1
|
Fu Z, Zhang M, Huang Y, Wang H, Hao W, Liu Z, Guo H, Ni D. DNA binding effects of LDH nanozyme for aseptic osteolysis mitigation through STING pathway modulation. J Nanobiotechnology 2025; 23:384. [PMID: 40426255 PMCID: PMC12117809 DOI: 10.1186/s12951-025-03458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
Persistent and intense inflammation is recognized as the primary cause of wear-particle-induced aseptic osteolysis, which ultimately resulting in aseptic prosthesis loosening. Reducing inflammation plays a significant role in mitigating osteolysis, and the STING pathway has emerged as a promising therapeutic target for its prevention. Specifically, damaged periprosthetic cells of aseptic osteolysis release double-stranded DNA (dsDNA) into the osteolytic microenvironment, serving as a specific stimulus for the STING pathway. Herein, we found that layered double hydroxide (LDH) nanozyme exhibited a robust DNA-binding capacity primarily mediated by van der Waals interactions, which showed superior performance in inhibiting dsDNA-induced inflammation of aseptic osteolysis. Importantly, such binding capability enabled effective co-loading LDH with STING inhibitor C176, thus facilitating inhibition of the STING pathway. Such synergistic actions contributed to ameliorate the inflammatory milieu and remodel the osteolysis microenvironment successfully to reduce cranial bone damage, which was confirmed on animal model of osteolysis. Collectively, this strategy demonstrated an effective approach by utilizing synergistic effects to establish a positive feedback loop in the treatment of osteolysis, thereby alleviating TiPs-induced periprosthetic osteolysis and preventing postoperative complications.
Collapse
Affiliation(s)
- Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Meng Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Ying Huang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wanting Hao
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Zeyang Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Haiyan Guo
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
2
|
Xie Y, Li Q, Huang L, Wang P, Wang T, Bai M, Guo J, Geng W, Wang X, Qiao W, Han X, Cheng C. Spatial Configuration-Guided Design of Covalent Organic Framework-Based Artificial Metalloantioxidases for Inhibiting Inflammatory Cascades and Regulating Bone Homeostasis. J Am Chem Soc 2025. [PMID: 40405440 DOI: 10.1021/jacs.5c04242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Intense oxidative stress in bone tissues can trigger the hyperactivation of neutrophils, thereby causing inflammatory cascades to deteriorate bone homeostasis. Here, inspired by the catalytic centers of natural antioxidases, we introduce the spatial configuration-guided design of covalent organic framework (COF)-based artificial metalloantioxidases for inhibiting inflammatory cascades and regulating bone homeostasis. Specifically, the hexaiminohexaazatrinaphthalene COF with ruthenium coordination (S-HACOF-Ru), featuring electron-rich centers with a spatial configuration, demonstrates exceptional antioxidase-like reactive oxygen species (ROS) scavenging capabilities for efficiently mitigating the oxidative stress. As a result, S-HACOF-Ru efficiently prevents the generation of neutrophil extracellular traps and inhibits the release of myeloperoxidase (MPO). By preventing MPO-induced activation of nuclear factor-kappa B and inhibiting proinflammatory macrophage polarization, S-HACOF-Ru successfully blocks the neutrophil-macrophage inflammatory cascades. This intervention promotes bone homeostasis by a shift from bone resorption to tissue regeneration, which can efficiently inhibit alveolar bone loss in periodontal tissues and reverse cartilage damage in ankle joint cavities. We propose that this design strategy provides an intriguing avenue for developing new artificial antioxidases and biocatalytic materials with potential applications in treating a wide range of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qian Li
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Lingyi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peiqi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ting Wang
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiusi Guo
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| | - Wei Geng
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China
| | - Wei Qiao
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R. 999077, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chong Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- College of Polymer Science and Engineering, National Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu 610065, China
- Institute of Chemistry and Biochemistry, Free University of Berlin, Berlin 14195, Germany
| |
Collapse
|
3
|
Zhao W, Zhou Y, Yin L. Cell-free DNA-scavenging nano/microsystems for immunotherapy. J Control Release 2025; 381:113609. [PMID: 40054627 DOI: 10.1016/j.jconrel.2025.113609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
In the context of inflammation, autoimmune diseases, infections, and cancers, cfDNA plays a pivotal role in disease progression through various mechanisms. Immunotherapies based on cfDNA scavenging has emerged as a promising approach for treating these conditions. This review offers a comprehensive exploration of cfDNA-binding and degradation strategies, providing detailed insights into the corresponding nano/microsystems for each approach. Nano/microsystems used for cfDNA binding include cationic polymers, nanoparticles, nanogels, and other materials that physically capture cfDNA via electrostatic interactions or other affinity mechanisms, thereby mitigating the immunological effects of cfDNA. Nano/microsystems designed for cfDNA degradation primarily involve DNase delivery systems and artificial enzymes with DNase-like activity, which degrade cfDNA through chemical cleavage. Furthermore, this review discusses the potential synergy between cfDNA-scavenging therapies and other treatment modalities, aiming to achieve more effective and comprehensive immunotherapy. By thoroughly analyzing these strategies, we aim to emphasize the transformative potential of cfDNA-scavenging nano/microsystems in advancing immunotherapy, and offer valuable perspectives for future research in this emerging field.
Collapse
Affiliation(s)
- Wenhan Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
4
|
Zhu C, Li C, Du Y, Chen S, Liu X, Liu L, Chen Y. Precise Oligopeptides Block CCDC25 Interaction with DNA in Neutrophil Extracellular Traps Inhibiting Tumor Metastasis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15208-15219. [PMID: 40000243 DOI: 10.1021/acsami.5c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Neutrophil extracellular traps (NETs) induce tumor metastasis by riding tumor cells through interaction via the transmembrane protein CCDC25 on the surface of cancer cells. Recently, we applied positively charged polyamino acids to neutralize negatively charged NET-DNA and inhibit tumor metastasis as approved on several metastasis models. To elucidate the exact polymer structures on performance, herein, we precisely synthesized a series of cationic oligopeptides with defined numbers of arginine (R) and glycine (G). The oligopeptides R5, R7, R9, and R5G4 showed much better binding affinity and lower cytotoxicity than R3 and R3G6. From the pull-down assay, the oligoarginines, R5, R7, and R9, inhibited CCDC25 interaction with NET-DNA because of stronger competitive interaction than myeloperoxidase (MPO) and citrullinated histone H3 (H3Cit) in NETs. The subsequent inhibition of cell migration and tumor metastasis in triple-negative breast cancer (TNBC) mouse models demonstrated that R5, R7, and R9 efficiently prevented tumor cell metastasis to the liver and lung. This was corroborated by the distribution of oligoarginines in the liver and lung, which reduced NETs accumulation. Thus, in this study, we screened out oligoarginines with a precise number of units to inhibit TNBC metastasis to distant organs, which may benefit in the decreasing mortality rate because of tumor metastasis. With their low cytotoxicity, oligoarginines represent a major advancement for the clinical treatment of metastatic diseases.
Collapse
Affiliation(s)
- Chenxu Zhu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Chuang Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yibo Du
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingliang Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou 450046, China
| |
Collapse
|
5
|
Liu L, Ding M, Zheng M, Xu G, Gao L, Yang W, Wei Z, Shang J, Wang L, Wang H, Gao F. Transformable peptide blocks NF-κB/IκBα pathway through targeted coating IκBα against rheumatoid arthritis. Biomaterials 2025; 314:122839. [PMID: 39288618 DOI: 10.1016/j.biomaterials.2024.122839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive effects. Although current therapies utilizing antibodies against inflammatory cytokines have shown some success, the inhibition of a single inflammatory molecule may not suffice to impede the progression of RA due to the intricate pathogenesis involving multiple molecules. In this study, we have developed an intelligent transformable peptide, namely BP-FFVLK-DSGLDSM (BFD). BFD has the ability to self-assemble into spherical nanoparticles in water or in the blood circulation to facilitate their delivery and distribution. When endocytosed into immune cells, BFD can identify and attach to phosphorylation sites on IκBα and in situ transform into a nanofibrous network coating NF-κB/IκBα complexes, blocking the phosphorylation and degradation of IκBα. As a result, BFD enables decreasing expression of proinflammatory mediators. In the present study, we demonstrate that BFD exhibits notable efficacy in alleviating arthritis-related manifestations, such as joints and tissues swelling, as well as bone and cartilage destruction on the collagen-induced arthritis (CIA) rat model. The investigation of intracellular biodistribution, phosphorylation of IκBα, and cytokine detection in culture medium supernatant, joint tissue, and serum exhibits strong associations with therapeutic outcomes. The utilization of transformable peptide presents a novel approach for the management of inflammatory diseases.
Collapse
Affiliation(s)
- Linhong Liu
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Mengru Ding
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Miaomiao Zheng
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; College of Pharmacy, Hebei University, Baoding, 071002, PR China
| | - Guoyang Xu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Liang Gao
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, PR China
| | - Wenzhi Yang
- College of Pharmacy, Hebei University, Baoding, 071002, PR China
| | - Zijin Wei
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Jun Shang
- Department of Orthopedics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, PR China.
| | - Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, PR China
| | - Fuping Gao
- CAS Key Laboratory for the Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, PR China; Jinan Laboratory of Applied Nuclear Science, Jinan, 251401, PR China.
| |
Collapse
|
6
|
Liang H, Jiang J, Miao J, Sun J, Qin H, Zhang X, Zhang L, Tian H, Ye Y, Gao J, Wang F, Han S, Peng F, Tu Y. A Biomimetic Sweeping Microrobot for Active Therapy of Ulcerative Colitis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2402579. [PMID: 40072036 DOI: 10.1002/adma.202402579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 12/30/2024] [Indexed: 05/14/2025]
Abstract
Overproduction of pathogenic cell-free DNA (cfDNA) and reactive oxygen species (ROS) plays crucial roles in the onset and perpetuation of ulcerative colitis (UC). Inspired by sweeping robots, a magnesium@polylactic acid-glycolic acid copolymer@polyethylenimine (Mg@PLGA@PEI) microswimmer capable of cleaning off deleterious disease triggers along its path of progress is designed. Mg@PLGA@PEI is successfully synthesized by adopting a core-shell structure with a small opening which allows for Mg-water reaction. The distinctive motility performance resulting from sustained detachment of the produced hydrogen not only contributes to strengthened hydrogen diffusion concomitant with potentiated ROS neutralization, but also facilitates the contacting probability with microenvironmental cfDNA and thus enhances the DNA binding efficiency. By integrating these merits, the developed Mg@PLGA@PEI confers desirable curative efficacy in a classical DSS-induced acute colitis mouse model. Enema administration of Mg@PLGA@PEI microswimmers substantially alleviates the manifestations related to UC, as evidenced by the body weight recovery, colon length retention, colon tissue protection, and attenuated intestinal inflammation, which is attributed to the active scavenging of cfDNA and ROS. This work provides a paradigm for a drug-free strategy competent in spontaneously eliminating causative triggers with minimal side effects, which presents a promising alternative for the active therapy of UC or other cfDNA- and ROS-related diseases in the clinic.
Collapse
Affiliation(s)
- Haiying Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiajun Miao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hanfeng Qin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoting Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lishan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fei Wang
- Department of Clinical Pharmacy, Dazhou Central Hospital, Dazhou, 635000, China
| | - Shuai Han
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Zhou Y, Ye H, Yu Y, Ge C, Yin M, Liu Z, Shen J, Zhou R, Li Y, Leong KW, Yin L. Helix-Guarded Molecular Clips for Cell-Free DNA Scavenging and Treatment of Systemic Lupus Erythematosus. J Am Chem Soc 2025; 147:6612-6622. [PMID: 39932220 DOI: 10.1021/jacs.4c15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Immune disorders induced by cell-free DNA (cfDNA) account for the incidence and deterioration of systemic lupus erythematosus (SLE). Scavenging of cfDNA using cationic polymers represents a promising modality for SLE management. However, they bind cfDNA mainly via electrostatic interaction, which would result in an undesired discharge of the captured cfDNA upon competitive replacement by the negatively charged serum/intracellular components. Inspired by the natural recognition mechanism of biomacromolecules via spatial matching, we herein developed a library of dendrimer-templated, spherical, α-helical, and guanidine-rich polypeptides as molecular clips for cfDNA scavenging. Upon optimization of the polypeptide length and density on the dendrimer surface, the top-performing G3-8 was identified, which could tightly confine cfDNA within the cavity between the adjacent, rod-like α-helices. As thus, the helical G3-8 but not the random-coiled analogue D,L-G3-8 enabled robust cfDNA scavenging under serum-rich conditions to inhibit TLR9 activation and inflammation. In SLE mice, i.v. injected G3-8 efficiently prevented organ failure and inhibited inflammation by scavenging cfDNA. This study provides an enlightened strategy to stably bind and scavenge cfDNA and may shift the current paradigm of SLE management.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yi Yu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Youyong Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
8
|
Qin W, Ma Z, Bai G, Qin W, Li L, Hao D, Wang Y, Yan J, Han X, Niu W, Niu L, Jiao K. Neurovascularization inhibiting dual responsive hydrogel for alleviating the progression of osteoarthritis. Nat Commun 2025; 16:1390. [PMID: 39910066 PMCID: PMC11799281 DOI: 10.1038/s41467-025-56727-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
Treating osteoarthritis (OA) associated pain is a challenge with the potential to significantly improve patients lives. Here, we report on a hydrogel for extracellular RNA scavenging and releasing bevacizumab to block neurovascularization at the osteochondral interface, thereby mitigating OA pain and disease progression. The hydrogel is formed by cross-linking aldehyde-phenylboronic acid-modified sodium alginate/polyethyleneimine-grafted protocatechuic acid (OSAP/PPCA) and bevacizumab sustained-release nanoparticles (BGN@Be), termed OSPPB. The dynamic Schiff base bonds and boronic ester bonds allow for injectability, self-healing, and pH/reactive oxygen species dual responsiveness. The OSPPB hydrogel can significantly inhibit angiogenesis and neurogenesis in vitro. In an in vivo OA model, intraarticular injection of OSPPB accelerates the healing process of condyles and alleviates chronic pain by inhibiting neurovascularization at the osteochondral interface. The injectable hydrogel represents a promising technique to treat OA and OA associated pain.
Collapse
Affiliation(s)
- Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Zhangyu Ma
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Guo Bai
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Wen Qin
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Ling Li
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Dongxiao Hao
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Yuzhu Wang
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Jianfei Yan
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China
| | - Wen Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
| | - Lina Niu
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- National Clinical Research Center for Oral Diseases, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
- Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710000, Shaanxi, China.
| |
Collapse
|
9
|
Xi W, Wu W, Zhou L, Zhang Q, Yang S, Huang L, Lu Y, Wang J, Chi X, Kang Y. Multifunctional nanoparticles confers both multiple inflammatory mediators scavenging and macrophage polarization for sepsis therapy. Mater Today Bio 2025; 30:101421. [PMID: 39811612 PMCID: PMC11732566 DOI: 10.1016/j.mtbio.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis. Here we designed and constructed a polydopamine-based multifunctional nanoparticle for the treatment of sepsis. These nanoparticles (NPs) are composed of polydopamine (PDA) grafted with cationic polyethyleneimine (PEI). On the one hand, the NPs can utilize the electrostatic interaction to effectively adsorb cfDNA in blood, then effectively inhibiting the activation of toll like receptors (TLRs) and nuclear factor kappa B (NF-κB) pathways induced by cfDNA. On the other hand, the NPs have an immunomodulatory function, which can effectively convert pro-inflammatory macrophage (M1) into anti-inflammatory macrophage (M2), thus reduce the release of inflammatory cytokines and slow down the inflammatory storm of sepsis. In addition, the NPs possess good reactive oxygen species (ROS) scavenging ability. Briefly, the effective treatment of sepsis can be achieved by multiple strategies of effectively capturing the inflammatory triggering factor cfDNA, modulating the polarization of M1 macrophage to M2 macrophage and scavenging ROS, which has a promising clinical application.
Collapse
Affiliation(s)
- Wenjie Xi
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Weijie Wu
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lili Zhou
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qi Zhang
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shushu Yang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lihong Huang
- Department of Orthopaedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518033, China
| | - Yijun Lu
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jing Wang
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinjin Chi
- Surgical Anesthesia Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
10
|
Cheng X, Sui H, Chen F, Li C, Du M, Zhang S, Chen J, Dou J, Huang Y, Xie X, Cheng C, Yang R, Yang C, Shi B, Shao D, Leong KW, Huang H. Nanomaterial-Mediated Reprogramming of Macrophages to Inhibit Refractory Muscle Fibrosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410368. [PMID: 39548911 PMCID: PMC11849413 DOI: 10.1002/adma.202410368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/05/2024] [Indexed: 11/18/2024]
Abstract
Orofacial muscles are particularly prone to refractory fibrosis after injury, leading to a negative effect on the patient's quality of life and limited therapeutic options. Gaining insights into innate inflammatory response-fibrogenesis homeostasis can aid in the development of new therapeutic strategies for muscle fibrosis. In this study, the crucial role of macrophages is identified in the regulation of orofacial muscle fibrogenesis after injury. Hypothesizing that orchestrating macrophage polarization and functions will be beneficial for fibrosis treatment, nanomaterials are engineered with polyethylenimine functionalization to regulate the macrophage phenotype by capturing negatively charged cell-free nucleic acids (cfNAs). This cationic nanomaterial reduces macrophage-related inflammation in vitr and demonstrates excellent efficacy in preventing orofacial muscle fibrosis in vivo. Single-cell RNA sequencing reveals that the cationic nanomaterial reduces the proportion of profibrotic Gal3+ macrophages through the cfNA-mediated TLR7/9-NF-κB signaling pathway, resulting in a shift in profibrotic fibro-adipogenic progenitors (FAPs) from the matrix-producing Fabp4+ subcluster to the matrix-degrading Igf1+ subcluster. The study highlights a strategy to target innate inflammatory response-fibrogenesis homeostasis and suggests that cationic nanomaterials can be exploited for treating refractory fibrosis.
Collapse
Affiliation(s)
- Xu Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hao Sui
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chenghao Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meijun Du
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Shiming Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiali Chen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jinfeng Dou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yixuan Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaochun Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Chuanxu Cheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Renjie Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Eastern Clinic, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Yang
- Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510630, China
| | - Bing Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dan Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Hanyao Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| |
Collapse
|
11
|
Huang Z, Wei C, Xie H, Xiao X, Wang T, Zhang Y, Chen Y, Hei Z, Zhao T, Yao W. Treating acute lung injury through scavenging of cell-free DNA by cationic nanoparticles. Mater Today Bio 2024; 29:101360. [PMID: 39687793 PMCID: PMC11648789 DOI: 10.1016/j.mtbio.2024.101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome are life-threatening conditions induced by inflammatory responses, in which cell-free DNA (cfDNA) plays a pivotal role. This study investigated the therapeutic potential of biodegradable cationic nanoparticles (cNPs) in alleviating ALI. Using a mouse model of lipopolysaccharide-induced ALI, we examined the impact of intravenously administered cNPs. Our findings indicate that cNPs possess robust DNA binding capability, enhanced accumulation in inflamed lungs, and a favorable safety profile in vivo. Furthermore, cNPs attenuate the inflammatory response in LPS-induced ALI mice by scavenging cfDNA, mainly derived from neutrophil extracellular traps, and activating the macrophage-mediated cGAS-STING pathway. The findings suggest a potential treatment for ALI by targeting cfDNA with cNPs. This approach has demonstrated efficacy in mitigating lung injury and merits further exploration.
Collapse
Affiliation(s)
- Ziyan Huang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Cong Wei
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Hanbin Xie
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Xue Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tienan Wang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yihan Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Yongming Chen
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| | - Tianyu Zhao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Weifeng Yao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou510630, PR China
| |
Collapse
|
12
|
Xu F, Li Z, Liu T, Pang X, Fan C, Jiang H. The role of cellular senescence in the pathogenesis of Rheumatoid Arthritis: Focus on IL-6 as a target gene. Cytokine 2024; 184:156762. [PMID: 39326197 DOI: 10.1016/j.cyto.2024.156762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Rheumatoid arthritis is a chronic autoimmune disease. However, the specific role of senescence in rheumatoid arthritis (RA) is unknown. This study aimed to identify potential aging-related genes that have diagnostic and therapeutic value for RA. METHODS The GSE89408 dataset was downloaded from the Gene Expression Omnibus (GEO). Aging-related genes were downloaded from the HAGR database. Differentially expressed genes (DEGs) were subsequently identified with the "edgeR" tool. Next, hub genes were identified with a PPI network and CytoHubba analysis. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic value of these hub genes. Immune infiltration analysis was performed with the CIBERSORT algorithm. Additionally, molecular docking was performed with CB-Dock2. Finally, correlation experiments were performed to validate the bioinformatics and molecular docking results. RESULTS A total of 22 ADEGs were identified. Combined PPI network and CytoHubba analyses identified a total of 7 hub genes, including IL-6, IL7R, IL2RG, CDK1, PTGS2, and LEP, which are associated mainly with inflammation and immune responses. ROC analysis revealed that the hub genes were highly predictive of RA. Analysis of immune infiltration revealed that the 6 hub genes were positively associated with M1 macrophages. Validation experiments revealed that the inhibition of IL-6 significantly decreased the degree of synovial fibroblast (FLS) senescence. Furthermore, molecular docking and validation experiments revealed that IL-6 is a potential target for drug therapy. CONCLUSION This study demonstrated that RA-FLS senescence may promote the development of RA via inflammatory and immune mechanisms. Seven hub genes were identified, of which IL-6 is a reliable biomarker for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Fengxia Xu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Zhen Li
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Tao Liu
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Xue Pang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Chang Fan
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Hui Jiang
- Clinical Research Experiment Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China.
| |
Collapse
|
13
|
Torpey A, Bellow E, Samojedny V, Ahluwalia S, Desai A, Caldwell W, Bergese S. Nanotechnology in Pain Management. Pharmaceutics 2024; 16:1479. [PMID: 39598601 PMCID: PMC11597168 DOI: 10.3390/pharmaceutics16111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
Chronic pain is a debilitating condition that affects millions of patients worldwide, contributing to a high disease burden and millions of dollars in lost wages, missed workdays, and healthcare costs. Opioids, NSAIDs, acetaminophen, gabapentinoids, muscle relaxants, anticonvulsants, and antidepressants are the most used medications for chronic pain and carry significant side effects, including gastric bleeding, hepatotoxicity, stroke, kidney damage, constipation, dizziness, and arrhythmias. Opioids in particular carry the risk of long-term dependence, drug tolerance, and overdose. In 2022, 81,806 people died from opioid overdose in the United States alone. Alternative treatments for chronic pain are critically needed, and nanotechnology has emerged as a promising means of achieving effective long-term analgesia while avoiding the adverse side effects associated with conventional pharmacological agents. Nanotechnology-based treatments include liposomes, Poly Lactic-co-Glycolic Acid (PLGA) and other polymeric nanoparticles, and carbon-based polymers, which can help mitigate those adverse side effects. These nanomaterials can serve as drug delivery systems that facilitate controlled release and drug stability via the encapsulation of free molecules and protein-based drugs, leading to longer-lasting analgesia and minimizing side effects. In this review, we examine the role of nanotechnology in addressing concerns associated with conventional chronic pain treatments and discuss the ongoing efforts to develop novel, nanotechnology-based treatments for chronic pain such as nanocapacitor patches, gene therapy, the use of both viral and non-viral vectors, CRISPR, and scavengers.
Collapse
Affiliation(s)
- Andrew Torpey
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - Emily Bellow
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (E.B.); (V.S.)
| | - Veronica Samojedny
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (E.B.); (V.S.)
| | - Sukhpreet Ahluwalia
- Department of Surgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Amruta Desai
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - William Caldwell
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
| | - Sergio Bergese
- Department of Anesthesiology, Stony Brook University Hospital, Stony Brook, NY 11794, USA; (A.T.); (A.D.); (W.C.)
- Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| |
Collapse
|
14
|
Xing J, Jia J, Zhang H, Han H, Li Q. Fluorinated dendrimer-mediated miR-30a delivery regulates the inflammation of macrophages and mitigates the symptoms of rheumatoid arthritis. J Control Release 2024; 376:1143-1159. [PMID: 39521062 DOI: 10.1016/j.jconrel.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Abnormal expression of microRNAs (miRNAs) plays a significant role in the pathogenesis of rheumatoid arthritis (RA), and thus miRNA-based therapy has emerged as a promising approach for the RA treatment. Herein, miR-30a was successfully screened and identified to be an essential mediator for the inflammation of RA. MiR-30a could directly target the Snai1 gene and further regulate the Cad11 expression to inhibit the NF-κB and MAPK signaling pathways, contributing to the anti-inflammatory effect. To enhance the therapeutic outcome of miR-30a, fluorinated polyamidoamine dendrimer (FP) was developed as the carrier to achieve the miR-30a delivery in the mice of collagen-induced arthritis. The carrier FP and miR-30a formed stable nanocomplexes and effectively mediated the transfection of miR-30a to execute the anti-inflammatory response in lipopolysaccharide-stimulated macrophages. Further, the intravenous administration of FP/miR-30a showed obvious accumulation in the inflamed joints and inhibited the inflammatory response via the Snai1/Cad11 axis, thereby contributing to the anti-arthritic efficacy. In addition, the FP/miR-30a nanocomplexes displayed favorable biocompatibility, as they did not cause the damage of organs following the systemic administration. Taken together, our study demonstrated that miR-30a is an effective anti-inflammatory oligonucleotide and the fluorinated dendrimer-mediated miR-30a delivery possesses the potential to be a promising approach for the treatment of RA and other autoimmune diseases.
Collapse
Affiliation(s)
- Jiakai Xing
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hugang Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; Center for Supramolecular Chemical Biology, Jilin University, Changchun 130012, China.
| |
Collapse
|
15
|
Liu X, Chen S, Huang J, Du Y, Luo Z, Zhang Y, Liu L, Chen Y. Synthetic polypeptides inhibit nucleic acid-induced inflammation in autoimmune diseases by disrupting multivalent TLR9 binding to LL37-DNA bundles. NATURE NANOTECHNOLOGY 2024; 19:1745-1756. [PMID: 39160338 DOI: 10.1038/s41565-024-01759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Complexes of extracellular nucleic acids (NAs) with endogenous proteins or peptides, such as LL37, break immune balance and cause autoimmune diseases, whereas NAs with arginine-enriched peptides do not. Inspired by this, we synthesize a polyarginine nanoparticle PEG-TK-NPArg, which effectively inhibits Toll-like receptor-9 (TLR9) activation, in contrast to LL37. To explore the discrepancy effect of PEG-TK-NPArg and LL37, we evaluate the periodic structure of PEG-TK-NPArg-NA and LL37-NA complexes using small-angle X-ray scattering. LL37-NA complexes have a larger inter-NA spacing that accommodates TLR9, while the inter-NA spacing in PEG-TK-NPArg-NA complexes mismatches with the cavity of TLR9, thus inhibiting an interaction with multiple TLR9s, limiting their clustering and damping immune induction. Subsequently, the inhibitory inflammation effect of PEG-TK-NPArg is proved in an animal model of rheumatoid arthritis. This work on how the scavenger-NA complexes inhibit the immune response may facilitate proof-of-concept research translating to clinical application.
Collapse
Affiliation(s)
- Xingliang Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- School of Engineering, Westlake University, Hangzhou, China
| | - Shi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- School of Engineering, Westlake University, Hangzhou, China
| | - Yibo Du
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zhi Luo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yue Zhang
- School of Engineering, Westlake University, Hangzhou, China.
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou, China.
- Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Antiviral Drugs, Henan University, Zhengzhou, China.
| |
Collapse
|
16
|
Zhou R, Zhou Y, Yin M, Ge C, Yang Y, Shen J, Yin L. Inflammation-Responsive Polyion Complex Vesicles for Autoimmune Disease Therapy via Cell-Free DNA Scavenging and Inflammatory Microenvironment Modulation. ACS NANO 2024; 18:30017-30030. [PMID: 39410737 DOI: 10.1021/acsnano.4c10886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cell-free DNA (cfDNA) scavenging represents a promising anti-inflammatory modality for autoimmune disease (AID) treatment. However, it remains challenging for existing systems to achieve inflammation-targeted cfDNA scavenging and the management of cfDNA-unrelated inflammatory pathways. Herein, inflammation-responsive polyion complex vesicles (PICsomes) are developed, bridging inflammation-instructed cfDNA scavenging, and methotrexate (MTX) delivery for AID management. A positively charged, PEGylated polypeptide with guanidine side chains (PEG-PG) is developed, which self-assembles with a negatively charged, cis-aconitic anhydride-modified poly-L-lysine (PC) to form the PICsomes and encapsulate MTX disodium salt. The neutrally charged PICsomes feature prolonged blood circulation after systemic administration, allowing for passive accumulation to the inflamed tissues. In the slightly acidic inflammatory microenvironment, PC transforms from negatively charged to positively charged, thereby disintegrating the PICsomes and liberating the PEG-PG and MTX. Consequently, PEG-PG-mediated cfDNA scavenging and MTX-mediated immunosuppression cooperate to inhibit inflammation and ameliorate the inflammatory microenvironment, promoting tissue repair in AID mouse models including collagen-induced arthritis and 2,4,6-trinitrobenzenesulfonic acid-induced colitis.
Collapse
Affiliation(s)
- Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yiyao Yang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jingrui Shen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Li Y, Liu W, Wang Y, Liu T, Feng Y. Nanotechnology-Mediated Immunomodulation Strategy for Inflammation Resolution. Adv Healthc Mater 2024; 13:e2401384. [PMID: 39039994 DOI: 10.1002/adhm.202401384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Inflammation serves as a common characteristic across a wide range of diseases and plays a vital role in maintaining homeostasis. Inflammation can lead to tissue damage and the onset of inflammatory diseases. Although significant progress is made in anti-inflammation in recent years, the current clinical approaches mainly rely on the systemic administration of corticosteroids and antibiotics, which only provide short-term relief. Recently, immunomodulatory approaches have emerged as promising strategies for facilitating the resolution of inflammation. Especially, the advanced nanosystems with unique biocompatibility and multifunctionality have provided an ideal platform for immunomodulation. In this review, the pathophysiology of inflammation and current therapeutic strategies are summarized. It is mainly focused on the nanomedicines that modulate the inflammatory signaling pathways, inflammatory cells, oxidative stress, and inflammation targeting. Finally, the challenges and opportunities of nanomaterials in addressing inflammation are also discussed. The nanotechnology-mediated immunomodulation will open a new treatment strategy for inflammation therapy.
Collapse
Affiliation(s)
- Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Yuanchao Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
| | - Taotao Liu
- Department of Gastroenterology and Hepatology, Characteristic Medical Center of the Chinese People's Armed Police Force, Tianjin Key Laboratory of Hepatopancreatic Fibrosis and Molecular Diagnosis & Treatment, Tianjin, 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin, 300350, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin, 300072, P. R. China
| |
Collapse
|
18
|
Vappala S, Smith SA, Kizhakkedathu JN, Morrissey JH. Inhibitors of Polyphosphate and Neutrophil Extracellular Traps. Semin Thromb Hemost 2024; 50:970-977. [PMID: 37192652 PMCID: PMC10651799 DOI: 10.1055/s-0043-1768936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The contact pathway of blood clotting has received intense interest in recent years as studies have linked it to thrombosis, inflammation, and innate immunity. Because the contact pathway plays little to no role in normal hemostasis, it has emerged as a potential target for safer thromboprotection, relative to currently approved antithrombotic drugs which all target the final common pathway of blood clotting. Research since the mid-2000s has identified polyphosphate, DNA, and RNA as important triggers of the contact pathway with roles in thrombosis, although these molecules also modulate blood clotting and inflammation via mechanisms other than the contact pathway of the clotting cascade. The most significant source of extracellular DNA in many disease settings is in the form of neutrophil extracellular traps (NETs), which have been shown to contribute to incidence and severity of thrombosis. This review summarizes known roles of extracellular polyphosphate and nucleic acids in thrombosis, with an emphasis on novel agents under current development that target the prothrombotic activities of polyphosphate and NETs.
Collapse
Affiliation(s)
- Sreeparna Vappala
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry; and School of Biomedical Engineering; University of British Columbia, Vancouver, British Columbia, Canada
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Zhu Q, Zhou H. The role of cGAS-STING signaling in rheumatoid arthritis: from pathogenesis to therapeutic targets. Front Immunol 2024; 15:1466023. [PMID: 39386207 PMCID: PMC11461283 DOI: 10.3389/fimmu.2024.1466023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease primarily characterized by erosive and symmetric polyarthritis. As a pivotal axis in the regulation of type I interferon (IFN-I) and innate immunity, the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has been implicated in the pathogenesis of RA. This pathway mainly functions by regulating cell survival, pyroptosis, migration, and invasion. Therefore, understanding the sources of cell-free DNA and the mechanisms underlying the activation and regulation of cGAS-STING signaling in RA offers a promising avenue for targeted therapies. Early detection and interventions targeting the cGAS-STING signaling are important for reducing the medical burden on individuals and healthcare systems. Herein, we review the existing literature pertaining to the role of cGAS-STING signaling in RA, and discuss current applications and future directions for targeting the cGAS-STING signaling in RA treatments.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| |
Collapse
|
20
|
Huang Y, Zia N, Ma Y, Li T, Walker GC, Naguib HE, Kumacheva E. Colloidal Hydrogel with Staged Sequestration and Release of Molecules Undergoing Competitive Binding. ACS NANO 2024; 18:25841-25851. [PMID: 39240238 DOI: 10.1021/acsnano.4c09342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Competitive binding of distinct molecules in the hydrogel interior can facilitate dynamic exchange between the hydrogel and the surrounding environment. The ability to control the rates of sequestration and release of these molecules would enhance the hydrogel's functionality and enable targeting of a specific task. Here, we report the design of a colloidal hydrogel with two distinct pore dimensions to achieve staged, diffusion-controlled scavenging and release dynamics of molecules undergoing competitive binding. The staged scavenging and release strategy was shown for CpG oligodeoxynucleotide (ODN) and human epidermal growth factor (hEGF), two molecules exhibiting different affinities to the quaternary ammonium groups of the hydrogel. Fast ODN scavenging from the ambient environment occurred via diffusion through submicrometer-size hydrogel pores, while delayed hEGF release from the hydrogel was governed by its diffusion through nanometer-size pores. The results of the experiments were in agreement with simulation results. The significance of staged ODN-hEGF exchange was highlighted by the dual anti-inflammation and tissue proliferation hydrogel performance.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto M5S 3E5, Canada
| | - Nashmia Zia
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
| | - Yingshan Ma
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto M5S 3E4, Canada
| | - Gilbert C Walker
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
| | - Hani E Naguib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto M5S 3E5, Canada
- Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto M5S 3E5, Canada
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto M5S 3G9, Canada
| |
Collapse
|
21
|
Li S, Huo C, Liu A, Zhu Y. Mitochondria: a breakthrough in combating rheumatoid arthritis. Front Med (Lausanne) 2024; 11:1439182. [PMID: 39161412 PMCID: PMC11330793 DOI: 10.3389/fmed.2024.1439182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
As a chronic autoimmune disease with complex aetiology, rheumatoid arthritis (RA) has been demonstrated to be associated with mitochondrial dysfunction since mitochondrial dysfunction can affect the survival, activation, and differentiation of immune and non-immune cells involved in the pathogenesis of RA. Nevertheless, the mechanism behind mitochondrial dysfunction in RA remains uncertain. Accordingly, this review addresses the possible role and mechanisms of mitochondrial dysfunction in RA and discusses the potential and challenges of mitochondria as a potential therapeutic strategy for RA, thereby providing a breakthrough point in the prevention and treatment of RA.
Collapse
Affiliation(s)
- Shuang Li
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Chenlu Huo
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Anting Liu
- Graduate School of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yan Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
22
|
Ding T, Xiao Y, Saiding Q, Li X, Chen G, Zhang T, Ma J, Cui W. Capture and Storage of Cell-Free DNA via Bio-Informational Hydrogel Microspheres. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403557. [PMID: 38881489 DOI: 10.1002/adma.202403557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Excessive cell-free DNA (cfDNA) can induce chronic inflammation by activating intracellular nucleic acid sensors. Intervention in cfDNA-mediated "pro-inflammatory signaling transduction" could be a potential alleviating strategy for chronic inflammation, such as in diabetic wounds. However, effectively and specifically downgrading cfDNA concentration in the pathological microenvironment remains a challenge. Therefore, this work prepares free-standing polydopamine nanosheets through DNA-guided assembly and loaded them into microfluidic hydrogel microspheres. The π─π stacking/hydrogen bonding interactions between polydopamine nanosheets and the π-rich bases of cfDNA, along with the cage-like spatial confinement created by the hydrogel polymer network, achieved cfDNA capture and storage, respectively. Catechol in polydopamine nanosheets can also assist in reducing reactive oxygen species (ROS) levels. Efficient cfDNA binding independent of serum proteins, specific interdiction of abnormal activation of cfDNA-associated toll-like receptor 9, as well as down-regulation of inflammatory cytokines and ROS levels are shown in this system. The chronic inflammation alleviating and the pro-healing effects on the mice model with diabetic wounds are also investigated. This work presents a new strategy for capturing and storing cfDNA to intervene in cell signaling transduction. It also offers new insights into the regulatory mechanisms between inflammatory mediators and biomaterials in inflammation-related diseases.
Collapse
Affiliation(s)
- Tao Ding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Yongqiang Xiao
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Qimanguli Saiding
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, the Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| | - Tianyu Zhang
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
23
|
Shang L, Jiang X, Zhao X, Huang X, Wang X, Jiang X, Kong X, Yao M, Jiang S, Wong PP. Mitochondrial DNA-boosted dendritic cell-based nanovaccination triggers antitumor immunity in lung and pancreatic cancers. Cell Rep Med 2024; 5:101648. [PMID: 38986624 PMCID: PMC11293323 DOI: 10.1016/j.xcrm.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.
Collapse
Affiliation(s)
- Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
24
|
Tu AB, Krishna G, Smith KR, Lewis JS. Harnessing Immunomodulatory Polymers for Treatment of Autoimmunity, Allergy, and Transplant Rejection. Annu Rev Biomed Eng 2024; 26:415-440. [PMID: 38959388 DOI: 10.1146/annurev-bioeng-110122-014306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Autoimmunity, allergy, and transplant rejection are a collection of chronic diseases that are currently incurable, drastically decrease patient quality of life, and consume considerable health care resources. Underlying each of these diseases is a dysregulated immune system that results in the mounting of an inflammatory response against self or an innocuous antigen. As a consequence, afflicted patients are required to adhere to lifelong regimens of multiple immunomodulatory drugs to control disease and reclaim agency. Unfortunately, current immunomodulatory drugs are associated with a myriad of side effects and adverse events, such as increased risk of cancer and increased risk of serious infection, which negatively impacts patient adherence rates and quality of life. The field of immunoengineering is a new discipline that aims to harness endogenous biological pathways to thwart disease and minimize side effects using novel biomaterial-based strategies. We highlight and discuss polymeric micro/nanoparticles with inherent immunomodulatory properties that are currently under investigation in biomaterial-based therapies for treatment of autoimmunity, allergy, and transplant rejection.
Collapse
Affiliation(s)
- Allen B Tu
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | - Gaddam Krishna
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Kevin R Smith
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| | - Jamal S Lewis
- Department of Biomedical Engineering, University of California, Davis, California, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
25
|
An X, Yang J, Cui X, Zhao J, Jiang C, Tang M, Dong Y, Lin L, Li H, Wang F. Advances in local drug delivery technologies for improved rheumatoid arthritis therapy. Adv Drug Deliv Rev 2024; 209:115325. [PMID: 38670229 DOI: 10.1016/j.addr.2024.115325] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/25/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by an inflammatory microenvironment and cartilage erosion within the joint cavity. Currently, antirheumatic agents yield significant outcomes in RA treatment. However, their systemic administration is limited by inadequate drug retention in lesion areas and non-specific tissue distribution, reducing efficacy and increasing risks such as infection due to systemic immunosuppression. Development in local drug delivery technologies, such as nanostructure-based and scaffold-assisted delivery platforms, facilitate enhanced drug accumulation at the target site, controlled drug release, extended duration of the drug action, reduced both dosage and administration frequency, and ultimately improve therapeutic outcomes with minimized damage to healthy tissues. In this review, we introduced pathogenesis and clinically used therapeutic agents for RA, comprehensively summarized locally administered nanostructure-based and scaffold-assisted drug delivery systems, aiming at improving the therapeutic efficiency of RA by alleviating the inflammatory response, preventing bone erosion and promoting cartilage regeneration. In addition, the challenges and future prospects of local delivery for clinical translation in RA are discussed.
Collapse
Affiliation(s)
- Xiaoran An
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiapei Yang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xiaolin Cui
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Jiaxuan Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Chenwei Jiang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Minglu Tang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yabing Dong
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Hui Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, PR China
| | - Feihu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China.
| |
Collapse
|
26
|
Zhang M, Cai Y, Zhong X, Liu W, Lin Y, Qiu Z, Liang R, Wei H, Wu K, Liu Q. Effects of cell-free DNA on kidney disease and intervention strategies. Front Pharmacol 2024; 15:1377874. [PMID: 38835660 PMCID: PMC11148383 DOI: 10.3389/fphar.2024.1377874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Kidney disease has become a global public health problem. Patients with end-stage kidney disease must rely on dialysis or undergo renal transplantation, placing heavy burdens on their families and society. Therefore, it is important to develop new therapeutic targets and intervention strategies during early stages of chronic kidney disease. The widespread application of liquid biopsy has led to an increasing number of studies concerning the roles of cell-free DNA (cfDNA) in kidney disease. In this review, we summarize relevant studies concerning the roles of cfDNA in kidney disease and describe various strategies for targeted removal of cfDNA, with the goal of establishing novel therapeutic approaches for kidney disease.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Yubin Cai
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Xiaoze Zhong
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Weijun Liu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Yuan Lin
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Zhanyi Qiu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Ruihuang Liang
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Huibo Wei
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Kefei Wu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
27
|
Chen X, Chen C, Tu Z, Guo Z, Lu T, Li J, Wen Y, Chen D, Lei W, Wen W, Li H. Intranasal PAMAM-G3 scavenges cell-free DNA attenuating the allergic airway inflammation. Cell Death Discov 2024; 10:213. [PMID: 38698016 PMCID: PMC11065999 DOI: 10.1038/s41420-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Allergic airway inflammation (AAI), including allergic rhinitis (AR) and allergic asthma, is driven by epithelial barrier dysfunction and type 2 inflammation. However, the underlying mechanism remains uncertain and available treatments are constrained. Consequently, we aim to explore the role of cell-free DNA (cfDNA) in AAI and assess the potential alleviating effects of cationic polymers (CPs) through cfDNA elimination. Levels of cfDNA were evaluated in AR patients, allergen-stimulated human bronchial epithelium (BEAS-2B cells) and primary human nasal epithelium from both AR and healthy control (HC), and AAI murine model. Polyamidoamine dendrimers-generation 3 (PAMAM-G3), a classic type of cationic polymers, were applied to investigate whether the clearance of cfDNA could ameliorate airway epithelial dysfunction and inhibit AAI. The levels of cfDNA in the plasma and nasal secretion from AR were higher than those from HC (P < 0.05). Additionally, cfDNA levels in the exhaled breath condensate (EBC) were positively correlated with Interleukin (IL)-5 levels in EBC (R = 0.4191, P = 0.0001). Plasma cfDNA levels negatively correlated with the duration of allergen immunotherapy treatment (R = -0.4297, P = 0.006). Allergen stimulated cfDNA secretion in vitro (P < 0.001) and in vivo (P < 0.0001), which could be effectively scavenged with PAMAM-G3. The application of PAMAM-G3 inhibited epithelial barrier dysfunction in vitro and attenuated the development of AAI in vivo. This study elucidates that cfDNA, a promising biomarker for monitoring disease severity, aggravates AAI and the application of intranasal PAMAM-G3 could potentially be a novel therapeutic intervention for AAI. Allergen stimulates the secretion of cell-free DNA (cfDNA) in both human and mouse airway. Intranasal polyamidoamine dendrimers-generation 3 (PAMAM-G3) scavenges cfDNA and alleviates allergic airway inflammation.
Collapse
Affiliation(s)
- Xiumin Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changhui Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaoxu Tu
- Department of Otorhinolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zeling Guo
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Lu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Otorhinolaryngology, Guangxi Hospital Division of the First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Yihui Wen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dehua Chen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Lei
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Weiping Wen
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Otorhinolaryngology, the Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hang Li
- Department of Otorhinolaryngology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Otorhinolaryngology Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
28
|
Tu Z, Liu M, Xu C, Wei Y, Lu T, Xiao Y, Li H, Zhang S, Xie X, Li J, Wen W. Functional 2D Nanoplatforms Alleviate Eosinophilic Chronic Rhinosinusitis by Modulating Eosinophil Extracellular Trap Formation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307800. [PMID: 38477549 PMCID: PMC11109617 DOI: 10.1002/advs.202307800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Indexed: 03/14/2024]
Abstract
The therapeutic outcomes of patients with eosinophilic chronic rhinosinusitis (ECRS) remain unsatisfactory, largely because the underlying mechanisms of eosinophilic inflammation are uncertain. Here, it is shown that the nasal secretions of ECRS patients have high eosinophil extracellular trap (EET) and cell-free DNA (cfDNA) levels. Moreover, the cfDNA induced EET formation by activating toll-like receptor 9 (TLR9) signaling. After demonstrating that DNase I reduced eosinophilic inflammation by modulating EET formation, linear polyglycerol-amine (LPGA)-coated TiS2 nanosheets (TLPGA) as functional 2D nanoplatforms with low cytotoxicity, mild protein adsorption, and increased degradation rate is developed. Due to the more flexible linear architecture, TLPGA exhibited higher cfDNA affinity than the TiS2 nanosheets coated with dendritic polyglycerol-amine (TDPGA). TLPGA reduced cfDNA levels in the nasal secretions of ECRS patients while suppressing cfDNA-induced TLR9 activation and EET formation in vitro. TLPGA displayed exceptional biocompatibility, preferential nasal localization, and potent inflammation modulation in mice with eosinophilic inflammation. These results highlight the pivotal feature of the linear molecular architecture and 2D sheet-like nanostructure in the development of anti-inflammation nanoplatforms, which can be exploited for ECRS treatment.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Ming Liu
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Changyi Xu
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of Clinical LaboratoryThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yi Wei
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Tong Lu
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Yongqiang Xiao
- ENT instituteEye & ENT HospitalFudan UniversityShanghai201114China
| | - Hongxia Li
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Shuaiyin Zhang
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Xinran Xie
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Jian Li
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| | - Weiping Wen
- Department of OtolaryngologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Department of OtolaryngologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
- Biomedical Innovation CenterThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655China
| |
Collapse
|
29
|
Zhou H, Zhang Z, Mu Y, Yao H, Zhang Y, Wang DA. Harnessing Nanomedicine for Cartilage Repair: Design Considerations and Recent Advances in Biomaterials. ACS NANO 2024; 18:10667-10687. [PMID: 38592060 DOI: 10.1021/acsnano.4c00780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cartilage injuries are escalating worldwide, particularly in aging society. Given its limited self-healing ability, the repair and regeneration of damaged articular cartilage remain formidable challenges. To address this issue, nanomaterials are leveraged to achieve desirable repair outcomes by enhancing mechanical properties, optimizing drug loading and bioavailability, enabling site-specific and targeted delivery, and orchestrating cell activities at the nanoscale. This review presents a comprehensive survey of recent research in nanomedicine for cartilage repair, with a primary focus on biomaterial design considerations and recent advances. The review commences with an introductory overview of the intricate cartilage microenvironment and further delves into key biomaterial design parameters crucial for treating cartilage damage, including microstructure, surface charge, and active targeting. The focal point of this review lies in recent advances in nano drug delivery systems and nanotechnology-enabled 3D matrices for cartilage repair. We discuss the compositions and properties of these nanomaterials and elucidate how these materials impact the regeneration of damaged cartilage. This review underscores the pivotal role of nanotechnology in improving the efficacy of biomaterials utilized for the treatment of cartilage damage.
Collapse
Affiliation(s)
- Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yi Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center for Neuromusculoskeletal Restorative Medicine, InnoHK, HKSTP, Sha Tin, Hong Kong SAR 999077, China
| |
Collapse
|
30
|
Zhang L, Ye P, Zhu H, Zhu L, Ren Y, Lei J. Bioinspired and biomimetic strategies for inflammatory bowel disease therapy. J Mater Chem B 2024; 12:3614-3635. [PMID: 38511264 DOI: 10.1039/d3tb02995f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease with high morbidity and an increased risk of cancer or death, resulting in a heavy societal medical burden. While current treatment modalities have been successful in achieving long-term remission and reducing the risk of complications, IBD remains incurable. Nanomedicine has the potential to address the high toxic side effects and low efficacy in IBD treatment. However, synthesized nanomedicines typically exhibit some degree of immune rejection, off-target effects, and a poor ability to cross biological barriers, limiting the development of clinical applications. The emergence of bionic materials and bionic technologies has reshaped the landscape in novel pharmaceutical fields. Biomimetic drug-delivery systems can effectively improve biocompatibility and reduce immunogenicity. Some bioinspired strategies can mimic specific components, targets or immune mechanisms in pathological processes to produce targeting effects for precise disease control. This article highlights recent research on bioinspired and biomimetic strategies for the treatment of IBD and discusses the challenges and future directions in the field to advance the treatment of IBD.
Collapse
Affiliation(s)
- Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Huatai Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
31
|
Li X, Hu L, Naeem A, Xiao S, Yang M, Shang H, Zhang J. Neutrophil Extracellular Traps in Tumors and Potential Use of Traditional Herbal Medicine Formulations for Its Regulation. Int J Nanomedicine 2024; 19:2851-2877. [PMID: 38529365 PMCID: PMC10961241 DOI: 10.2147/ijn.s449181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Neutrophil extracellular traps (NETs) are extracellular fibers composed of deoxyribonucleic acid (DNA) and decorated proteins produced by neutrophils. Recently, NETs have been associated with the development of many diseases, including tumors. Herein, we reviewed the correlation between NETs and tumors. In addition, we detailed active compounds from traditional herbal medicine formulations that inhibit NETs, related nanodrug delivery systems, and antibodies that serve as "guiding moieties" to ensure targeted delivery to NETs. Furthermore, we discussed the strategies used by pathogenic microorganisms to evade NETs.
Collapse
Affiliation(s)
- Xiang Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Lei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
| | - Shanghua Xiao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| | - Hongming Shang
- Department of Biochemistry & Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Jing Zhang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330006, People’s Republic of China
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, People’s Republic of China
| |
Collapse
|
32
|
Tu Z, Zhu Y, Gao W, Liu M, Wei Y, Xu C, Xiao Y, Wen Y, Li J, Leong KW, Wen W. Tackling Severe Neutrophilic Inflammation in Airway Disorders with Functionalized Nanosheets. ACS NANO 2024; 18:7084-7097. [PMID: 38377352 DOI: 10.1021/acsnano.3c11139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Severe airway inflammatory disorders impose a significant societal burden, and the available treatments are unsatisfactory. High levels of neutrophil extracellular trap (NET) and cell-free DNA (cfDNA) were detected in the inflammatory microenvironment of these diseases, which are closely associated with persistent uncontrolled neutrophilic inflammation. Although DNase has proven to be effective in mitigating neutrophilic airway inflammation in mice by reducing cfDNA and NET levels, its clinical use is hindered by severe side effects. Here, we synthesized polyglycerol-amine (PGA) with a series of hydroxyl/amine ratios and covered them with black phosphorus (BP) nanosheets. The BP nanosheets functionalized with polyglycerol-50% amine (BP-PGA50) efficiently lowered cfDNA levels, suppressed toll-like receptor 9 (TLR9) activation and inhibited NET formation in vitro. Importantly, BP-PGA50 nanosheets demonstrated substantial accumulation in inflamed airway tissues, excellent biocompatibility, and potent inflammation modulation ability in model mice. The 2D sheet-like structure of BP-PGA50 was identified as a crucial factor for the therapeutic efficacy, and the hydroxyl/amine ratio was revealed as a significant parameter to regulate the protein resistance, cfDNA-binding efficacy, and cytotoxicity. This study shows the promise of the BP-PGA50 nanosheet for tackling uncontrolled airway inflammation, which is also significant for the treatment of other neutrophilic inflammatory diseases. In addition, our work also highlights the importance of proper surface functionalization, such as hydroxyl/amine ratio, in therapeutic nanoplatform construction for inflammation modulation.
Collapse
Affiliation(s)
- Zhaoxu Tu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yuefei Zhu
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenlong Gao
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Ming Liu
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yi Wei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Changyi Xu
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Yongqiang Xiao
- ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai 201114, China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Jian Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Weiping Wen
- Department of Otolaryngology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, Guangdong, China
| |
Collapse
|
33
|
Liu Z, Wang Y, Zhang Y, Hu L, Chen B, Li Y, Guo X, Yu B, Xu FJ. Biguanide chitosan microneedles with cell-free DNA scavenging ability for psoriasis therapy. Bioact Mater 2024; 33:497-505. [PMID: 38145214 PMCID: PMC10746392 DOI: 10.1016/j.bioactmat.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
High levels of cell-free DNA (cfDNA) induce psoriasis. Currently, the treatment of psoriasis has the disadvantages of penetration difficulty, suppression of normal immunity, and skin irritation. In this study, biguanide chitosan microneedles (BGC-MNs) were prepared to treat psoriasis by removing cfDNA from the dermis through the skin barrier. The effects of chitosan with different bisguanidine contents on DNA-binding capacity, biocompatibility, and inflammation inhibition were compared, revealing that chitosan containing 20% bisguanidine (BGC2) was found to have the best overall performance. In vitro, BGC2 effectively cleared cfDNA and inhibited the production of inflammatory factors. BGC-MN made from BGC2 had good mechanical and solubility properties. In vivo, BGC-MNs cleared cfDNA, reduced the level of inflammatory factors in the dermis, and exerted a good therapeutic effect on mice with psoriasis. These results suggested that BGC-MNs provided a new approach to treating psoriasis in terms of scavenging cfDNA and exerting anti-inflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Bozhi Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xindong Guo
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education) and Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
34
|
Wei H, Huang H, He H, Xiao Y, Chun L, Jin Z, Li H, Zheng L, Zhao J, Qin Z. Pt-Se Hybrid Nanozymes with Potent Catalytic Activities to Scavenge ROS/RONS and Regulate Macrophage Polarization for Osteoarthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0310. [PMID: 38410279 PMCID: PMC10895487 DOI: 10.34133/research.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
The activation of pro-inflammatory M1-type macrophages by overexpression of reactive oxygen species (ROS) and reactive nitrogen species (RONS) in synovial membranes contributes to osteoarthritis (OA) progression and cartilage matrix degradation. Here, combing Pt and Se with potent catalytic activities, we developed a hybrid Pt-Se nanozymes as ROS and RONS scavengers to exert synergistic effects for OA therapy. As a result, Pt-Se nanozymes exhibited efficient scavenging effect on ROS and RONS levels, leading to repolarization of M1-type macrophages. Furthermore, the polarization of synovial macrophages to the M2 phenotype inhibited the expression of pro-inflammatory factors and salvaged mitochondrial function in arthritic chondrocytes. In vivo results also suggest that Pt-Se nanozymes effectively suppress the early progression of OA with an Osteoarthritis Research International Association score reduction of 68.21% and 82.66% for 4 and 8 weeks, respectively. In conclusion, this study provides a promising strategy to regulate inflammatory responses by macrophage repolarization processes for OA therapeutic.
Collapse
Affiliation(s)
- Hong Wei
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Hongjun Huang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Haoqiang He
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuanming Xiao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Life Sciences Institute,
Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Lu Chun
- School of Materials and Environment,
Guangxi Minzu University, Nanning, Guangxi 53000, China
| | - Zhiqiang Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Hanyang Li
- Department of Orthopaedics,
Affiliated Hospital of Guilin Medical University, Guilin 541000, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Department of Orthopaedics Trauma and Hand Surgery,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
- Guangxi Key Laboratory of Regenerative Medicine,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zainen Qin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and MedicalBioResource Development and Application Co-constructed by the Province and Ministry,
The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
35
|
Zhu J, Li X, Zhou Y, Ge C, Li X, Hou M, Wei Y, Chen Y, Leong KW, Yin L. Inhaled immunoantimicrobials for the treatment of chronic obstructive pulmonary disease. SCIENCE ADVANCES 2024; 10:eabd7904. [PMID: 38324682 PMCID: PMC10849584 DOI: 10.1126/sciadv.abd7904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Effective therapeutic modalities and drug administration strategies for the treatment of chronic obstructive pulmonary disease (COPD) exacerbations are lacking. Here, mucus and biofilm dual-penetrating immunoantimicrobials (IMAMs) are developed for bridging antibacterial therapy and pro-resolving immunotherapy of COPD. IMAMs are constructed from ceftazidime (CAZ)-encapsulated hollow mesoporous silica nanoparticles (HMSNs) gated with a charge/conformation-transformable polypeptide. The polypeptide adopts a negatively charged, random-coiled conformation, masking the pores of HMSNs to prevent antibiotic leakage and allowing the nebulized IMAMs to efficiently penetrate the bronchial mucus and biofilm. Inside the acidic biofilm, the polypeptide transforms into a cationic and rigid α helix, enhancing biofilm retention and unmasking the pores to release CAZ. Meanwhile, the polypeptide is conditionally activated to disrupt bacterial membranes and scavenge bacterial DNA, functioning as an adjuvant of CAZ to eradicate lung-colonizing bacteria and inhibiting Toll-like receptor 9 activation to foster inflammation resolution. This immunoantibacterial strategy may shift the current paradigm of COPD management.
Collapse
Affiliation(s)
- Junliang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiaohui Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215002, China
| | - Yang Zhou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chenglong Ge
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xudong Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Mengying Hou
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yuansong Wei
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215002, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215002, China
| |
Collapse
|
36
|
Mao K, Wang J, Xie Q, Yang YG, Shen S, Sun T, Wang J. Cationic nanoparticles-based approaches for immune tolerance induction in vivo. J Control Release 2024; 366:425-447. [PMID: 38154540 DOI: 10.1016/j.jconrel.2023.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The development of autoimmune diseases and the rejection of transplanted organs are primarily caused by an exaggerated immune response to autoantigens or graft antigens. Achieving immune tolerance is crucial for the effective treatment of these conditions. However, traditional therapies often have limited therapeutic efficacy and can result in systemic toxic effects. The emergence of nanomedicine offers a promising avenue for addressing immune-related diseases. Among the various nanoparticle formulations, cationic nanoparticles have demonstrated significant potential in inducing immune tolerance. In this review, we provide an overview of the underlying mechanism of autoimmune disease and organ transplantation rejection. We then highlight the recent advancements and advantages of utilizing cationic nanoparticles for inducing immune tolerance in the treatment of autoimmune diseases and the prevention of transplant rejection.
Collapse
Affiliation(s)
- Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Qianyue Xie
- Huafu International Department, Affiliated High School of South China Normal University, Guangzhou, Guangdong, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Song Shen
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China; International Center of Future Science, Jilin University, Changchun, Jilin, China; National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, Guangdong, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovatiion Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
37
|
Guo K, Wang Y, Feng ZX, Lin XY, Wu ZR, Zhong XC, Zhuang ZM, Zhang T, Chen J, Tan WQ. Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials. Int J Nanomedicine 2024; 19:859-881. [PMID: 38293610 PMCID: PMC10824616 DOI: 10.2147/ijn.s437854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.
Collapse
Affiliation(s)
- Kai Guo
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yong Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zi-Xuan Feng
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiao-Ying Lin
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhang-Rui Wu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xin-Cao Zhong
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ze-Ming Zhuang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Tao Zhang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jian Chen
- Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
38
|
Xiao Y, Fang H, Zhu Y, Zhou J, Dai Z, Wang H, Xia Z, Tu Z, Leong KW. Multifunctional Cationic Hyperbranched Polyaminoglycosides that Target Multiple Mediators for Severe Abdominal Trauma Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305273. [PMID: 37997512 PMCID: PMC10767409 DOI: 10.1002/advs.202305273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Indexed: 11/25/2023]
Abstract
Trauma and its associated complications, including dysregulated inflammatory responses, severe infection, and disseminated intravascular coagulation (DIC), continue to pose lethal threats worldwide. Following injury, cell-free nucleic acids (cfNAs), categorized as damage-associated molecular patterns (DAMPs), are released from dying or dead cells, triggering local and systemic inflammatory responses and coagulation abnormalities that worsen disease progression. Harnessing cfNA scavenging strategies with biomaterials has emerged as a promising approach for treating posttrauma systemic inflammation. In this study, the effectiveness of cationic hyperbranched polyaminoglycosides derived from tobramycin (HPT) and disulfide-included HPT (ss-HPT) in scavenging cfNAs to mitigate posttrauma inflammation and hypercoagulation is investigated. Both cationic polymers demonstrate the ability to suppress DAMP-induced toll-like receptor (TLR) activation, inflammatory cytokine secretion, and hypercoagulation by efficiently scavenging cfNAs. Additionally, HPT and ss-HPT exhibit potent antibacterial efficacy attributed to the presence of tobramycin in their chemical composition. Furthermore, HPT and ss-HPT exhibit favorable modulatory effects on inflammation and therapeutic outcomes in a cecal ligation puncture (CLP) mouse abdominal trauma model. Notably, in vivo studies reveal that ss-HPT displayed high accumulation and retention in injured organs of traumatized mice while maintaining a higher biodegradation rate in healthy mice, contrasting with findings for HPT. Thus, functionalized ss-HPT, a bioreducible polyaminoglycoside, holds promise as an effective option to enhance therapeutic outcomes for trauma patients by alleviating posttrauma inflammation and coagulation complications.
Collapse
Affiliation(s)
- Yongqiang Xiao
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- ENT InstituteDepartment of Facial Plastic and Reconstructive SurgeryEye & ENT HospitalFudan UniversityShanghai200031P. R. China
| | - He Fang
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Yuefei Zhu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Jie Zhou
- Department of Breast SurgeryAffiliated Cancer Hospital and InstituteGuangzhou Medical UniversityGuangzhou510095P. R. China
| | - Zhanzhan Dai
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Hongxia Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhaofan Xia
- Department of Burn Surgerythe First Affiliated HospitalNaval Medical UniversityShanghai200433P. R. China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Kam W. Leong
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
- Department of Systems BiologyColumbia University Medical CenterNew YorkNY10032USA
| |
Collapse
|
39
|
Sun HG, Jiang Q, Fan WJ, Shen XY, Wang ZW, Wang X. TAGAP activates Th17 cell differentiation by promoting RhoA and NLRP3 to accelerate rheumatoid arthritis development. Clin Exp Immunol 2023; 214:26-35. [PMID: 37458218 PMCID: PMC10711349 DOI: 10.1093/cei/uxad084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/16/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that can give rise to joint swelling and inflammation, potentially affecting the entire body, closely linked to the state of T cells. The T-cell activation Rho GTPase activating protein (TAGAP) is associated with many autoimmune diseases including RA and is directly linked to the differentiation of Th17 cells. The present study intends to investigate the influence of TAGAP on the RA progression and its mechanism to empower new treatments for RA. A collagen-induced-arthritis (CIA) rat model was constructed, as well as the extraction of CD4+ T cells. RT-qPCR, H&E staining and safranin O/fast green staining revealed that TAGAP interference reduced TAGAP production in the ankle joint of CIA rats, and joint inflammation and swelling were alleviated, which reveals that TAGAP interference reduces synovial inflammation and cartilage erosion in the rat ankle joint. Expression of inflammatory factors (TNF-α, IL-1β, and IL-17) revealed that TAGAP interference suppressed the inflammatory response. Expression of pro-inflammatory cytokines, matrix-degrading enzymes, and anti-inflammatory cytokines at the mRNA level was detected by RT-qPCR and revealed that TAGAP interference contributed to the remission of RA. Mechanistically, TAGAP interference caused a significant decrease in the levels of RhoA and NLRP3. Assessment of Th17/Treg levels by flow cytometry revealed that TAGAP promotes Th17 cells differentiation and inhibits Treg cells differentiation in vitro and in vivo. In conclusion, TAGAP interference may decrease the differentiation of Th17 cells by suppressing the expression of RhoA and NLRP3 to slow down the RA progression.
Collapse
Affiliation(s)
- Hong-Gang Sun
- Department of Medical Laboratory, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Qi Jiang
- Department of Transfusion, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Wen-Jing Fan
- Department of Rheumatology and Immunology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Xu-Yan Shen
- Department of Rheumatology and Immunology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Zhao-Wei Wang
- Department of Neurology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| | - Xin Wang
- Department of Rheumatology and Immunology, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, China
| |
Collapse
|
40
|
Shi T, Zhao J, Long K, Gao M, Chen F, Chen X, Zhang Y, Huang B, Shao D, Yang C, Wang L, Zhang M, Leong KW, Chen L, He K. Cationic mesoporous silica nanoparticles alleviate osteoarthritis by targeting multiple inflammatory mediators. Biomaterials 2023; 303:122366. [PMID: 37948854 DOI: 10.1016/j.biomaterials.2023.122366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/08/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.
Collapse
Affiliation(s)
- Tongfei Shi
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jingtong Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kongrong Long
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Mohan Gao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Fangman Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Xuenian Chen
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yue Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Baoding Huang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 511442, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Chao Yang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Liang Wang
- Department of Orthopedics, Academy of Orthopedics-Guangdong Province, Orthopedic Hospital of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510665, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; School of Nursing, Jilin University, Changchun, 130021, China.
| | - Kan He
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
41
|
Hua P, Liang R, Tu Y, Yin Y, Law MK, Chen M. Reactive oxygen species and nitric oxide scavenging nanoparticles alleviating rheumatoid arthritis through adjusting the seeds and growing soils. Acta Pharm Sin B 2023; 13:5016-5029. [PMID: 38045057 PMCID: PMC10692387 DOI: 10.1016/j.apsb.2023.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 12/05/2023] Open
Abstract
Normalizing inflamed soils including reactive oxygen species (ROS), nitric oxide (NO), cell-free DNA, and regulating inflammation-related seeds such as macrophages, neutrophils, fibroblasts, represent a promising strategy to maintain synovial tissue homeostasis for rheumatoid arthritis (RA) treatment. Herein, ROS scavenging amphiphilic block copolymer PEGylated bilirubin and NO-scavenging PEGylated o-phenylenediamine were fabricated to self-assemble into a dually responsive nanoparticle loaded with JAK inhibitor notopterol (Not@BR/oPDA-PEG, NBOP NPs). The simultaneous ROS and NO depletion combined with JAK-STAT pathway inhibition could not only promote M2 polarization to reduce further ROS and NO generation, but also decrease cytokines and chemokines to prevent immune cell recruitment. Specifically, NBOP NPs responded to high level ROS and NO, and disintegrated to release notopterol in inflamed joints as the hydrophobic heads BR and oPDA were transformed into hydrophilic ones. The released notopterol could inhibit the JAK-STAT pathway of inflammatory cells to reduce the secretion of pro-inflammatory cytokines and chemokines. This strategy represented an effective way to regulate RA soils and seeds through breaking the positive feedback loop of inflammation aggravation, achieving an excellent anti-RA efficacy in a collagen-induced arthritis rat model. Taken together, our work offered a reference to adjust RA soils and seeds for enhanced RA treatment.
Collapse
Affiliation(s)
- Peng Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Ruifeng Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yanbei Tu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Yuying Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
42
|
Zhou S, Cheng F, Zhang Y, Su T, Zhu G. Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases. Acc Chem Res 2023; 56:2933-2943. [PMID: 37802125 PMCID: PMC10882213 DOI: 10.1021/acs.accounts.3c00394] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The cyclic GMP-AMP synthase-stimulator interferon gene (cGAS-STING) pathway is an emerging therapeutic target for the prophylaxis and therapy of a variety of diseases, ranging from cancer, infectious diseases, to autoimmune disorders. As a cytosolic double stranded DNA (dsDNA) sensor, cGAS can bind with relatively long dsDNA, resulting in conformational change and activation of cGAS. Activated cGAS catalyzes the conversion of adenosine triphosphate (ATP) and guanosine triphosphate (GTP) into cGAMP, a cyclic dinucleotide (CDN). CDNs, including 2'3'-cGAMP, stimulate adapter protein STING on the endoplasmic membrane, triggering interferon regulatory factor 3 (IRF3) phosphorylation and nuclear factor kappa B (NF-κB) activation. This results in antitumor and antiviral type I interferon (IFN-I) responses. Moreover, cGAS-STING overactivation and the resulting IFN-I responses have been associated with a number of inflammatory and autoimmune diseases. This makes cGAS-STING appealing immunomodulatory targets for the prophylaxis and therapy of various related diseases. However, drug development of CDNs and CDN derivatives is challenged by their limited biostability, difficult formulation, poor pharmacokinetics, and inefficient tissue accumulation and cytosolic delivery. Though recent synthetic small molecular CDN- or non-CDN-based STING agonists have been reported with promising preclinical therapeutic efficacy, their therapeutic efficacy and safety remain to be fully evaluated preclinically and clinically. Therefore, it is highly desirable and clinically significant to advance drug development for cGAS-STING activation by innovative approaches, such as drug delivery systems and drug development for pharmacological immunomodulation of cGAS. In this Account, we summarize our recent research in the engineering and delivery of immunostimulatory or immunoregulatory modulators for cGAS and STING for the immunotherapy of cancer and autoimmune diseases. To improve the delivery efficiency of CDNs, we developed ionizable and pH-responsive polymeric nanocarriers to load STING agonists, aiming to improve the cellular uptake and facilitate the endosomal escape to induce efficient STING activation. We also codelivered STING agonists with complementary immunostimulatants in nanoparticle-in-hydrogel composites to synergetically elicit potent innate and adaptive antitumor responses that eradicate local and distant large tumors. Further, taking advantage of the simplicity of manufacturing and the established nucleic acid delivery system, we developed oligonucleotide-based cGAS agonists as immunostimulant immunotherapeutics as well as adjuvants for peptide antigens for cancer immunotherapy. To suppress the overly strong proinflammatory responses associated with cGAS-STING overactivation in some of the autoimmune disorders, we devised nanomedicine-in-hydrogel (NiH) that codelivers a cGAS inhibitor and cell-free DNA (cfDNA)-scavenging cationic nanoparticles (cNPs) for systemic immunosuppression in rheumatoid arthritis (RA) therapy. Lastly, we discussed current drug development by targeting cGAS-STING for cancer, infectious diseases, and autoimmune diseases, as well as the potential opportunities for utilizing cGAS-STING pathway for versatile applications in disease treatment.
Collapse
Affiliation(s)
- Shurong Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan. Ann Arbor, Michigan 48109, United States
| | - Furong Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, China
| | - Yu Zhang
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 31002, China
| | - Ting Su
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy; Biointerfaces Institute. University of Michigan. Ann Arbor, Michigan 48109, United States
| |
Collapse
|
43
|
Udoikono AD, Agwamba EC, Louis H, Benjamin I, Ahmad I, Ejiofor EU, Ahuekwe EF, Chukwuemeka K, Adeyinka AS, Patel HM, Manicum AL, Edim M. Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:10136-10160. [PMID: 36519503 DOI: 10.1080/07391102.2022.2153414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of -9.57, -9.60, -6.77 and -7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akaninyene D Udoikono
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Emmanuel U Ejiofor
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Eze F Ahuekwe
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Kelechi Chukwuemeka
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Harun M Patel
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Amanda-Lee Manicum
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Moses Edim
- Cross River State University of Technology, Calabar, Nigeria
| |
Collapse
|
44
|
Zhu Z, Lu H, Jin L, Gao Y, Qian Z, Lu P, Tong W, Lo PK, Mao Z, Shi H. C-176 loaded Ce DNase nanoparticles synergistically inhibit the cGAS-STING pathway for ischemic stroke treatment. Bioact Mater 2023; 29:230-240. [PMID: 37502677 PMCID: PMC10371767 DOI: 10.1016/j.bioactmat.2023.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/15/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
The neuroinflammatory responses following ischemic stroke cause irreversible nerve cell death. Cell free-double strand DNA (dsDNA) segments from ischemic tissue debris are engulfed by microglia and sensed by their cyclic GMP-AMP synthase (cGAS), which triggers robust activation of the innate immune stimulator of interferon genes (STING) pathway and initiate the chronic inflammatory cascade. The decomposition of immunogenic dsDNA and inhibition of the innate immune STING are synergistic immunologic targets for ameliorating neuroinflammation. To combine the anti-inflammatory strategies of STING inhibition and dsDNA elimination, we constructed a DNase-mimetic artificial enzyme loaded with C-176. Nanoparticles are self-assembled by amphiphilic copolymers (P[CL35-b-(OEGMA20.7-co-NTAMA14.3)]), C-176, and Ce4+ which is coordinated with nitrilotriacetic acid (NTA) group to form corresponding catalytic structures. Our work developed a new nano-drug that balances the cGAS-STING axis to enhance the therapeutic impact of stroke by combining the DNase-memetic Ce4+ enzyme and STING inhibitor synergistically. In conclusion, it is a novel approach to modulating central nervus system (CNS) inflammatory signaling pathways and improving stroke prognosis.
Collapse
Affiliation(s)
- Zhixin Zhu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haipeng Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lulu Jin
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhefeng Qian
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pan Lu
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| | - Weijun Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Pik Kwan Lo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haifei Shi
- Department of Orthopedics, 1st Affiliated Hospital of Zhejiang University School of Medicine, Qingchun Road 79, Hangzhou, 31000, China
| |
Collapse
|
45
|
Liu X, Chen S, Liu L, Chen Y. Cationic brush hybrid nanoparticles scavenge cell-free DNA to enhance rheumatoid arthritis treatment. Acta Biomater 2023; 170:215-227. [PMID: 37619897 DOI: 10.1016/j.actbio.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Abnormally high level of cell-free DNA (cfDNA) is one of the important causes of autoimmune diseases, which aggravate the symptoms of rheumatoid arthritis (RA). Recently, the utilization of cationic polymeric nanoparticles for scavenging cfDNA has emerged as a promising therapeutic strategy for the treatment of RA. However, the intravenous introduction of cationic polymeric nanoparticles into the circulation carries a risk of dissociation, causing toxicity. To realize the potential clinical translation, we employed a series of silica particles grafted with poly(2-(dimethylamino) ethyl methacrylate) (PDMA) (SiNP@PDMA) brush, which possess adjustable PDMA content (100, 200, and 300 degree of polymerization (DP)) and particle size (50, 100, and 200 nm diameter), to selectively scavenge cfDNA in inflamed joint cavity. We demonstrate that the binding affinity for cfDNA, cytotoxicity, circulation time in vivo and retention in the inflamed joint cavity are influenced by the core-shell structure of SiNP@PDMA, ultimately impacting therapeutic efficacy. Among them, SiNP@PDMA with 100 nm size and 200 DP of PDMA exhibit enhanced accumulation and prolonged retention time in inflammatory joint cavity, resulting in superior therapeutic effect. Therefore, in this study, applying the precisely tuning size and cation content of SiNP@PDMA, we demonstrated the factors to matter the therapeutic effect of cationic nanoparticles, which deepened the understanding of the anti-inflammatory therapies based on cfDNA scavenger for RA. STATEMENT OF SIGNIFICANCE: Inspired by the discovery that cfDNA would induce inappropriate immune responses to exacerbate the progress of RA, we innovatively employed SiNP@PDMA as a cfDNA scavenger to inhibit cfDNA-induced inflammation in RA. Increase in the cation content efficiently strengthened the binding between SiNP@PDMA and cfDNA, leading to an improvement in inhibitory effect of inflammation. In addition, we compared the behaviors of 50, 100 and 200 nm SiNP@PDMA in RA symptom suppression, local cfDNA scavenging and inflammation inhibition. The results demonstrated that SiNP100-PDMA200 outperformed other analogues, corresponding to their more favorable distribution in inflammatory articular cavity. Together, this study revealed the structure-property relationship of cfDNA scavengers for further development of safe and effective cfDNA scavenging system.
Collapse
Affiliation(s)
- Xingliang Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Lixin Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China; Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
46
|
Lazar KM, Shetty S, Chilkoti A, Collier JH. Immune-active polymeric materials for the treatment of inflammatory diseases. Curr Opin Colloid Interface Sci 2023; 67:101726. [DOI: 10.1016/j.cocis.2023.101726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Huang Y, Li S, Zettle LWC, Ma Y, Naguib HE, Kumacheva E. Nanogels designed for cell-free nucleic acid sequestration. NANOSCALE 2023; 15:14531-14542. [PMID: 37609883 DOI: 10.1039/d3nr03231k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Chronic wounds exhibit over-expression of cell-free deoxyribonucleic acid (cfDNA), leading to a prolonged inflammation and non-healing wounds. Scavenging excessive cfDNA molecules is a promising strategy for chronic wound treatment. Nanoscopic particles act as efficient cfDNA scavengers due to their large surface area, however their efficiency in cfDNA uptake was limited by adsorption solely on the nanoparticle surface. In contrast, nanogels may provide multiple cfDNA binding sites in the nanoparticle interior, however their use for cfDNA scavenging is yet to be explored. Herein, we report cationic nanogels derived from a copolymer of chitosan and poly{2-[(acryloyloxy)ethyl]trimethylammonium chloride} end-grafted to the chitosan backbone as side chains. The nanogels retain their positive charge at the pH and ionic strength of chronic wound exudate, enabling electrostatically driven cfDNA scavenging. The network structure of the nanogels leads to the cfDNA sequestration in the nanogel interior, in addition to surface attachment. A key factor in cfDNA sequestration is the ratio of the pore size of the nanogel-to-cfDNA molecular dimensions. The enhanced cfDNA scavenging efficiency, along with biocompatibility of the nanogels, makes them a promising component of dressings for chronic wound treatment.
Collapse
Affiliation(s)
- Yuhang Huang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
| | - Shangyu Li
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Logan W C Zettle
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Yingshan Ma
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hani E Naguib
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
48
|
Cheng F, Su T, Liu Y, Zhou S, Qi J, Guo W, Zhu G. Targeting Lymph Nodes for Systemic Immunosuppression Using Cell-Free-DNA-Scavenging And cGAS-Inhibiting Nanomedicine-In-Hydrogel for Rheumatoid Arthritis Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302575. [PMID: 37435620 PMCID: PMC10502670 DOI: 10.1002/advs.202302575] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/08/2023] [Indexed: 07/13/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with pathogenic inflammation caused partly by excessive cell-free DNA (cfDNA). Specifically, cfDNA is internalized into immune cells, such as macrophages in lymphoid tissues and joints, and activates pattern recognition receptors, including cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), resulting in overly strong proinflammation. Here, nanomedicine-in-hydrogel (NiH) is reported that co-delivers cGAS inhibitor RU.521 (RU) and cfDNA-scavenging cationic nanoparticles (cNPs) to draining lymph nodes (LNs) for systemic immunosuppression in RA therapy. Upon subcutaneous injection, NiH prolongs LN retention of RU and cNPs, which pharmacologically inhibit cGAS and scavenged cfDNA, respectively, to inhibit proinflammation. NiH elicits systemic immunosuppression, repolarizes macrophages, increases fractions of immunosuppressive cells, and decreases fractions of CD4+ T cells and T helper 17 cells. Such skewed immune milieu allows NiH to significantly inhibit RA progression in collagen-induced arthritis mice. These studies underscore the great potential of NiH for RA immunotherapy.
Collapse
Affiliation(s)
- Furong Cheng
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200032China
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and SciencesSchool of PharmacyThe Developmental Therapeutics Program, Massey Cancer Center.Virginia Commonwealth UniversityRichmondVA23298USA
- Translational Medicine CenterThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Ting Su
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and SciencesSchool of PharmacyThe Developmental Therapeutics Program, Massey Cancer Center.Virginia Commonwealth UniversityRichmondVA23298USA
| | - Yangtengyu Liu
- Department of Rheumatology and ImmunologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Shurong Zhou
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and SciencesSchool of PharmacyThe Developmental Therapeutics Program, Massey Cancer Center.Virginia Commonwealth UniversityRichmondVA23298USA
- Department of Pharmaceutical SciencesCollege of PharmacyBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| | - Jialong Qi
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and SciencesSchool of PharmacyThe Developmental Therapeutics Program, Massey Cancer Center.Virginia Commonwealth UniversityRichmondVA23298USA
| | - Weisheng Guo
- Translational Medicine CenterThe Second Affiliated HospitalGuangzhou Medical UniversityGuangzhou510260China
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and SciencesSchool of PharmacyThe Developmental Therapeutics Program, Massey Cancer Center.Virginia Commonwealth UniversityRichmondVA23298USA
- Department of Pharmaceutical SciencesCollege of PharmacyBiointerfaces InstituteUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
49
|
Shan B, Zhou Y, Yin M, Deng Y, Ge C, Liu Z, Zhou R, Dong Q, Zhou X, Yin L. Macrophage Membrane-Reversibly Cloaked Nanotherapeutics for the Anti-Inflammatory and Antioxidant Treatment of Rheumatoid Arthritis. SMALL METHODS 2023; 7:e2300667. [PMID: 37469217 DOI: 10.1002/smtd.202300667] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Indexed: 07/21/2023]
Abstract
During rheumatoid arthritis (RA) development, over-produced proinflammatory cytokines represented by tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS) represented by H2 O2 form a self-promoted cycle to exacerbate the synovial inflammation and tissue damage. Herein, biomimetic nanocomplexes (NCs) reversibly cloaked with macrophage membrane (RM) are developed for effective RA management via dual scavenging of TNF-α and ROS. To construct the NCs, membrane-penetrating, helical polypeptide first condenses TNF-α siRNA (siTNF-α) and forms the cationic inner core, which further adsorbs catalase (CAT) via electrostatic interaction followed by surface coating with RM. The membrane-coated NCs enable prolonged blood circulation and active joint accumulation after systemic administration in Zymosan A-induced arthritis mice. In the oxidative microenvironment of joints, CAT degrades H2 O2 to produce O2 bubbles, which shed off the outer membrane layer to expose the positively charged inner core, thus facilitating effective intracellular delivery into macrophages. siRNA-mediated TNF-α silencing and CAT-mediated H2 O2 scavenging then cooperate to inhibit inflammation and alleviate oxidative stress, remodeling the osteomicroenvironment and fostering tissue repair. This study provides an enlightened strategy to resolve the blood circulation/cell internalization dilemma of cell membrane-coated nanosystems, and it renders a promising modality for RA treatment.
Collapse
Affiliation(s)
- Bingchen Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Mengyuan Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Yekun Deng
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Chenglong Ge
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Zhongmin Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Renxiang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| | - Qirong Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Xiaozhong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
50
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|