1
|
Chen S, Liu Y, Yu H. Uncovering the Mechanisms of Intracellular Membrane Trafficking by Reconstituted Membrane Systems. MEMBRANES 2025; 15:154. [PMID: 40422764 DOI: 10.3390/membranes15050154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/13/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Intracellular membrane trafficking that transports proteins, lipids, and other substances between organelles is crucial for maintaining cellular homeostasis and signal transduction. The imbalance of membrane trafficking leads to various diseases. It is challenging to uncover the mechanisms of the complicated and dynamic trafficking process at the cellular or animal levels. The applications of functional reconstituted membrane systems, which can mimic the intracellular membrane compartments in a clean and simplified pattern, tremendously facilitate our understanding of the membrane trafficking process. In this review, we summarize applications of the in vitro membrane models, including liposomes, nanodiscs, and single-vesicle platforms, in elucidating molecular mechanisms that govern vesicle fusion and non-vesicular lipid transport, the key steps of membrane trafficking. This review highlights how membrane reconstitution approaches contribute to illustrating the protein-mediated molecular choreography of cellular membranes.
Collapse
Affiliation(s)
- Shuhan Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
2
|
Ebner M, Fröhlich F, Haucke V. Mechanisms and functions of lysosomal lipid homeostasis. Cell Chem Biol 2025; 32:392-407. [PMID: 40054455 DOI: 10.1016/j.chembiol.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/30/2025] [Accepted: 02/11/2025] [Indexed: 03/23/2025]
Abstract
Lysosomes are the central degradative organelle of mammalian cells and have emerged as major intersections of cellular metabolite flux. Macromolecules derived from dietary and intracellular sources are delivered to the acidic lysosomal lumen where they are subjected to degradation by acid hydrolases. Lipids derived from lipoproteins, autophagy cargo, or autophagosomal membranes themselves constitute major lysosomal substrates. Dysregulation of lysosomal lipid processing, defective export of lipid catabolites, and lysosomal membrane permeabilization underly diseases ranging from neurodegeneration to metabolic syndromes and lysosomal storage disorders. Mammalian cells are equipped with sophisticated homeostatic control mechanisms that protect the lysosomal limiting membrane from excessive damage, prevent the spillage of luminal hydrolases into the cytoplasm, and preserve the lysosomal membrane composition in the face of constant fusion with heterotypic organelles such as endosomes and autophagosomes. In this review we discuss the molecular mechanisms that govern lysosomal lipid homeostasis and, thereby, lysosome function in health and disease.
Collapse
Affiliation(s)
- Michael Ebner
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Florian Fröhlich
- Bioanalytical Chemistry Section, Department of Biology/Chemistry, Osnabrück University, 49076 Osnabrück, Germany; Center of Cellular Nanoanalytics Osnabrück (CellNanOs), 49076 Osnabrück, Germany
| | - Volker Haucke
- Department of Molecular Physiology and Cell Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Freie Universität Berlin, Faculty of Biology, Chemistry, Pharmacy, 14195 Berlin, Germany.
| |
Collapse
|
3
|
Depta L, Bryce-Rogers HP, Dekker NJ, Bønke AW, Camporese N, Qian M, Xu Y, Covey DF, Laraia L. Endogenous and fluorescent sterols reveal the molecular basis for ligand selectivity of human sterol transporters. J Lipid Res 2025; 66:100738. [PMID: 39746449 PMCID: PMC11830314 DOI: 10.1016/j.jlr.2024.100738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/13/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 42 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP-specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors and supporting the role of this protein in steroidogenesis.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Hogan P Bryce-Rogers
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Nienke J Dekker
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Anna Wiehl Bønke
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Nicolò Camporese
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Yuanjian Xu
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Douglas F Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA; Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
5
|
Rudnik S, Heybrock S, Coyaud E, Xu Z, Neculai D, Raught B, Oorschot V, Heus C, Klumperman J, Saftig P. The lysosomal lipid transporter LIMP-2 is part of lysosome-ER STARD3-VAPB-dependent contact sites. J Cell Sci 2024; 137:jcs261810. [PMID: 39370902 DOI: 10.1242/jcs.261810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
LIMP-2 (also known as SCARB2) is an abundant lysosomal membrane protein. Previous studies have shown that LIMP-2 functions as a virus receptor, a chaperone for lysosomal enzyme targeting and a lipid transporter. The large luminal domain of LIMP-2 contains a hydrophobic tunnel that enables transport of phospholipids, sphingosine and cholesterol from the lysosomal lumen to the membrane. The question about the fate of the lipids after LIMP-2-mediated transport is largely unexplored. To elucidate whether LIMP-2 is present at contact sites between lysosomes and the endoplasmic reticulum (ER), we performed a proximity-based interaction screen. This revealed that LIMP-2 interacts with the endosomal protein STARD3 and the ER-resident protein VAPB. Using imaging and co-immunoprecipitation, we demonstrated colocalization and physical interaction between LIMP-2 and these proteins. Moreover, we found that interaction of LIMP-2 with VAPB required the presence of STARD3. Our findings suggest that LIMP-2 is present at ER-lysosome contact sites, possibly facilitating cholesterol transport from the lysosomal to the ER membrane. This suggests a novel mechanism for inter-organelle communication and lipid trafficking mediated by LIMP-2.
Collapse
Affiliation(s)
- Sönke Rudnik
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Saskia Heybrock
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Zizhen Xu
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322001, China
| | - Dante Neculai
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322001, China
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Viola Oorschot
- Electron Microscopy Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Cecilia Heus
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Judith Klumperman
- Center for Molecular Medicine Section Cell Biology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
6
|
Lu Q, Zhu Z, Zhang J, Xu C. Structure of GDP-bound Rab7 Q67L in complex with ORP1L. Biochem Biophys Res Commun 2024; 725:150232. [PMID: 38897042 DOI: 10.1016/j.bbrc.2024.150232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Molecular processes are orchestrated by various proteins that promote early endosomes to become late endosomes and eventually fuse with lysosomes, guaranteeing the degradation of the content. Rab7, which is localized to late endosomes, is one of the most well-known GTPases. ORP1L is recruited by Rab7 to facilitate the fusion of late endosomes and lysosomes. Here, we present the structure of GDP-bound Rab7 Q67L with ORP1L. Structural analysis, supported by biochemical and ITC binding experiments, not only provides structural insight into the interactions between the ORP1L ANK domain and Rab7 but also suggests that the GTPase activity of Rab7 does not interfere with its ORP1L-binding capacity.
Collapse
Affiliation(s)
- Qian Lu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Zhongliang Zhu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China
| | - Jiahai Zhang
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| | - Chao Xu
- Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, PR China.
| |
Collapse
|
7
|
Carbone D, Santos MF, Corbeil D, Vistoli G, Parrino B, Karbanová J, Cascioferro S, Pecoraro C, Bauson J, Eliwat W, Aalam F, Cirrincione G, Lorico A, Diana P. Triazole derivatives inhibit the VOR complex-mediated nuclear transport of extracellular particles: Potential application in cancer and HIV-1 infection. Bioorg Chem 2024; 150:107589. [PMID: 38941696 DOI: 10.1016/j.bioorg.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Extracellular vesicles (EVs) appear to play an important role in intercellular communication in various physiological processes and pathological conditions such as cancer. Like enveloped viruses, EVs can transport their contents into the nucleus of recipient cells, and a new intracellular pathway has been described to explain the nuclear shuttling of EV cargoes. It involves a tripartite protein complex consisting of vesicle-associated membrane protein-associated protein A (VAP-A), oxysterol-binding protein (OSBP)-related protein-3 (ORP3) and late endosome-associated Rab7 allowing late endosome entry into the nucleoplasmic reticulum. Rab7 binding to ORP3-VAP-A complex can be blocked by the FDA-approved antifungal drug itraconazole. Here, we design a new series of smaller triazole derivatives, which lack the dioxolane moiety responsible for the antifungal function, acting on the hydrophobic sterol-binding pocket of ORP3 and evaluate their structure-activity relationship through inhibition of VOR interactions and nuclear transfer of EV and HIV-1 cargoes. Our investigation reveals that the most effective compounds that prevent nuclear transfer of EV cargo and productive infection by VSV-G-pseudotyped HIV-1 are those with a side chain between 1 and 4 carbons, linear or branched (methyl) on the triazolone region. These potent chemical drugs could find clinical applications either for nuclear transfer of cancer-derived EVs that impact metastasis or viral infection.
Collapse
Affiliation(s)
- Daniela Carbone
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Mark F Santos
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy.
| | - Barbara Parrino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Jana Karbanová
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany; Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Stella Cascioferro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Camilla Pecoraro
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Jodi Bauson
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Waleed Eliwat
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Feryal Aalam
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Girolamo Cirrincione
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| | - Aurelio Lorico
- Touro University Nevada College of Osteopathic Medicine, Henderson, NV, USA.
| | - Patrizia Diana
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy.
| |
Collapse
|
8
|
Srinivasan S, Di Luca A, Álvarez D, John Peter AT, Gehin C, Lone MA, Hornemann T, D’Angelo G, Vanni S. The conformational plasticity of structurally unrelated lipid transport proteins correlates with their mode of action. PLoS Biol 2024; 22:e3002737. [PMID: 39159271 PMCID: PMC11361750 DOI: 10.1371/journal.pbio.3002737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 08/29/2024] [Accepted: 07/05/2024] [Indexed: 08/21/2024] Open
Abstract
Lipid transfer proteins (LTPs) are key players in cellular homeostasis and regulation, as they coordinate the exchange of lipids between different cellular organelles. Despite their importance, our mechanistic understanding of how LTPs function at the molecular level is still in its infancy, mostly due to the large number of existing LTPs and to the low degree of conservation at the sequence and structural level. In this work, we use molecular simulations to characterize a representative dataset of lipid transport domains (LTDs) of 12 LTPs that belong to 8 distinct families. We find that despite no sequence homology nor structural conservation, the conformational landscape of LTDs displays common features, characterized by the presence of at least 2 main conformations whose populations are modulated by the presence of the bound lipid. These conformational properties correlate with their mechanistic mode of action, allowing for the interpretation and design of experimental strategies to further dissect their mechanism. Our findings indicate the existence of a conserved, fold-independent mechanism of lipid transfer across LTPs of various families and offer a general framework for understanding their functional mechanism.
Collapse
Affiliation(s)
| | - Andrea Di Luca
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Daniel Álvarez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain
| | | | - Charlotte Gehin
- Institute of Bioengineering (IBI) and Global Heath Institute (GHI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Museer A. Lone
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thorsten Hornemann
- Institute of Clinical Chemistry, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Giovanni D’Angelo
- Institute of Bioengineering (IBI) and Global Heath Institute (GHI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- National Center of Competence in Research Bio-inspired Materials, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Depta L, Bryce-Rogers HP, Dekker NJ, Bønke AW, Camporese N, Qian M, Xu Y, Covey DF, Laraia L. Endogenous and fluorescent sterols reveal the molecular basis for ligand selectivity of human sterol transporters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.22.604041. [PMID: 39091845 PMCID: PMC11291047 DOI: 10.1101/2024.07.22.604041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Hogan P. Bryce-Rogers
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nienke J. Dekker
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Anna Wiehl Bønke
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Nicolo’ Camporese
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| | - Mingxing Qian
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Yuanjian Xu
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark Kemitorvet 207, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Yuan H, Yang H, Gao Y, Zhang J, Ren J, Liu X, Li Y, Li Z, Zhao B, Fan Z. Discovery of Novel Spiropiperidinyl-α-methylene-γ-butyrolactones as Antifungal and Antitoxin Agents Targeting Oxysterol Binding Protein. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15474-15486. [PMID: 38949855 DOI: 10.1021/acs.jafc.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Corn ear rot and fumonisin caused by Fusarium verticillioides pose a serious threat to food security. To find more highly active fungicidal and antitoxic candidates with structure diversity based on naturally occurring lead xanthatin, a series of novel spiropiperidinyl-α-methylene-γ-butyrolactones were rationally designed and synthesized. The in vitro bioassay results indicated that compound 7c showed broad-spectrum in vitro activity with EC50 values falling from 3.51 to 24.10 μg/mL against Rhizoctonia solani and Alternaria solani, which was more active than the positive controls xanthatin and oxathiapiprolin. In addition, compound 7c also showed good antitoxic efficacy against fumonisin with a 48% inhibition rate even at a concentration of 20 μg/mL. Fluorescence quenching and the molecular docking validated both 7c and oxathiapiprolin targeting at FvoshC. RNA sequencing analysis discovered that FUM gene cluster and protein processing in endoplasmic reticulum were downregulated. Our studies have discovered spiropiperidinyl-α-methylene-γ-butyrolactone as a novel FvoshC target-based scaffold for fungicide lead with antitoxin activity.
Collapse
Affiliation(s)
- Haolin Yuan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hongwei Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yang Gao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jin Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jinzhou Ren
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaoyu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yixiao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhengming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhijin Fan
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Fang XX, Wei P, Zhao K, Sheng ZC, Song BL, Yin L, Luo J. Fatty acid-binding proteins 3, 7, and 8 bind cholesterol and facilitate its egress from lysosomes. J Cell Biol 2024; 223:e202211062. [PMID: 38429999 PMCID: PMC10909654 DOI: 10.1083/jcb.202211062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/22/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024] Open
Abstract
Cholesterol from low-density lipoprotein (LDL) can be transported to many organelle membranes by non-vesicular mechanisms involving sterol transfer proteins (STPs). Fatty acid-binding protein (FABP) 7 was identified in our previous study searching for new regulators of intracellular cholesterol trafficking. Whether FABP7 is a bona fide STP remains unknown. Here, we found that FABP7 deficiency resulted in the accumulation of LDL-derived cholesterol in lysosomes and reduced cholesterol levels on the plasma membrane. A crystal structure of human FABP7 protein in complex with cholesterol was resolved at 2.7 Å resolution. In vitro, FABP7 efficiently transported the cholesterol analog dehydroergosterol between the liposomes. Further, the silencing of FABP3 and 8, which belong to the same family as FABP7, caused robust cholesterol accumulation in lysosomes. These two FABP proteins could transport dehydroergosterol in vitro as well. Collectively, our results suggest that FABP3, 7, and 8 are a new class of STPs mediating cholesterol egress from lysosomes.
Collapse
Affiliation(s)
- Xian-Xiu Fang
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Pengcheng Wei
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Kai Zhao
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Zhao-Chen Sheng
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Yin
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Luo
- The Institute for Advanced Studies, College of Life Sciences, Hubei Key Laboratory of Cell Homeostasis, Taikang Center for Life and Medical Sciences, Taikang Medical School, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Siegfried H, Farkouh G, Le Borgne R, Pioche-Durieu C, De Azevedo Laplace T, Verraes A, Daunas L, Verbavatz JM, Heuzé ML. The ER tether VAPA is required for proper cell motility and anchors ER-PM contact sites to focal adhesions. eLife 2024; 13:e85962. [PMID: 38446032 PMCID: PMC10917420 DOI: 10.7554/elife.85962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Cell motility processes highly depend on the membrane distribution of Phosphoinositides, giving rise to cytoskeleton reshaping and membrane trafficking events. Membrane contact sites serve as platforms for direct lipid exchange and calcium fluxes between two organelles. Here, we show that VAPA, an ER transmembrane contact site tether, plays a crucial role during cell motility. CaCo2 adenocarcinoma epithelial cells depleted for VAPA exhibit several collective and individual motility defects, disorganized actin cytoskeleton and altered protrusive activity. During migration, VAPA is required for the maintenance of PI(4)P and PI(4,5)P2 levels at the plasma membrane, but not for PI(4)P homeostasis in the Golgi and endosomal compartments. Importantly, we show that VAPA regulates the dynamics of focal adhesions (FA) through its MSP domain, is essential to stabilize and anchor ventral ER-PM contact sites to FA, and mediates microtubule-dependent FA disassembly. To conclude, our results reveal unknown functions for VAPA-mediated membrane contact sites during cell motility and provide a dynamic picture of ER-PM contact sites connection with FA mediated by VAPA.
Collapse
Affiliation(s)
- Hugo Siegfried
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Georges Farkouh
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | | | - Agathe Verraes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | - Lucien Daunas
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| | | | - Mélina L Heuzé
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013ParisFrance
| |
Collapse
|
13
|
Lolicato F, Nickel W, Haucke V, Ebner M. Phosphoinositide switches in cell physiology - From molecular mechanisms to disease. J Biol Chem 2024; 300:105757. [PMID: 38364889 PMCID: PMC10944118 DOI: 10.1016/j.jbc.2024.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.
Collapse
Affiliation(s)
- Fabio Lolicato
- Heidelberg University Biochemistry Center, Heidelberg, Germany; Department of Physics, University of Helsinki, Helsinki, Finland.
| | - Walter Nickel
- Heidelberg University Biochemistry Center, Heidelberg, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| |
Collapse
|
14
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
15
|
Lourdes SR, Gurung R, Giri S, Mitchell CA, McGrath MJ. A new role for phosphoinositides in regulating mitochondrial dynamics. Adv Biol Regul 2024; 91:101001. [PMID: 38057188 DOI: 10.1016/j.jbior.2023.101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Phosphoinositides are a minor group of membrane-associated phospholipids that are transiently generated on the cytoplasmic leaflet of many organelle membranes and the plasma membrane. There are seven functionally distinct phosphoinositides, each derived via the reversible phosphorylation of phosphatidylinositol in various combinations on the inositol ring. Their generation and termination is tightly regulated by phosphatidylinositol-kinases and -phosphatases. These enzymes can function together in an integrated and coordinated manner, whereby the phosphoinositide product of one enzyme may subsequently serve as a substrate for another to generate a different phosphoinositide species. This regulatory mechanism not only enables the transient generation of phosphoinositides on membranes, but also more complex sequential or bidirectional conversion pathways, and phosphoinositides can also be transferred between organelles via membrane contacts. It is this capacity to fine-tune phosphoinositide signals that makes them ideal regulators of membrane organization and dynamics, through their recruitment of signalling, membrane altering and lipid transfer proteins. Research spanning several decades has provided extensive evidence that phosphoinositides are major gatekeepers of membrane organization, with roles in endocytosis, exocytosis, autophagy, lysosome dynamics, vesicular transport and secretion, cilia, inter-organelle membrane contact, endosome maturation and nuclear function. By contrast, there has been remarkably little known about the role of phosphoinositides at mitochondria - an enigmatic and major knowledge gap, with challenges in reliably detecting phosphoinositides at this site. Here we review recent significant breakthroughs in understanding the role of phosphoinositides in regulating mitochondrial dynamics and metabolic function.
Collapse
Affiliation(s)
- Sonia Raveena Lourdes
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Saveen Giri
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Christina A Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.
| | - Meagan J McGrath
- Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
16
|
Olkkonen VM, Ikonen E. Getting to Grips with the Oxysterol-Binding Protein Family - a Forty Year Perspective. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241273598. [PMID: 39210909 PMCID: PMC11359446 DOI: 10.1177/25152564241273598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
This review discusses how research around the oxysterol-binding protein family has evolved. We briefly summarize how this protein family, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, was discovered, how protein domains highly conserved among family members between taxa paved the way for understanding their mechanisms of action, and how insights into protein structural and functional features help to understand their versatility as lipid transporters. We also discuss questions and future avenues of research opened by these findings. The investigations on oxysterol-binding protein family serve as a real-life example of the notion that science often advances as a collective effort of multiple lines of enquiry, including serendipitous routes. While original articles invariably explain the motivation of the research undertaken in rational terms, the actual paths to findings may be less intentional. Fortunately, this does not reduce the impact of the discoveries made. Besides hopefully providing a useful account of ORP family proteins, we aim to convey this message.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Faculty of Medicine, Dept of Anatomy and Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
17
|
Li W, Pang Y, Jin K, Wang Y, Wu Y, Luo J, Xu W, Zhang X, Xu R, Wang T, Jiao L. Membrane contact sites orchestrate cholesterol homeostasis that is central to vascular aging. WIREs Mech Dis 2023; 15:e1612. [PMID: 37156598 DOI: 10.1002/wsbm.1612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/12/2023] [Accepted: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Chronological age causes structural and functional vascular deterioration and is a well-established risk factor for the development of cardiovascular diseases, leading to more than 40% of all deaths in the elderly. The etiology of vascular aging is complex; a significant impact arises from impaired cholesterol homeostasis. Cholesterol level is balanced through synthesis, uptake, transport, and esterification, the processes executed by multiple organelles. Moreover, organelles responsible for cholesterol homeostasis are spatially and functionally coordinated instead of isolated by forming the membrane contact sites. Membrane contact, mediated by specific protein-protein interaction, pulls opposing organelles together and creates the hybrid place for cholesterol transfer and further signaling. The membrane contact-dependent cholesterol transfer, together with the vesicular transport, maintains cholesterol homeostasis and has intimate implications in a growing list of diseases, including vascular aging-related diseases. Here, we summarized the latest advances regarding cholesterol homeostasis by highlighting the membrane contact-based regulatory mechanism. We also describe the downstream signaling under cholesterol homeostasis perturbations, prominently in cholesterol-rich conditions, stimulating age-dependent organelle dysfunction and vascular aging. Finally, we discuss potential cholesterol-targeting strategies for therapists regarding vascular aging-related diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Wenjing Li
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Yiyun Pang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kehan Jin
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuru Wang
- Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujie Wu
- Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenlong Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Chung WY, Ahuja M, McNally BA, Leibow SR, Ohman HKE, Movahed Abtahi A, Muallem S. PtdSer as a signaling lipid determined by privileged localization of ORP5 and ORP8 at ER/PM junctional foci to determine PM and ER PtdSer/PI(4)P ratio and cell function. Proc Natl Acad Sci U S A 2023; 120:e2301410120. [PMID: 37607230 PMCID: PMC10469337 DOI: 10.1073/pnas.2301410120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
The membrane contact site ER/PM junctions are hubs for signaling pathways, including Ca2+ signaling. Phosphatidylserine (PtdSer) mediates various physiological functions; however, junctional PtdSer composition and the role of PtdSer in Ca2+ signaling and Ca2+-dependent gene regulation are not understood. Here, we show that STIM1-formed junctions are required for PI(4)P/PtdSer exchange by ORP5 and ORP8, which have reciprocal lipid exchange modes and function as a rheostat that sets the junctional PtdSer/PI(4)P ratio. Targeting the ORP5 and ORP8 and their lipid transfer ORD domains to PM subdomains revealed that ORP5 sets low and ORP8 high junctional PI(4)P/PtdSer ratio that controls STIM1-STIM1 and STIM1-Orai1 interaction and the activity of the SERCA pump to determine the pattern of receptor-evoked Ca2+ oscillations, and consequently translocation of NFAT to the nucleus. Significantly, targeting the ORP5 and ORP8 ORDs to the STIM1 ER subdomain reversed their function. Notably, changing PI(4)P/PtdSer ratio by hydrolysis of PM or ER PtdSer with targeted PtdSer-specific PLA1a1 reproduced the ORPs function. The function of the ORPs is determined both by their differential lipid exchange modes and by privileged localization at the ER/PM subdomains. These findings reveal a role of PtdSer as a signaling lipid that controls the available PM PI(4)P, the unappreciated role of ER PtdSer in cell function, and the diversity of the ER/PM junctions. The effect of PtdSer on the junctional PI(4)P level should have multiple implications in cellular signaling and functions.
Collapse
Affiliation(s)
- Woo Young Chung
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Malini Ahuja
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Beth A. McNally
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Spencer R. Leibow
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Henry K. E. Ohman
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Ava Movahed Abtahi
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD20892
| |
Collapse
|
19
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
20
|
Rogers JR, Geissler PL. Ceramide-1-phosphate transfer protein enhances lipid transport by disrupting hydrophobic lipid-membrane contacts. PLoS Comput Biol 2023; 19:e1010992. [PMID: 37036851 PMCID: PMC10085062 DOI: 10.1371/journal.pcbi.1010992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Cellular distributions of the sphingolipid ceramide-1-phosphate (C1P) impact essential biological processes. C1P levels are spatiotemporally regulated by ceramide-1-phosphate transfer protein (CPTP), which efficiently shuttles C1P between organelle membranes. Yet, how CPTP rapidly extracts and inserts C1P into a membrane remains unknown. Here, we devise a multiscale simulation approach to elucidate biophysical details of CPTP-mediated C1P transport. We find that CPTP binds a membrane poised to extract and insert C1P and that membrane binding promotes conformational changes in CPTP that facilitate C1P uptake and release. By significantly disrupting a lipid's local hydrophobic environment in the membrane, CPTP lowers the activation free energy barrier for passive C1P desorption and enhances C1P extraction from the membrane. Upon uptake of C1P, further conformational changes may aid membrane unbinding in a manner reminiscent of the electrostatic switching mechanism used by other lipid transfer proteins. Insertion of C1P into an acceptor membrane, eased by a decrease in membrane order by CPTP, restarts the transfer cycle. Most notably, we provide molecular evidence for CPTP's ability to catalyze C1P extraction by breaking hydrophobic C1P-membrane contacts with compensatory hydrophobic lipid-protein contacts. Our work, thus, provides biophysical insights into how CPTP efficiently traffics C1P between membranes to maintain sphingolipid homeostasis and, additionally, presents a simulation method aptly suited for uncovering the catalytic mechanisms of other lipid transfer proteins.
Collapse
Affiliation(s)
- Julia R Rogers
- Department of Chemistry, University of California, Berkeley, California, United States of America
| | - Phillip L Geissler
- Department of Chemistry, University of California, Berkeley, California, United States of America
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| |
Collapse
|
21
|
Severance ZC, Nuñez JI, Le-McClain AT, Malinky CA, Bensen RC, Fogle RS, Manginelli GW, Sakers SH, Falcon EC, Bui RH, Snead KJ, Bourne CR, Burgett AWG. Structure-Activity Relationships of Ligand Binding to Oxysterol-Binding Protein (OSBP) and OSBP-Related Protein 4. J Med Chem 2023; 66:3866-3875. [PMID: 36916802 PMCID: PMC10786236 DOI: 10.1021/acs.jmedchem.2c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4) have emerged as potentially druggable targets in antiviral and precision cancer drug development. Multiple structurally diverse small molecules function through targeting the OSBP/ORP family of proteins, including the antiviral steroidal compounds OSW-1 and T-00127-HEV2. Here, the structure-activity relationships of oxysterols and related compound binding to human OSBP and ORP4 are characterized. Oxysterols with hydroxylation at various side chain positions (i.e., C-20, C-24, C-25, and C-27)─but not C-22─confer high affinity interactions with OSBP and ORP4. A library of 20(S)-hydroxycholesterol analogues with varying sterol side chains reveal that side chain length modifications are not well tolerated for OSBP and ORP4 interactions. This side chain requirement is contradicted by the high affinity binding of T-00127-HEV2, a steroidal compound lacking the side chain. The binding results, in combination with docking studies using homology models of OSBP and ORP4, suggest multiple modes of steroidal ligand binding to OSBP and ORP4.
Collapse
Affiliation(s)
- Zachary C Severance
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Juan I Nuñez
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anh T Le-McClain
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Cori A Malinky
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Ryan C Bensen
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Robert S Fogle
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Gianni W Manginelli
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Sophia H Sakers
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Emily C Falcon
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Richard Hoang Bui
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
| | - Kevin J Snead
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Anthony W G Burgett
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73117, United States
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
22
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
23
|
Arabidopsis Sec14 proteins (SFH5 and SFH7) mediate interorganelle transport of phosphatidic acid and regulate chloroplast development. Proc Natl Acad Sci U S A 2023; 120:e2221637120. [PMID: 36716376 PMCID: PMC9963013 DOI: 10.1073/pnas.2221637120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.
Collapse
|
24
|
Balla T, Gulyas G, Mandal A, Alvarez-Prats A, Niu Y, Kim YJ, Pemberton J. Roles of Phosphatidylinositol 4-Phosphorylation in Non-vesicular Cholesterol Trafficking. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:327-352. [PMID: 36988887 PMCID: PMC11135459 DOI: 10.1007/978-3-031-21547-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cholesterol (Chol) is an essential component of all eukaryotic cell membranes that affects the function of numerous peripheral as well as integral membrane proteins. Chol is synthesized in the ER, but it is selectively enriched within the plasma membrane (PM) and other endomembranes, which requires Chol to cross the aqueous phase of the cytoplasm. In addition to the classical vesicular trafficking pathways that are known to facilitate the bulk transport of membrane intermediates, Chol is also transported via non-vesicular lipid transfer proteins that work primarily within specialized membrane contact sites. Some of these transport pathways work against established concentration gradients and hence require energy. Recent studies highlight the unique role of phosphoinositides (PPIns), and phosphatidylinositol 4-phosphate (PI4P) in particular, for the control of non-vesicular Chol transport. In this chapter, we will review the emerging connection between Chol, PPIns, and lipid transfer proteins that include the important family of oxysterol-binding protein related proteins, or ORPs.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA.
| | | | - Amrita Mandal
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | | | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| | - Joshua Pemberton
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
26
|
Arita M. Essential Domains of Oxysterol-Binding Protein Required for Poliovirus Replication. Viruses 2022; 14:v14122672. [PMID: 36560676 PMCID: PMC9786093 DOI: 10.3390/v14122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Oxysterol-binding protein (OSBP) is a host factor required for enterovirus (EV) replication. OSBP locates at membrane contact site and acts as a lipid exchanger of cholesterol and phosphatidylinositol 4-phosphate (PI4P) between cellular organelles; however, the essential domains required for the viral replication remain unknown. In this study, we define essential domains of OSBP for poliovirus (PV) replication by a functional dominance assay with a series of deletion variants of OSBP. We show that the pleckstrin homology domain (PHD) and the ligand-binding domain, but not the N-terminal intrinsically disordered domain, coiled-coil region, or the FFAT motif, are essential for PV replication. The PHD serves as the primary determinant of OSBP targeting to the replication organelle in the infected cells. These results suggest that not all the domains that support important biological functions of OSBP are essential for the viral replication.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
27
|
Radulovic M, Wenzel EM, Gilani S, Holland LKK, Lystad AH, Phuyal S, Olkkonen VM, Brech A, Jäättelä M, Maeda K, Raiborg C, Stenmark H. Cholesterol transfer via endoplasmic reticulum contacts mediates lysosome damage repair. EMBO J 2022; 41:e112677. [PMID: 36408828 PMCID: PMC9753466 DOI: 10.15252/embj.2022112677] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
Lysosome integrity is essential for cell viability, and lesions in lysosome membranes are repaired by the ESCRT machinery. Here, we describe an additional mechanism for lysosome repair that is activated independently of ESCRT recruitment. Lipidomic analyses showed increases in lysosomal phosphatidylserine and cholesterol after damage. Electron microscopy demonstrated that lysosomal membrane damage is rapidly followed by the formation of contacts with the endoplasmic reticulum (ER), which depends on the ER proteins VAPA/B. The cholesterol-binding protein ORP1L was recruited to damaged lysosomes, accompanied by cholesterol accumulation by a mechanism that required VAP-ORP1L interactions. The PtdIns 4-kinase PI4K2A rapidly produced PtdIns4P on lysosomes upon damage, and knockout of PI4K2A inhibited damage-induced accumulation of ORP1L and cholesterol and led to the failure of lysosomal membrane repair. The cholesterol-PtdIns4P transporter OSBP was also recruited upon damage, and its depletion caused lysosomal accumulation of PtdIns4P and resulted in cell death. We conclude that ER contacts are activated on damaged lysosomes in parallel to ESCRTs to provide lipids for membrane repair, and that PtdIns4P generation and removal are central in this response.
Collapse
Affiliation(s)
- Maja Radulovic
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Sania Gilani
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Lya KK Holland
- Cell Death and Metabolism, Center for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Alf Håkon Lystad
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Santosh Phuyal
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2UHelsinkiFinland,Department of Anatomy, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark,Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and DiseaseDanish Cancer Society Research CenterCopenhagenDenmark
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of MedicineUniversity of OsloOsloNorway,Department of Molecular Cell Biology, Institute for Cancer ResearchOslo University HospitalOsloNorway
| |
Collapse
|
28
|
Zhang Y, Ge J, Bian X, Kumar A. Quantitative Models of Lipid Transfer and Membrane Contact Formation. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:1-21. [PMID: 36120532 DOI: 10.1177/25152564221096024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid transfer proteins (LTPs) transfer lipids between different organelles, and thus play key roles in lipid homeostasis and organelle dynamics. The lipid transfer often occurs at the membrane contact sites (MCS) where two membranes are held within 10-30 nm. While most LTPs act as a shuttle to transfer lipids, recent experiments reveal a new category of eukaryotic LTPs that may serve as a bridge to transport lipids in bulk at MCSs. However, the molecular mechanisms underlying lipid transfer and MCS formation are not well understood. Here, we first review two recent studies of extended synaptotagmin (E-Syt)-mediated membrane binding and lipid transfer using novel approaches. Then we describe mathematical models to quantify the kinetics of lipid transfer by shuttle LTPs based on a lipid exchange mechanism. We find that simple lipid mixing among membranes of similar composition and/or lipid partitioning among membranes of distinct composition can explain lipid transfer against a concentration gradient widely observed for LTPs. We predict that selective transport of lipids, but not membrane proteins, by bridge LTPs leads to osmotic membrane tension by analogy to the osmotic pressure across a semipermeable membrane. A gradient of such tension and the conventional membrane tension may drive bulk lipid flow through bridge LTPs at a speed consistent with the fast membrane expansion observed in vivo. Finally, we discuss the implications of membrane tension and lipid transfer in organelle biogenesis. Overall, the quantitative models may help clarify the mechanisms of LTP-mediated MCS formation and lipid transfer.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jinghua Ge
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Xin Bian
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Present address: State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Avinash Kumar
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
30
|
Kobayashi J, Arita M, Sakai S, Kojima H, Senda M, Senda T, Hanada K, Kato R. Ligand Recognition by the Lipid Transfer Domain of Human OSBP Is Important for Enterovirus Replication. ACS Infect Dis 2022; 8:1161-1170. [PMID: 35613096 DOI: 10.1021/acsinfecdis.2c00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxysterol-binding protein (OSBP), which transports cholesterol and phosphatidylinositol 4-monophosphate (PtdIns[4]P) between different organelles, serves as a conserved host factor for the replication of various viruses, and OSBP inhibitors exhibit antiviral effects. Here, we determined the crystal structure of the lipid transfer domain of human OSBP in complex with endogenous cholesterol. The hydrocarbon tail and tetracyclic ring of cholesterol interact with the hydrophobic tunnel of OSBP, and the hydroxyl group of cholesterol forms a hydrogen bond network at the bottom of the tunnel. Systematic mutagenesis of the ligand-binding region revealed that M446W and L590W substitutions confer functional tolerance to an OSBP inhibitor, T-00127-HEV2. Employing the M446W variant as a functional replacement for the endogenous OSBP in the presence of T-00127-HEV2, we have identified previously unappreciated amino acid residues required for viral replication. The combined use of the inhibitor and the OSBP variant will be useful in elucidating the enigmatic in vivo functions of OSBP.
Collapse
Affiliation(s)
- Jun Kobayashi
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Hirotatsu Kojima
- Drug Discovery Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miki Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
31
|
Dickson EJ. Phosphoinositide transport and metabolism at membrane contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159107. [PMID: 34995791 PMCID: PMC9662651 DOI: 10.1016/j.bbalip.2021.159107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022]
Abstract
Phosphoinositides are a family of signaling lipids that play a profound role in regulating protein function at the membrane-cytosol interface of all cellular membranes. Underscoring their importance, mutations or alterations in phosphoinositide metabolizing enzymes lead to host of developmental, neurodegenerative, and metabolic disorders that are devastating for human health. In addition to lipid enzymes, phosphoinositide metabolism is regulated and controlled at membrane contact sites (MCS). Regions of close opposition typically between the ER and other cellular membranes, MCS are non-vesicular lipid transport portals that engage in extensive communication to influence organelle homeostasis. This review focuses on lipid transport, specifically phosphoinositide lipid transport and metabolism at MCS.
Collapse
Affiliation(s)
- Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, United States of America.
| |
Collapse
|
32
|
Paul B, Weeratunga S, Tillu VA, Hariri H, Henne WM, Collins BM. Structural Predictions of the SNX-RGS Proteins Suggest They Belong to a New Class of Lipid Transfer Proteins. Front Cell Dev Biol 2022; 10:826688. [PMID: 35223850 PMCID: PMC8864675 DOI: 10.3389/fcell.2022.826688] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Recent advances in protein structure prediction using machine learning such as AlphaFold2 and RosettaFold presage a revolution in structural biology. Genome-wide predictions of protein structures are providing unprecedented insights into their architecture and intradomain interactions, and applications have already progressed towards assessing protein complex formation. Here we present detailed analyses of the sorting nexin proteins that contain regulator of G-protein signalling domains (SNX-RGS proteins), providing a key example of the ability of AlphaFold2 to reveal novel structures with previously unsuspected biological functions. These large proteins are conserved in most eukaryotes and are known to associate with lipid droplets (LDs) and sites of LD-membrane contacts, with key roles in regulating lipid metabolism. They possess five domains, including an N-terminal transmembrane domain that anchors them to the endoplasmic reticulum, an RGS domain, a lipid interacting phox homology (PX) domain and two additional domains named the PXA and PXC domains of unknown structure and function. Here we report the crystal structure of the RGS domain of sorting nexin 25 (SNX25) and show that the AlphaFold2 prediction closely matches the experimental structure. Analysing the full-length SNX-RGS proteins across multiple homologues and species we find that the distant PXA and PXC domains in fact fold into a single unique structure that notably features a large and conserved hydrophobic pocket. The nature of this pocket strongly suggests a role in lipid or fatty acid binding, and we propose that these molecules represent a new class of conserved lipid transfer proteins.
Collapse
Affiliation(s)
- Blessy Paul
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Saroja Weeratunga
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Vikas A. Tillu
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Hanaa Hariri
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - W. Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
33
|
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. J Steroid Biochem Mol Biol 2022; 216:106040. [PMID: 34864207 DOI: 10.1016/j.jsbmb.2021.106040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Oxysterol-binding protein (OSBP) homologues, designated ORP or OSBPL proteins, constitute one of the largest families of intracellular lipid-binding/transfer proteins (LTP). This review summarizes the mounting evidence that several members of this family participate in the machinery facilitating cholesterol trafficking in the late endocytic pathway. There are indications that OSBP, besides acting as a cholesterol/phosphatidylinositol 4-phosphate (PI4P) exchanger at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCS), also exchanges these lipids at ER-lysosome (Lys) contacts, increasing Lys cholesterol content. The long isoform of ORP1 (ORP1L), which also targets ER-late endosome (LE)/Lys MCS, has the capacity to mediate cholesterol transport either from ER to LE or in the opposite direction. Moreover, it regulates the motility, positioning and fusion of LE as well as autophagic flux. ORP2, the closest relative of ORP1, is mainly cytosolic, but also targets PI(4,5)P2-rich endosomal compartments. Our latest data suggest that ORP2 transfers cholesterol from LE to recycling endosomes (RE) in exchange for PI(4,5)P2, thus stimulating the recruitment of focal adhesion kinase (FAK) on the RE and cell adhesion. FAK activates phosphoinositide kinase on the RE to enhance PI(4,5)P2 synthesis. ORP2 in turn transfers PI(4,5)P2 from RE to LE, thus regulating LE tubule formation and transport activity.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
35
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
36
|
Ikhlef S, Lipp NF, Delfosse V, Fuggetta N, Bourguet W, Magdeleine M, Drin G. Functional analyses of phosphatidylserine/PI(4)P exchangers with diverse lipid species and membrane contexts reveal unanticipated rules on lipid transfer. BMC Biol 2021; 19:248. [PMID: 34801011 PMCID: PMC8606082 DOI: 10.1186/s12915-021-01183-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/04/2021] [Indexed: 11/14/2022] Open
Abstract
Background Lipid species are accurately distributed in the eukaryotic cell so that organelle and plasma membranes have an adequate lipid composition to support numerous cellular functions. In the plasma membrane, a precise regulation of the level of lipids such as phosphatidylserine, PI(4)P, and PI(4,5)P2, is critical for maintaining the signaling competence of the cell. Several lipid transfer proteins of the ORP/Osh family contribute to this fine-tuning by delivering PS, synthesized in the endoplasmic reticulum, to the plasma membrane in exchange for PI(4)P. To get insights into the role of these PS/PI(4)P exchangers in regulating plasma membrane features, we question how they selectively recognize and transfer lipid ligands with different acyl chains, whether these proteins exchange PS exclusively for PI(4)P or additionally for PI(4,5)P2, and how sterol abundance in the plasma membrane impacts their activity. Results We measured in vitro how the yeast Osh6p and human ORP8 transported PS and PI(4)P subspecies of diverse length and unsaturation degree between membranes by fluorescence-based assays. We established that the exchange activity of Osh6p and ORP8 strongly depends on whether these ligands are saturated or not, and is high with representative cellular PS and PI(4)P subspecies. Unexpectedly, we found that the speed at which these proteins individually transfer lipid ligands between membranes is inversely related to their affinity for them and that high-affinity ligands must be exchanged to be transferred more rapidly. Next we determined that Osh6p and ORP8 cannot use PI(4,5)P2 for exchange processes, because it is a low-affinity ligand, and do not transfer more PS into sterol-rich membranes. Conclusions Our study provides new insights into PS/PI(4)P exchangers by indicating the degree to which they can regulate the acyl chain composition of the PM, and how they control PM phosphoinositide levels. Moreover, we establish general rules on how the activity of lipid transfer proteins relates to their affinity for ligands. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01183-1.
Collapse
Affiliation(s)
- Souade Ikhlef
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France
| | - Nicolas-Frédéric Lipp
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France.,Current position: Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Vanessa Delfosse
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Nicolas Fuggetta
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France
| | - William Bourguet
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Maud Magdeleine
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France
| | - Guillaume Drin
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, 660 route des lucioles, 06560, Valbonne, France.
| |
Collapse
|
37
|
Jeyasimman D, Ercan B, Dharmawan D, Naito T, Sun J, Saheki Y. PDZD-8 and TEX-2 regulate endosomal PI(4,5)P 2 homeostasis via lipid transport to promote embryogenesis in C. elegans. Nat Commun 2021; 12:6065. [PMID: 34663803 PMCID: PMC8523718 DOI: 10.1038/s41467-021-26177-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
Different types of cellular membranes have unique lipid compositions that are important for their functional identity. PI(4,5)P2 is enriched in the plasma membrane where it contributes to local activation of key cellular events, including actomyosin contraction and cytokinesis. However, how cells prevent PI(4,5)P2 from accumulating in intracellular membrane compartments, despite constant intermixing and exchange of lipid membranes, is poorly understood. Using the C. elegans early embryo as our model system, we show that the evolutionarily conserved lipid transfer proteins, PDZD-8 and TEX-2, act together with the PI(4,5)P2 phosphatases, OCRL-1 and UNC-26/synaptojanin, to prevent the build-up of PI(4,5)P2 on endosomal membranes. In the absence of these four proteins, large amounts of PI(4,5)P2 accumulate on endosomes, leading to embryonic lethality due to ectopic recruitment of proteins involved in actomyosin contractility. PDZD-8 localizes to the endoplasmic reticulum and regulates endosomal PI(4,5)P2 levels via its lipid harboring SMP domain. Accumulation of PI(4,5)P2 on endosomes is accompanied by impairment of their degradative capacity. Thus, cells use multiple redundant systems to maintain endosomal PI(4,5)P2 homeostasis.
Collapse
Affiliation(s)
- Darshini Jeyasimman
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Bilge Ercan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Dennis Dharmawan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Tomoki Naito
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Jingbo Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore.
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
| |
Collapse
|
38
|
Wright MB, Varona Santos J, Kemmer C, Maugeais C, Carralot JP, Roever S, Molina J, Ducasa GM, Mitrofanova A, Sloan A, Ahmad A, Pedigo C, Ge M, Pressly J, Barisoni L, Mendez A, Sgrignani J, Cavalli A, Merscher S, Prunotto M, Fornoni A. Compounds targeting OSBPL7 increase ABCA1-dependent cholesterol efflux preserving kidney function in two models of kidney disease. Nat Commun 2021; 12:4662. [PMID: 34341345 PMCID: PMC8329197 DOI: 10.1038/s41467-021-24890-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Impaired cellular cholesterol efflux is a key factor in the progression of renal, cardiovascular, and autoimmune diseases. Here we describe a class of 5-arylnicotinamide compounds, identified through phenotypic drug discovery, that upregulate ABCA1-dependent cholesterol efflux by targeting Oxysterol Binding Protein Like 7 (OSBPL7). OSBPL7 was identified as the molecular target of these compounds through a chemical biology approach, employing a photoactivatable 5-arylnicotinamide derivative in a cellular cross-linking/immunoprecipitation assay. Further evaluation of two compounds (Cpd A and Cpd G) showed that they induced ABCA1 and cholesterol efflux from podocytes in vitro and normalized proteinuria and prevented renal function decline in mouse models of proteinuric kidney disease: Adriamycin-induced nephropathy and Alport Syndrome. In conclusion, we show that small molecule drugs targeting OSBPL7 reveal an alternative mechanism to upregulate ABCA1, and may represent a promising new therapeutic strategy for the treatment of renal diseases and other disorders of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Matthew B Wright
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Javier Varona Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christian Kemmer
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Cyrille Maugeais
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jean-Philippe Carralot
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Stephan Roever
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Judith Molina
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - G Michelle Ducasa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Anis Ahmad
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Christopher Pedigo
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Laura Barisoni
- Department of Pathology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Armando Mendez
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Jacopo Sgrignani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Marco Prunotto
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland.
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
39
|
Santos MF, Rappa G, Karbanová J, Fontana S, Bella MAD, Pope MR, Parrino B, Cascioferro SM, Vistoli G, Diana P, Cirrincione G, Arena GO, Woo G, Huang K, Huynh T, Moschetti M, Alessandro R, Corbeil D, Lorico A. Itraconazole inhibits nuclear delivery of extracellular vesicle cargo by disrupting the entry of late endosomes into the nucleoplasmic reticulum. J Extracell Vesicles 2021; 10:e12132. [PMID: 34429859 PMCID: PMC8363911 DOI: 10.1002/jev2.12132] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are mediators of intercellular communication under both healthy and pathological conditions, including the induction of pro-metastatic traits, but it is not yet known how and where functional cargoes of EVs are delivered to their targets in host cell compartments. We have described that after endocytosis, EVs reach Rab7+ late endosomes and a fraction of these enter the nucleoplasmic reticulum and transport EV biomaterials to the host cell nucleoplasm. Their entry therein and docking to outer nuclear membrane occur through a tripartite complex formed by the proteins VAP-A, ORP3 and Rab7 (VOR complex). Here, we report that the antifungal compound itraconazole (ICZ), but not its main metabolite hydroxy-ICZ or ketoconazole, disrupts the binding of Rab7 to ORP3-VAP-A complexes, leading to inhibition of EV-mediated pro-metastatic morphological changes including cell migration behaviour of colon cancer cells. With novel, smaller chemical drugs, inhibition of the VOR complex was maintained, although the ICZ moieties responsible for antifungal activity and interference with intracellular cholesterol distribution were removed. Knowing that cancer cells hijack their microenvironment and that EVs derived from them determine the pre-metastatic niche, small-sized inhibitors of nuclear transfer of EV cargo into host cells could find cancer therapeutic applications, particularly in combination with direct targeting of cancer cells.
Collapse
Affiliation(s)
- Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Germana Rappa
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Jana Karbanová
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | | | | | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Stella Maria Cascioferro
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Giulio Vistoli
- Dipartimento di Scienze FarmaceuticheUniversità degli Studi di MilanoMilanItaly
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie BiologicheChimiche e FarmaceuticheUniversità degli Studi di PalermoPalermoItaly
| | - Goffredo O. Arena
- Department of SurgeryMcGill UniversityMontréalQuébecCanada
- Fondazione Istituto G. GiglioCefalùItaly
| | - Gyunghwi Woo
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Kevin Huang
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Tony Huynh
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced DiagnosticsUniversity of PalermoPalermoItaly
- Institute for Biomedical Research and Innovation (IRIB)National Research Council (CNR)PalermoItaly
| | - Denis Corbeil
- Biotechnology Centre and Centre for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
- Mediterranean Institute of OncologyViagrandeItaly
| |
Collapse
|
40
|
Nakatsu F, Kawasaki A. Functions of Oxysterol-Binding Proteins at Membrane Contact Sites and Their Control by Phosphoinositide Metabolism. Front Cell Dev Biol 2021; 9:664788. [PMID: 34249917 PMCID: PMC8264513 DOI: 10.3389/fcell.2021.664788] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/06/2021] [Indexed: 01/10/2023] Open
Abstract
Lipids must be correctly transported within the cell to the right place at the right time in order to be fully functional. Non-vesicular lipid transport is mediated by so-called lipid transfer proteins (LTPs), which contain a hydrophobic cavity that sequesters lipid molecules. Oxysterol-binding protein (OSBP)-related proteins (ORPs) are a family of LTPs known to harbor lipid ligands, such as cholesterol and phospholipids. ORPs act as a sensor or transporter of those lipid ligands at membrane contact sites (MCSs) where two different cellular membranes are closely apposed. In particular, a characteristic functional property of ORPs is their role as a lipid exchanger. ORPs mediate counter-directional transport of two different lipid ligands at MCSs. Several, but not all, ORPs transport their lipid ligand from the endoplasmic reticulum (ER) in exchange for phosphatidylinositol 4-phosphate (PI4P), the other ligand, on apposed membranes. This ORP-mediated lipid “countertransport” is driven by the concentration gradient of PI4P between membranes, which is generated by its kinases and phosphatases. In this review, we will discuss how ORP function is tightly coupled to metabolism of phosphoinositides such as PI4P. Recent progress on the role of ORP-mediated lipid transport/countertransport at multiple MCSs in cellular functions will be also discussed.
Collapse
Affiliation(s)
- Fubito Nakatsu
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| | - Asami Kawasaki
- Department of Neurochemistry and Molecular Cell Biology, Niigata University School of Medicine and Graduate School of Medical/Dental Sciences, Niigata, Japan
| |
Collapse
|
41
|
Tong J, Tan L, Im YJ. Structure of human ORP3 ORD reveals conservation of a key function and ligand specificity in OSBP-related proteins. PLoS One 2021; 16:e0248781. [PMID: 33857182 PMCID: PMC8049286 DOI: 10.1371/journal.pone.0248781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/04/2021] [Indexed: 11/19/2022] Open
Abstract
Human ORP3 belongs to the oxysterol-binding protein (OSBP) family of lipid transfer proteins and is involved in lipid trafficking and cell signaling. ORP3 localizes to the ER-PM interfaces and is implicated in lipid transport and focal adhesion dynamics. Here, we report the 2.6–2.7 Å structures of the ORD (OSBP-related domain) of human ORP3 in apo-form and in complex with phosphatidylinositol 4-phosphate. The ORP3 ORD displays a helix grip β-barrel fold with a deep hydrophobic pocket which is conserved in the OSBP gene family. ORP3 binds PI(4)P by the residues around tunnel entrance and in the hydrophobic pocket, whereas it lacks sterol binding due to the narrow hydrophobic tunnel. The heterologous expression of the ORDs of human ORP3 or OSBP1 rescued the lethality of seven ORP (yeast OSH1-OSH7) knockout in yeast. In contrast, the PI(4)P-binding site mutant of ORP3 did not complement the OSH knockout cells. The N-terminal PH domain and FFAT motif of ORP3 are involved in protein targeting but are not essential in yeast complementation. This observation suggests that the essential function conserved in the ORPs of yeast and human is mediated by PI(4)P-binding of the ORD domain. This study suggests that the non-vesicular PI(4)P transport is a conserved function of all ORPs in eukaryotes.
Collapse
Affiliation(s)
- Junsen Tong
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Lingchen Tan
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
| | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
42
|
Baba T, Balla T. Emerging roles of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate as regulators of multiple steps in autophagy. J Biochem 2021; 168:329-336. [PMID: 32745205 DOI: 10.1093/jb/mvaa089] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Inositol phospholipids are low-abundance regulatory lipids that orchestrate diverse cellular functions in eukaryotic organisms. Recent studies have uncovered involvement of the lipids in multiple steps in autophagy. The late endosome-lysosome compartment plays critical roles in cellular nutrient sensing and in the control of both the initiation of autophagy and the late stage of eventual degradation of cytosolic materials destined for elimination. It is particularly notable that inositol lipids are involved in almost all steps of the autophagic process. In this review, we summarize how inositol lipids regulate and contribute to autophagy through the endomembrane compartments, primarily focusing on PI4P and PI(4,5)P2.
Collapse
Affiliation(s)
- Takashi Baba
- Department of Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan.,Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892-3752, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, 35A Convent Drive, Bethesda, MD 20892-3752, USA
| |
Collapse
|
43
|
Marlow B, Kuenze G, Li B, Sanders CR, Meiler J. Structural determinants of cholesterol recognition in helical integral membrane proteins. Biophys J 2021; 120:1592-1604. [PMID: 33640379 DOI: 10.1016/j.bpj.2021.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/12/2021] [Accepted: 02/08/2021] [Indexed: 12/20/2022] Open
Abstract
Cholesterol is an integral component of mammalian membranes. It has been shown to modulate membrane fluidity and dynamics and alter integral membrane protein function. However, understanding the molecular mechanisms of how cholesterol impacts protein function is complicated by limited and conflicting structural data. Because of the nature of the crystallization and cryo-EM structure determination, it is difficult to distinguish between specific and biologically relevant interactions and a nonspecific association. The only widely recognized search algorithm for cholesterol-integral-membrane-protein interaction sites is sequence based, i.e., searching for the so-called "Cholesterol Recognition/interaction Amino acid Consensus" motif. Although these motifs are present in numerous integral membrane proteins, there is inconclusive evidence to support their necessity or sufficiency for cholesterol binding. Here, we leverage the increasing number of experimental cholesterol-integral-membrane-protein structures to systematically analyze putative interaction sites based on their spatial arrangement and evolutionary conservation. This analysis creates three-dimensional representations of general cholesterol interaction sites that form clusters across multiple integral membrane protein classes. We also classify cholesterol-integral-membrane-protein interaction sites as either likely-specific or nonspecific. Information gleaned from our characterization will eventually enable a structure-based approach to predict and design cholesterol-integral-membrane-protein interaction sites.
Collapse
Affiliation(s)
- Brennica Marlow
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee
| | - Georg Kuenze
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| | - Bian Li
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee; Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee; Department of Chemistry, Vanderbilt University, Nashville, Tennessee; Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany.
| |
Collapse
|
44
|
The emerging roles of OSBP-related proteins in cancer: Impacts through phosphoinositide metabolism and protein-protein interactions. Biochem Pharmacol 2021; 196:114455. [PMID: 33556339 DOI: 10.1016/j.bcp.2021.114455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/04/2023]
Abstract
Oxysterol-binding protein -related proteins (ORPs) form a large family of intracellular lipid binding/transfer proteins. A number of ORPs are implicated in inter-organelle lipid transfer over membrane contacts sites, their mode of action involving in several cases the transfer of two lipids in opposite directions, termed countercurrent lipid transfer. A unifying feature appears to be the capacity to bind phosphatidylinositol polyphosphates (PIPs). These lipids are in some cases transported by ORPs from one organelle to another to drive the transfer of another lipid against its concentration gradient, while they in other cases may act as allosteric regulators of ORPs, or an ORP may introduce a PIP to an enzyme for catalysis. Dysregulation of several ORP family members is implicated in cancers, ORP3, -4, -5 and -8 being thus far the most studied examples. The most likely mechanisms underlying their associations with malignant growth are (i) impacts on PIP-mediated signaling events resulting in altered Ca2+ homeostasis, bioenergetics, cell survival, proliferation, and migration, (ii) protein-protein interactions affecting the activity of signaling factors, and (iii) modification of cellular lipid transport in a way that facilitates the proliferation of malignant cells. In this review I discuss the existing functional evidence for the involvement of ORPs in cancerous growth, discuss the findings in the light of the putative mechanisms outlined above and the possibility of employing ORPs as targets of anti-cancer therapy.
Collapse
|
45
|
Koch PA, Dornan GL, Hessenberger M, Haucke V. The molecular mechanisms mediating class II PI 3-kinase function in cell physiology. FEBS J 2021; 288:7025-7042. [PMID: 33387369 DOI: 10.1111/febs.15692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family of lipid-modifying enzymes plays vital roles in cell signaling and membrane trafficking through the production of 3-phosphorylated phosphoinositides. Numerous studies have analyzed the structure and function of class I and class III PI3Ks. In contrast, we know comparably little about the structure and physiological functions of the class II enzymes. Only recent studies have begun to unravel their roles in development, endocytic and endolysosomal membrane dynamics, signal transduction, and cell migration, while the mechanisms that control their localization and enzymatic activity remain largely unknown. Here, we summarize our current knowledge of the class II PI3Ks and outline open questions related to their structure, enzymatic activity, and their physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Philipp Alexander Koch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| | | | - Manuel Hessenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.,Faculty of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
46
|
Zheng Koh DH, Saheki Y. Regulation of Plasma Membrane Sterol Homeostasis by Nonvesicular Lipid Transport. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211042451. [PMID: 37366378 PMCID: PMC10259818 DOI: 10.1177/25152564211042451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Sterol contributes to the structural integrity of cellular membranes and plays an important role in the regulation of cell signaling in eukaryotes. It is either produced in the endoplasmic reticulum or taken up from the extracellular environment. In most eukaryotic cells, however, the majority of sterol is enriched in the plasma membrane. Thus, the transport of sterol between the plasma membrane and other organelles, including the endoplasmic reticulum, is crucial for maintaining sterol homeostasis. While vesicular transport that relies on membrane budding and fusion reactions plays an important role in bulk sterol transport, this mode of transport is slow and non-selective. Growing evidence suggests a critical role of nonvesicular transport mediated by evolutionarily conserved families of lipid transfer proteins in more rapid and selective delivery of sterol. Some lipid transfer proteins act primarily at the sites of contacts formed between the endoplasmic reticulum and other organelles or the plasma membrane without membrane fusion. In this review, we describe the similarities and differences of sterol biosynthesis and uptake in mammals and yeast and discuss the role of their lipid transfer proteins in maintaining plasma membrane sterol homeostasis.
Collapse
Affiliation(s)
- Dylan Hong Zheng Koh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yasunori Saheki
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Institute of Resource Development and
Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
47
|
Lin S, Meng T, Huang H, Zhuang H, He Z, Yang H, Feng D. Molecular machineries and physiological relevance of ER-mediated membrane contacts. Theranostics 2021; 11:974-995. [PMID: 33391516 PMCID: PMC7738843 DOI: 10.7150/thno.51871] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Membrane contact sites (MCSs) are defined as regions where two organelles are closely apposed, and most MCSs associated with each other via protein-protein or protein-lipid interactions. A number of key molecular machinery systems participate in mediating substance exchange and signal transduction, both of which are essential processes in terms of cellular physiology and pathophysiology. The endoplasmic reticulum (ER) is the largest reticulum network within the cell and has extensive communication with other cellular organelles, including the plasma membrane (PM), mitochondria, Golgi, endosomes and lipid droplets (LDs). The contacts and reactions between them are largely mediated by various protein tethers and lipids. Ions, lipids and even proteins can be transported between the ER and neighboring organelles or recruited to the contact site to exert their functions. This review focuses on the key molecules involved in the formation of different contact sites as well as their biological functions.
Collapse
Affiliation(s)
- Shiyin Lin
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Tian Meng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haofeng Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Haixia Zhuang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
| | - Zhengjie He
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| | - Huan Yang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410021, China
| | - Du Feng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, 511436, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, 511436, Guangzhou, China
| |
Collapse
|
48
|
A trimeric Rab7 GEF controls NPC1-dependent lysosomal cholesterol export. Nat Commun 2020; 11:5559. [PMID: 33144569 PMCID: PMC7642327 DOI: 10.1038/s41467-020-19032-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 09/18/2020] [Indexed: 12/26/2022] Open
Abstract
Cholesterol import in mammalian cells is mediated by the LDL receptor pathway. Here, we perform a genome-wide CRISPR screen using an endogenous cholesterol reporter and identify >100 genes involved in LDL-cholesterol import. We characterise C18orf8 as a core subunit of the mammalian Mon1-Ccz1 guanidine exchange factor (GEF) for Rab7, required for complex stability and function. C18orf8-deficient cells lack Rab7 activation and show severe defects in late endosome morphology and endosomal LDL trafficking, resulting in cellular cholesterol deficiency. Unexpectedly, free cholesterol accumulates within swollen lysosomes, suggesting a critical defect in lysosomal cholesterol export. We find that active Rab7 interacts with the NPC1 cholesterol transporter and licenses lysosomal cholesterol export. This process is abolished in C18orf8-, Ccz1- and Mon1A/B-deficient cells and restored by a constitutively active Rab7. The trimeric Mon1-Ccz1-C18orf8 (MCC) GEF therefore plays a central role in cellular cholesterol homeostasis coordinating Rab7 activation, endosomal LDL trafficking and NPC1-dependent lysosomal cholesterol export. Lysosomes play an important role in cellular LDL-cholesterol uptake. Here, the authors perform a genome-wide genetic screen for cholesterol regulators and identify C18orf8 as a conserved subunit of a trimeric Rab7 GEF that controls LDL trafficking and NPC1-dependent lysosomal cholesterol export.
Collapse
|
49
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
50
|
Monaco G, Percio S, Ting SB. Budgeting at the Ca 2+ store: a PIP (2)eline to starve LSCs? Cell Calcium 2020; 93:102309. [PMID: 33181424 DOI: 10.1016/j.ceca.2020.102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 10/10/2020] [Accepted: 10/17/2020] [Indexed: 11/24/2022]
Abstract
The oxysterol-binding protein-related proteins (ORPs) have emerged as orchestrators of phosphatidylinositol-4,5-bisphosphate (PIP2) and cholesterol trafficking to the plasma membrane (PM). In this scenario, recent studies raised the prospect of ORPs cooperative behavior in sustaining leukemia stem cells (LSCs) survival by remotely enhancing ER-mitochondria Ca2+ communication. At the apex of the signaling cascade, the aberrantly upregulated LSC-ORP4L fosters PM-PIP2 extraction & cleavage, endoplasmic reticulum (ER)-Ca2+ release and mitochondrial energetics. The theoretical ember of draining fuel from the chemoresistant LSCs by restraining endoplasmic reticulum (ER)-mitochondria Ca2+ fluxes in a lipid-contingent fashion ensues. In light of relevant literature, this review briefly and critically discusses some key molecular ins & outs underlying such therapeutic opportunity in acute myeloid leukemia (AML).
Collapse
Affiliation(s)
- Giovanni Monaco
- Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia.
| | - Stefano Percio
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia; Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stephen B Ting
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University & Department of Haematology, Eastern Health, Box Hill Hospital, Melbourne, Australia
| |
Collapse
|