni
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Tao Jiang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Xiangru Tao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Guanhaojie Zheng
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Chang Yi
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, People's Republic of China
- School of Materials Science and Engineering & School of Microelectronics and Control Engineering, Changzhou University, Changzhou, Jiangsu 213164, Republic of China
| |
Collapse
|
4
|
Feng M, Kong L, Chen J, Ma H, Zha C, Zhang L. Band alignment engineering of 2D/3D halide perovskite lateral heterostructures. J Chem Phys 2024; 161:024703. [PMID: 38984962 DOI: 10.1063/5.0214887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Two-dimensional (2D)/three-dimensional (3D) halide perovskite heterostructures have been extensively studied for their ability to combine the outstanding long-term stability of 2D perovskites with the superb optoelectronic properties of 3D perovskites. While current studies mostly focus on vertically stacked 2D/3D perovskite heterostructures, a theoretical understanding regarding the optoelectronic properties of 2D/3D perovskite lateral heterostructures is still lacking. Herein, we construct a series of 2D/3D perovskite lateral heterostructures to study their optoelectronic properties and interfacial charge transfer using density functional theory (DFT) calculations. We find that the band alignments of 2D/3D heterostructures can be regulated by varying the quantum-well thickness of 2D perovskites. Moreover, decreasing the 2D component ratio in 2D/3D heterostructures can be favorable to form type-I band alignment, whereas a large component ratio of 2D perovskites tends to form type-II band alignment. We can improve the amount of charge transfer at the 2D/3D perovskite interfaces and the light absorption of 2D perovskites by increasing quantum-well thickness. These present findings can provide a clear designing principle for achieving 3D/2D perovskite lateral heterostructures with tunable optoelectronic properties.
Collapse
Affiliation(s)
- Mengjia Feng
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Lingkun Kong
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Jinlian Chen
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Huifang Ma
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Chenyang Zha
- Institute of Applied Physics and Materials Engineering, Zhuhai UM Science & Technology Research Institute, University of Macau, Taipa 999078, Macau SAR, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies) and Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Chai Y, Wu L, Chen Y, Zhang G, Guo X, Wang D, Dong J, Huang H, Zhao L, Sun B. Tuning Hole Transport Properties and Perovskite Crystallization via Pyridine-Based Molecules for Quasi-2D Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311569. [PMID: 38312092 DOI: 10.1002/smll.202311569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 02/06/2024]
Abstract
Quasi-2D perovskites show great potential as photovoltaic devices with superior stability, but the power conversion efficiency (PCE) is limited by poor carrier transport. Here, it is simultaneously affected the hole transport layer (HTL) and the perovskite layer by incorporating pyridine-based materials into poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) to address the key problem above in 2D perovskites. With this approach, the enhanced optoelectronic performance of the novel PEDOT:PSS is due to electron transfer between the additives and PEDOT or PSS, as well as a dissociation between PEDOT and PSS based on experimental and theoretical studies, which facilitates the charge extraction and transfer. Concurrently, in-situ X-ray scattering studies reveal that the introduction of pyridine-based molecules alters the transformation process of the perovskite intermediate phase, which leads to a preferred orientation and ordered distribution caused by the Pb─N chemical bridge, achieving efficient charge transport. As a result, the pyridine-treated devices achieve an increased short-circuit current density (Jsc) and PCE of over 17%.
Collapse
Affiliation(s)
- Yuru Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liyuan Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Chen
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Guikai Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xihong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinquan Dong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lina Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoyun Sun
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Dong X, Li X, Wang X, Zhao Y, Song W, Wang F, Xu S, Miao Z, Wu Z. Improve the Charge Carrier Transporting in Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313056. [PMID: 38315828 DOI: 10.1002/adma.202313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Conventional 3D organic-inorganic halide perovskite materials have shown substantial potential in the field of optoelectronics, enabling the power conversation efficiency of solar cells beyond 26%. A key challenge limiting the further commercial application of 3D perovskite solar cells is their inherent instability over outer oxygen, humidity, light, and heat. By contrast, 2D Ruddlesden-Popper (2DRP) perovskites with bulky organic cations can effectively stabilize the inorganic slabs, yielding excellent environmental stability. However, the efficiencies of 2DRP perovskite solar cells are much lower than those of the 3D counterparts due to poor charge carrier transporting property of insulating bulky organic cations. Their inner structural, dielectric, optical, and excitonic properties remain to be primarily studied. In this review, the main reasons for the low efficiency of 2DRP perovskite solar cells are first analyzed. Next, a detailed description of various strategies for improving the charge carrier transporting of 2DRP perovskites is provided, such as bandgap regulation, perovskite crystal phase orientation and distribution, energy level matching, interfacial modification, etc. Finally, a summary is given, and the possible future research directions and methods to achieve high-efficiency and stable 2DRP perovskite solar cells are rationalized.
Collapse
Affiliation(s)
- Xue Dong
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Xin Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaobo Wang
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yuzhen Zhao
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Wenqi Song
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Fangmin Wang
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Shudong Xu
- Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, Technological Institute of Materials & Energy Science (TIMES), Xijing University, Xi'an, 710123, China
| | - Zongcheng Miao
- School of Artificial Intelligence Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhongbin Wu
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
7
|
Wu XG, Sun S, Song T, Zhang X, Wang C, Yang Y, Wang S, Zhong H. Revealing the vertical structure of in-situ fabricated perovskite nanocrystals films toward efficient pure red light-emitting diodes. FUNDAMENTAL RESEARCH 2024; 4:362-368. [PMID: 38933501 PMCID: PMC11197484 DOI: 10.1016/j.fmre.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022] Open
Abstract
The development of efficient perovskite light-emitting diodes (PeLEDs) relies strongly on the fabrication of perovskite films with rationally designed structures (grain size, composition, surface, etc.). Therefore, an understanding of structure-performance relationships is of vital importance for developing high-performance perovskite devices, particularly for devices with in-situ fabricated perovskite nanocrystal films. In this study, we reveal the vertical structure of an in-situ fabricated quasi-two-dimensional perovskite film. By combining time-of-flight secondary ion mass spectrometry, energy dispersive spectroscopy, grazing incidence wide-angle X-ray scattering (GIWAXS), and low-temperature photoluminescence spectra, we illustrate that the resulting in-situ fabricated DPPA2Csn-1Pbn(Br0.3I0.7)3n+1 (DPPA+: 3,3-diphenylpropylammonium) film has a gradient structure with a very thin layer of ligands on the surface, predominantly small-n domains at the top, and predominantly large-n domains at the bottom owing to the solubility difference of the precursors. In addition, GIWAXS measurements show that the domain of n = 2 on the top layer has an ordered in-plane alignment. Based on the understanding of the film structure, we developed an in-situ fabrication process with ligand exchange to achieve efficient pure red PeLEDs at 638 nm with an average external quantum efficiency (EQE) of 7.4%. The optimized device had a maximum luminance of 623 cd/m2 with a peak EQE of 9.7%.
Collapse
Affiliation(s)
- Xian-gang Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shipei Sun
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tinglu Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chenhui Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shuangpeng Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau 999078, China
| | - Haizheng Zhong
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Li Z, Lin Y, Gu H, Zhang N, Wang B, Cai H, Liao J, Yu D, Chen Y, Fang G, Liang C, Yang S, Xing G. Large-n quasi-phase-pure two-dimensional halide perovskite: A toolbox from materials to devices. Sci Bull (Beijing) 2024; 69:382-418. [PMID: 38105163 DOI: 10.1016/j.scib.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Despite their excellent environmental stability, low defect density, and high carrier mobility, large-n quasi-two-dimensional halide perovskites (quasi-2DHPs) feature a limited application scope because of the formation of self-assembled multiple quantum wells (QWs) due to the similar thermal stabilities of large-n phases. However, large-n quasi-phase-pure 2DHPs (quasi-PP-2DHPs) can solve this problem perfectly. This review discusses the structures, formation mechanisms, and photoelectronic and physical properties of quasi-PP-2DHPs, summarises the corresponding single crystals, thin films, and heterojunction preparation methods, and presents the related advances. Moreover, we focus on applications of large-n quasi-PP-2DHPs in solar cells, photodetectors, lasers, light-emitting diodes, and field-effect transistors, discuss the challenges and prospects of these emerging photoelectronic materials, and review the potential technological developments in this area.
Collapse
Affiliation(s)
- Zijia Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuexin Lin
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Nan Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hairui Cai
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Dejian Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China
| | - Yiwang Chen
- National Engineering Research Center for Carbohydrate Synthesis, Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| | - Guojia Fang
- Key Laboratory of Artificial Micro/Nano Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Chao Liang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shengchun Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, China.
| |
Collapse
|
9
|
Forde A, Tretiak S, Neukirch AJ. Dielectric Screening and Charge-Transfer in 2D Lead-Halide Perovskites for Reduced Exciton Binding Energies. NANO LETTERS 2023; 23:11586-11592. [PMID: 38065566 PMCID: PMC10755747 DOI: 10.1021/acs.nanolett.3c03320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 12/28/2023]
Abstract
Layered lead-halide perovskites have shown tremendous success as an active material for optoelectronics. This is attributed to the electronic structure of the inorganic sublattice and large exciton binding energies due to quantum and dielectric confinement. Expanding functionalities for applications that depend on free-carrier generation requires new material design routes to decrease the binding energy. Here we use electronic structure methods with model Bethe-Salpeter equation (BSE) to examine the contributions of the dielectric screening and charge-transfer excited-states to the exciton binding energy of phenylethylammonium (PEA2PbBr4) and naphthlethylammonium (NEA2PbBr4) lead-bromide perovskites. Our model BSE calculations show that NEA introduces hole acceptor states which impose charge-transfer character on the exciton along with larger dielectric screening. This substantially decreases the exciton binding compared to PEA. This result suggests the use of organic cations with high dielectric screening and hole acceptor states as a viable strategy for reducing exciton binding energies in two-dimensional halide perovskites.
Collapse
Affiliation(s)
- Aaron Forde
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center
for Nonlinear Studies, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center
for Integrated Nanotechnologies, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Amanda J. Neukirch
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
10
|
Fang Z, Shang MH, Zheng Y, Sun Q, Hou X, Yang W. Built-in Electric Field in Quasi-2D CsPbI 3 Perovskites Using High-Polarized Zwitterionic Spacer for Enhanced Charge Separation/Transport. J Phys Chem Lett 2023; 14:7331-7339. [PMID: 37561067 DOI: 10.1021/acs.jpclett.3c01894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Two-dimensional (2D) halide perovskites are promising candidates for the fabrication of stable and high-efficiency solar cells. However, the low power conversion efficiency (PCE) of cell devices using 2D perovskites is attributed to reduced charge transport caused by poor organic barrier conductivity. In this study, we propose the use of a high-polarized organic zwitterionic spacer, p-aminobenzoic acid (PABA), to construct novel quasi-2D perovskite structures with enhanced self-driven charge separation and transfer. The NH3+ and COO- groups in PABA generate an aligned electric field, promoting carrier separation and aggregation on the opposite edges of the inorganic layer. This enables efficient in-plane transportation along the inorganic layer. Additionally, PABA intercalated quasi-2D perovskite exhibits improved stability compared with counterparts with diamine cation spacers due to the strong interaction between -COO- and inorganic layers. Our findings suggest that high-polarized organic zwitterionic spacers, with NH3+ and COO- functionality, hold promise for stable and efficient quasi-2D perovskite solar cells.
Collapse
Affiliation(s)
- Zhi Fang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology,Ningbo City,315211, P. R. China
- Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Ming-Hui Shang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology,Ningbo City,315211, P. R. China
- Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Yapeng Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology,Ningbo City,315211, P. R. China
- Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qian Sun
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology,Ningbo City,315211, P. R. China
- Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xinmei Hou
- Innovation Research Institute for Carbon Neutrality, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology,Ningbo City,315211, P. R. China
| |
Collapse
|
11
|
Metcalf I, Sidhik S, Zhang H, Agrawal A, Persaud J, Hou J, Even J, Mohite AD. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem Rev 2023; 123:9565-9652. [PMID: 37428563 DOI: 10.1021/acs.chemrev.3c00214] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Three-dimensional (3D) organic-inorganic lead halide perovskites have emerged in the past few years as a promising material for low-cost, high-efficiency optoelectronic devices. Spurred by this recent interest, several subclasses of halide perovskites such as two-dimensional (2D) halide perovskites have begun to play a significant role in advancing the fundamental understanding of the structural, chemical, and physical properties of halide perovskites, which are technologically relevant. While the chemistry of these 2D materials is similar to that of the 3D halide perovskites, their layered structure with a hybrid organic-inorganic interface induces new emergent properties that can significantly or sometimes subtly be important. Synergistic properties can be realized in systems that combine different materials exhibiting different dimensionalities by exploiting their intrinsic compatibility. In many cases, the weaknesses of each material can be alleviated in heteroarchitectures. For example, 3D-2D halide perovskites can demonstrate novel behavior that neither material would be capable of separately. This review describes how the structural differences between 3D halide perovskites and 2D halide perovskites give rise to their disparate materials properties, discusses strategies for realizing mixed-dimensional systems of various architectures through solution-processing techniques, and presents a comprehensive outlook for the use of 3D-2D systems in solar cells. Finally, we investigate applications of 3D-2D systems beyond photovoltaics and offer our perspective on mixed-dimensional perovskite systems as semiconductor materials with unrivaled tunability, efficiency, and technologically relevant durability.
Collapse
Affiliation(s)
- Isaac Metcalf
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Siraj Sidhik
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Ayush Agrawal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jessica Persaud
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Jacky Even
- Université de Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 35708 Rennes, France
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Ma K, Sun J, Atapattu HR, Larson BW, Yang H, Sun D, Chen K, Wang K, Lee Y, Tang Y, Bhoopalam A, Huang L, Graham KR, Mei J, Dou L. Holistic energy landscape management in 2D/3D heterojunction via molecular engineering for efficient perovskite solar cells. SCIENCE ADVANCES 2023; 9:eadg0032. [PMID: 37285424 DOI: 10.1126/sciadv.adg0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 05/01/2023] [Indexed: 06/09/2023]
Abstract
Constructing two-dimensional (2D) perovskite atop of 3D with energy landscape management is still a challenge in perovskite photovoltaics. Here, we report a strategy through designing a series of π-conjugated organic cations to construct stable 2D perovskites and to realize delicate energy level tunability at 2D/3D heterojunctions. As a result, the hole transfer energy barriers can be reduced both at heterojunctions and within 2D structures, and the preferable work function shift reduces charge accumulation at interface. Leveraging these insights and also benefitted from the superior interface contact between conjugated cations and poly(triarylamine) (PTAA) hole transporting layer, a solar cell with power conversion efficiency of 24.6% has been achieved, which is the highest among PTAA-based n-i-p devices to the best of our knowledge. The devices exhibit greatly enhanced stability and reproducibility. This approach is generic to several hole transporting materials, offering opportunities to realize high efficiency without using the unstable Spiro-OMeTAD.
Collapse
Affiliation(s)
- Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jiaonan Sun
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Harindi R Atapattu
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Hanjun Yang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Dewei Sun
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yoonho Lee
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yuanhao Tang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Anika Bhoopalam
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Libai Huang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
13
|
Darman P, Yaghoobi A, Darbari S. Pinhole-free 2D Ruddlesden-Popper perovskite layer with close packed large crystalline grains, suitable for optoelectronic applications. Sci Rep 2023; 13:8374. [PMID: 37225784 DOI: 10.1038/s41598-023-35546-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
Here, we achieved pinhole-free 2D Ruddlesden-Popper Perovskite (RPP) BA2PbI4 layers with close packed crystalline grains with dimension of about 30 × 30 µm2, which have been demonstrated to be favorable for optoelectronic applications, such as fast response RPP-based metal/semiconductor/metal photodetectors. We explored affecting parameters in hot casting of BA2PbI4 layers, and proved that oxygen plasma treatment prior to hot casting plays a significant role to achieve high quality close packed polycrystalline RPP layers at lower hot cast temperatures. Moreover, we demonstrate that crystal growth of 2D BA2PbI4 can be dominantly controlled by the rate of solvent evaporation through substrate temperature or rotational speed, while molarity of the prepared RPP/DMF precursor is the dominant factor that determines the RPP layer thickness, and can affect the spectral response of the realized photodetector. Benefiting from the high light absorption and inherent chemical stability of 2D RPP layers, we achieved high responsivity and stability, and fast response photodetection from perovskite active layer. We achieved a fast photoresponse with rise and fall times of 189 µs and 300 µs, and the maximum responsivity of 119 mA/W and detectivity of 2.15 × 108 Jones in response to illumination wavelength of 450 nm. The presented polycrystalline RPP-based photodetector benefits from a simple and low-cost fabrication process, suitable for large area production on glass substrate, a good stability and responsivity, and a promising fast photoresponse, even around that of exfoliated single crystal RPP-based counterparts. However, it is well known that exfoliation methods suffer from poor repeatability and scalability, which make them incompatible with mass production and large area applications.
Collapse
Affiliation(s)
- Parsa Darman
- Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Amin Yaghoobi
- Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sara Darbari
- Nano-Sensors and Detectors Lab., and Nano Plasmo-Photonic Research Group, Faculty of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
14
|
Palei S, Murali G, Kim CH, In I, Lee SY, Park SJ. A Review on Interface Engineering of MXenes for Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:123. [PMID: 37160615 PMCID: PMC10169986 DOI: 10.1007/s40820-023-01083-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/21/2023] [Indexed: 05/11/2023]
Abstract
With an excellent power conversion efficiency of 25.7%, closer to the Shockley-Queisser limit, perovskite solar cells (PSCs) have become a strong candidate for a next-generation energy harvester. However, the lack of stability and reliability in PSCs remained challenging for commercialization. Strategies, such as interfacial and structural engineering, have a more critical influence on enhanced performance. MXenes, two-dimensional materials, have emerged as promising materials in solar cell applications due to their metallic electrical conductivity, high carrier mobility, excellent optical transparency, wide tunable work function, and superior mechanical properties. Owing to different choices of transition elements and surface-terminating functional groups, MXenes possess the feature of tuning the work function, which is an essential metric for band energy alignment between the absorber layer and the charge transport layers for charge carrier extraction and collection in PSCs. Furthermore, adopting MXenes to their respective components helps reduce the interfacial recombination resistance and provides smooth charge transfer paths, leading to enhanced conductivity and operational stability of PSCs. This review paper aims to provide an overview of the applications of MXenes as components, classified according to their roles as additives (into the perovskite absorber layer, charge transport layers, and electrodes) and themselves alone or as interfacial layers, and their significant importance in PSCs in terms of device performance and stability. Lastly, we discuss the present research status and future directions toward its use in PSCs.
Collapse
Affiliation(s)
- Srikanta Palei
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - G Murali
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 Four), Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea
| | - Choong-Hee Kim
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea
| | - Insik In
- Department of Polymer Science and Engineering, Department of IT-Energy Convergence (BK21 Four), Chemical Industry Institute, Korea National University of Transportation, Chungju, 27469, South Korea.
| | - Seul-Yi Lee
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| | - Soo-Jin Park
- Department of Chemistry, Inha University, 100 Inharo, Incheon, 22212, South Korea.
| |
Collapse
|
15
|
Peng H, Li D, Li Z, Xing Z, Hu X, Hu T, Chen Y. Ionic Liquid Assisted Imprint for Efficient and Stable Quasi-2D Perovskite Solar Cells with Controlled Phase Distribution. NANO-MICRO LETTERS 2023; 15:91. [PMID: 37029307 PMCID: PMC10082145 DOI: 10.1007/s40820-023-01076-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Although two-dimensional perovskite devices are highly stable, they also lead to a number of challenges. For instance, the introduction of large organic amines makes crystallization process complicated, causing problems such as generally small grain size and blocked charge transfer. In this work, imprint assisted with methylamine acetate were used to improve the morphology of the film, optimize the internal phase distribution, and enhance the charge transfer of the perovskite film. Specifically, imprint promoted the dispersion of spacer cations in the recrystallization process with the assistance of methylamine acetate, thus inhibited the formation of low-n phase induced by the aggregation of spacer cations and facilitated the formation of 3D-like phase. In this case, the corresponding quasi-2D perovskite solar cells delivered improved efficiency and exhibited superior stability. Our work provides an effective strategy to obtain uniform phase distribution for quasi-2D perovskite.
Collapse
Affiliation(s)
- Haibin Peng
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China
| | - Dengxue Li
- College of Chemistry and Chemical Engineering , Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China
| | - Zongcai Li
- College of Chemistry and Chemical Engineering , Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China
| | - Zhi Xing
- College of Chemistry and Chemical Engineering , Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China
- National Engineering Research Center for Carbohydrate Synthesis/Key, Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, People's Republic of China
| | - Xiaotian Hu
- College of Chemistry and Chemical Engineering , Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, People's Republic of China
| | - Ting Hu
- Department of Polymer Materials and Engineering, School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, People's Republic of China.
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering , Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, People's Republic of China.
- National Engineering Research Center for Carbohydrate Synthesis/Key, Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, People's Republic of China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, People's Republic of China.
| |
Collapse
|
16
|
Tsai H, Ghosh D, Kinigstein E, Dryzhakov B, Driscoll H, Owczarek M, Hu B, Zhang X, Tretiak S, Nie W. Light-Induced Structural Dynamics and Charge Transport in Layered Halide Perovskite Thin Films. NANO LETTERS 2023; 23:429-436. [PMID: 36603204 DOI: 10.1021/acs.nanolett.2c03403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The dynamic nature of the metal halide perovskite lattice upon photoexcitation plays a vital role in their properties. Here we report an observation of light-induced structure dynamics in quasi-2D Ruddlesden-Popper phase perovskite thin films and its impact on the carrier transport properties. By a time-resolved X-ray scattering technique, we observe a rapid lattice expansion upon photoexcitation, followed by a slow relaxation over the course of 100 ns in the dark. Theoretical modeling suggests that the expansion originates from the lattice's thermal fluctuations caused by photon energy deposition. Power dependent optical spectroscopy and photoconductivity indicate that high laser powers triggered a strong local structural disorder, which increased the charge dissociation activation energy that results in localized transport. Our study investigates the impact of laser energy deposition on the lattices and the subsequent carrier transport properties, that are relevant to device operations.
Collapse
Affiliation(s)
- Hsinhan Tsai
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California94720, United States
| | - Dibyajyoti Ghosh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Eli Kinigstein
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Bogdan Dryzhakov
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Honora Driscoll
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Magdalena Owczarek
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Bin Hu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Sergei Tretiak
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Wanyi Nie
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
17
|
Pressure driven rotational isomerism in 2D hybrid perovskites. Nat Commun 2023; 14:411. [PMID: 36697404 PMCID: PMC9877019 DOI: 10.1038/s41467-023-36032-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Multilayers consisting of alternating soft and hard layers offer enhanced toughness compared to all-hard structures. However, shear instability usually exists in physically sputtered multilayers because of deformation incompatibility among hard and soft layers. Here, we demonstrate that 2D hybrid organic-inorganic perovskites (HOIP) provide an interesting platform to study the stress-strain behavior of hard and soft layers undulating with molecular scale periodicity. We investigate the phonon vibrations and photoluminescence properties of Ruddlesden-Popper perovskites (RPPs) under compression using a diamond anvil cell. The organic spacer due to C4 alkyl chain in RPP buffers compressive stress by tilting (n = 1 RPP) or step-wise rotational isomerism (n = 2 RPP) during compression, where n is the number of inorganic layers. By examining the pressure threshold of the elastic recovery regime across n = 1-4 RPPs, we obtained molecular insights into the relationship between structure and deformation resistance in hybrid organic-inorganic perovskites.
Collapse
|
18
|
Han C, Wang Y, Yuan J, Sun J, Zhang X, Cazorla C, Wu X, Wu Z, Shi J, Guo J, Huang H, Hu L, Liu X, Woo HY, Yuan J, Ma W. Tailoring Phase Alignment and Interfaces via Polyelectrolyte Anchoring Enables Large‐Area 2D Perovskite Solar Cells. Angew Chem Int Ed Engl 2022; 61:e202205111. [DOI: 10.1002/anie.202205111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chenxu Han
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Yao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Jiabei Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Jianguo Sun
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Claudio Cazorla
- Departament de Física Universitat Politècnica de Catalunya Campus Nord B4–B5 08034 Barcelona Spain
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Ziang Wu
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Junwei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Hehe Huang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Long Hu
- School of Engineering Macquarie University Sydney New South Wales, 2109 Australia
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
- Dalian National Laboratory for Clean Energy Dalian 116023 China
| | - Han Young Woo
- Department of Chemistry Korea University Seoul 02841 Republic of Korea
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University 199 Ren-Ai Road, Suzhou Industrial Park Suzhou Jiangsu 215123 P. R. China
| |
Collapse
|
19
|
Perovskite superlattices with efficient carrier dynamics. Nature 2022; 608:317-323. [PMID: 35948711 DOI: 10.1038/s41586-022-04961-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022]
Abstract
Compared with their three-dimensional (3D) counterparts, low-dimensional metal halide perovskites (2D and quasi-2D; B2An-1MnX3n+1, such as B = R-NH3+, A = HC(NH2)2+, Cs+; M = Pb2+, Sn2+; X = Cl-, Br-, I-) with periodic inorganic-organic structures have shown promising stability and hysteresis-free electrical performance1-6. However, their unique multiple-quantum-well structure limits the device efficiencies because of the grain boundaries and randomly oriented quantum wells in polycrystals7. In single crystals, the carrier transport through the thickness direction is hindered by the layered insulating organic spacers8. Furthermore, the strong quantum confinement from the organic spacers limits the generation and transport of free carriers9,10. Also, lead-free metal halide perovskites have been developed but their device performance is limited by their low crystallinity and structural instability11. Here we report a low-dimensional metal halide perovskite BA2MAn-1SnnI3n+1 (BA, butylammonium; MA, methylammonium; n = 1, 3, 5) superlattice by chemical epitaxy. The inorganic slabs are aligned vertical to the substrate and interconnected in a criss-cross 2D network parallel to the substrate, leading to efficient carrier transport in three dimensions. A lattice-mismatched substrate compresses the organic spacers, which weakens the quantum confinement. The performance of a superlattice solar cell has been certified under the quasi-steady state, showing a stable 12.36% photoelectric conversion efficiency. Moreover, an intraband exciton relaxation process may have yielded an unusually high open-circuit voltage (VOC).
Collapse
|
20
|
Han C, Wang Y, Yuan J, Sun J, Zhang X, Cazorla C, Wu X, Wu Z, Shi J, Guo J, Huang H, Hu L, Liu X, Woo HY, Yuan J, Ma W. Tailoring Phase Alignment and Interfaces via Polyelectrolytes Anchoring Enables Large‐area 2D Perovskite Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenxu Han
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Yao Wang
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Jiabei Yuan
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Jianguo Sun
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Xuliang Zhang
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Claudio Cazorla
- Universitat Politecnica de Catalunya Departament de Física SPAIN
| | - Xianxin Wu
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Ziang Wu
- Korea University Department of Chemistry KOREA, REPUBLIC OF
| | - Junwei Shi
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Junjun Guo
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Hehe Huang
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| | - Long Hu
- Macquarie University School of Engineering AUSTRALIA
| | - Xinfeng Liu
- Chinese Academy of Sciences National Center for Nanoscience and Technology CHINA
| | - Han Young Woo
- Korea University Department of Chemistry KOREA, REPUBLIC OF
| | - Jianyu Yuan
- Soochow University Institute of Functional Nano & Soft Materials (FUNSOM) 199 ren-ai road, suzhou industrial park 215123 suzhou CHINA
| | - Wanli Ma
- Soochow University Institute of Functional Nano & Soft Materials 199 Ren-ai Rd 215123 Suzhou CHINA
| |
Collapse
|
21
|
Han XB, Zu HY, Chai CY, Liang BD, Fan CC, Zhang W. cis/trans-Isomeric Cation Tuning Photoluminescence and Photodetection in 2D Perovskites. J Phys Chem Lett 2022; 13:4119-4124. [PMID: 35503750 DOI: 10.1021/acs.jpclett.2c00714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cationic components in the organic-inorganic hybrid perovskites (OIHPs) play an important role in the arrangement and tilting of the inorganic part that is responsible for semiconducting, luminescent, and photoelectronic properties. Herein, we report two 2D OIHP compounds, (cis-4ACHO)2(H3OBr)PbBr4 (1) and (trans-4ACHO)2(H3OCl)PbBr4 (2) (4ACHO = 4-aminocyclohexanol), showing both photoluminescence (PL) and photodetection (PD) that are tuned by the cis- and trans configurational isomerism of 4ACHO. Crystals of 1 and 2 exhibit similar packing structures but with different crystallographic symmetries. Compound 2 displays a broadband white-light emission with a higher PL efficiency (6.6%) than 1 (2.1%) that emits narrowband blue light while the PD property of 1 is better than 2 with a higher on/off ratio under the same conditions. The PL and PD of the two compounds show a seesaw relationship, which provides a new perspective for understanding the PL and PD properties in OIHPs.
Collapse
Affiliation(s)
- Xiang-Bin Han
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Hui-Yuan Zu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chao-Yang Chai
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Bei-Dou Liang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
22
|
Tan S, Huang T, Yavuz I, Wang R, Yoon TW, Xu M, Xing Q, Park K, Lee DK, Chen CH, Zheng R, Yoon T, Zhao Y, Wang HC, Meng D, Xue J, Song YJ, Pan X, Park NG, Lee JW, Yang Y. Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 2022; 605:268-273. [PMID: 35292753 DOI: 10.1038/s41586-022-04604-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Optoelectronic devices consist of heterointerfaces formed between dissimilar semiconducting materials. The relative energy-level alignment between contacting semiconductors determinately affects the heterointerface charge injection and extraction dynamics. For perovskite solar cells (PSCs), the heterointerface between the top perovskite surface and a charge-transporting material is often treated for defect passivation1-4 to improve the PSC stability and performance. However, such surface treatments can also affect the heterointerface energetics1. Here we show that surface treatments may induce a negative work function shift (that is, more n-type), which activates halide migration to aggravate PSC instability. Therefore, despite the beneficial effects of surface passivation, this detrimental side effect limits the maximum stability improvement attainable for PSCs treated in this way. This trade-off between the beneficial and detrimental effects should guide further work on improving PSC stability via surface treatments.
Collapse
Affiliation(s)
- Shaun Tan
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Tianyi Huang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Ilhan Yavuz
- Department of Physics, Marmara University, Istanbul, Turkey
| | - Rui Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA. .,School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Tae Woong Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mingjie Xu
- Irvine Materials Research Institute, University of California Irvine, Irvine, CA, USA
| | - Qiyu Xing
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Keonwoo Park
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Do-Kyoung Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chung-Hao Chen
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.,Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ran Zheng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Taegeun Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Hao-Cheng Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.,Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingjing Xue
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Young Jae Song
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon, Republic of Korea.,Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Xiaoqing Pan
- Irvine Materials Research Institute, University of California Irvine, Irvine, CA, USA.,Department of Materials Science and Engineering and Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
| | - Nam-Gyu Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,SKKU Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin-Wook Lee
- SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nanoengineering, Sungkyunkwan University, Suwon, Republic of Korea. .,SKKU Institute of Energy Science & Technology (SIEST), Sungkyunkwan University, Suwon, Republic of Korea.
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Yan L, Ma J, Li P, Zang S, Han L, Zhang Y, Song Y. Charge-Carrier Transport in Quasi-2D Ruddlesden-Popper Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106822. [PMID: 34676930 DOI: 10.1002/adma.202106822] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
In recent years, 2D Ruddlesden-Popper (2DRP) perovskite materials have been explored as emerging semiconductor materials in solar cells owing to their excellent stability and structural diversity. Although 2DRP perovskites have achieved photovoltaic efficiencies exceeding 19%, their widespread use is hindered by their inferior charge-carrier transport properties in the presence of diverse organic spacer cations, compared to that of traditional 3D perovskites. Hence, a systematic understanding of the carrier transport mechanism in 2D perovskites is critical for the development of high-performance 2D perovskite solar cells (PSCs). Here, the recent advances in the carrier behavior of 2DRP PSCs are summarized, and guidelines for successfully enhancing carrier transport are provided. First, the composition and crystal structure of 2DRP perovskite materials that affect carrier transport are discussed. Then, the features of 2DRP perovskite films (phase separation, grain orientation, crystallinity kinetics, etc.), which are closely related to carrier transport, are evaluated. Next, the principal direction of carrier transport guiding the selection of the transport layer is revealed. Finally, an outlook is proposed and strategies for enhancing carrier transport in high-performance PSCs are rationalized.
Collapse
Affiliation(s)
- Linfang Yan
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Junjie Ma
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengwei Li
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuangquan Zang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Liyuan Han
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yiqiang Zhang
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing, 100190, P. R. China
| |
Collapse
|
24
|
Zhang Z, Jiang J, Xiao Liu X, Wang X, Wang L, Qiu Y, Zhang Z, Zheng Y, Wu X, Liang J, Tian C, Chen CC. Surface-Anchored Acetylcholine Regulates Band-Edge States and Suppresses Ion Migration in a 21%-Efficient Quadruple-Cation Perovskite Solar Cell. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105184. [PMID: 34851037 DOI: 10.1002/smll.202105184] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Although incorporating multiple halogen (bromine) anions and alkali (rubidium) cations can improve the open-circuit voltage (Voc ) of perovskite solar cells (PSCs), severe voltage loss and poor stability have remained pivotal limitations to their further commercialization. In this study, acetylcholine (ACh+ ) is anchored to the surface of a quadruple-cation perovskite to provide additional electron states near the valence band maximum of the perovskite surface, thereby enhancing the band alignment and minimizing the Voc loss significantly. Moreover, the quaternary ammonium and carbonyl units of ACh+ passivate the antisite and vacancy defects of the organic/inorganic hybrid perovskite. Because of strong interactions between ACh+ and the perovskite, the formation of lead clusters and the migration of halogen anions in the perovskite film are suppressed. As a result, the device prepared with ACh+ post-treatment delivers a power conversion efficiency (PCE) (21.56%) and a value of Voc (1.21 V) that are much higher than those of the pristine device, along with a twofold decrease in the hysteresis index. After storage for 720 h in humid air, the device subjected to ACh+ treatment maintained 70% of its initial PCE. Thus, post-treatment with ACh+ appears to be a useful strategy for preparing efficient and stable PSCs.
Collapse
Affiliation(s)
- Zhiang Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jikun Jiang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao Xiao Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xin Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Luyao Wang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuankun Qiu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhanfei Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yiting Zheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xueyun Wu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jianghu Liang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Congcong Tian
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chun-Chao Chen
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
Zheng H, Zhang T, Wang Y, Li C, Su Z, Wang Z, Chen H, Yuan S, Gu Y, Ji L, Li J, Li S. Zwitterion-Assisted Crystal Growth of 2D Perovskites with Unfavorable Phase Suppression for High-Performance Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:814-825. [PMID: 34963289 DOI: 10.1021/acsami.1c19263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite two-dimensional (2D) Ruddlesden-Popper-phase layered perovskites (RPLPs) exhibiting excellent environmental stability, most solar cells based on 2D RPLP films are fabricated in a controlled inert atmosphere. Meanwhile, the poor charge transport of 2D RPLP films owing to the unfavorable phase arrangement and defects limits the efficiency of 2D RPLP solar cells. Here, we fabricate high-efficiency 2D RPLP solar cells in ambient air assisted by a zwitterion (ZW) additive. We show that the ZW additive suppresses the formation of the bottom 2D phases (n ≤ 2) and the top 3D-like phases in 2D RPLP films. These 2D phases usually grow parallel to the substrate and act as trap sites that inhibit charge transport in the vertical direction. The 3D-like phases, on the other hand, aggravate the long-term stability due to the intrinsic instability of MA+ cations. With improved phase distribution, crystal orientation, and reduced trap states in 2D RPLP films, efficient charge transport is obtained. Finally, a record-high open-circuit voltage (Voc) of 1.19 V and a power conversion efficiency of 17.04% with an enhanced stability are achieved for (BA0.9PEA0.1)2MA3Pb4I13-based (n = 4) solar cells fabricated under high humidity (∼65% RH).
Collapse
Affiliation(s)
- Hualin Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Ting Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Yafei Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Canzhou Li
- School of Information Science and Technology, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, China
| | - Ze Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Hao Chen
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Shihao Yuan
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Yiding Gu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Long Ji
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Jian Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
| | - Shibin Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, P. R. China
| |
Collapse
|
26
|
Li W, Sidhik S, Traore B, Asadpour R, Hou J, Zhang H, Fehr A, Essman J, Wang Y, Hoffman JM, Spanopoulos I, Crochet JJ, Tsai E, Strzalka J, Katan C, Alam MA, Kanatzidis MG, Even J, Blancon JC, Mohite AD. Light-activated interlayer contraction in two-dimensional perovskites for high-efficiency solar cells. NATURE NANOTECHNOLOGY 2022; 17:45-52. [PMID: 34811551 DOI: 10.1038/s41565-021-01010-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Understanding and tailoring the physical behaviour of halide perovskites under practical environments is critical for designing efficient and durable optoelectronic devices. Here, we report that continuous light illumination leads to >1% contraction in the out-of-plane direction in two-dimensional hybrid perovskites, which is reversible and strongly dependent on the specific superlattice packing. X-ray photoelectron spectroscopy measurements show that constant light illumination results in the accumulation of positive charges in the terminal iodine atoms, thereby enhancing the bonding character of inter-slab I-I interactions across the organic barrier and activating out-of-plane contraction. Correlated charge transport, structural and photovoltaic measurements confirm that the onset of the light-induced contraction is synchronized to a threefold increase in carrier mobility and conductivity, which is consistent with an increase in the electronic band dispersion predicted by first-principles calculations. Flux-dependent space-charge-limited current measurement reveals that light-induced interlayer contraction activates interlayer charge transport. The enhanced charge transport boosts the photovoltaic efficiency of two-dimensional perovskite solar cells up to 18.3% by increasing the device's fill factor and open-circuit voltage.
Collapse
Affiliation(s)
- Wenbin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, USA
| | - Siraj Sidhik
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Institut FOTON, University Rennes, INSA Rennes, CNRS, Rennes, France
| | - Boubacar Traore
- Institut FOTON, University Rennes, INSA Rennes, CNRS, Rennes, France
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) -UMR 6226, Rennes, France
| | - Reza Asadpour
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, USA
| | - Austin Fehr
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Joseph Essman
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Yafei Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Justin M Hoffman
- Department of Chemistry, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Ioannis Spanopoulos
- Department of Chemistry, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | | | - Esther Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Brookhaven, NY, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, USA
| | - Claudine Katan
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) -UMR 6226, Rennes, France
| | - Muhammad A Alam
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Mercouri G Kanatzidis
- Department of Chemistry, Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Jacky Even
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Applied Physics Program, Smalley-Curl Institute, Rice University, Houston, TX, USA.
| |
Collapse
|
27
|
Wang X, Zhao Y, Li B, Han X, Jin Z, Wang Y, Zhang Q, Rui Y. Interfacial Modification via a 1,4-Butanediamine-Based 2D Capping Layer for Perovskite Solar Cells with Enhanced Stability and Efficiency. ACS APPLIED MATERIALS & INTERFACES 2021; 14:22879-22888. [PMID: 34961306 DOI: 10.1021/acsami.1c21036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Organic-inorganic perovskites face the issues of being vulnerable to oxygen and moisture and the trap sites located at the surface and grain boundaries. Integration of two-dimensional (2D) perovskites as a capping layer is an effective route to enhance both photovoltaic efficiency and environmental stability of the three-dimensional (3D) underlayer. Here, we employ 1,4-butanediammonium diiodide (BDADI), which has a short chain length and diammonium cations, to construct a 3D/2D stacking perovskite solar cells (PSCs). The introduction of BDA2+ could passivate surface defects in 3D perovskites by forming 2D Dion-Jacobson (DJ) phase perovskites and effectively suppressing nonradiative recombination, thus resulting in a longer carrier lifetime. The DJ 2D capping layer also regulate the energy level arrangement, enabling a better charge extraction and transport process. In addition, the water-resistance ability of 3D perovskite gets improved because of the hydrophobic characteristic of 1,4-butanediammonium cations. Consequently, the 3D/2D stacking PSCs yield an energy conversion efficiency of 20.32% in company with the enhanced long-term stability.
Collapse
Affiliation(s)
- Xiaojie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yu Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Bin Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xuefei Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zuoming Jin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Yuanqiang Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yichuan Rui
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China
| |
Collapse
|
28
|
Ham A, Kim TS, Kang M, Cho H, Kang K. Strategies for chemical vapor deposition of two-dimensional organic-inorganic halide perovskites. iScience 2021; 24:103486. [PMID: 34927028 PMCID: PMC8649807 DOI: 10.1016/j.isci.2021.103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/06/2021] [Accepted: 11/19/2021] [Indexed: 11/08/2022] Open
Abstract
Two-dimensional (2D) organic-inorganic halide perovskites (OIHPs) with an alternating stacked structure of an organic layer and an inorganic layer draw significant attention for photovoltaics, multiple quantum-well, and passivation of three-dimensional perovskites. Although the low-cost and simple spin-coating process of these materials offers a vast platform to study fundamental properties and help them achieve rapid progress in electronics and optoelectronics, chemical vapor deposition (CVD) growth is also necessary for large-area, epitaxial, selective, and conformal growth. Here, one-step CVD strategies for 2D OIHP growth are proposed, and the growth trends depending on the precursor and substrate conditions are discussed. We report a CVD-grown nontoxic, lead-free 2D tin-OIHP flake to show the system offering a universal route to synthesize perovskite crystals based on arbitrary organic and inorganic components.
Collapse
Affiliation(s)
- Ayoung Ham
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Tae Soo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Minsoo Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Himchan Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Xu Z, Lu D, Dong X, Chen M, Fu Q, Liu Y. Highly Efficient and Stable Dion-Jacobson Perovskite Solar Cells Enabled by Extended π-Conjugation of Organic Spacer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105083. [PMID: 34655111 DOI: 10.1002/adma.202105083] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Indexed: 05/25/2023]
Abstract
2D Dion-Jacobson (DJ) perovskites have become an emerging photovoltaic material with excellent structure and environmental stability due to their lacking van der Waals gaps relative to 2D Ruddlesden-Popper perovskites. Here, a fused-thiophene-based spacer, namely TTDMAI, is successfully developed for 2D DJ perovskite solar cells. It is found that the DJ perovskite using TTDMA spacer with extended π-conjugation length exhibits high film quality, large crystal size and preferred crystal vertical orientation induced by the large crystal nuclei in precursor solution, resulting in lower trap density, reduced exciton binding energy and oriented charge transport. As a result, the optimized 2D DJ perovskite device based on TTDMA (nominal n = 4) delivers a champion PCE up to 18.82%. Importantly, the unencapsulated device based on TTDMA can sustain average 99% of their original efficiency after being stored in N2 for 4400 h (over 6 months). Moreover, light, thermal, environmental and operational stabilities are also significantly improved in comparison with their 3D counterparts.
Collapse
Affiliation(s)
- Zhiyuan Xu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Di Lu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiyue Dong
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Mingqian Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
30
|
Dessimoz M, Yoo SM, Kanda H, Igci C, Kim H, Nazeeruddin MK. Phase-Pure Quasi-2D Perovskite by Protonation of Neutral Amine. J Phys Chem Lett 2021; 12:11323-11329. [PMID: 34780190 DOI: 10.1021/acs.jpclett.1c03143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phase control of low-dimensional metal-halide perovskites (LDPs) greatly affects their optoelectronic properties, and phase-pure LDPs are desirable to achieve efficient perovskite optoelectronic devices such as solar cells and light-emitting diodes. Herein, we introduce a method to obtain phase-pure LDP by using a neutral amine, cyclohexylmethyl amine (CHMA). The incorporation of CHMA into a formamidinium lead bromide (FAPbBr3) precursor solution leads to the protonation of the amine that allows the phase transition of 3D FAPbBr3 to phase-pure quasi-2D perovskite (n = 2). For comparison, cyclohexylmethylammonium bromide (CHMABr), which is a conventional form of ammonium halide salt with the same organic moiety to the amine, is used, which resulted in a 2D perovskite (n = 1). The perovskite films fabricated by the two different methodologies are characterized. This study paves the way for further research on the realization of phase-pure perovskites and their relevant optoelectronic devices.
Collapse
Affiliation(s)
- Marc Dessimoz
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - So-Min Yoo
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hiroyuki Kanda
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Cansu Igci
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Hobeom Kim
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
31
|
Ajayakumar A, Muthu C, V Dev A, Pious JK, Vijayakumar C. Two-Dimensional Halide Perovskites: Approaches to Improve Optoelectronic Properties. Chem Asian J 2021; 17:e202101075. [PMID: 34738734 DOI: 10.1002/asia.202101075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/28/2021] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) halide perovskites (HPs) are in the spotlight of materials science research due to their excellent photonic and electronic properties suitable for functional device applications. However, the intrinsic instability of these materials stands as a hurdle in the way to their commercialization. Recently, two-dimensional (2D) HPs have emerged as an alternative to 3D perovskites, thanks to their excellent stability and tunable optoelectronic properties. Unlike 3D HPs, a library of 2D perovskites could be prepared by utilizing the unlimited number of organic cations since their formation is not within the boundary of the Goldschmidt tolerance factor. These materials have already proved their potential for applications such as solar cells, light-emitting diodes, transistors, photodetectors, photocatalysis, etc. However, poor charge carrier separation and transport efficiencies of 2D HPs are the bottlenecks resulting in inferior device performances compared to their 3D analogs. This minireview focuses on how to address these issues through the adoption of different strategies and improve the optoelectronic properties of 2D perovskites.
Collapse
Affiliation(s)
- Avija Ajayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chinnadurai Muthu
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Amarjith V Dev
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Johnpaul K Pious
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Chakkooth Vijayakumar
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
32
|
Vasileiadou ES, Kanatzidis MG. Structure‐Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Isr J Chem 2021. [DOI: 10.1002/ijch.202100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Wu G, Liang R, Zhang Z, Ge M, Xing G, Sun G. 2D Hybrid Halide Perovskites: Structure, Properties, and Applications in Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103514. [PMID: 34590421 DOI: 10.1002/smll.202103514] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/20/2021] [Indexed: 05/25/2023]
Abstract
2D metal-halide perovskites have attracted intense research interest due to superior long-term stability under ambient environments. Compared to their 3D analog, the alternate arrangement of organic and inorganic layers leads to forming a multilayer quantum well (MQW), which endows 2D perovskites with anisotropic optoelectronic properties. In addition, the spacer layer functions as a hydrophobic barrier to effectively prevent 2D perovskite films from ion migration and moisture penetrating, thus realizing outstanding stability. Recently, 2D perovskites have been widely developed with abundant species. The stunning photovoltaic performance with the coexistence of long-term stability and high-power conversion efficiency (PCE) has been realized in 2D perovskite solar cells (PSCs), which paves an avenue for commercialization of PSCs. This review begins with an introduction of crystal structure and crystallization kinetics to illustrate the unique layer characters in 2D perovskites. Then, electron structure, excitons, dielectric confinement, and intrinsic stability properties are discussed in detail. Next, the photovoltaic performance based on recent Ruddlesden-Popper (RP), Dion-Jacobson (DJ), and alternating cations in the interlayer (ACI) phase 2D-PSCs is comprehensively summarized. Finally, the confronting challenges and strategies toward structural design and optoelectronic studies of 2D perovskites are proposed to offer insight into the advanced underlying properties of this family of materials.
Collapse
Affiliation(s)
- Guangbao Wu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Rui Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Mingzheng Ge
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
34
|
E. Abd El-Samad A, S. Mostafa R, H. Zeenelabden H, M. Mabrouk M, Mourtada Elseman A, Gad N, El-Aasser M, M. Rashad M. Mixed 2D-3D Halide Perovskite Solar Cells. SOLAR CELLS - THEORY, MATERIALS AND RECENT ADVANCES 2021. [DOI: 10.5772/intechopen.97684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The 3D-perovskite halides have gained a considerable reputation versus their counterpart semiconductor materials since they achieved a remarkable high-power conversion efficiency of 25.2% within a decade. Perovskite solar cells also have some problems as lattice degradation and sensitivity against moisture, oxygen, and strong irradiation. The perovskite instability is the drawback in front of this emerging technology towards mass production and commercialization. 2D-perovskites, with the general formula A2Bn − 1MnX3n + 1, have been recently introduced to overcome some of the drawbacks of the stability of 3D-perovskites; however, this is at the expense of sacrificing a part of the power conversion efficiency. Mixed 2D/3D perovskites could solve this dilemma towards the way to high stability-efficiency perovskites. The research is expected to obtain highly stable and efficient mixed 2D/3D perovskite solar cells in the few coming years. This chapter reviews 2D-perovskites’ achieved progress, highlighting their properties, current trends, challenges, and future prospects.
Collapse
|
35
|
Min L, Tian W, Cao F, Guo J, Li L. 2D Ruddlesden-Popper Perovskite with Ordered Phase Distribution for High-Performance Self-Powered Photodetectors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101714. [PMID: 34302390 DOI: 10.1002/adma.202101714] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/04/2021] [Indexed: 06/13/2023]
Abstract
2D Ruddlesden-Popper perovskites exhibit great potential in optoelectronic devices for superior stability compared with their 3D counterparts. However, to achieve a high level of device performance, it is crucial but challenging to regulate the phase distribution of 2D perovskites to facilitate charge carrier transfer. Herein, using a solvent additive method (adding a small amount of dimethyl sulfoxide (DMSO) in N,N-dimethylformamide (DMF)) combined with a hot-casting process, the phase distribution of (PEA)2 MA3 Pb4 I13 (PEA+ = C6 H5 CH2 CH2 NH3 + , MA+ = CH3 NH3 + ) perovskite can be well controlled and the Fermi level of perovskites along the film thickness direction can achieve gradient distribution. The increased built-in potential, oriented crystal, and improved crystal quality jointly contribute to the high photoresponse of devices in the entire response spectrum range. The optimum device exhibits a characteristic detection peak at 570 nm with large responsivity/detectivity (0.44 A W-1 /3.38 × 1012 Jones), ultrafast response speed with a rise/fall time of 20.8/20.6 µs, and improved stability. This work suggests the possibility of manipulating the ordered phase distribution of 2D perovskites toward high-performance and stable optoelectronic conversion devices.
Collapse
Affiliation(s)
- Liangliang Min
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Wei Tian
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Fengren Cao
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Jun Guo
- Analysis and Testing Center, Soochow University, Suzhou, 215006, P. R. China
| | - Liang Li
- School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
36
|
Sidhik S, Li W, Samani MHK, Zhang H, Wang Y, Hoffman J, Fehr AK, Wong MS, Katan C, Even J, Marciel AB, Kanatzidis MG, Blancon JC, Mohite AD. Memory Seeds Enable High Structural Phase Purity in 2D Perovskite Films for High-Efficiency Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007176. [PMID: 34096115 DOI: 10.1002/adma.202007176] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/12/2021] [Indexed: 06/12/2023]
Abstract
2D perovskites are a class of halide perovskites offering a pathway for realizing efficient and durable optoelectronic devices. However, the broad chemical phase space and lack of understanding of film formation have led to quasi-2D perovskite films with polydispersity in perovskite layer thicknesses, which have hindered device performance and stability. Here, a simple and scalable approach is reported, termed as the "phase-selective method", to fabricate 2D perovskite thin films with homogenous layer thickness (phase purity). The phase-selective method involves the dissolution of single-crystalline powders with a homogeneous perovskite layer thickness in desired solvents to fabricate thin films. In situ characterizations reveal the presence of sub-micrometer-sized seeds in solution that preserve the memory of the dissolved single crystals and dictate the nucleation and growth of grains with an identical thickness of the perovskite layers in thin films. Photovoltaic devices with a p-i-n architecture are fabricated with such films, which yield an efficiency of 17.1% enabled by an open-circuit voltage of 1.20 V, while preserving 97.5% of their peak performance after 800 h under illumination without any external thermal management.
Collapse
Affiliation(s)
- Siraj Sidhik
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Wenbin Li
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Mohammad H K Samani
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Hao Zhang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Applied Physics Graduate Program, Smalley-Curl Institute, Rice University, Houston, TX, 77005, USA
| | - Yafei Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Justin Hoffman
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Austin K Fehr
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Claudine Katan
- Univ Rennes, ENSCR, INSA Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, Rennes, F-35000, France
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes, F-35000, France
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Mercouri G Kanatzidis
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jean-Christophe Blancon
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
37
|
Zhang Y, Wen J, Xu Z, Liu D, Yang T, Niu T, Luo T, Lu J, Fang J, Chang X, Jin S, Zhao K, Liu S(F. Effective Phase-Alignment for 2D Halide Perovskites Incorporating Symmetric Diammonium Ion for Photovoltaics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2001433. [PMID: 34032005 PMCID: PMC8327467 DOI: 10.1002/advs.202001433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/12/2020] [Indexed: 05/31/2023]
Abstract
New structural type of 2D AA'n -1 Mn X3 n +1 type halide perovskites stabilized by symmetric diammonium cations has attracted research attention recently due to the short interlayer distance and better charge-transport for high-performance solar cells (PSCs). However, the distribution control of quantum wells (QWs) and its influence on optoelectronic properties are largely underexplored. Here effective phase-alignment is reported through dynamical control of film formation to improve charge transfer between quantum wells (QWs) for 2D perovskite (BDA)(MA)n -1 Pbn I3 n +1 (BDA = 1,4-butanediamine, 〈n〉 = 4) film. The in situ optical spectra reveal a significantly prolonged crystallization window during the perovskite deposition via additive strategy. It is found that finer thickness gradient by n values in the direction orthogonal to the substrate leads to more efficient charge transport between QWs and suppressed charge recombination in the additive-treated film. As a result, a power conversion efficiency of 14.4% is achieved, which is not only 21% higher than the control one without additive treatment, but also one of the high efficiencies of the low-n (n ≤ 4) AA'n -1 Mn X3 n +1 PSCs. Furthermore, the bare device retains 92% of its initial PCE without any encapsulation after ambient exposure for 1200 h.
Collapse
Affiliation(s)
- Yalan Zhang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jialun Wen
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Dongle Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Tinghuan Yang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Tianqi Niu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Tao Luo
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Jing Lu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Junjie Fang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Xiaoming Chang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Shengye Jin
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of the Chinese Academy of SciencesBeijing100039China
| | - Kui Zhao
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
| | - Shengzhong (Frank) Liu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesShaanxi Engineering Lab for Advanced Energy TechnologySchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119China
- Dalian National Laboratory for Clean EnergyiChEMDalian Institute of Chemical PhysicsChinese Academy of SciencesDalian116023China
- University of the Chinese Academy of SciencesBeijing100039China
| |
Collapse
|
38
|
Bhattacharya S, Chandra GK, Predeep P. A Microstructural Analysis of 2D Halide Perovskites: Stability and Functionality. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.657948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent observations have demonstrated that the photoelectric conversion properties of perovskite materials are intimately related to the presence of superlattice structures and other unusual nanoscale features in them. The low-dimensional or mixed-dimensional halide perovskite families are found to be more efficient materials for device application than three-dimensional halide perovskites. The emergence of perovskite solar cells has revolutionized the solar cell industry because of their flexible architecture and rapidly increased efficiency. Tuning the dielectric constant and charge separation are the main objectives in designing a photovoltaic device that can be explored using the two-dimensional perovskite family. Thus, revisiting the fundamental properties of perovskite crystals could reveal further possibilities for recognizing these improvements toward device functionality. In this context, this review discusses the material properties of two-dimensional halide perovskites and related optoelectronic devices, aiming particularly for solar cell applications.
Collapse
|
39
|
Chen Z, Li Z, Hopper TR, Bakulin AA, Yip HL. Materials, photophysics and device engineering of perovskite light-emitting diodes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:046401. [PMID: 33730709 DOI: 10.1088/1361-6633/abefba] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.
Collapse
Affiliation(s)
- Ziming Chen
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou University City, Panyu District, Guangzhou 510006, People's Republic of China
| | - Zhenchao Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
| | - Thomas R Hopper
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, United Kingdom
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China
- Innovation Center of Printed Photovoltaics, South China Institute of Collaborative Innovation, Dongguan 523808, People's Republic of China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China
| |
Collapse
|
40
|
Liu P, Han N, Wang W, Ran R, Zhou W, Shao Z. High-Quality Ruddlesden-Popper Perovskite Film Formation for High-Performance Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002582. [PMID: 33511702 DOI: 10.1002/adma.202002582] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/21/2020] [Indexed: 05/11/2023]
Abstract
In the last decade, perovskite solar cells (PSCs) have undergone unprecedented rapid development and become a promising candidate for a new-generation solar cell. Among various PSCs, typical 3D halide perovskite-based PSCs deliver the highest efficiency but they suffer from severe instability, which restricts their practical applications. By contrast, the low-dimensional Ruddlesden-Popper (RP) perovskite-based PSCs have recently raised increasing attention due to their superior stability. Yet, the efficiency of RP perovskite-based PSCs is still far from that of the 3D counterparts owing to the difficulty in fabricating high-quality RP perovskite films. In pursuit of high-efficiency RP perovskite-based PSCs, it is critical to manipulate the film formation process to prepare high-quality RP perovskite films. This review aims to provide comprehensive understanding of the high-quality RP-type perovskite film formation by investigating the influential factors. On this basis, several strategies to improve the RP perovskite film quality are proposed via summarizing the recent progress and efforts on the preparation of high-quality RP perovskite film. This review will provide useful guidelines for a better understanding of the crystallization and phase kinetics during RP perovskite film formation process and the design and development of high-performance RP perovskite-based PSCs, promoting the commercialization of PSC technology.
Collapse
Affiliation(s)
- Pengyun Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Ning Han
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| | - Wei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Ran Ran
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
41
|
Jin X, Yang L, Wang XF. Efficient Two-Dimensional Perovskite Solar Cells Realized by Incorporation of Ti 3C 2T x MXene as Nano-Dopants. NANO-MICRO LETTERS 2021; 13:68. [PMID: 34138332 PMCID: PMC8187554 DOI: 10.1007/s40820-021-00602-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/05/2021] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) perovskites solar cells (PSCs) have attracted considerable attention owing to their excellent stability against humidity; however, some imperfectness of 2D perovskites, such as poor crystallinity, disordered orientation, and inferior charge transport still limit the power conversion efficiency (PCE) of 2D PSCs. In this work, 2D Ti3C2Tx MXene nanosheets with high electrical conductivity and mobility were employed as a nanosized additive to prepare 2D Ruddlesden-Popper perovskite films. The PCE of solar cells was increased from 13.69 (without additive) to 15.71% after incorporating the Ti3C2Tx nanosheets with an optimized concentration. This improved performance is attributed to the enhanced crystallinity, orientation, and passivated trap states in the 3D phase that result in accelerated charge transfer process in vertical direction. More importantly, the unencapsulated cells exhibited excellent stability under ambient conditions with 55 ± 5% relative humidity.
Collapse
Affiliation(s)
- Xin Jin
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Lin Yang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Xiao-Feng Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
42
|
Hou J, Yu Y, Attique S, Cao B, Yang S. Laurionite Competes with 2D Ruddlesden-Popper Perovskites During the Saturation Recrystallization Process. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6505-6514. [PMID: 33502156 DOI: 10.1021/acsami.0c19782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The room-temperature saturation recrystallization (RTSR) method has been extensively used to prepare all-inorganic lead halide perovskite (e.g., CsPbBr3) nanocrystals. Here, we revealed that the composition of the products prepared by the seemingly simple RTSR method could be extremely complex under different experimental parameters. The pH value of the solution and the protonation tendency of the amines influenced by the amounts and types of introduced amines, oleic acid, and water from the environment determined the composition of the final products. PbBr2, 2D Ruddlesden-Popper perovskites (RPPs) formed by perovskite layers separated by intercalating cations, and laurionite Pb(OH)Br would form under acidic, mildly acidic, and alkaline conditions, respectively. Based on the understanding of the formation mechanism, Pb(OH)Br microparticles with well-defined morphologies were prepared, which could be transformed into highly luminescent CH3NH3PbBr3 with the morphology unchanged. The protonated amine behaves as an intercalating layer during the formation of 2D RPPs. Phenylethylamine (PEA) was proven to be an appropriate amine to prepare pure RPP microplates because of its weaker alkalinity compared to aliphatic amines. The prepared (PEA)2PbBr4 RPP microplates showed strong deep-blue light emission with a PL peak at 415 nm, which could be fine-tuned by changing amines. This study proved the complex reaction pathways of the seemingly simple RTSR method and extended the RTSR method into the fabrication of 2D RPPs and laurionite with promising applications in optoelectronic devices.
Collapse
Affiliation(s)
- Jiahui Hou
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yangchun Yu
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sanam Attique
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingqiang Cao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
43
|
Ma K, Hsu SN, Gao Y, Wei Z, Jin L, Finkenauer BP, Huang L, Boudouris BW, Mei J, Dou L. Organic Cation Engineering for Vertical Charge Transport in Lead‐Free Perovskite Quantum Wells. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Ke Ma
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Sheng-Ning Hsu
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Yao Gao
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Zitang Wei
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Linrui Jin
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Blake P. Finkenauer
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
| | - Libai Huang
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Bryan W. Boudouris
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Jianguo Mei
- Department of Chemistry Purdue University West Lafayette IN 47907 USA
| | - Letian Dou
- Davidson School of Chemical Engineering Purdue University West Lafayette IN 47907 USA
- Birck Nanotechnology Center Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
44
|
Liu F, Sidhik S, Hoffbauer MA, Lewis S, Neukirch AJ, Pavlenko V, Tsai H, Nie W, Even J, Tretiak S, Ajayan PM, Kanatzidis MG, Crochet JJ, Moody NA, Blancon JC, Mohite AD. Highly efficient photoelectric effect in halide perovskites for regenerative electron sources. Nat Commun 2021; 12:673. [PMID: 33514723 PMCID: PMC7846809 DOI: 10.1038/s41467-021-20954-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Electron sources are a critical component in a wide range of applications such as electron-beam accelerator facilities, photomultipliers, and image intensifiers for night vision. We report efficient, regenerative and low-cost electron sources based on solution-processed halide perovskites thin films when they are excited with light with energy equal to or above their bandgap. We measure a quantum efficiency up to 2.2% and a lifetime of more than 25 h. Importantly, even after degradation, the electron emission can be completely regenerated to its maximum efficiency by deposition of a monolayer of Cs. The electron emission from halide perovskites can be tuned over the visible and ultraviolet spectrum, and operates at vacuum levels with pressures at least two-orders higher than in state-of-the-art semiconductor electron sources.
Collapse
Affiliation(s)
- Fangze Liu
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Siraj Sidhik
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Material Science and Nanoengineering Rice University, Houston, TX USA
| | - Mark A. Hoffbauer
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Sina Lewis
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Amanda J. Neukirch
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Vitaly Pavlenko
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Hsinhan Tsai
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Wanyi Nie
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Jacky Even
- grid.410368.80000 0001 2191 9284Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, 20, Avenue des buttes de Coesmes, Rennes, France
| | - Sergei Tretiak
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Pulickel M. Ajayan
- grid.21940.3e0000 0004 1936 8278Department of Material Science and Nanoengineering Rice University, Houston, TX USA
| | - Mercouri G. Kanatzidis
- grid.16753.360000 0001 2299 3507Department of Chemistry, Northwestern University, Evanston, IL USA ,grid.16753.360000 0001 2299 3507Department of Materials Science and Engineering, Northwestern University, Evanston, IL USA ,grid.16753.360000 0001 2299 3507Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, IL USA
| | - Jared J. Crochet
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Nathan A. Moody
- grid.148313.c0000 0004 0428 3079Los Alamos National Laboratory, Los Alamos, NM USA
| | - Jean-Christophe Blancon
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering Rice University, Houston, TX USA
| | - Aditya D. Mohite
- grid.21940.3e0000 0004 1936 8278Department of Chemical and Biomolecular Engineering Rice University, Houston, TX USA ,grid.21940.3e0000 0004 1936 8278Department of Material Science and Nanoengineering Rice University, Houston, TX USA
| |
Collapse
|
45
|
Zhao X, Liu T, Kaplan AB, Yao C, Loo YL. Accessing Highly Oriented Two-Dimensional Perovskite Films via Solvent-Vapor Annealing for Efficient and Stable Solar Cells. NANO LETTERS 2020; 20:8880-8889. [PMID: 33166152 DOI: 10.1021/acs.nanolett.0c03914] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Accessing vertical orientation of two-dimensional (2D) perovskite films is key to achieving high-performance solar cells with these materials. Herein, we report on solvent-vapor annealing (SVA) as a general postdeposition strategy to induce strong vertical orientation across broad classes of 2D perovskite films. We do not observe any local compositional drifts that would result in impure phases during SVA. Instead, our experiments point to solvent vapor plasticizing 2D perovskite films and facilitating their surface-induced reorientation and concomitant grain growth, which enhance out-of-plane charge transport. Solar cells with SVA 2D perovskites exhibit superior efficiency and stability compared to their untreated analogs. With a certified efficiency of (18.00 ± 0.30) %, our SVA (BDA)(Cs0.1FA0.9)4Pb5I16 solar cell boasts the highest efficiency among all solar cells with 2D perovskites (n ≤ 5) reported so far.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Tianran Liu
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Alan B Kaplan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Chao Yao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
46
|
Liu H, Lee J, Kang J. Characteristics of a Hybrid Detector Combined with a Perovskite Active Layer for Indirect X-ray Detection. SENSORS 2020; 20:s20236872. [PMID: 33271826 PMCID: PMC7730663 DOI: 10.3390/s20236872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022]
Abstract
In this study, we investigated the characteristics of an organic-inorganic hybrid indirect-type X-ray detector with a CH3NH3PbI3 (MAPbI3) perovskite active layer. A layer with a thickness of 192 nm annealed at 100 °C showed higher absorption, higher crystallinity, and lower surface roughness than did perovskite layers made under different conditions. In the indirect X-ray detector, a scintillator coupled with the detector to convert X-ray photons to visible photons, and the converted photons were absorbed by the active layer to generate charge carriers. The detector with the optimized MAPbI3 (192 nm thick and 100 °C annealing condition) active layer was coupled with a CsI(Tl) scintillator which consisted of 400 μm thick CsI and 0.5 mm thick Al, and achieved the highest sensitivity, i.e., 2.84 mA/Gy·cm2. In addition, the highest short-circuit current density (JSC), i.e., 18.78 mA/cm2, and the highest mobility, i.e., 2.83 × 10−4 cm2/V·s, were obtained from the same detector without the CsI(Tl) scintillator.
Collapse
|
47
|
Blancon JC, Even J, Stoumpos CC, Kanatzidis MG, Mohite AD. Semiconductor physics of organic-inorganic 2D halide perovskites. NATURE NANOTECHNOLOGY 2020; 15:969-985. [PMID: 33277622 DOI: 10.1038/s41565-020-00811-1] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 10/30/2020] [Indexed: 05/02/2023]
Abstract
Achieving technologically relevant performance and stability for optoelectronics, energy conversion, photonics, spintronics and quantum devices requires creating atomically precise materials with tailored homo- and hetero-interfaces, which can form functional hierarchical assemblies. Nature employs tunable sequence chemistry to create complex architectures, which efficiently transform matter and energy, however, in contrast, the design of synthetic materials and their integration remains a long-standing challenge. Organic-inorganic two-dimensional halide perovskites (2DPKs) are organic and inorganic two-dimensional layers, which self-assemble in solution to form highly ordered periodic stacks. They exhibit a large compositional and structural phase space, which has led to novel and exciting physical properties. In this Review, we discuss the current understanding in the structure and physical properties of 2DPKs from the monolayers to assemblies, and present a comprehensive comparison with conventional semiconductors, thereby providing a broad understanding of low-dimensional semiconductors that feature complex organic-inorganic hetero-interfaces.
Collapse
Affiliation(s)
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, France
| | - Costas C Stoumpos
- Department of Materials Science and Technology, University of Crete, Heraklion, Crete, Greece
| | - Mercouri G Kanatzidis
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Aditya D Mohite
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
| |
Collapse
|
48
|
Xi J, Spanopoulos I, Bang K, Xu J, Dong H, Yang Y, Malliakas CD, Hoffman JM, Kanatzidis MG, Wu Z. Alternative Organic Spacers for More Efficient Perovskite Solar Cells Containing Ruddlesden-Popper Phases. J Am Chem Soc 2020; 142:19705-19714. [PMID: 33147413 DOI: 10.1021/jacs.0c09647] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The halide perovskite Ruddlesden-Popper (RP) phases are a homologous layered subclass of solution-processable semiconductors that have aroused great attention, especially for developing long-term solar photovoltaics. They are defined as (A')2(A)n-1PbnX3n+1 (A' = spacer cation, A = cage cation, and X = halide anion). The orientation control of low-temperature self-assembled thin films is a fundamental issue associated with the ability to control the charge carrier transport perpendicular to the substrate. Here we report new chemical derivatives designed from a molecular perspective using a novel spacer cation 3-phenyl-2-propenammonium (PPA) with conjugated backbone as a low-temperature strategy to assemble more efficient solar cells. First, we solved and refined the crystal structures of single crystals with the general formula (PPA)2(FA0.5MA0.5)n-1PbnI3n+1 (n = 2 and 3, space group C2) using X-ray diffraction and then used the mixed halide (PPA)2(Cs0.05(FA0.88MA0.12)0.95)n-1Pbn(I0.88Br0.12)3n+1 analogues to achieve more efficient devices. While forming the RP phases, multiple hydrogen bonds between PPA and inorganic octahedra reinforce the layered structure. For films we observe that as the targeted layer thickness index increases from n = 2 to n = 4, a less horizontal preferred orientation of the inorganic layers is progressively realized along with an increased presence of high-n or 3D phases, with an improved flow of free charge carriers and vertical to substrate conductivity. Accordingly, we achieve an efficiency of 14.76% for planar p-i-n solar cells using PPA-RP perovskites, which retain 93.8 ± 0.25% efficiency with encapsulation after 600 h at 85 °C and 85% humidity (ISOS-D-3).
Collapse
Affiliation(s)
- Jun Xi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, South Korea.,Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kijoon Bang
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul 08826, South Korea
| | - Jie Xu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, P. R. China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Yingguo Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Christos D Malliakas
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M Hoffman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique, School of Electronic and Information Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, P. R. China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| |
Collapse
|
49
|
Tang X, Wang X, Hu T, Fu Q, Hu X, Huang Z, Xiao S, Chen Y. Concerted regulation on vertical orientation and film quality of two-dimensional ruddlesden-popper perovskite layer for efficient solar cells. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9812-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Zhao C, Tian W, Sun Q, Yin Z, Leng J, Wang S, Liu J, Wu K, Jin S. Trap-Enabled Long-Distance Carrier Transport in Perovskite Quantum Wells. J Am Chem Soc 2020; 142:15091-15097. [DOI: 10.1021/jacs.0c06572] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chunyi Zhao
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixi Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shiping Wang
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxue Liu
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|