1
|
Xu R, Ooi HS, Bian L, Ouyang L, Sun W. Dynamic hydrogels for biofabrication: A review. Biomaterials 2025; 320:123266. [PMID: 40120174 DOI: 10.1016/j.biomaterials.2025.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Reversibly crosslinked dynamic hydrogels have emerged as a significant material platform for biomedical applications owing to their distinctive time-dependent characteristics, including shear-thinning, self-healing, stress relaxation, and creep. These physical properties permit the use of dynamic hydrogels as injectable carriers or three-dimensional printable bioinks. It is noteworthy that matrix dynamics can serve as physical cues that stimulate cellular processes. Therefore, dynamic hydrogels are preferred for tissue engineering and biofabrication, which seek to create functional tissue constructs that require regulation of cellular processes. This review summarizes the critical biophysical properties of dynamic hydrogels, various cellular processes and related mechanisms triggered by hydrogel dynamics, particularly in three-dimensional culture scenarios. Subsequently, we present an overview of advanced biofabrication techniques, particularly 3D bioprinting, of dynamic hydrogels for the large-scale production of tissue and organ engineering models. This review presents an overview of the strategies that can be used to expand the range of applications of dynamic hydrogels in biofabrication, while also addressing the challenges and opportunities that arise in the field. This review highlights the importance of matrix dynamics in regulating cellular processes and elucidates strategies for leveraging them in the context of biofabrication.
Collapse
Affiliation(s)
- Runze Xu
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hon Son Ooi
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liliang Ouyang
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
| | - Wei Sun
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Tong X, Ayushman M, Lee HP, Yang F. Tuning local matrix compliance accelerates mesenchymal stem cell chondrogenesis in 3D sliding hydrogels. Biomaterials 2025; 317:123112. [PMID: 39827509 DOI: 10.1016/j.biomaterials.2025.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The mechanical properties of the extracellular matrix critically regulate stem cell differentiation in 3D. Alginate hydrogels with tunable bulk stiffness and viscoelasticity can modulate differentiation in 3D through mechanotransduction. Such enhanced differentiation is correlated with changes in the local matrix compliance- the extent of matrix deformation under applied load. However, the causal effect of local matrix compliance changes without altering bulk hydrogel mechanics on stem cell differentiation remains unclear. To address this, we report sliding hydrogel (SG) designs with tunable local matrix compliance obtained by varying the molecular mobility of the hydrogel network without changing bulk mechanics. Atomic force microscopy showed increasing SG mobility allowed cells to increasingly deform local niches with lesser forces, indicating higher local matrix compliance. Increasing SG mobility accelerates MSC chondrogenesis in a mobility-dependent manner and is independent of exogenous adhesive ligands or cell volume expansion. The enhanced chondrogenesis in SG is accompanied by enhanced cytoskeletal organization and TRPV4 expression, and blocking these elements abolished the effect. In conclusion, this study establishes a causal link between local matrix compliance and stem cell differentiation and establishes it as a crucial hydrogel design parameter. Furthermore, it offers novel SG designs to probe the role of local matrix compliance in various biological processes.
Collapse
Affiliation(s)
- Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Hung-Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fan Yang
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Wang L, Liu Y, Zhang Y, Sun Q, Wang X, Li Q, Li X. Dual-crosslinkable alginate hydrogel with dynamic viscoelasticity for chondrogenic and osteogenic differentiation of mesenchymal stem cells. Int J Biol Macromol 2025; 307:142346. [PMID: 40118412 DOI: 10.1016/j.ijbiomac.2025.142346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Tissue engineering presents an advanced approach for cartilage and bone tissue repair, with cells serving as a crucial component of the treatment process. The viscoelasticity, a defining fundamental mechanical property, significantly influences cellular behavior. The majority of current research has primarily focused on comparing static elastic and viscoelastic hydrogels with varying stress relaxation rates, while neglecting the inherent dynamic viscoelastic properties of native tissues. Herein, we developed a dynamic viscoelastic hydrogel system employing modified sodium alginate hydrogels to explore the impact of the transfer of viscoelasticity and elastic mechanical properties on the behavior and fate of mesenchymal stem cells (MSCs). The results demonstrated that a viscoelastic environment facilitates greater cell proliferation and spreading. Moreover, extended exposure to the viscoelastic environment resulted in significantly enhanced secretion of osteogenic/chondrogenic extracellular matrix (ECM), upregulates differentiation-specific gene expression, and supports nuclear localization of Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). This study elucidates the mechanical microenvironment required for MSC differentiation, enriching the theoretical foundation for the design of optimized scaffold in cartilage and bone tissue engineering applications.
Collapse
Affiliation(s)
- Litao Wang
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yajing Liu
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuhang Zhang
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou Key Laboratory of Flexible Electronic Materials and Thin-Film Technologies, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Joint Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Kollert MR, Krämer M, Brisson NM, Schemenz V, Tsitsilonis S, Qazi TH, Fratzl P, Vogel V, Reichenbach JR, Duda GN. Water and ions binding to extracellular matrix drives stress relaxation, aiding MRI detection of swelling-associated pathology. Nat Biomed Eng 2025; 9:772-786. [PMID: 40234703 PMCID: PMC12092267 DOI: 10.1038/s41551-025-01369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/10/2025] [Indexed: 04/17/2025]
Abstract
Swelling-associated changes in extracellular matrix (ECM) occur in many pathological conditions involving inflammation or oedema. Here we show that alterations in the proportion of loosely bound water in ECM correlate with changes in ECM elasticity and stress relaxation, owing to the strength of water binding to ECM being primarily governed by osmolality and the electrostatic properties of proteoglycans. By using mechanical testing and small-angle X-ray scattering, as well as magnetic resonance imaging (MRI) to detect changes in loosely bound water, we observed that enhanced water binding manifests as greater resistance to compression (mechanical or osmotic), resulting from increased electrostatic repulsion between negatively charged proteoglycans rather than axial contraction in collagen fibrils. This indicates that electrostatic contributions of proteoglycans regulate elasticity and stress relaxation independently of hydration. Our ex vivo experiments in osmotically modulated tendon elucidate physical causes of MRI signal alterations, in agreement with pilot in vivo MRI of inflammatory Achilles tendinopathy. We suggest that the strength of water binding to ECM regulates cellular niches and can be exploited to enhance MRI-informed diagnostics of swelling-associated tissue pathology.
Collapse
Affiliation(s)
- Matthias R Kollert
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Martin Krämer
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Nicholas M Brisson
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Victoria Schemenz
- Department of Operative, Preventive and Pediatric Dentistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Serafeim Tsitsilonis
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Taimoor H Qazi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Jürgen R Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Georg N Duda
- Julius Wolff Institute and BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
5
|
Bu X, Ashby N, Vitali T, Lee S, Gottumukkala A, Yun K, Tabbara S, Latham P, Teal C, Chung I. Cell crowding activates pro-invasive mechanotransduction pathway in high-grade DCIS via TRPV4 inhibition and cell volume reduction. eLife 2025; 13:RP100490. [PMID: 40256993 PMCID: PMC12011371 DOI: 10.7554/elife.100490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.
Collapse
Affiliation(s)
- Xiangning Bu
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Nathanael Ashby
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Teresa Vitali
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Sulgi Lee
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Ananya Gottumukkala
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
- Thomas Jefferson High School for Science and TechnologyAlexandriaUnited States
| | - Kangsun Yun
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
| | - Sana Tabbara
- Department of Pathology, George Washington Medical Faculty AssociatesWashington, DCUnited States
| | - Patricia Latham
- Department of Pathology, George Washington Medical Faculty AssociatesWashington, DCUnited States
| | - Christine Teal
- Department of Surgery, George Washington Medical Faculty AssociatesWashington, DCUnited States
| | - Inhee Chung
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington UniversityWashington, DCUnited States
- Department of Biomedical Engineering, GW School of Engineering and Applied Science, George Washington UniversityWashington, DCUnited States
| |
Collapse
|
6
|
Charbonier F, Zhu J, Slyman R, Allan C, Chaudhuri O. Substrate stress relaxation regulates monolayer fluidity and leader cell formation for collectively migrating epithelia. Proc Natl Acad Sci U S A 2025; 122:e2417290122. [PMID: 40203036 PMCID: PMC12012536 DOI: 10.1073/pnas.2417290122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Collective migration of epithelial tissues is a critical feature of developmental morphogenesis and tissue homeostasis. Coherent motion of cell collectives requires large-scale coordination of motion and force generation and is influenced by mechanical properties of the underlying substrate. While tissue viscoelasticity is a ubiquitous feature of biological tissues, its role in mediating collective cell migration is unclear. Here, we have investigated the impact of substrate stress relaxation on the migration of micropatterned epithelial monolayers. Epithelial monolayers exhibit faster collective migration on viscoelastic alginate substrates with slower relaxation timescales, which are more elastic, relative to substrates with faster stress relaxation, which exhibit more viscous loss. Faster migration on slow-relaxing substrates is associated with reduced substrate deformation, greater monolayer fluidity, and enhanced leader cell formation. In contrast, monolayers on fast-relaxing substrates generate substantial substrate deformations and are more jammed within the bulk, with reduced formation of transient lamellipodial protrusions past the monolayer edge leading to slower overall expansion. This work reveals features of collective epithelial dynamics on soft, viscoelastic materials and adds to our understanding of cell-substrate interactions at the tissue scale.
Collapse
Affiliation(s)
- Frank Charbonier
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Junqin Zhu
- Department of Biology, Stanford University, Stanford, CA94305
| | - Raleigh Slyman
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Cole Allan
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA94305
| |
Collapse
|
7
|
Mierke CT. Softness or Stiffness What Contributes to Cancer and Cancer Metastasis? Cells 2025; 14:584. [PMID: 40277910 PMCID: PMC12026216 DOI: 10.3390/cells14080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/08/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Beyond the genomic and proteomic analysis of bulk and single cancer cells, a new focus of cancer research is emerging that is based on the mechanical analysis of cancer cells. Therefore, several biophysical techniques have been developed and adapted. The characterization of cancer cells, like human cancer cell lines, started with their mechanical characterization at mostly a single timepoint. A universal hypothesis has been proposed that cancer cells need to be softer to migrate and invade tissues and subsequently metastasize in targeted organs. Thus, the softness of cancer cells has been suggested to serve as a universal physical marker for the malignancy of cancer types. However, it has turned out that there exists the opposite phenomenon, namely that stiffer cancer cells are more migratory and invasive and therefore lead to more metastases. These contradictory results question the universality of the role of softness of cancer cells in the malignant progression of cancers. Another problem is that the various biophysical techniques used can affect the mechanical properties of cancer cells, making it even more difficult to compare the results of different studies. Apart from the instrumentation, the culture and measurement conditions of the cancer cells can influence the mechanical measurements. The review highlights the main advances of the mechanical characterization of cancer cells, discusses the strength and weaknesses of the approaches, and questions whether the passive mechanical characterization of cancer cells is still state-of-the art. Besides the cell models, conditions and biophysical setups, the role of the microenvironment on the mechanical characteristics of cancer cells is presented and debated. Finally, combinatorial approaches to determine the malignant potential of tumors, such as the involvement of the ECM, the cells in a homogeneous or heterogeneous association, or biological multi-omics analyses, together with the dynamic-mechanical analysis of cancer cells, are highlighted as new frontiers of research.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Sciences, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
8
|
Park G, Grey JA, Mourkioti F, Han WM. 3D Mechanical Confinement Directs Muscle Stem Cell Fate and Function. Adv Biol (Weinh) 2025; 9:e2400717. [PMID: 40040295 PMCID: PMC12001014 DOI: 10.1002/adbi.202400717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/07/2025] [Indexed: 03/06/2025]
Abstract
Muscle stem cells (MuSCs) play a crucial role in skeletal muscle regeneration, residing in a niche that undergoes dimensional and mechanical changes throughout the regeneration process. This study investigates how 3D confinement and stiffness encountered by MuSCs during the later stages of regeneration regulate their function, including stemness, activation, proliferation, and differentiation. An asymmetric 3D hydrogel bilayer platform is engineered with tunable physical constraints to mimic the regenerating MuSC niche. These results demonstrate that increased 3D confinement maintains Pax7 expression, reduces MuSC activation and proliferation, inhibits differentiation, and is associated with smaller nuclear size and decreased H4K16ac levels, suggesting that mechanical confinement modulates both nuclear architecture and epigenetic regulation. MuSCs in unconfined 2D environments exhibit larger nuclei and higher H4K16ac expression compared to those in more confined 3D conditions, leading to progressive activation, expansion, and myogenic commitment. This study highlights the importance of 3D mechanical cues in MuSC fate regulation, with 3D confinement acting as a mechanical brake on myogenic commitment, offering novel insights into the mechano-epigenetic mechanisms that govern MuSC behavior during muscle regeneration.
Collapse
Affiliation(s)
- GaYoung Park
- Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Josh A. Grey
- Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of CellDevelopmentand Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Institute for Regenerative MedicineIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| | - Foteini Mourkioti
- Department of Orthopaedic SurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of Cell and Developmental BiologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Institute for Regenerative MedicineMusculoskeletal ProgramPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Woojin M. Han
- Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Department of CellDevelopmentand Regenerative BiologyIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
- Institute for Regenerative MedicineIcahn School of Medicine at Mount SinaiNew YorkNY10029USA
| |
Collapse
|
9
|
Zamani S, Bitaraf FS, Kamalabadi-Farahani M. Breast cancer brain metastasis: evaluating the effectiveness of alginate-based organoids in metastasis modeling to replace matrigel. BMC Res Notes 2025; 18:134. [PMID: 40165245 PMCID: PMC11959984 DOI: 10.1186/s13104-025-07154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND One of the most important and devastating side effects of breast cancer is brain metastasis. Our understanding of cancer heterogeneity is revolutionized by tumoral organoids and seems promising for personalized medicine. This study aimed to generate a hydrogel-based brain metastasis organoid. METHODS Mouse brain metastatic tumor cells (4T1B) were isolated and cultured from the brain metastasis lesions of mice with breast cancer. Different hydrogels, including alginate, carboxymethylcellulose, gelatin, collagen, and matrigel, were prepared. Pre-coated hydrogels in 96-well plates were treated with 4T1B cells. The morphology and viability of metastatic organoids were analyzed after 7 days. RESULTS According to our results, 4T1B cells formed semi-regular cluster structures in alginate hydrogel. In this group, the cell survival rate and formation of three-dimensional structures were significantly higher than in other groups. CONCLUSION For organoid cultures, there's a lot of research on natural and synthetic scaffolds that are chemically or mechanically well-designed. In the present study, we used highly brain metastatic tumor cells and detected that alginate hydrogel is the best choice for organoid formation and breast cancer brain metastasis modeling.
Collapse
Affiliation(s)
- Sepehr Zamani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Fateme Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | |
Collapse
|
10
|
Li Y, Yang Y, Wang X, Li L, Zhou M. Extracellular osmolarity regulates osteoblast migration through the TRPV4-Rho/ROCK signaling. Commun Biol 2025; 8:515. [PMID: 40155775 PMCID: PMC11953337 DOI: 10.1038/s42003-025-07946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
For precise bone formation, osteoblasts need to accurately migrate to specific sites guided by various biochemical and mechanical cues. During this migration, fluctuations in extracellular osmolarity may arise from shifts in the surrounding fluid environment. However, as a main regulator of cell morphology and function, whether the extracellular osmolarity change may affect osteoblast migration remains unclear. Here, we provide evidence showing that changes in extracellular osmolarity significantly impact osteoblast migration, with a hypotonic environment enhancing it while a hypertonic environment inhibiting it. Further, our findings reveal that a hypotonic treatment increases intracellular pressure, activating the Transient Receptor Potential Vanilloid 4 (TRPV4) channel. This activation of TRPV4 modulates stress fibers, focal adhesions (FAs), and cell polarity through the Rho/ROCK signaling pathway, ultimately impacting osteoblast migration. Our findings provide valuable insights into the significant influence of extracellular osmolarity on osteoblast migration, which has potential implications for enhancing our understanding of bone remodeling.
Collapse
Affiliation(s)
- Yijie Li
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Yanyan Yang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Mouwang Zhou
- Department of Rehabilitation Medicine, Peking University Third Hospital, 49 North Garden Road, Beijing, 100191, China.
| |
Collapse
|
11
|
Sinha S, Fleck M, Ayushman M, Tong X, Mikos G, Jones S, Soto L, Yang F. Matrix Stiffness Regulates GBM Migration and Chemoradiotherapy Responses via Chromatin Condensation in 3D Viscoelastic Matrices. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10342-10359. [PMID: 39912753 DOI: 10.1021/acsami.4c16993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Glioblastoma multiforme (GBM) progression is associated with changes in matrix stiffness, and different regions of the tumor niche exhibit distinct stiffnesses. Using elastic hydrogels, previous work has demonstrated that matrix stiffness modulates GBM behavior and drug responses. However, brain tissue is viscoelastic, and how stiffness impacts the GBM invasive phenotype and response to therapy within a viscoelastic niche remains largely unclear. Here, we report a three-dimensional (3D) viscoelastic GBM hydrogel system that models the stiffness heterogeneity present within the tumor niche. We find that GBM cells exhibit enhanced migratory ability, proliferation, and resistance to radiation in soft matrices, mimicking the tumor core and perifocal margins. Conversely, GBM cells remain confined and demonstrate increased resistance to chemotherapy in stiff matrices mimicking edematous tumor regions. We identify that stiffness-induced changes in the GBM phenotype are regulated by nuclear mechanosensing and chromatin condensation. Pharmacologically decondensing the chromatin significantly impedes GBM migration and overcomes stiffness-induced chemoresistance and radioresistance. Our findings highlight that stiffness regulates aggressive GBM behavior in viscoelastic matrices through mechanotransduction processes. Finally, we reveal the critical role of chromatin condensation in mediating GBM migration and therapy resistance, offering a potential new therapeutic target to improve GBM treatment outcomes.
Collapse
Affiliation(s)
- Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Mark Fleck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| | - Georgios Mikos
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sarah Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Luis Soto
- Department of Radiation Oncology, Stanford University, Stanford, California 94305, United States
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Department of Orthopaedic Surgery, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Dai X, Wu D, Xu K, Ming P, Cao S, Yu L. Viscoelastic Mechanics: From Pathology and Cell Fate to Tissue Regeneration Biomaterial Development. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8751-8770. [PMID: 39899815 DOI: 10.1021/acsami.4c18174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Viscoelasticity is the mechanical feature of living tissues and the cellular extracellular matrix (ECM) and has been recognized as an essential biophysical cue in cell function and fate regulation, tissue development and homeostasis maintenance, and disease progression. These findings provide new insights for the development of biomaterials with comparable viscoelastic properties as native ECMs and the tissue matrix, displaying promising applications in regeneration medicine. In this review, the relationship between matrix viscoelasticity and tissue functions (e.g., development and regeneration) in physiological conditions and disease progression (e.g., aging, degenerative, fibrosis, and tumor) in pathological conditions will be especially highlighted to figure out the potential therapeutic target for disease treatment and inspiration for tissue regeneration related biomaterial development. Furthermore, findings and an understanding of the cell response to ECM viscoelasticity and the mechanism behind it are comprehensively summarized to provide a pathophysiological basis for viscoelastic biomaterials design. The advances of viscoelastic biomaterials on defect tissue repair are also reviewed, suggesting the significance of the native matrix matchable microenvironment on tissue regeneration. Although challenging, tunable viscoelastic biomaterials that match the mechanical properties of native tissues and ECMs show great promise. They could promote tissue regeneration, treat degenerative diseases, and support the development of organoids and artificial organs.
Collapse
Affiliation(s)
- Xinyu Dai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Dan Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Ke Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Piaoye Ming
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Shuqin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Nguyen H, Luong NH, Peil JK, Tong Y, Mitchell DK, Fishel ML, Lin CC. Fast-Relaxing Hydrogels Promote Pancreatic Adenocarcinoma Cell Aggressiveness through Integrin β1 Signaling. Biomacromolecules 2025; 26:1098-1110. [PMID: 39841789 PMCID: PMC11817685 DOI: 10.1021/acs.biomac.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense extracellular matrix (ECM) exhibiting high stiffness and fast stress relaxation. In this work, gelatin-based viscoelastic hydrogels were developed to mimic the compositions, stiffness, and fast stress relaxation of PDAC tissues. The hydrogels were cross-linked by gelatin-norbornene-boronic acid (GelNB-BA), thiolated macromers, and a 1,2-diol-containing linear synthetic polymer PHD. Controlling the thiol-norbornene cross-linking afforded tunable stiffness, whereas increasing PHD content led to hydrogels with PDAC-mimicking fast stress relaxation. In vitro studies, including proliferation, morphology, and mRNA-sequencing, showed that fast-relaxing hydrogels supported PDAC cell proliferation, epithelial-mesenchymal transition (EMT), and integrin β1 activation. Blocking integrin β1 in vitro led to upregulating EMT markers in both slow and fast-relaxing hydrogels. However, this strategy profoundly impacted tumor growth rate and reduced tumor size but did not alter metastasis patterns in an orthotopic mouse model. This suggests a need to further evaluate the antitumor effect of integrin β1 blockade.
Collapse
Affiliation(s)
- Han Nguyen
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Ngoc Ha Luong
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Jacqueline K. Peil
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
| | - Yan Tong
- Department
of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana
University Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Dana K. Mitchell
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
| | - Melissa L. Fishel
- Department
of Pediatrics, Indiana University School
of Medicine, Indianapolis, Indiana 46202, United States
- Department
of Pharmacology and Toxicology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
- Indiana
University Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| | - Chien-Chi Lin
- Weldon
School of Biomedical Engineering, Purdue
University, West Lafayette, Indiana 47907, United States
- Indiana
University Simon Comprehensive Cancer Center, Indianapolis, Indiana 46202, United States
| |
Collapse
|
14
|
Zhou Y, Guo Y, Zhang M, Quan S, Li J. The role of RAP2 in regulation of cell volume on bone marrow mesenchymal stem cell fate determination. J Mol Histol 2025; 56:79. [PMID: 39903386 DOI: 10.1007/s10735-025-10362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The extracellular matrix guides cell behavior through mechanical properties, which plays a role in determining cell function and can even influence stem cell fate. Compared with adherent culture, the three-dimensional culture environment is closer to the growth conditions in vivo, but is limited by standardization of material properties and observation and measurement methods. Therefore, it is necessary to study the relationship among the three-dimensional morphological characteristics of cells, cytoskeleton, and stem cell differentiation under adherent culture conditions. Here, we control the cell volume by adjusting the cell density, microfilament cytoskeleton tension, and osmotic pressure of the culture environment, and analyze the cell morphological features and differentiation to the osteoblastic and adipogenic lineages. Based on the in vitro and in vivo results, we identify cell volume as the true reflection of the cytoskeleton tension under stress stimuli compared with cell spreading area. By adjusting cell volume, cytoskeletal tension and cell differentiation can be regulated without affecting cell spreading area. Further study shows that the Ras-related small GTPase RAP2 inhibits the activity of mechanical transducers Lamin A/C and YAP1, playing an important role in cell volume regulation of cell differentiation. In summary, our results support the close relationship between cell volume and cytoskeleton tension. The regulatory role of cell volume on cell differentiation is modulated, at least in part, by RAP2-related mechanosensitive pathways. Our insights into how cell volume regulates cell differentiation may build a bridge between two-dimensional and three-dimensional mechanical studies in cell biology.
Collapse
Affiliation(s)
- Yimei Zhou
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Yutong Guo
- Department of Orthodontics, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, 100081, PR China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Shuqi Quan
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, National Center of Stomatology, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu, 610041, China.
| |
Collapse
|
15
|
Ayushman M, Mikos G, Tong X, Sinha S, Lopez-Fuentes E, Jones S, Cai PC, Lee HP, Morrison AJ, Spakowitz A, Heilshorn SC, Sweet-Cordero A, Yang F. Cell tumbling enhances stem cell differentiation in hydrogels via nuclear mechanotransduction. NATURE MATERIALS 2025; 24:312-322. [PMID: 39487316 DOI: 10.1038/s41563-024-02038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/30/2024] [Indexed: 11/04/2024]
Abstract
Cells can deform their local niche in three dimensions via whole-cell movements such as spreading, migration or volume expansion. These behaviours, occurring over hours to days, influence long-term cell fates including differentiation. Here we report a whole-cell movement that occurs in sliding hydrogels at the minutes timescale, termed cell tumbling, characterized by three-dimensional cell dynamics and hydrogel deformation elicited by heightened seconds-to-minutes-scale cytoskeletal and nuclear activity. Studies inhibiting or promoting the cell tumbling of mesenchymal stem cells show that this behaviour enhances differentiation into chondrocytes. Further, it is associated with a decrease in global chromatin accessibility, which is required for enhanced differentiation. Cell tumbling also occurs during differentiation into other lineages and its differentiation-enhancing effects are validated in various hydrogel platforms. Our results establish that cell tumbling is an additional regulator of stem cell differentiation, mediated by rapid niche deformation and nuclear mechanotransduction.
Collapse
Affiliation(s)
- Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Georgios Mikos
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Xinming Tong
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eunice Lopez-Fuentes
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Sarah Jones
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Hung-Pang Lee
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Andrew Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
He W, Ding F, Zhang L, Liu W. In situ osteogenic activation of mesenchymal stem cells by the blood clot biomimetic mechanical microenvironment. Nat Commun 2025; 16:1162. [PMID: 39880808 PMCID: PMC11779924 DOI: 10.1038/s41467-025-56513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
Blood clots (BCs) play a crucial biomechanical role in promoting osteogenesis and regulating mesenchymal stem cell (MSC) function and fate. This study shows that BC formation enhances MSC osteogenesis by activating Itgb1/Fak-mediated focal adhesion and subsequent Runx2-mediated bone regeneration. Notably, BC viscoelasticity regulates this effect by modulating Runx2 nuclear translocation. To mimic this property, a viscoelastic peptide bionic hydrogel named BCgel was developed, featuring a nanofiber network, Itgb1 binding affinity, BC-like viscoelasticity, and biosafety. The anticipated efficacy of BCgel is demonstrated by its ability to induce nuclear translocation of Runx2 and promote bone regeneration in both in vitro experiments and in vivo bone defect models with blood clot defect, conducted on rats as well as beagles. This study offers insights into the mechano-transduction mechanisms of MSCs during osteogenesis and presents potential guidelines for the design of viscoelastic hydrogels in bone regenerative medicine.
Collapse
Affiliation(s)
- Wangxiao He
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| | - Fan Ding
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Liqiang Zhang
- Department of Stomatology, Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China.
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xi'an, P. R. China.
| |
Collapse
|
17
|
Zhu Y, Chen J, Chen C, Tang R, Xu J, Shi S, Yu X. Deciphering mechanical cues in the microenvironment: from non-malignant settings to tumor progression. Biomark Res 2025; 13:11. [PMID: 39849659 PMCID: PMC11755887 DOI: 10.1186/s40364-025-00727-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/05/2025] [Indexed: 01/25/2025] Open
Abstract
The tumor microenvironment functions as a dynamic and intricate ecosystem, comprising a diverse array of cellular and non-cellular components that precisely orchestrate pivotal tumor behaviors, including invasion, metastasis, and drug resistance. While unraveling the intricate interplay between the tumor microenvironment and tumor behaviors represents a tremendous challenge, recent research illuminates a crucial biological phenomenon known as cellular mechanotransduction. Within the microenvironment, mechanical cues like tensile stress, shear stress, and stiffness play a pivotal role by activating mechanosensitive effectors such as PIEZO proteins, integrins, and Yes-associated protein. This activation initiates cascades of intrinsic signaling pathways, effectively linking the physical properties of tissues to their physiological and pathophysiological processes like morphogenesis, regeneration, and immunity. This mechanistic insight offers a novel perspective on how the mechanical cues within the tumor microenvironment impact tumor behaviors. While the intricacies of the mechanical tumor microenvironment are yet to be fully elucidated, it exhibits distinct physical attributes from non-malignant tissues, including elevated solid stresses, interstitial hypertension, augmented matrix stiffness, and enhanced viscoelasticity. These traits exert notable influences on tumor progression and treatment responses, enriching our comprehension of the multifaceted nature of the microenvironment. Through this innovative review, we aim to provide a new lens to decipher the mechanical attributes within the tumor microenvironment from non-malignant contexts, broadening our knowledge on how these factors promote or inhibit tumor behaviors, and thus offering valuable insights to identify potential targets for anti-tumor strategies.
Collapse
Affiliation(s)
- Yicheng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chen Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Rong Tang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
18
|
Lipari S, Sacco P, Cok M, Scognamiglio F, Romano M, Brun F, Giulianini PG, Marsich E, Aachmann FL, Donati I. Hydrogel Elastic Energy: A Stressor Triggering an Adaptive Stress-Mediated Cell Response. Adv Healthc Mater 2025; 14:e2402400. [PMID: 39535422 PMCID: PMC11730662 DOI: 10.1002/adhm.202402400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The crosstalk between the cells and the extracellular matrix (ECM) is bidirectional and consists of a pushing/pulling stretch exerted by the cells and a mechanical resistance counteracted by the surrounding microenvironment. It is widely recognized that the stiffness of the ECM, its viscoelasticity, and its overall deformation are the most important traits influencing the response of the cells. Here these three parameters are combined into a concept of elastic energy, which in biological terms represents the mechanical feedback that cells perceive when the ECM is deformed. It is shown that elastic energy is a stress factor that influences the response of cells in three-dimensional (3D) cultures. Strikingly, the higher the elastic energy of the matrix and thus the mechanical feedback, the higher the stress state of the cells, which correlates with the formation of G3BP-mediated stress granules. This condition is associated with an increase in alkaline phosphatase (ALP) activity but a decrease in gene expression and is mediated by the nuclear translocation of Yes-associated protein (YAP). This work supports the importance of considering the elastic energy as mechano-controller in regulating cellular stress state in 3D cultures.
Collapse
Affiliation(s)
- Sara Lipari
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | - Pasquale Sacco
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | - Michela Cok
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | | | - Maurizio Romano
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| | - Francesco Brun
- Department of Engineering and ArchitectureUniversity of TriesteVia A. Valerio 6/1Trieste34127Italy
| | | | - Eleonora Marsich
- Department of MedicineSurgery and Health SciencesUniversity of TriestePiazza dell'Ospitale 1Trieste34129Italy
| | - Finn L. Aachmann
- Department of Biotechnology and Food ScienceNorwegian Biopolymer Laboratory (NOBIPOL)NTNU Norwegian University of Science and TechnologySem Sælands vei 6/8Trondheim7491Norway
| | - Ivan Donati
- Department of Life SciencesUniversity of TriesteVia L. Giorgieri 5Trieste34127Italy
| |
Collapse
|
19
|
Lin YH, Lou J, Xia Y, Chaudhuri O. Cross-Linker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. Adv Healthc Mater 2024; 13:e2402059. [PMID: 39407436 PMCID: PMC11617263 DOI: 10.1002/adhm.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Dynamic covalent cross-linked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology, offering viscoelasticity, and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent hydrogels. However, the effects of varying cross-linker architecture on DCC hydrogel viscoelasticity have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels to explore how cross-linker architectures impact stiffness and viscoelasticity. In hydrogels with side-chain cross-linker (SCX), higher cross-linker concentrations enhance stiffness and decelerate stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio reduces stiffness and shortens relaxation time. In hydrogels with telechelic cross-linking, maximal stiffness and relaxation time occurs at intermediate cross-linker mixing ratio for both linear cross-linker (LX) and star cross-linker (SX), with higher cross-linker valency further enhancing these properties. Further, the ranges of stiffness and viscoelasticity accessible with the different cross-linker architectures are found to be distinct, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and SX hydrogels providing increased stiffness and slower stress relaxation versus LX hydrogels. This research underscores the pivotal role of cross-linker architecture in defining hydrogel stiffness and viscoelasticity, providing insights for designing DCC hydrogels with tailored mechanical properties for specific biomedical applications.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Junzhe Lou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
20
|
Zou J, Zhou L, Liu G, Zhang Y, Zeng L. Naringin promotes osteogenic potential in bone marrow-derived mesenchymal stem cells via mediation of miR-26a/Ski axis. Bone Rep 2024; 23:101815. [PMID: 39634077 PMCID: PMC11614840 DOI: 10.1016/j.bonr.2024.101815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a common orthopedic disease, which seriously affects the quality of life of patients. Naringin has protective effect on ONFH. In present study, we aimed to investigate the mechanism of Naringin regulating miR-26a in ONFH. Methods Two sequencing datasets (GSE89587 for micro-RNA, GSE123568 for mRNA) related to ONFH were obtained from the GEO database for bioinformatics analysis. Bone marrow-derived mesenchymal stem cells (BMSCs) were treated with adipogenic medium (AM) or osteogenic medium (OM), and then treated with 10 μM, 100 μM or 1000 μM Naringin. Gene and protein levels were detected by RT-qPCR and Western blotting. ALP activity and alizarin red staining (ARS) were applied to investigate the osteogenic differentiation of BMSCs. Oil red O staining was performed to test adipogenic differentiation. The content of triglycerides (TG) in BMSCs was detected by TG detection kit. Double luciferase reporter gene measured the interaction between miR-26a and Ski. Results Bioinfomatic analyses indicated a significant downregulation of miR-26a and a significant upregulation of Ski in the peripheral blood of patients with ONFH. Naringin significantly promoted the osteogenic differentiation, and increased the ALP activity and ARS. Meanwhile, it decreased the adipogenic differentiation and inhibited TG levels. In addition, miR-26a was downregulated and Ski was increased in AM-treated BMSCs, while miR-26a was upregulated and Ski was decreased in OM-treated BMSCs. Furthermore, miR-26a promoted the osteogenic differentiation and suppressed the adipogenic differentiation in BMSCs. Moreover, Naringin enhanced osteogenic potential in BMSCs was reversed by knockdown of miR-26a or overexpression of Ski. Conclusion Naringin could promote osteogenic differentiation of BMSCs via mediation of miR-26a/Ski axis. Thereby, Naringin might be a new agent for ONFH treatment.
Collapse
Affiliation(s)
- Jiawei Zou
- Department of Traumatic Orthopedics, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512026, China
| | - Longze Zhou
- Department of Traumatic Orthopedics, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512026, China
| | - Guoqiang Liu
- Department of Traumatic Orthopedics, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512026, China
| | - Ying Zhang
- Department of Traumatic Orthopedics, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512026, China
| | - Lingguo Zeng
- Department of Traumatic Orthopedics, Yuebei People's Hospital Affiliated to Shantou University School of Medicine, Shaoguan 512026, China
| |
Collapse
|
21
|
Liu Z, Ling SD, Liang K, Chen Y, Niu Y, Sun L, Li J, Du Y. Viscoelasticity of ECM and cells-origin, measurement and correlation. MECHANOBIOLOGY IN MEDICINE 2024; 2:100082. [PMID: 40395221 PMCID: PMC12082326 DOI: 10.1016/j.mbm.2024.100082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 05/22/2025]
Abstract
The extracellular matrix (ECM) and cells are crucial components of natural tissue microenvironments, and they both demonstrate dynamic mechanical properties, particularly viscoelastic behaviors, when exposed to external stress or strain over time. The capacity to modify the mechanical properties of cells and ECM is crucial for gaining insight into the development, physiology, and pathophysiology of living organisms. As an illustration, researchers have developed hydrogels with diverse compositions to mimic the properties of the native ECM and use them as substrates for cell culture. The behavior of cultured cells can be regulated by modifying the viscoelasticity of hydrogels. Moreover, there is widespread interest across disciplines in accurately measuring the mechanical properties of cells and the surrounding ECM, as well as exploring the interactive relationship between these components. Nevertheless, the lack of standardized experimental methods, conditions, and other variables has hindered systematic comparisons and summaries of research findings on ECM and cell viscoelasticity. In this review, we delve into the origins of ECM and cell viscoelasticity, examine recently developed methods for measuring ECM and cell viscoelasticity, and summarize the potential interactions between cell and ECM viscoelasticity. Recent research has shown that both ECM and cell viscoelasticity experience alterations during in vivo pathogenesis, indicating the potential use of tailored viscoelastic ECM and cells in regenerative medicine.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Si Da Ling
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yihan Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yudi Niu
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lei Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junyang Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Da Silva André G, Labouesse C. Mechanobiology of 3D cell confinement and extracellular crowding. Biophys Rev 2024; 16:833-849. [PMID: 39830117 PMCID: PMC11735831 DOI: 10.1007/s12551-024-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
Cells and tissues are often under some level of confinement, imposed by the microenvironment and neighboring cells, meaning that there are limitations to cell size, volume changes, and fluid exchanges. 3D cell culture, increasingly used for both single cells and organoids, inherently impose levels of confinement absent in 2D systems. It is thus key to understand how different levels of confinement influences cell survival, cell function, and cell fate. It is well known that the mechanical properties of the microenvironment, such as stiffness and stress relaxation, are important in activating mechanosensitive pathways, and these are responsive to confinement conditions. In this review, we look at how low, intermediate, and high levels of confinement modulate the activation of known mechanobiology pathways, in single cells, organoids, and tumor spheroids, with a specific focus on 3D confinement in microwells, elastic, or viscoelastic scaffolds. In addition, a confining microenvironment can drastically limit cellular communication in both healthy and diseased tissues, due to extracellular crowding. We discuss potential implications of extracellular crowding on molecular transport, extracellular matrix deposition, and fluid transport. Understanding how cells sense and respond to various levels of confinement should inform the design of 3D engineered matrices that recapitulate the physical properties of tissues.
Collapse
Affiliation(s)
- Gabriela Da Silva André
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
23
|
Yang C, Cai W, Xiang P, Liu Y, Xu H, Zhang W, Han F, Luo Z, Liang T. Viscoelastic hydrogel combined with dynamic compression promotes osteogenic differentiation of bone marrow mesenchymal stem cells and bone repair in rats. Regen Biomater 2024; 12:rbae136. [PMID: 39845143 PMCID: PMC11751691 DOI: 10.1093/rb/rbae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 01/24/2025] Open
Abstract
A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous. In addition, TRPV4 is involved in bone development. Therefore, this study aims to construct a viscoelastic hydrogel combined with dynamic compressive loading and investigate the effect of the dynamic mechanical environment on the osteogenic differentiation of stem cells and bone repair in vivo. The role of TRPV4 in the mechanobiology process was also assessed. A sodium alginate-gelatine hydrogel with adjustable viscoelasticity and good cell adhesion ability was obtained. The osteogenic differentiation of BMSCs was obtained using the fast stress relaxation hydrogel and a smaller compression strain of 1.5%. TRPV4 was activated in the hydrogel with fast stress relaxation time, followed by the increase in intracellular Ca2+ level and the activation of the Wnt/β-catenin pathway. The inhibition of TRPV4 induced a decrease in the intracellular Ca2+ level, down-regulation of β-catenin and reduced osteogenesis differentiation of BMSCs, suggesting that TRPV4 might be the key mechanism in the regulation of BMSC osteogenic differentiation in the viscoelastic dynamic mechanical environment. The fast stress relaxation hydrogel also showed a good osteogenic promotion effect in the rat femoral defect model. The dynamic viscoelastic mechanical environment significantly induced the osteogenic differentiation of BMSCs and bone regeneration, which TRPV4 being involved in this mechanobiological process. Our study not only provided important guidance for the mechanical design of new biomaterials, but also provided a new perspective for the understanding of the interaction between cells and materials, the role of mechanical loading in tissue regeneration and the use of mechanical regulation in tissue engineering.
Collapse
Affiliation(s)
- Chao Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Wenbin Cai
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Pan Xiang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Yu Liu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Hao Xu
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Wen Zhang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Fengxuan Han
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Zongping Luo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, PR China
| | - Ting Liang
- Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China
| |
Collapse
|
24
|
Yang X, Wang Q, Shao F, Zhuang Z, Wei Y, Zhang Y, Zhang L, Ren C, Wang H. Cell volume regulation modulates macrophage-related inflammatory responses via JAK/STAT signaling pathways. Acta Biomater 2024; 186:286-299. [PMID: 39098445 DOI: 10.1016/j.actbio.2024.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Cell volume as a characteristic of changes in response to external environmental cues has been shown to control the fate of stem cells. However, its influence on macrophage behavior and macrophage-mediated inflammatory responses have rarely been explored. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to regulate macrophage polarization towards anti-inflammatory phenotypes, thereby enabling to reverse macrophage-mediated inflammation response. Specifically, lower the volume of primary macrophages can induce both resting macrophages (M0) and stimulated pro-inflammatory macrophages (M1) to up-regulate the expression of anti-inflammatory factors and down-regulate pro-inflammatory factors. Further mechanistic investigation revealed that macrophage polarization resulting from changing cell volume might be mediated by JAK/STAT signaling pathway evidenced by the transcription sequencing analysis. We further propose to apply this strategy for the treatment of arthritis via direct introduction of PEG into the joint cavity to modulate synovial macrophage-related inflammation. Our preliminary results verified the credibility and effectiveness of this treatment evidenced by the significant inhibition of cartilage destruction and synovitis at early stage. In general, our results suggest that cell volume can be a biophysical regulatory factor to control macrophage polarization and potentially medicate inflammatory response, thereby providing a potential facile and effective therapy for modulating macrophage mediated inflammatory responses. STATEMENT OF SIGNIFICANCE: Cell volume has recently been recognized as a significantly important biophysical signal in regulating cellular functionalities and even steering cell fate. Herein, through mediating the volume of macrophages by adding polyethylene glycol (PEG), we demonstrated the feasibility of fine-tuning cell volume to induce M1 pro-inflammatory macrophages to polarize towards anti-inflammatory M2 phenotype, and this immunomodulatory effect may be mediated by the JAK/STAT signaling pathway. We also proposed the feasible applications of this PEG-induced volume regulation approach towards the treatment of osteoarthritis (OA), wherein our preliminary results implied an effective alleviation of early synovitis. Our study on macrophage polarization mediated by cell volume may open up new pathways for immune regulation through microenvironmental biophysical clues.
Collapse
Affiliation(s)
- Xueying Yang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qifan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Fei Shao
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhumei Zhuang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wei
- First Affiliated Hospital of Dalian Medical University, Dalian 116024, China
| | - Yang Zhang
- School of Dentistry, Shenzhen University Medical School, Shenzhen 518015, China; School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518015, China
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian 116024, China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, China
| | - Huanan Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, Dalian Key Laboratory of Artificial Organ and Regenerative Medicine, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China; State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
25
|
Li Z, Li J, Qu G, Chen K, Liu Y, Li S, Chen C, Zhao Y, Huang J, Wang P, Wu X, Ren J. Multiscale hydrogel regulates mesenchymal stem cell fate for bone regeneration. CELL REPORTS PHYSICAL SCIENCE 2024; 5:102181. [DOI: 10.1016/j.xcrp.2024.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
26
|
Hu X, Bao M. Advances in micropatterning technology for mechanotransduction research. MECHANOBIOLOGY IN MEDICINE 2024; 2:100066. [PMID: 40395493 PMCID: PMC12082312 DOI: 10.1016/j.mbm.2024.100066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 05/22/2025]
Abstract
Micropatterning is a sophisticated technique that precisely manipulates the spatial distribution of cell adhesion proteins on various substrates across multiple scales. This precise control over adhesive regions facilitates the manipulation of architectures and physical constraints for single or multiple cells. Furthermore, it allows for an in-depth analysis of how chemical and physical properties influence cellular functionality. In this comprehensive review, we explore the current understanding of the impact of geometrical confinement on cellular functions across various dimensions, emphasizing the benefits of micropatterning in addressing fundamental biological queries. We advocate that utilizing directed self-organization via physical confinement and morphogen gradients on micropatterned surfaces represents an innovative approach to generating functional tissue and controlling morphogenesis in vitro. Integrating this technique with cutting-edge technologies, micropatterning presents a significant potential to bridge a crucial knowledge gap in understanding core biological processes.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
27
|
Abdul Halim MS, Dyson JM, Gong MM, O'Bryan MK, Nosrati R. Fallopian tube rheology regulates epithelial cell differentiation and function to enhance cilia formation and coordination. Nat Commun 2024; 15:7411. [PMID: 39198453 PMCID: PMC11358425 DOI: 10.1038/s41467-024-51481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The rheological properties of the extracellular fluid in the female reproductive tract vary spatiotemporally, however, the effect on the behaviour of epithelial cells that line the tract is unexplored. Here, we reveal that epithelial cells respond to the elevated viscosity of culture media by modulating their development and functionality to enhance cilia formation and coordination. Specifically, ciliation increases by 4-fold and cilia beating frequency decreases by 30% when cells are cultured at 100 mPa·s. Further, cilia manifest a coordinated beating pattern that can facilitate the formation of metachronal waves. At the cellular level, viscous loading activates the TRPV4 channel in the epithelial cells to increase intracellular Ca2+, subsequently decreasing the mitochondrial membrane potential level for ATP production to maintain cell viability and function. Our findings provide additional insights into the role of elevated tubal fluid viscosity in promoting ciliation and coordinating their beating-a potential mechanism to facilitate the transport of egg and embryo, suggesting possible therapeutic opportunities for infertility treatment.
Collapse
Affiliation(s)
- Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Jennifer M Dyson
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Max M Gong
- Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
28
|
Charbonier F, Zhu J, Slyman R, Allan C, Chaudhuri O. Substrate stress relaxation regulates monolayer fluidity and leader cell formation for collectively migrating epithelia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609529. [PMID: 39253481 PMCID: PMC11383040 DOI: 10.1101/2024.08.26.609529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Collective migration of epithelial tissues is a critical feature of developmental morphogenesis and tissue homeostasis. Coherent motion of cell collectives requires large scale coordination of motion and force generation and is influenced by mechanical properties of the underlying substrate. While tissue viscoelasticity is a ubiquitous feature of biological tissues, its role in mediating collective cell migration is unclear. Here, we have investigated the impact of substrate stress relaxation on the migration of micropatterned epithelial monolayers. Epithelial monolayers exhibit faster collective migration on viscoelastic alginate substrates with slower relaxation timescales, which are more elastic, relative to substrates with faster stress relaxation, which exhibit more viscous loss. Faster migration on slow-relaxing substrates is associated with reduced substrate deformation, greater monolayer fluidity, and enhanced leader cell formation. In contrast, monolayers on fast-relaxing substrates generate substantial substrate deformations and are more jammed within the bulk, with reduced formation of transient lamellipodial protrusions past the monolayer edge leading to slower overall expansion. This work reveals features of collective epithelial dynamics on soft, viscoelastic materials and adds to our understanding of cell-substrate interactions at the tissue scale. Significance Statement Groups of cells must coordinate their movements in order to sculpt organs during development and maintain tissues. The mechanical properties of the underlying substrate on which cells reside are known to influence key aspects of single and collective cell migration. Despite being a nearly universal feature of biological tissues, the role of viscoelasticity (i.e., fluid-like and solid-like behavior) in collective cell migration is unclear. Using tunable engineered biomaterials, we demonstrate that sheets of epithelial cells display enhanced migration on slower-relaxing (more elastic) substrates relative to faster-relaxing (more viscous) substrates. Building our understanding of tissue-substrate interactions and collective cell dynamics provides insights into approaches for tissue engineering and regenerative medicine, and therapeutic interventions to promote health and treat disease.
Collapse
|
29
|
Soliman BG, Chin IL, Li Y, Ishii M, Ho MH, Doan VK, Cox TR, Wang PY, Lindberg GCJ, Zhang YS, Woodfield TBF, Choi YS, Lim KS. Droplet-based microfluidics for engineering shape-controlled hydrogels with stiffness gradient. Biofabrication 2024; 16:045026. [PMID: 39121873 DOI: 10.1088/1758-5090/ad6d8e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
Current biofabrication strategies are limited in their ability to replicate native shape-to-function relationships, that are dependent on adequate biomimicry of macroscale shape as well as size and microscale spatial heterogeneity, within cell-laden hydrogels. In this study, a novel diffusion-based microfluidics platform is presented that meets these needs in a two-step process. In the first step, a hydrogel-precursor solution is dispersed into a continuous oil phase within the microfluidics tubing. By adjusting the dispersed and oil phase flow rates, the physical architecture of hydrogel-precursor phases can be adjusted to generate spherical and plug-like structures, as well as continuous meter-long hydrogel-precursor phases (up to 1.75 m). The second step involves the controlled introduction a small molecule-containing aqueous phase through a T-shaped tube connector to enable controlled small molecule diffusion across the interface of the aqueous phase and hydrogel-precursor. Application of this system is demonstrated by diffusing co-initiator sodium persulfate (SPS) into hydrogel-precursor solutions, where the controlled SPS diffusion into the hydrogel-precursor and subsequent photo-polymerization allows for the formation of unique radial stiffness patterns across the shape- and size-controlled hydrogels, as well as allowing the formation of hollow hydrogels with controllable internal architectures. Mesenchymal stromal cells are successfully encapsulated within hollow hydrogels and hydrogels containing radial stiffness gradient and found to respond to the heterogeneity in stiffness through the yes-associated protein mechano-regulator. Finally, breast cancer cells are found to phenotypically switch in response to stiffness gradients, causing a shift in their ability to aggregate, which may have implications for metastasis. The diffusion-based microfluidics thus finds application mimicking native shape-to-function relationship in the context of tissue engineering and provides a platform to further study the roles of micro- and macroscale architectural features that exist within native tissues.
Collapse
Affiliation(s)
- Bram G Soliman
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Material Science and Engineering, University of New South Wales, Sydney 2052, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Yiwei Li
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Melissa Ishii
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Minh Hieu Ho
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Vinh Khanh Doan
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| | - Thomas R Cox
- The Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Peng Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 32500, People's Republic of China
| | - Gabriella C J Lindberg
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- Phil and Penny Knight Campus for Accelerating Scientific Impact Department of Bioengineering, University of Oregon, Eugene, OR, United States of America
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Perth 6009, Australia
| | - Khoon S Lim
- Light Activated Biomaterials (LAB) Group, University of Otago, Christchurch 8011, New Zealand
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, University of Otago, Christchurch 8011, New Zealand
- School of Medical Sciences, Charles Perkins Centre, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
30
|
Jiang L, Yan C, Yi Y, Zhu L, Liu Z, Zhang D, Jiang W. Cell size regulates human endoderm specification through actomyosin-dependent AMOT-YAP signaling. Stem Cell Reports 2024; 19:1137-1155. [PMID: 39094563 PMCID: PMC11368700 DOI: 10.1016/j.stemcr.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
Collapse
Affiliation(s)
- Lai Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China; Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lihang Zhu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zheng Liu
- The Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
31
|
Lim JJ, Vining KH, Mooney DJ, Blencowe BJ. Matrix stiffness-dependent regulation of immunomodulatory genes in human MSCs is associated with the lncRNA CYTOR. Proc Natl Acad Sci U S A 2024; 121:e2404146121. [PMID: 39074278 PMCID: PMC11317610 DOI: 10.1073/pnas.2404146121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Cell-matrix interactions in 3D environments significantly differ from those in 2D cultures. As such, mechanisms of mechanotransduction in 2D cultures are not necessarily applicable to cell-encapsulating hydrogels that resemble features of tissue architecture. Accordingly, the characterization of molecular pathways in 3D matrices is expected to uncover insights into how cells respond to their mechanical environment in physiological contexts, and potentially also inform hydrogel-based strategies in cell therapies. In this study, a bone marrow-mimetic hydrogel was employed to systematically investigate the stiffness-responsive transcriptome of mesenchymal stromal cells. High matrix rigidity impeded integrin-collagen adhesion, resulting in changes in cell morphology characterized by a contractile network of actin proximal to the cell membrane. This resulted in a suppression of extracellular matrix-regulatory genes involved in the remodeling of collagen fibrils, as well as the upregulation of secreted immunomodulatory factors. Moreover, an investigation of long noncoding RNAs revealed that the cytoskeleton regulator RNA (CYTOR) contributes to these 3D stiffness-driven changes in gene expression. Knockdown of CYTOR using antisense oligonucleotides enhanced the expression of numerous mechanoresponsive cytokines and chemokines to levels exceeding those achievable by modulating matrix stiffness alone. Taken together, our findings further our understanding of mechanisms of mechanotransduction that are distinct from canonical mechanotransductive pathways observed in 2D cultures.
Collapse
Affiliation(s)
- Justin J. Lim
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| | - Kyle H. Vining
- Department of Preventative and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA19104
| | - David J. Mooney
- Department of Bioengineering, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA02138
| | - Benjamin J. Blencowe
- Donnelly Centre, University of Toronto, Toronto, ONM5S3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ONM5S1A8, Canada
| |
Collapse
|
32
|
Xie J, Huck WTS, Bao M. Unveiling the Intricate Connection: Cell Volume as a Key Regulator of Mechanotransduction. Annu Rev Biophys 2024; 53:299-317. [PMID: 38424091 DOI: 10.1146/annurev-biophys-030822-035656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The volumes of living cells undergo dynamic changes to maintain the cells' structural and functional integrity in many physiological processes. Minor fluctuations in cell volume can serve as intrinsic signals that play a crucial role in cell fate determination during mechanotransduction. In this review, we discuss the variability of cell volume and its role in vivo, along with an overview of the mechanisms governing cell volume regulation. Additionally, we provide insights into the current approaches used to control cell volume in vitro. Furthermore, we summarize the biological implications of cell volume regulation and discuss recent advances in understanding the fundamental relationship between cell volume and mechanotransduction. Finally, we delve into the potential underlying mechanisms, including intracellular macromolecular crowding and cellular mechanics, that govern the global regulation of cell fate in response to changes in cell volume. By exploring the intricate interplay between cell volume and mechanotransduction, we underscore the importance of considering cell volume as a fundamental signaling cue to unravel the basic principles of mechanotransduction. Additionally, we propose future research directions that can extend our current understanding of cell volume in mechanotransduction. Overall, this review highlights the significance of considering cell volume as a fundamental signal in understanding the basic principles in mechanotransduction and points out the possibility of controlling cell volume to control cell fate, mitigate disease-related damage, and facilitate the healing of damaged tissues.
Collapse
Affiliation(s)
- Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands;
| | - Min Bao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China;
| |
Collapse
|
33
|
Singhal R, Sarangi MK, Rath G. Injectable Hydrogels: A Paradigm Tailored with Design, Characterization, and Multifaceted Approaches. Macromol Biosci 2024; 24:e2400049. [PMID: 38577905 DOI: 10.1002/mabi.202400049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Biomaterials denoting self-healing and versatile structural integrity are highly curious in the biomedicine segment. The injectable and/or printable 3D printing technology is explored in a few decades back, which can alter their dimensions temporarily under shear stress, showing potential healing/recovery tendency with patient-specific intervention toward the development of personalized medicine. Thus, self-healing injectable hydrogels (IHs) are stunning toward developing a paradigm for tissue regeneration. This review comprises the designing of IHs, rheological characterization and stability, several benchmark consequences for self-healing IHs, their translation into tissue regeneration of specific types, applications of IHs in biomedical such as anticancer and immunomodulation, wound healing and tissue/bone regeneration, antimicrobial potentials, drugs, gene and vaccine delivery, ocular delivery, 3D printing, cosmeceuticals, and photothermal therapy as well as in other allied avenues like agriculture, aerospace, electronic/electrical industries, coating approaches, patents associated with therapeutic/nontherapeutic avenues, and numerous futuristic challenges and solutions.
Collapse
Affiliation(s)
- Rishika Singhal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Manoj Kumar Sarangi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Malhaur Railway Station Road, Gomti Nagar, Lucknow, Uttar Pradesh, 201313, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Bhubaneswar, Odisha, 751030, India
| |
Collapse
|
34
|
Bi Y, Jin J, Wang R, Liu Y, Zhu L, Wang J. Mechanical models and measurement methods of solid stress in tumors. Appl Microbiol Biotechnol 2024; 108:363. [PMID: 38842572 PMCID: PMC11156757 DOI: 10.1007/s00253-024-13211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024]
Abstract
In addition to genetic mutations, biomechanical factors also affect the structures and functions of the tumors during tumor growth, including solid stress, interstitial fluid pressure, stiffness, and microarchitecture. Solid stress affects tumors by compressing cancer and stromal cells and deforming blood and lymphatic vessels which reduce supply of oxygen, nutrients and drug delivery, making resistant to treatment. Researchers simulate the stress by creating mechanical models both in vitro and in vivo. Cell models in vitro are divided into two dimensions (2D) and three dimensions (3D). 2D models are simple to operate but exert pressure on apical surface of the cells. 3D models, the multicellular tumor spheres, are more consistent with the actual pathological state in human body. However, the models are more difficult to establish compared with the 2D models. Besides, the procedure of the animal models in vivo is even more complex and tougher to operate. Then, researchers challenged to quantify the solid stress through some measurement methods. We compared the advantages and limitations of these models and methods, which may help to explore new therapeutic targets for normalizing the tumor's physical microenvironment. KEY POINTS: •This is the first review to conclude the mechanical models and measurement methods in tumors. •The merit and demerit of these models and methods are compared. •Insights into further models are discussed.
Collapse
Affiliation(s)
- Yingwei Bi
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Jiacheng Jin
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Rui Wang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Yuxin Liu
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China
| | - Liang Zhu
- Dalian University of Technology, Linggong Road 2, Dalian, 116081, China.
- Dalian Medical University, Lvshun South Road 9, Dalian, 116041, China.
| | - Jianbo Wang
- Department of Urology, First Affiliated Hospital, Dalian Medical University, Zhongshan Road 222, Dalian, 116011, China.
| |
Collapse
|
35
|
Lin YH, Lou J, Xia Y, Chaudhuri O. Crosslinker Architectures Impact Viscoelasticity in Dynamic Covalent Hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.593040. [PMID: 38766044 PMCID: PMC11100722 DOI: 10.1101/2024.05.07.593040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dynamic covalent crosslinked (DCC) hydrogels represent a significant advance in biomaterials for regenerative medicine and mechanobiology. These gels typically offer viscoelasticity and self-healing properties that more closely mimic in vivo tissue mechanics than traditional, predominantly elastic, covalent crosslinked hydrogels. Despite their promise, the effects of varying crosslinker architecture - side chain versus telechelic crosslinks - on the viscoelastic properties of DCC hydrogels have not been thoroughly investigated. This study introduces hydrazone-based alginate hydrogels and examines how side-chain and telechelic crosslinker architectures impact hydrogel viscoelasticity and stiffness. In hydrogels with side-chain crosslinking (SCX), higher polymer concentrations enhance stiffness and decelerates stress relaxation, while an off-stoichiometric hydrazine-to-aldehyde ratio leads to reduced stiffness and shorter relaxation time. In hydrogels with telechelic crosslinking, maximal stiffness and slowest stress relaxation occurs at intermediate crosslinker concentrations for both linear and star crosslinkers, with higher crosslinker valency further increasing stiffness and relaxation time. Our result suggested different ranges of stiffness and stress relaxation are accessible with the different crosslinker architectures, with SCX hydrogels leading to slower stress relaxation relative to the other architectures, and hydrogels with star crosslinking (SX) providing increased stiffness and slower stress relaxation relative to hydrogels with linear crosslinking (LX). The mechanical properties of SX hydrogels are more robust to changes induced by competing chemical reactions compared to LX hydrogels. Our research underscores the pivotal role of crosslinker architecture in defining hydrogel stiffness and viscoelasticity, providing crucial insights for the design of DCC hydrogels with tailored mechanical properties for specific biomedical applications.
Collapse
Affiliation(s)
- Yung-Hao Lin
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Junzhe Lou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
36
|
Wang W, Zhu Y, Liu Y, Chen B, Li M, Yuan C, Wang P. 3D bioprinting of DPSCs with GelMA hydrogel of various concentrations for bone regeneration. Tissue Cell 2024; 88:102418. [PMID: 38776731 DOI: 10.1016/j.tice.2024.102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Bioprinting technology promotes innovation of fabricating tissue engineered constructs. Dental pulp stem cells (DPSCs) have significant advantages over classical bone mesenchymal stem cells (BMSCs) and are a promising seed cell candidate for bone engineering bioprinting. However, current reports about bioprinted DPSCs for bone regeneration are incomprehensive. The objective of this study was to investigate the osteogenic potential of DPSCs in methacrylate gelatin (GelMA) hydrogels bioprinted scaffolds in vitro and in vivo. Firstly, we successfully bioprinted GelMA with different concentrations embedded with or without DPSCs. Printability, physical features and biological properties of the bioprinted constructs were evaluated. Then, osteogenic differentiation levels of DPSCs in bioprinted constructs with various concentrated GelMA were compared. Finally, effects of bioprinted constructs on cranial bone regeneration were evaluated in vivo. The results of our study demonstrated that 10% GelMA had higher compression modulus, smaller pores, lower swelling and degradation rate than 3% GelMA. Twenty-eight days after printing, DPSCs in three groups of bioprinted structures still maintained high cell activities (>90%). Moreover, DPSCs in 10% GelMA showed an upregulated expression of osteogenic markers and a highly activated ephrinB2/EphB4 signaling, a signaling involved in bone homeostasis. In vivo experiments showed that DPSCs survived at a higher rate in 10% GelMA, and more new bones were observed in DPSC-laden 10% GelMA group, compared with GelMA of other concentrations. In conclusion, bioprinted DPSC-laden 10% GelMA might be more appropriate for bone regeneration application, in contrast to GelMA with other concentrations.
Collapse
Affiliation(s)
- Wen Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China
| | - Yaru Zhu
- Quanzhou Women 's and Children's Hospital, NO.700 Fengze Street, Quanzhou, Fujian 362000, China
| | - Ya Liu
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Banghui Chen
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Mengying Li
- School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China
| | - Changyong Yuan
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China; School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| | - Penglai Wang
- Affiliated Stomatological Hospital of Xuzhou Medical University, No.130 Huaihai West Road, Xuzhou, Jiangsu 221000, China; School of Stomatology, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
37
|
Chen YQ, Wu MC, Wei MT, Kuo JC, Yu HW, Chiou A. High-viscosity driven modulation of biomechanical properties of human mesenchymal stem cells promotes osteogenic lineage. Mater Today Bio 2024; 26:101058. [PMID: 38681057 PMCID: PMC11046220 DOI: 10.1016/j.mtbio.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tzo Wei
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
38
|
Liang L, Song X, Zhao H, Lim CT. Insights into the mechanobiology of cancer metastasis via microfluidic technologies. APL Bioeng 2024; 8:021506. [PMID: 38841688 PMCID: PMC11151435 DOI: 10.1063/5.0195389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024] Open
Abstract
During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction. While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to better drug development and cancer therapy.
Collapse
Affiliation(s)
- Lanfeng Liang
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xiao Song
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | | | | |
Collapse
|
39
|
Liu Y, Li L, Li X, Cherif H, Jiang S, Ghezelbash F, Weber MH, Juncker D, Li-Jessen NYK, Haglund L, Li J. Viscoelastic hydrogels regulate adipose-derived mesenchymal stem cells for nucleus pulposus regeneration. Acta Biomater 2024; 180:244-261. [PMID: 38615812 DOI: 10.1016/j.actbio.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Low back pain is a leading cause of disability worldwide, often attributed to intervertebral disc (IVD) degeneration with loss of the functional nucleus pulposus (NP). Regenerative strategies utilizing biomaterials and stem cells are promising for NP repair. Human NP tissue is highly viscoelastic, relaxing stress rapidly under deformation. However, the impact of tissue-specific viscoelasticity on the activities of adipose-derived stem cells (ASC) remains largely unexplored. Here, we investigated the role of matrix viscoelasticity in regulating ASC differentiation for IVD regeneration. Viscoelastic alginate hydrogels with stress relaxation time scales ranging from 100 s to 1000s were developed and used to culture human ASCs for 21 days. Our results demonstrated that the fast-relaxing hydrogel significantly enhanced ASCs long-term cell survival and NP-like extracellular matrix secretion of aggrecan and type-II collagen. Moreover, gene expression analysis revealed a substantial upregulation of the mechanosensitive ion channel marker TRPV4 and NP-specific markers such as SOX9, HIF-1α, KRT18, CDH2 and CD24 in ASCs cultured within the fast-relaxing hydrogel, compared to slower-relaxing hydrogels. These findings highlight the critical role of matrix viscoelasticity in regulating ASC behavior and suggest that viscoelasticity is a key parameter for novel biomaterials design to improve the efficacy of stem cell therapy for IVD regeneration. STATEMENT OF SIGNIFICANCE: Systematically characterized the influence of tissue-mimetic viscoelasticity on ASC. NP-mimetic hydrogels with tunable viscoelasticity and tissue-matched stiffness. Long-term survival and metabolic activity of ASCs are substantially improved in the fast-relaxing hydrogel. The fast-relaxing hydrogel allows higher rate of cell protrusions formation and matrix remodeling. ASC differentiation towards an NP-like cell phenotype is promoted in the fast-relaxing hydrogel, with more CD24 positive expression indicating NP committed cell fate. The expression of TRPV4, a molecular sensor of matrix viscoelasticity, is significantly enhanced in the fast-relaxing hydrogel, indicating ASC sensing matrix viscoelasticity during cell development. The NP-specific ECM secretion of ASC is considerably influenced by matrix viscoelasticity, where the deposition of aggrecan and type-II collagen are significantly enhanced in the fast-relaxing hydrogel.
Collapse
Affiliation(s)
- Yin Liu
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Li Li
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Xuan Li
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Hosni Cherif
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - Shuaibing Jiang
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Farshid Ghezelbash
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada
| | - Michael H Weber
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; McGill University & Genome Quebec Innovation Centre, 740 Avenue Dr. Penfield, Montréal, QC H4A 0G1, Canada
| | - Nicole Y K Li-Jessen
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; School of Communication Sciences and Disorders, McGill University, 2001 McGill College Avenue, Montréal, QC H3A 1G1, Canada; Department of Otolaryngology - Head and Neck Surgery, McGill University Health Centre, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada; Research Institute of McGill University Health Center, McGill University, 1001 Bd Décarie, Montréal, QC H4A 3J1, Canada
| | - Lisbet Haglund
- Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada; Shriners Hospital for Children, 1003 Bd Décarie, Montréal, QC H4A 0A9, Canada.
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, 3775 Rue University, Montréal, QC H3A 2B4, Canada; Department of Mechanical Engineering, McGill University, 817 Sherbrooke Street West, Montréal, QC H3A 0C3, Canada; Department of Surgery, McGill University, 1650 Cedar Avenue, Montréal, QC H3G 1A4, Canada.
| |
Collapse
|
40
|
Na J, Yang Z, Shi Q, Li C, Liu Y, Song Y, Li X, Zheng L, Fan Y. Extracellular matrix stiffness as an energy metabolism regulator drives osteogenic differentiation in mesenchymal stem cells. Bioact Mater 2024; 35:549-563. [PMID: 38434800 PMCID: PMC10909577 DOI: 10.1016/j.bioactmat.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/05/2024] Open
Abstract
The biophysical factors of biomaterials such as their stiffness regulate stem cell differentiation. Energy metabolism has been revealed an essential role in stem cell lineage commitment. However, whether and how extracellular matrix (ECM) stiffness regulates energy metabolism to determine stem cell differentiation is less known. Here, the study reveals that stiff ECM promotes glycolysis, oxidative phosphorylation, and enhances antioxidant defense system during osteogenic differentiation in MSCs. Stiff ECM increases mitochondrial fusion by enhancing mitofusin 1 and 2 expression and inhibiting the dynamin-related protein 1 activity, which contributes to osteogenesis. Yes-associated protein (YAP) impacts glycolysis, glutamine metabolism, mitochondrial dynamics, and mitochondrial biosynthesis to regulate stiffness-mediated osteogenic differentiation. Furthermore, glycolysis in turn regulates YAP activity through the cytoskeletal tension-mediated deformation of nuclei. Overall, our findings suggest that YAP is an important mechanotransducer to integrate ECM mechanical cues and energy metabolic signaling to affect the fate of MSCs. This offers valuable guidance to improve the scaffold design for bone tissue engineering constructs.
Collapse
Affiliation(s)
- Jing Na
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zhijie Yang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Qiusheng Shi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Chiyu Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yaxin Song
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xinyang Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lisha Zheng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| |
Collapse
|
41
|
Chang J, Saraswathibhatla A, Song Z, Varma S, Sanchez C, Alyafei NHK, Indana D, Slyman R, Srivastava S, Liu K, Bassik MC, Marinkovich MP, Hodgson L, Shenoy V, West RB, Chaudhuri O. Cell volume expansion and local contractility drive collective invasion of the basement membrane in breast cancer. NATURE MATERIALS 2024; 23:711-722. [PMID: 37957268 PMCID: PMC11185842 DOI: 10.1038/s41563-023-01716-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Breast cancer becomes invasive when carcinoma cells invade through the basement membrane (BM)-a nanoporous layer of matrix that physically separates the primary tumour from the stroma. Single cells can invade through nanoporous three-dimensional matrices due to protease-mediated degradation or force-mediated widening of pores via invadopodial protrusions. However, how multiple cells collectively invade through the physiological BM, as they do during breast cancer progression, remains unclear. Here we developed a three-dimensional in vitro model of collective invasion of the BM during breast cancer. We show that cells utilize both proteases and forces-but not invadopodia-to breach the BM. Forces are generated from a combination of global cell volume expansion, which stretches the BM, and local contractile forces that act in the plane of the BM to breach it, allowing invasion. These results uncover a mechanism by which cells collectively interact to overcome a critical barrier to metastasis.
Collapse
Affiliation(s)
- Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Zhaoqiang Song
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sushama Varma
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Colline Sanchez
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Dhiraj Indana
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Raleigh Slyman
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Sucheta Srivastava
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Katherine Liu
- Department of Genetics, Stanford University Medical Center, Palo Alto, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University Medical Center, Palo Alto, CA, USA
| | - M Peter Marinkovich
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Dermatology Service, VA Medical Center, Palo Alto, CA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vivek Shenoy
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B West
- Department of Pathology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Bebiano LB, Presa R, Vieira F, Lourenço BN, Pereira RF. Bioinspired and Photo-Clickable Thiol-Ene Bioinks for the Extrusion Bioprinting of Mechanically Tunable 3D Skin Models. Biomimetics (Basel) 2024; 9:228. [PMID: 38667239 PMCID: PMC11048463 DOI: 10.3390/biomimetics9040228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Bioinks play a fundamental role in skin bioprinting, dictating the printing fidelity, cell response, and function of bioprinted 3D constructs. However, the range of bioinks that support skin cells' function and aid in the bioprinting of 3D skin equivalents with tailorable properties and customized shapes is still limited. In this study, we describe a bioinspired design strategy for bioengineering double crosslinked pectin-based bioinks that recapitulate the mechanical properties and the presentation of cell-adhesive ligands and protease-sensitive domains of the dermal extracellular matrix, supporting the bioprinting of bilayer 3D skin models. Methacrylate-modified pectin was used as a base biomaterial enabling hydrogel formation via either chain-growth or step-growth photopolymerization and providing independent control over bioink rheology, as well as the mechanical and biochemical cues of cell environment. By tuning the concentrations of crosslinker and polymer in bioink formulation, dermal constructs were bioprinted with a physiologically relevant range of stiffnesses that resulted in strikingly site-specific differences in the morphology and spreading of dermal fibroblasts. We also demonstrated that the developed thiol-ene photo-clickable bioinks allow for the bioprinting of skin models of varying shapes that support dermis and epidermis reconstruction. Overall, the engineered bioinks expand the range of printable biomaterials for the extrusion bioprinting of 3D cell-laden hydrogels and provide a versatile platform to study the impact of material cues on cell fate, offering potential for in vitro skin modeling.
Collapse
Affiliation(s)
- Luís B. Bebiano
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rafaela Presa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Francisca Vieira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bianca N. Lourenço
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
43
|
Kumar S, Acharya TK, Kumar S, Rokade TP, Das NK, Chawla S, Goswami L, Goswami C. TRPV4 Activator-Containing CMT-Hy Hydrogel Enhances Bone Tissue Regeneration In Vivo by Enhancing Mitochondrial Health. ACS Biomater Sci Eng 2024; 10:2367-2384. [PMID: 38470969 DOI: 10.1021/acsbiomaterials.3c01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Treating different types of bone defects is difficult, complicated, time-consuming, and expensive. Here, we demonstrate that transient receptor potential cation channel subfamily V member 4 (TRPV4), a mechanosensitive, thermogated, and nonselective cation channel, is endogenously present in the mesenchymal stem cells (MSCs). TRPV4 regulates both cytosolic Ca2+ levels and mitochondrial health. Accordingly, the hydrogel made from a natural modified biopolymer carboxymethyl tamarind CMT-Hy and encapsulated with TRPV4-modulatory agents affects different parameters of MSCs, such as cell morphology, focal adhesion points, intracellular Ca2+, and reactive oxygen species- and NO-levels. TRPV4 also regulates cell differentiation and biomineralization in vitro. We demonstrate that 4α-10-CMT-Hy and 4α-50-CMT-Hy (the hydrogel encapsulated with 4αPDD, 10 and 50 nM, TRPV4 activator) surfaces upregulate mitochondrial health, i.e., an increase in ATP- and cardiolipin-levels, and improve the mitochondrial membrane potential. The same scaffold turned out to be nontoxic in vivo. 4α-50-CMT-Hy enhances the repair of the bone-drill hole in rat femur, both qualitatively and quantitatively in vivo. We conclude that 4α-50-CMT-Hy as a scaffold is suitable for treating large-scale bone defects at low cost and can be tested for clinical trials.
Collapse
Affiliation(s)
- Satish Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tusar K Acharya
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Tejas P Rokade
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Nilesh K Das
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
| | - Luna Goswami
- School of Biotechnology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
- School of Chemical Technology, KIIT Deemed to be University, Patia, Bhubaneswar 751024, India
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Jatni 752050, Odisha, India
- Centre for Interdisciplinary Sciences, National Institute of Science Education and Research, Khordha, Jatni 752050, Odisha, India
| |
Collapse
|
44
|
Li Z, Yang B, Yang Z, Xie X, Guo Z, Zhao J, Wang R, Fu H, Zhao P, Zhao X, Chen G, Li G, Wei F, Bian L. Supramolecular Hydrogel with Ultra-Rapid Cell-Mediated Network Adaptation for Enhancing Cellular Metabolic Energetics and Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307176. [PMID: 38295393 DOI: 10.1002/adma.202307176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Indexed: 02/02/2024]
Abstract
Cellular energetics plays an important role in tissue regeneration, and the enhanced metabolic activity of delivered stem cells can accelerate tissue repair and regeneration. However, conventional hydrogels with limited network cell adaptability restrict cell-cell interactions and cell metabolic activities. In this work, it is shown that a cell-adaptable hydrogel with high network dynamics enhances the glucose uptake and fatty acid β-oxidation of encapsulated human mesenchymal stem cells (hMSCs) compared with a hydrogel with low network dynamics. It is further shown that the hMSCs encapsulated in the high dynamic hydrogels exhibit increased tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) biosynthesis via an E-cadherin- and AMP-activated protein kinase (AMPK)-dependent mechanism. The in vivo evaluation further showed that the delivery of MSCs by the dynamic hydrogel enhanced in situ bone regeneration in an animal model. It is believed that the findings provide critical insights into the impact of stem cell-biomaterial interactions on cellular metabolic energetics and the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Boguang Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ruinan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Hao Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guosong Chen
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| |
Collapse
|
45
|
Fan W, Adebowale K, Váncza L, Li Y, Rabbi MF, Kunimoto K, Chen D, Mozes G, Chiu DKC, Li Y, Tao J, Wei Y, Adeniji N, Brunsing RL, Dhanasekaran R, Singhi A, Geller D, Lo SH, Hodgson L, Engleman EG, Charville GW, Charu V, Monga SP, Kim T, Wells RG, Chaudhuri O, Török NJ. Matrix viscoelasticity promotes liver cancer progression in the pre-cirrhotic liver. Nature 2024; 626:635-642. [PMID: 38297127 PMCID: PMC10866704 DOI: 10.1038/s41586-023-06991-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Type 2 diabetes mellitus is a major risk factor for hepatocellular carcinoma (HCC). Changes in extracellular matrix (ECM) mechanics contribute to cancer development1,2, and increased stiffness is known to promote HCC progression in cirrhotic conditions3,4. Type 2 diabetes mellitus is characterized by an accumulation of advanced glycation end-products (AGEs) in the ECM; however, how this affects HCC in non-cirrhotic conditions is unclear. Here we find that, in patients and animal models, AGEs promote changes in collagen architecture and enhance ECM viscoelasticity, with greater viscous dissipation and faster stress relaxation, but not changes in stiffness. High AGEs and viscoelasticity combined with oncogenic β-catenin signalling promote HCC induction, whereas inhibiting AGE production, reconstituting the AGE clearance receptor AGER1 or breaking AGE-mediated collagen cross-links reduces viscoelasticity and HCC growth. Matrix analysis and computational modelling demonstrate that lower interconnectivity of AGE-bundled collagen matrix, marked by shorter fibre length and greater heterogeneity, enhances viscoelasticity. Mechanistically, animal studies and 3D cell cultures show that enhanced viscoelasticity promotes HCC cell proliferation and invasion through an integrin-β1-tensin-1-YAP mechanotransductive pathway. These results reveal that AGE-mediated structural changes enhance ECM viscoelasticity, and that viscoelasticity can promote cancer progression in vivo, independent of stiffness.
Collapse
Affiliation(s)
- Weiguo Fan
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Kolade Adebowale
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Lóránd Váncza
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Yuan Li
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Md Foysal Rabbi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Koshi Kunimoto
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Dongning Chen
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Gergely Mozes
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - David Kung-Chun Chiu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Division of Immunology, Stanford University, Stanford, CA, USA
| | - Yisi Li
- Department of Automation, Tsinghua University, Beijing, China
| | - Junyan Tao
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Yi Wei
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Nia Adeniji
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Ryan L Brunsing
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Renumathy Dhanasekaran
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
- VA, Palo Alto, CA, USA
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Geller
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California at Davis, Sacramento, CA, USA
| | - Louis Hodgson
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, USA
| | - Edgar G Engleman
- Department of Pathology, Stanford University, Stanford, CA, USA
- Division of Immunology, Stanford University, Stanford, CA, USA
| | | | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Satdarshan P Monga
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Rebecca G Wells
- Departments of Medicine and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Ovijit Chaudhuri
- Chemistry, Engineering and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Natalie J Török
- Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA.
- VA, Palo Alto, CA, USA.
| |
Collapse
|
46
|
Babaniamansour P, Jacho D, Niedzielski S, Rabino A, Garcia-Mata R, Yildirim-Ayan E. Modulating TRPV4 Channel Activity in Pro-Inflammatory Macrophages within the 3D Tissue Analog. Biomedicines 2024; 12:230. [PMID: 38275401 PMCID: PMC10813551 DOI: 10.3390/biomedicines12010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Investigating macrophage plasticity emerges as a promising strategy for promoting tissue regeneration and can be exploited by regulating the transient receptor potential vanilloid 4 (TRPV4) channel. The TRPV4 channel responds to various stimuli including mechanical, chemical, and selective pharmacological compounds. It is well documented that treating cells such as epithelial cells and fibroblasts with a TRPV4 agonist enhances the Ca2+ influx to the cells, which leads to secretion of pro-inflammatory cytokines, while a TRPV4 antagonist reduces both Ca2+ influx and pro-inflammatory cytokine secretion. In this work, we investigated the effect of selective TRPV4 modulator compounds on U937-differentiated macrophages encapsulated within three-dimensional (3D) matrices. Despite offering a more physiologically relevant model than 2D cultures, pharmacological treatment of macrophages within 3D collagen matrices is largely overlooked in the literature. In this study, pro-inflammatory macrophages were treated with an agonist, 500 nM of GSK1016790A (TRPV4(+)), and an antagonist, 10 mM of RN-1734 (TRPV4(-)), to elucidate the modulation of the TRPV4 channel at both cellular and extracellular levels. To evaluate macrophage phenotypic alterations within 3D collagen matrices following TRPV4 modulator treatment, we employed structural techniques (SEM, Masson's trichrome, and collagen hybridizing peptide (CHP) staining), quantitative morphological measures for phenotypic assessment, and genotypic methods such as quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). Our data reveal that pharmacological modulation of the macrophage TRPV4 channel alters the cytoskeletal structure of macrophages and influences the 3D structure encapsulating them. Moreover, we proved that treating macrophages with a TRPV4 agonist and antagonist enhances the expression of pro- and anti-inflammatory genes, respectively, leading to the upregulation of surface markers CD80 and CD206. In the TRPV4(-) group, the CD206 gene and CD206 surface marker were significantly upregulated by 9- and 2.5-fold, respectively, compared to the control group. These findings demonstrate that TRPV4 modulation can be utilized to shift macrophage phenotype within the 3D matrix toward a desired state. This is an innovative approach to addressing inflammation in musculoskeletal tissues.
Collapse
Affiliation(s)
- Parto Babaniamansour
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Diego Jacho
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Skyler Niedzielski
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| | - Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA; (P.B.); (S.N.)
| |
Collapse
|
47
|
Zhang S, Liu J, Feng F, Jia Y, Xu F, Wei Z, Zhang M. Rational design of viscoelastic hydrogels for periodontal ligament remodeling and repair. Acta Biomater 2024; 174:69-90. [PMID: 38101557 DOI: 10.1016/j.actbio.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/14/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The periodontal ligament (PDL) is a distinctive yet critical connective tissue vital for maintaining the integrity and functionality of tooth-supporting structures. However, PDL repair poses significant challenges due to the complexity of its mechanical microenvironment encompassing hard-soft-hard tissues, with the viscoelastic properties of the PDL being of particular interest. This review delves into the significant role of viscoelastic hydrogels in PDL regeneration, underscoring their utility in simulating biomimetic three-dimensional microenvironments. We review the intricate relationship between PDL and viscoelastic mechanical properties, emphasizing the role of tissue viscoelasticity in maintaining mechanical functionality. Moreover, we summarize the techniques for characterizing PDL's viscoelastic behavior. From a chemical bonding perspective, we explore various crosslinking methods and characteristics of viscoelastic hydrogels, along with engineering strategies to construct viscoelastic cell microenvironments. We present a detailed analysis of the influence of the viscoelastic microenvironment on cellular mechanobiological behavior and fate. Furthermore, we review the applications of diverse viscoelastic hydrogels in PDL repair and address current challenges in the field of viscoelastic tissue repair. Lastly, we propose future directions for the development of innovative hydrogels that will facilitate not only PDL but also systemic ligament tissue repair. STATEMENT OF SIGNIFICANCE.
Collapse
Affiliation(s)
- Songbai Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jingyi Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Fan Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yuanbo Jia
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Min Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
48
|
Fan F, Su B, Kolodychak A, Ekwueme E, Alderfer L, Saha S, Webber MJ, Hanjaya-Putra D. Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58181-58195. [PMID: 38065571 PMCID: PMC10739586 DOI: 10.1021/acsami.3c12514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023]
Abstract
The dynamics of the extracellular matrix (ECM) influences stem cell differentiation and morphogenesis into complex lymphatic networks. While dynamic hydrogels with stress relaxation properties have been developed, many require detailed chemical processing to tune viscoelasticity, offering a limited opportunity for in situ and spatiotemporal control. Here, a hyaluronic acid (HA) hydrogel is reported with viscoelasticity that is controlled and spatially tunable using UV light to direct the extent of supramolecular and covalent cross-linking interactions. This is achieved using UV-mediated photodimerization of a supramolecular ternary complex of pendant trans-Brooker's Merocyanine (BM) guests and a cucurbit[8]uril (CB[8]) macrocycle. The UV-mediated conversion of this supramolecular complex to its covalent photodimerized form is catalyzed by CB[8], offering a user-directed route to spatially control hydrogel dynamics in combination with orthogonal photopatterning by UV irradiation through photomasks. This material thus achieves spatial heterogeneity of substrate dynamics, recreating features of native ECM without the need for additional chemical reagents. Moreover, these dynamic hydrogels afford spatial control of substrate mechanics to direct human lymphatic endothelial cells (LECs) to form lymphatic cord-like structures (CLS). Specifically, cells cultured on viscoelastic supramolecular hydrogels have enhanced formation of CLS, arising from increased expression of key lymphatic markers, such as LYVE-1, Podoplanin, and Prox1, compared to static elastic hydrogels prepared from fully covalent cross-linking. Viscoelastic hydrogels promote lymphatic CLS formation through the expression of Nrp2, VEGFR2, and VEGFR3 to enhance the VEGF-C stimulation. Overall, viscoelastic supramolecular hydrogels offer a facile route to spatially control lymphatic CLS formation, providing a tool for future studies of basic lymphatic biology and tissue engineering applications.
Collapse
Affiliation(s)
- Fei Fan
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Bo Su
- Chemical
and Biomolecular Engineering, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Alexander Kolodychak
- Chemical
and Biomolecular Engineering, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Ephraim Ekwueme
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Laura Alderfer
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sanjoy Saha
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew J. Webber
- Chemical
and Biomolecular Engineering, University
of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Donny Hanjaya-Putra
- Bioengineering
Graduate Program, Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
49
|
Crandell P, Stowers R. Spatial and Temporal Control of 3D Hydrogel Viscoelasticity through Phototuning. ACS Biomater Sci Eng 2023; 9:6860-6869. [PMID: 38019272 PMCID: PMC10716813 DOI: 10.1021/acsbiomaterials.3c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023]
Abstract
The mechanical properties of the extracellular environment can regulate a variety of cellular functions, such as spreading, migration, proliferation, and even differentiation and phenotypic determination. Much effort has been directed at understanding the effects of the extracellular matrix (ECM) elastic modulus and, more recently, stress relaxation on cellular processes. In physiological contexts such as development, wound healing, and fibrotic disease progression, ECM mechanical properties change substantially over time or space. Dynamically tunable hydrogel platforms have been developed to spatiotemporally modulate a gel's elastic modulus. However, dynamically altering the stress relaxation rate of a hydrogel remains a challenge. Here, we present a strategy to tune hydrogel stress relaxation rates in time or space using a light-triggered tethering of poly(ethylene glycol) to alginate. We show that the stress relaxation rate can be tuned without altering the elastic modulus of the hydrogel. We found that cells are capable of sensing and responding to dynamic stress relaxation rate changes, both morphologically and through differences in proliferation rates. We also exploited the light-based technique to generate spatial patterns of stress relaxation rates in 3D hydrogels. We anticipate that user-directed control of the 3D hydrogel stress relaxation rate will be a powerful tool that enables studies that mimic dynamic ECM contexts or as a means to guide cell fate in space and time for tissue engineering applications.
Collapse
Affiliation(s)
- Philip Crandell
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93016, United States
| | - Ryan Stowers
- Department
of Mechanical Engineering, University of
California, Santa Barbara, Santa
Barbara, California 93016, United States
- Biological
Engineering Program, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
50
|
Vahala D, Amos SE, Sacchi M, Soliman BG, Hepburn MS, Mowla A, Li J, Jeong JH, Astell C, Hwang Y, Kennedy BF, Lim KS, Choi YS. 3D Volumetric Mechanosensation of MCF7 Breast Cancer Spheroids in a Linear Stiffness Gradient GelAGE. Adv Healthc Mater 2023; 12:e2301506. [PMID: 37670531 PMCID: PMC11481087 DOI: 10.1002/adhm.202301506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/26/2023] [Indexed: 09/07/2023]
Abstract
The tumor microenvironment presents spatiotemporal shifts in biomechanical properties with cancer progression. Hydrogel biomaterials like GelAGE offer the stiffness tuneability to recapitulate dynamic changes in tumor tissues by altering photo-energy exposures. Here, a tuneable hydrogel with spatiotemporal control of stiffness and mesh-network is developed. The volume of MCF7 spheroids encapsulated in a linear stiffness gradient demonstrates an inverse relationship with stiffness (p < 0.0001). As spheroids are exposed to increased crosslinking (stiffer) and greater mechanical confinement, spheroid stiffness increases. Protein expression (TRPV4, β1 integrin, E-cadherin, and F-actin) decreases with increasing stiffness while showing strong correlations to spheroid volume (r2 > 0.9). To further investigate the role of volume, MCF7 spheroids are grown in a soft matrix for 5 days prior to a second polymerisation which presents a stiffness gradient to equally expanded spheroids. Despite being exposed to variable stiffness, these spheroids show even protein expression, confirming volume as a key regulator. Overall, this work showcases the versatility of GelAGE and demonstrates volume expansion as a key regulator of 3D mechanosensation in MCF7 breast cancer spheroids. This platform has the potential to further investigation into the role of stiffness and dimensionality in 3D spheroid culture for other types of cancers and diseases.
Collapse
Affiliation(s)
- Danielle Vahala
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Sebastian E. Amos
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Marta Sacchi
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Bram G. Soliman
- Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurch8140New Zealand
| | - Matt S. Hepburn
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Alireza Mowla
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Jiayue Li
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Ji Hoon Jeong
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonan‐siChungcheongnam‐do31151South Korea
| | - Chrissie Astell
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi‐Bio ScienceSoonchunhyang UniversityCheonan‐siChungcheongnam‐do31151South Korea
| | - Brendan F. Kennedy
- Department of ElectricalElectronic & Computer EngineeringSchool of EngineeringThe University of Western AustraliaPerthWA6009Australia
- BRITElabHarry Perkins Institute of Medical ResearchQEII Medical CentreNedlandsand Centre for Medical ResearchThe University of Western AustraliaPerthWA6009Australia
| | - Khoon S. Lim
- Department of Orthopaedic Surgery and Musculoskeletal MedicineUniversity of Otago ChristchurchChristchurch8140New Zealand
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaPerthWA6009Australia
| |
Collapse
|