1
|
Tavakol E, Shariati V, Fontana IM, Binaghi M, Stellmach H, Hause B, Bethke G, Bilgic H, Boddu J, Okagaki R, Heinen S, Muehlbauer GJ, Rossini L. Pleiotropic effects of barley BLADE-ON-PETIOLE gene Uniculme4 on plant architecture and the jasmonic acid pathway. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2177-2191. [PMID: 40334057 DOI: 10.1093/jxb/eraf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/05/2025] [Indexed: 05/09/2025]
Abstract
Plant architecture is a key determinant of crop yield, and understanding the genetic basis of its regulation is crucial for crop improvement. BLADE-ON-PETIOLE (BOP) genes are known to play a fundamental role in shaping plant architecture across diverse species. In this study, we demonstrate pleiotropic effects of the barley BOP gene Uniculme4 (Cul4) on various aspects of plant architecture, including plant height, culm diameter, and grain traits. Accordingly, Cul4 is broadly expressed in different tissues and developmental stages. Comparing transcriptome profiles of cul4 mutant and wild-type plants, we uncover a novel link between Cul4 and the jasmonic acid (JA) biosynthetic pathway. Our findings demonstrate that proper Cul4 function is required to repress JA biosynthesis, with cul4 mutants exhibiting increased levels of JA and its precursor 12-oxo-phytodienoic acid. Up-regulation of WRKY and bHLH transcription factors shows JA signalling is also impacted by Cul4. Additionally, our study sheds light on the role of Cul4 in flowering time regulation, potentially through its interaction with florigen-like genes. This research enhances our understanding of the mechanisms and pathways acting downstream of BOP genes.
Collapse
Affiliation(s)
- Elahe Tavakol
- Department of Plant Genetics and Production, Shiraz University, Shiraz, Iran
| | - Vahid Shariati
- Department of Molecular Biotechnology, National institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Irene Maria Fontana
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120 Halle (Saale), Germany
| | - Marta Binaghi
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D06120 Halle (Saale), Germany
| | - Gerit Bethke
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Hatice Bilgic
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Jayanand Boddu
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Ron Okagaki
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Shane Heinen
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN 55108, USA
| | - Laura Rossini
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia (DiSAA), University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
2
|
Chang X, Chen J, Liu Y, Luo W, Jin L, Deng S, Zou LH, Shao M, Hao Q, Xiao Y, Cao S, Gui R, Guo X. TEOSINTE BRANCHED1/CYCLOIDEA/PCF protein PeTCP4s positively regulate lateral bud development by activating PePIN2a expression in Phyllostachys edulis. Int J Biol Macromol 2025; 305:141163. [PMID: 39971057 DOI: 10.1016/j.ijbiomac.2025.141163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of lateral buds on the underground rhizome in bamboo is a major determinant of the yield of bamboo shoots. However, the regulating factors influencing this developmental process and the molecular mechanisms remain largely unknown. Here, we found that treatment with the Cytokinin significantly increased the lateral bud outgrowth of Moso bamboo (Phyllostachys edulis). A pair of plant-specific TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) genes, PeTCP4a and PeTCP4b, were identified in Moso bamboo. The expression of both PeTCP4 genes was promoted by Cytokinin and synchronized with the development of lateral buds. Overexpression of PeTCP4 genes exhibited increased rosette-leaf branches. PeTCP4s upregulated the expression of auxin efflux carrier PIN-FORMED (PIN2) gene and those genes involved in lateral organ such as KNAT2, KNAT6, STM and IAA3 in transgenic plants. Similar to PeTCP4 genes, the expression of PePIN2a in Moso bamboo was also promoted by Cytokinin. Subsequently, we found both PeTCP4 proteins directly bound to the PePIN2a gene and activated its expression. Our data suggested that PeTCP4s, induced by Cytokinin, promote lateral bud outgrowth by activating PePIN2a expression and upregulating the expression of those genes involved in lateral organ. This study may provide new insights into the mechanism of lateral bud development of bamboo.
Collapse
Affiliation(s)
- Xin Chang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jiaoyu Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yujiao Liu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Wenfen Luo
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Lei Jin
- School of Foreign Languages, Zhejiang A&F University, Hangzhou 311300, China
| | - Shixin Deng
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Mingxia Shao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Qin Hao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Yaqian Xiao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Shan Cao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Renyi Gui
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Xiaoqin Guo
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
3
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
4
|
Liu T, Peng J, Dong Z, Liu Y, Wu J, Xiong Y, Zhang C, Yan L, Yu Q, You M, Ma X, Lei X. Genome-Wide Exploration and Characterization of the TCP Gene Family's Expression Patterns in Response to Abiotic Stresses in Siberian Wildrye ( Elymus sibiricus L.). Int J Mol Sci 2025; 26:1925. [PMID: 40076552 PMCID: PMC11900556 DOI: 10.3390/ijms26051925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Siberian wildrye (Elymus sibiricus L.), a model Elymus Gramineae plant, has high eco-economic value but limited seed and forage yield. TCP transcription factors are widely regarded as influencing yield and quality and being crucial for growth and development; still, this gene family in Siberian wildrye remains unexplored. Therefore, this study looked at the Siberian wildrye TCP gene family's reaction to several abiotic stresses, its expression pattern, and its potential evolutionary path. Fifty-four members of the EsTCP gene family were discovered. There are two major subfamilies based on the phylogenetic tree: 27 of Class I (PCF) and 27 of Class II (12 CIN-type and 15 TB1/CYC-type). Gene structure, conserved motif, and sequence alignment analyses further validated this classification. Cis-elements found in the promoter region of EsTCPs are associated with lots of plant hormones and stress-related reactions, covering drought induction and cold tolerance. EsCYC5, EsCYC6, and EsCYC7 may regulate tillering and lateral branch development. EsPCF10's relative expression was significant under five stresses. Additionally, eight EsTCP genes are potential miR319 targets. These findings highlight the critical significance of the TCP gene family in Siberian wildrye, laying the groundwork for understanding the function of the EsTCP protein in abiotic stress studies and high-yield breeding.
Collapse
Affiliation(s)
- Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Jinghan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Yingjie Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Jiqiang Wu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Changbing Zhang
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Lijun Yan
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Qingqing Yu
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Minghong You
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (T.L.); (J.P.); (Z.D.); (Y.L.); (J.W.); (Y.X.)
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 610097, China; (C.Z.); (L.Y.); (Q.Y.); (M.Y.)
| |
Collapse
|
5
|
Gao S, Chai Y, Zhou X, Chen S. Mining of Root-Specific Expression Genes and Their Core Cis-Regulatory Elements in Plants. Int J Mol Sci 2025; 26:1720. [PMID: 40004183 PMCID: PMC11855845 DOI: 10.3390/ijms26041720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Mining tissue-specific genes is important for studying the processes of life activities within tissues, and it is a way of finding genes that regulate relevant traits. In recent years, the massive growth of expression data from various tissues has provided important opportunities for the large-scale analysis of tissue-specific genes. We found 489, 276, and 728 RTEGs (root tissue-specific expression genes) using 35 RNA-seq databases in 13 different tissues from three species of plants, e.g., Arabidopsis, rice, and maize, respectively, by bioinformatics methods. A total of 34 RTEGs in rice were found to be conserved in all three species, and 29 genes of them were unreported. Furthermore, 16 newly core cis-acting elements, named REM1-16 (root expression motif), were predicted by four well-known bioinformatics tools, which might determine the root tissue expression pattern. In particular, REM2 is conserved in not only Arabidopsis, but also rice. These cis-acting elements may be an important genetic resource that can be introduced into synthetic memory circuits to precisely regulate the spatiotemporal expression of genes in a user-defined manner.
Collapse
Affiliation(s)
| | | | | | - Suhui Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
6
|
Ellison EL, Zhou P, Chu YH, Hermanson P, Gomez-Cano L, Myers ZA, Abnave A, Gray J, Hirsch CN, Grotewold E, Springer NM. Transcriptome profiling of maize transcription factor mutants to probe gene regulatory network predictions. G3 (BETHESDA, MD.) 2025; 15:jkae274. [PMID: 39566186 PMCID: PMC11979765 DOI: 10.1093/g3journal/jkae274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Transcription factors play important roles in regulation of gene expression and phenotype. A variety of approaches have been utilized to develop gene regulatory networks to predict the regulatory targets for each transcription factor, such as yeast-1-hybrid screens and gene co-expression network analysis. Here we identified potential transcription factor targets and used a reverse genetics approach to test the predictions of several gene regulatory networks in maize. Loss-of-function mutant alleles were isolated for 22 maize transcription factors. These mutants did not exhibit obvious morphological phenotypes. However, transcriptomic profiling identified differentially expressed genes in each of the mutant genotypes, and targeted metabolic profiling indicated variable phenolic accumulation in some mutants. An analysis of expression levels for predicted target genes based on yeast-1-hybrid screens identified a small subset of predicted targets that exhibit altered expression levels. The analysis of predicted targets from gene co-expression network-based methods found significant enrichments for prediction sets of some transcription factors, but most predicted targets did not exhibit altered expression. This could result from false-positive gene co-expression network predictions, a transcription factor with a secondary regulatory role resulting in minor effects on gene regulation, or redundant gene regulation by other transcription factors. Collectively, these findings suggest that loss-of-function for single uncharacterized transcription factors might have limited phenotypic impacts but can reveal subsets of gene regulatory network predicted targets with altered expression.
Collapse
Affiliation(s)
- Erika L Ellison
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Peng Zhou
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Yi-Hsuan Chu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Peter Hermanson
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lina Gomez-Cano
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Zachary A Myers
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Ankita Abnave
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH 43606, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nathan M Springer
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
7
|
Cahn J, Regulski M, Lynn J, Ernst E, de Santis Alves C, Ramakrishnan S, Chougule K, Wei S, Lu Z, Xu X, Ramu U, Drenkow J, Kramer M, Seetharam A, Hufford MB, McCombie WR, Ware D, Jackson D, Schatz MC, Gingeras TR, Martienssen RA. MaizeCODE reveals bi-directionally expressed enhancers that harbor molecular signatures of maize domestication. Nat Commun 2024; 15:10854. [PMID: 39738013 PMCID: PMC11685423 DOI: 10.1038/s41467-024-55195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/01/2025] Open
Abstract
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp. mexicana), yielding increased kernel row number, loss of the hard fruit case and dissociation from the cob upon maturity, as well as fewer tillers. Molecular approaches have identified transcription factors controlling these traits, yet revealed that a complex regulatory network is at play. MaizeCODE deploys ENCODE strategies to catalog regulatory regions in the maize genome, generating histone modification and transcription factor ChIP-seq in parallel with transcriptomics datasets in 5 tissues of 3 inbred lines which span the phenotypic diversity of maize, as well as the teosinte inbred TIL11. Transcriptomic analysis reveals that pollen grains share features with endosperm, and express dozens of "proto-miRNAs" potential vestiges of gene drive and hybrid incompatibility. Integrated analysis with chromatin modifications results in the identification of a comprehensive set of regulatory regions in each tissue of each inbred, and notably of distal enhancers expressing non-coding enhancer RNAs bi-directionally, reminiscent of "super enhancers" in animal genomes. Furthermore, the morphological traits selected during domestication are recapitulated, both in gene expression and within regulatory regions containing enhancer RNAs, while highlighting the conflict between enhancer activity and silencing of the neighboring transposable elements.
Collapse
Affiliation(s)
- Jonathan Cahn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Michael Regulski
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Jason Lynn
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Evan Ernst
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Cristiane de Santis Alves
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | | | - Kapeel Chougule
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Xiaosa Xu
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Umamaheswari Ramu
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Jorg Drenkow
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Melissa Kramer
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Arun Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - W Richard McCombie
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- USDA ARS Robert W. Holley Center for Agriculture and Health Cornell University, Ithaca, NY, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Johns Hopkins University; 1900 E. Monument Street, Baltimore, MD, 21205, USA
| | - Thomas R Gingeras
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| | - Robert A Martienssen
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
| |
Collapse
|
8
|
Horvath J, Jedlicka P, Kratka M, Kubat Z, Kejnovsky E, Lexa M. Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning. BioData Min 2024; 17:57. [PMID: 39696434 DOI: 10.1186/s13040-024-00410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Long terminal repeats (LTRs) represent important parts of LTR retrotransposons and retroviruses found in high copy numbers in a majority of eukaryotic genomes. LTRs contain regulatory sequences essential for the life cycle of the retrotransposon. Previous experimental and sequence studies have provided only limited information about LTR structure and composition, mostly from model systems. To enhance our understanding of these key sequence modules, we focused on the contrasts between LTRs of various retrotransposon families and other genomic regions. Furthermore, this approach can be utilized for the classification and prediction of LTRs. RESULTS We used machine learning methods suitable for DNA sequence classification and applied them to a large dataset of plant LTR retrotransposon sequences. We trained three machine learning models using (i) traditional model ensembles (Gradient Boosting), (ii) hybrid convolutional/long and short memory network models, and (iii) a DNA pre-trained transformer-based model using k-mer sequence representation. All three approaches were successful in classifying and isolating LTRs in this data, as well as providing valuable insights into LTR sequence composition. The best classification (expressed as F1 score) achieved for LTR detection was 0.85 using the hybrid network model. The most accurate classification task was superfamily classification (F1=0.89) while the least accurate was family classification (F1=0.74). The trained models were subjected to explainability analysis. Positional analysis identified a mixture of interesting features, many of which had a preferred absolute position within the LTR and/or were biologically relevant, such as a centrally positioned TATA-box regulatory sequence, and TG..CA nucleotide patterns around both LTR edges. CONCLUSIONS Our results show that the models used here recognized biologically relevant motifs, such as core promoter elements in the LTR detection task, and a development and stress-related subclass of transcription factor binding sites in the family classification task. Explainability analysis also highlighted the importance of 5'- and 3'- edges in LTR identity and revealed need to analyze more than just dinucleotides at these ends. Our work shows the applicability of machine learning models to regulatory sequence analysis and classification, and demonstrates the important role of the identified motifs in LTR detection.
Collapse
Affiliation(s)
- Jakub Horvath
- Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, 60200, Czech Republic.
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Marie Kratka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, 60200, Czech Republic.
| |
Collapse
|
9
|
Doidy J, Wang Y, Gouaille L, Goma-Louamba I, Jiang Z, Pourtau N, Le Gourrierec J, Sakr S. Sugar Transport and Signaling in Shoot Branching. Int J Mol Sci 2024; 25:13214. [PMID: 39684924 PMCID: PMC11641904 DOI: 10.3390/ijms252313214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
The source-sink relationship is critical for proper plant growth and development, particularly for vegetative axillary buds, whose activity shapes the branching pattern and ultimately the plant architecture. Once formed from axillary meristems, axillary buds remain dormant or become active to grow into new branches. This transition is notably driven by the regulation of the bud sink strength, which is reflected in the ability to unload, metabolize and store photoassimilates. Plants have so far developed two main mechanisms for unloading sugars (sucrose) towards sink organs, a symplasmic pathway and an apoplasmic pathway, but so far limited investigations have been reported about the modes of sugar uptake during the transition from the dormant to the active outgrowth state of the bud. The available data indicate that the switch from dormant bud to active outgrowing state, requires sugar and is shortly preceded by an increase in bud metabolic activity and a remobilization of the stem starch reserves in favor of growing buds. This activation of the bud sink strength is accompanied by an up-regulation of the main markers of apoplasmic unloading, such as sugar transporters (sucrose transporters-SUTs; sugar will eventually be exported transporters-SWEETs), sucrose hydrolyzing enzymes (cell wall invertase-CWINV) and sugar metabolic pathways (glycolysis/tricarboxylic cycle-TCA; oxidative pentose phosphate pathway-OPPP). As these results are limited to a few species, they are not sufficient to provide a complete and accurate picture of the mode(s) of sugar unloading toward axillary buds and deserve to be complemented by additional studies in a wide variety of plants using systems integration, combining genetic, molecular and immunolocalization approaches. Altogether, we discuss here how sugar is a systemic regulator of shoot branching, acting both as an energy-rich molecule and a signaling entity in the establishment of the bud sink strength.
Collapse
Affiliation(s)
- Joan Doidy
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - Yuhui Wang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Léo Gouaille
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| | - Ingrid Goma-Louamba
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - Zhengrong Jiang
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
- College of Agronomy, Nanjing Agricultural University, Nanjing 210095, China
| | - Nathalie Pourtau
- EBI Ecologie et Biologie des Interactions, Université de Poitiers, UMR CNRS 7267, 86073 Poitiers, France; (J.D.)
| | - José Le Gourrierec
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| | - Soulaiman Sakr
- Institut Agro, Univ Angers, INRAE, IRHS, SFR QuaSaV, 49000 Angers, France (L.G.); (Z.J.); (J.L.G.)
| |
Collapse
|
10
|
Mo T, Wang T, Sun Y, Kumar A, Mkumbwa H, Fang J, Zhao J, Yuan S, Li Z, Li X. The chloroplast pentatricopeptide repeat protein RCN22 regulates tiller number in rice by affecting sugar levels via the TB1-RCN22-RbcL module. PLANT COMMUNICATIONS 2024; 5:101073. [PMID: 39205390 PMCID: PMC11671761 DOI: 10.1016/j.xplc.2024.101073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/04/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
As an important yield component, rice tiller number controls panicle number and determines grain yield. Regulation of rice tiller number by chloroplast pentatricopeptide repeat (PPR) proteins has not been reported previously. Here, we report the rice reduced culm number22 (rcn22) mutant, which produces few tillers owing to suppressed tiller bud elongation. Map-based cloning revealed that RCN22 encodes a chloroplast-localized P-type PPR protein. We found that RCN22 specifically binds to the 5' UTR of RbcL mRNA (encoding the large subunit of Rubisco) and enhances its stability. The reduced abundance of RbcL mRNA in rcn22 leads to a lower photosynthetic rate and decreased sugar levels. Consequently, transcript levels of DWARF3 (D3) and TEOSINTE BRANCHED1 (TB1) (which encode negative regulators of tiller bud elongation) are increased, whereas protein levels of the positive regulator DWARF53 (D53) are decreased. Furthermore, high concentrations of sucrose can rescue the tiller bud growth defect of the rcn22 mutant. On the other hand, TB1 directly binds to the RCN22 promoter and downregulates its expression. The tb1/rcn22 double mutant shows a tillering phenotype similar to that of rcn22. Our results suggest that the TB1-RCN22-RbcL module plays a vital role in rice tiller bud elongation by affecting sugar levels.
Collapse
Affiliation(s)
- Tianyu Mo
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Tianhao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yinglu Sun
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ashmit Kumar
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Humphrey Mkumbwa
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shoujiang Yuan
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Tanaka W, Ohyama A, Toriba T, Tominaga R, Hirano HY. FINE CULM1 Encoding a TEOSINTE BRANCHED1-like TCP Transcription Factor Negatively Regulates Axillary Meristem Formation in Rice. PLANT & CELL PHYSIOLOGY 2024; 65:1862-1872. [PMID: 39431787 DOI: 10.1093/pcp/pcae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024]
Abstract
Shoot branching is a critical determinant of plant architecture and a key factor affecting crop yield. The shoot branching involves two main processes: axillary meristem formation and subsequent bud outgrowth. While considerable progress has been made in elucidating the genetic mechanisms underlying the latter process, our understanding of the former process remains limited. Rice FINE CULM1 (FC1), which is an ortholog of teosinte branched1 in maize (Zea mays) and BRANCHED1/2 in Arabidopsis (Arabidopsis thaliana), is known to act in the latter process by repressing bud outgrowth. In this study, we found that FC1 also plays a role in the former process, i.e. axillary meristem formation, in rice. This study was triggered by our unexpected observation that fc1 mutation suppresses the loss of axillary meristems in the loss-of-function mutant of the rice WUSCHEL gene TILLERS ABSENT1 (TAB1). In tab1 fc1, unlike in tab1, both stem cells and undifferentiated cells were maintained during axillary meristem formation, similar to the wild type. Morphological analysis showed that axillary meristem formation was accelerated in fc1, compared to the wild type. Consistent with this, cell proliferation was more active in the region containing stem cells and undifferentiated cells during axillary meristem formation in fc1 than in the wild type. Taken altogether, these findings suggest that FC1 negatively regulates axillary meristem formation by mildly repressing cell proliferation during this process.
Collapse
Affiliation(s)
- Wakana Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Ami Ohyama
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Taiyo Toriba
- School of Food Industrial Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-ku, Sendai, Miyagi, 982-0215 Japan
| | - Rumi Tominaga
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528 Japan
| | - Hiro-Yuki Hirano
- Department of Biological Sciences, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8654 Japan
| |
Collapse
|
12
|
Fichtner F, Humphreys JL, Barbier FF, Feil R, Westhoff P, Moseler A, Lunn JE, Smith SM, Beveridge CA. Strigolactone signalling inhibits trehalose 6-phosphate signalling independently of BRC1 to suppress shoot branching. THE NEW PHYTOLOGIST 2024; 244:900-913. [PMID: 39187924 DOI: 10.1111/nph.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6-phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild-type (WT) plants or brc1 mutants. Tre6P-related genes were also differentially expressed in axillary buds of garden pea (Pisum sativum) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary (max) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2-dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.
Collapse
Affiliation(s)
- Franziska Fichtner
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jazmine L Humphreys
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Francois F Barbier
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier, 34060, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Philipp Westhoff
- Cluster of Excellence in Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Bonn, 53113, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Steven M Smith
- ARC Centre for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Christine A Beveridge
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
13
|
Dong Z, Hu G, Chen Q, Shemyakina EA, Chau G, Whipple CJ, Fletcher JC, Chuck G. A regulatory network controlling developmental boundaries and meristem fates contributed to maize domestication. Nat Genet 2024; 56:2528-2537. [PMID: 39415035 DOI: 10.1038/s41588-024-01943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/09/2024] [Indexed: 10/18/2024]
Abstract
During domestication, early farmers selected different vegetative and reproductive traits, but identifying the causative loci has been hampered by their epistasis and functional redundancy. Using chromatin immunoprecipitation sequencing combined with genome-wide association analysis, we uncovered a developmental regulator that controls both types of trait while acting upstream of multiple domestication loci. tasselsheath4 (tsh4) is a new maize domestication gene that establishes developmental boundaries and specifies meristem fates despite not being expressed within them. TSH4 accomplishes this by using a double-negative feedback loop that targets and represses the very same microRNAs that negatively regulate it. TSH4 functions redundantly with a pair of homologs to positively regulate a suite of domestication loci while specifying the meristem that doubled seed yield in modern maize. TSH4 has a critical role in yield gain and helped generate ideal crop plant architecture, thus explaining why it was a major domestication target.
Collapse
Affiliation(s)
- Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| | - Gaoyuan Hu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Qiuyue Chen
- North Carolina State University, Raleigh, NC, USA
| | - Elena A Shemyakina
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - Geeyun Chau
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | | | - Jennifer C Fletcher
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA
| | - George Chuck
- University of California, Berkeley/Plant Gene Expression Center, Albany, CA, USA.
| |
Collapse
|
14
|
Li J, Yao X, Lai H, Zhang X, Zhong J. The diversification of the shoot branching system: A quantitative and comparative perspective in meristem determinacy. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102574. [PMID: 38917775 DOI: 10.1016/j.pbi.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Reiterative shoot branching largely defines important yield components of crops and is essentially controlled by programs that direct the initiation, dormancy release, and differentiation of meristems in the axils of leaves. Here, we focus on meristem determinacy, defining the number of reiterations that shape the shoot architectures and exhibit enormous diversity in a wide range of species. The meristem determinacy per se is hierarchically complex and context-dependent for the successively emerged meristems, representing a crucial mechanism in shaping the complexity of the shoot branching. In addition, we have highlighted that two key components of axillary meristem developmental programs may have been co-opted in controlling flower/ear number of an axillary inflorescence in legumes/maize, hinting at the diversification of axillary-meristem-patterning programs in different lineages. This begs the question how axillary meristem patterning programs may have diversified during plant evolution and hence helped shape the rich variation in shoot branching systems.
Collapse
Affiliation(s)
- Jiajia Li
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xiani Yao
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Huan Lai
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Xuelian Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinshun Zhong
- Guangdong Laboratory for Lingnan Modern Agriculture & the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources & College of Life Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China; Guangdong Provincial Key Laboratory of the Developmental Biology and Environmental Adaptation of Agricultural Organisms, South China Agricultural University, Guangzhou 510642, Guangdong, China; South China Institute for Soybean Innovation Research, South China Agricultural University, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
15
|
Ou S, Scheben A, Collins T, Qiu Y, Seetharam AS, Menard CC, Manchanda N, Gent JI, Schatz MC, Anderson SN, Hufford MB, Hirsch CN. Differences in activity and stability drive transposable element variation in tropical and temperate maize. Genome Res 2024; 34:1140-1153. [PMID: 39251347 PMCID: PMC11444183 DOI: 10.1101/gr.278131.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
Much of the profound interspecific variation in genome content has been attributed to transposable elements (TEs). To explore the extent of TE variation within species, we developed an optimized open-source algorithm, panEDTA, to de novo annotate TEs in a pangenome context. We then generated a unified TE annotation for a maize pangenome derived from 26 reference-quality genomes, which reveals an excess of 35.1 Mb of TE sequences per genome in tropical maize relative to temperate maize. A small number (n = 216) of TE families, mainly LTR retrotransposons, drive these differences. Evidence from the methylome, transcriptome, LTR age distribution, and LTR insertional polymorphisms reveals that 64.7% of the variability is contributed by LTR families that are young, less methylated, and more expressed in tropical maize, whereas 18.5% is driven by LTR families with removal or loss in temperate maize. Additionally, we find enrichment for Young LTR families adjacent to nucleotide-binding and leucine-rich repeat (NLR) clusters of varying copy number across lines, suggesting TE activity may be associated with disease resistance in maize.
Collapse
Affiliation(s)
- Shujun Ou
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Tyler Collins
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yinjie Qiu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Claire C Menard
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Nancy Manchanda
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Jonathan I Gent
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Sarah N Anderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50011, USA;
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA;
| |
Collapse
|
16
|
Yang H, Zhou K, Wu Q, Jia X, Wang H, Yang W, Lin L, Hu X, Pan B, Li P, Huang T, Xu X, Li J, Jiang J, Du M. The tomato WRKY-B transcription factor modulates lateral branching by targeting BLIND, PIN4, and IAA15. HORTICULTURE RESEARCH 2024; 11:uhae193. [PMID: 39257542 PMCID: PMC11384121 DOI: 10.1093/hr/uhae193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024]
Abstract
Lateral branching is a crucial agronomic trait that impacts crop yield. In tomato ( Solanum lycopersicum ), excessive lateral branching is unfavorable and results in substantial labor and management costs. Therefore, optimizing lateral branching is a primary objective in tomato breeding. Although many genes related to lateral branching have been reported in tomato, the molecular mechanism underlying their network remains elusive. In this study, we found that the expression profile of a WRKY gene, WRKY-B (for WRKY-BRANCING), was associated with the auxin-dependent axillary bud development process. Wrky-b mutants generated by the CRISPR/Cas9 editing system presented fewer lateral branches, while WRKY-B overexpression lines presented more lateral branches than did wild-type plants. Furthermore, WRKY-B can directly target the well-known branching gene BLIND (BL) and the auxin efflux carrier gene PIN4 to activate their expression. Both the bl and pin4 mutants exhibited reduced lateral branching, similar to the wrky-b mutant. The IAA contents in the axillary buds of the wrky-b, bl, and pin4 mutant plants were significantly higher than those in the wild-type plants. In addition, WRKY-B can also directly target the AUX/IAA gene IAA15 and repress its expression. In summary, WRKY-B works upstream of BL, PIN4, and IAA15 to regulate the development of lateral branches in tomato.
Collapse
Affiliation(s)
- Huanhuan Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ke Zhou
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Qingfei Wu
- College of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Xinyi Jia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hexuan Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenhui Yang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lihao Lin
- College of Agriculture, Ningxia Universisty, Yinchuan 750002, China
| | - Xiaomeng Hu
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Bingqing Pan
- College of Horticulture, China Agricultural University, Beijing 100083, China
| | - Ping Li
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Tingting Huang
- Qingdao Academy of Agricultural Sciences, Qingdao City 266000, China
| | - Xiangyang Xu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingfu Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Jingbin Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Minmin Du
- College of Horticulture, China Agricultural University, Beijing 100083, China
| |
Collapse
|
17
|
Tang L, Zhang Z, Sun L, Gao X, Zhao X, Chen X, Zhu X, Li A, Sun L. In Vivo Detection of Abscisic Acid in Tomato Leaves Based on a Disposable Stainless Steel Electrochemical Immunosensor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17666-17674. [PMID: 39051566 DOI: 10.1021/acs.jafc.4c03594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Abscisic acid (ABA) plays an important regulatory role in plants. It is very critical to obtain the dynamic changes of ABA in situ for botanical research. Herein, coupled with paper-based analysis devices, electrochemical immunoelectrodes based on disposable stainless steels sheet were developed for ABA detection in plants in situ. The stainless steel sheets were modified with carbon cement, ferrocene-graphene oxide-multi walled carbon nanotubes nanocomposites, and ABA antibodies. The system can detect the ABA in the range of 1 nM to 100 μM, with a limit of detection of 100 pM. The ABA content in tomato leaves under high salinity was detected in situ. The trend of ABA changes was similar to the expression of SlNCED1 and SlNCED2. Overall, this study offers an approach for in situ detection of ABA in plants, which will help to study the regulation mechanism of ABA in plants and to promote the development of precision agriculture.
Collapse
Affiliation(s)
- Lingjuan Tang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
- Analysis and Testing Center, Nantong University, Nantong, Jiangsu 226019, China
| | - Zhiyao Zhang
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Ling Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xu Gao
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi 330013, China
| | - Xinyue Zhao
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xinru Chen
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Xingyu Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, Nantong, Jiangsu 226019, China
| |
Collapse
|
18
|
Wang X, Yan L, Li T, Zhang J, Zhang Y, Zhang J, Lian X, Zhang H, Zheng X, Hou N, Cheng J, Wang W, Zhang L, Ye X, Li J, Feng J, Tan B. The lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branch number by affecting brassinosteroid biosynthesis. THE NEW PHYTOLOGIST 2024; 243:1050-1064. [PMID: 38872462 DOI: 10.1111/nph.19903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.
Collapse
Affiliation(s)
- Xiaobei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Lixia Yan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Tianhao Li
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jie Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Yajia Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Junjie Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Xiaodong Lian
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Nan Hou
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Jidong Li
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- College of Forestry, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, Zhengzhou, 450046, China
- Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
- Henan Provincial International Joint Laboratory of Horticultural Crops, Zhengzhou, 450046, China
| |
Collapse
|
19
|
Gomez-Cano F, Rodriguez J, Zhou P, Chu YH, Magnusson E, Gomez-Cano L, Krishnan A, Springer NM, de Leon N, Grotewold E. Prioritizing Maize Metabolic Gene Regulators through Multi-Omic Network Integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582075. [PMID: 38464086 PMCID: PMC10925184 DOI: 10.1101/2024.02.26.582075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Elucidating gene regulatory networks is a major area of study within plant systems biology. Phenotypic traits are intricately linked to specific gene expression profiles. These expression patterns arise primarily from regulatory connections between sets of transcription factors (TFs) and their target genes. Here, we integrated 46 co-expression networks, 283 protein-DNA interaction (PDI) assays, and 16 million SNPs used to identify expression quantitative trait loci (eQTL) to construct TF-target networks. In total, we analyzed ∼4.6M interactions to generate four distinct types of TF-target networks: co-expression, PDI, trans -eQTL, and cis -eQTL combined with PDIs. To functionally annotate TFs based on their target genes, we implemented three different network integration strategies. We evaluated the effectiveness of each strategy through TF loss-of function mutant inspection and random network analyses. The multi-network integration allowed us to identify transcriptional regulators of several biological processes. Using the topological properties of the fully integrated network, we identified potential functionally redundant TF paralogs. Our findings retrieved functions previously documented for numerous TFs and revealed novel functions that are crucial for informing the design of future experiments. The approach here-described lays the foundation for the integration of multi-omic datasets in maize and other plant systems. GRAPHICAL ABSTRACT
Collapse
|
20
|
Colleoni PE, van Es SW, Winkelmolen T, Immink RGH, van Esse GW. Flowering time genes branching out. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4195-4209. [PMID: 38470076 PMCID: PMC11263490 DOI: 10.1093/jxb/erae112] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
Plants are sessile by nature, and as such they have evolved to sense changes in seasonality and their surrounding environment, and adapt to these changes. One prime example of this is the regulation of flowering time in angiosperms, which is precisely timed by the coordinated action of two proteins: FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). Both of these regulators are members of the PHOSPHATIDYLETHANOLAMINE BINDING PROTEIN (PEBP) family of proteins. These regulatory proteins do not interact with DNA themselves, but instead interact with transcriptional regulators, such as FLOWERING LOCUS D (FD). FT and TFL1 were initially identified as key regulators of flowering time, acting through binding with FD; however, PEBP family members are also involved in shaping plant architecture and development. In addition, PEBPs can interact with TCP transcriptional regulators, such as TEOSINTE BRANCHED 1 (TB1), a well-known regulator of plant architecture, and key domestication-related genes in many crops. Here, we review the role of PEBPs in flowering time, plant architecture, and development. As these are also key yield-related traits, we highlight examples from the model plant Arabidopsis as well as important food and feed crops such as, rice, barley, wheat, tomato, and potato.
Collapse
Affiliation(s)
- Pierangela E Colleoni
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Sam W van Es
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ton Winkelmolen
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Richard G H Immink
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - G Wilma van Esse
- Laboratory of Molecular Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
21
|
Guerrero-Méndez C, Abraham-Juárez MJ. Factors specifying sex determination in maize. PLANT REPRODUCTION 2024; 37:171-178. [PMID: 37966579 PMCID: PMC11180155 DOI: 10.1007/s00497-023-00485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023]
Abstract
Plant architecture is an important feature for agronomic performance in crops. In maize, which is a monoecious plant, separation of floral organs to produce specific gametes has been studied from different perspectives including genetic, biochemical and physiological. Maize mutants affected in floral organ development have been key to identifying genes, hormones and other factors like miRNAs important for sex determination. In this review, we describe floral organ formation in maize, representative mutants and genes identified with a function in establishing sexual identity either classified as feminizing or masculinizing, and its relationship with hormones associated with sexual organ identity as jasmonic acid, brassinosteroid and gibberellin. Finally, we discuss the challenges and scopes of future research in maize sex determination.
Collapse
Affiliation(s)
- Cristina Guerrero-Méndez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821, Irapuato, Mexico
| | - María Jazmín Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), 36821, Irapuato, Mexico.
| |
Collapse
|
22
|
Prakash NR, Kumar K, Muthusamy V, Zunjare RU, Hossain F. Unique genetic architecture of prolificacy in 'Sikkim Primitive' maize unraveled through whole-genome resequencing-based DNA polymorphism. PLANT CELL REPORTS 2024; 43:134. [PMID: 38702564 DOI: 10.1007/s00299-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
KEY MESSAGE 'Sikkim Primitive' maize landrace, unique for prolificacy (7-9 ears per plant) possesses unique genomic architecture in branching and inflorescence-related gene(s), and locus Zm00001eb365210 encoding glycosyltransferases was identified as the putative candidate gene underlying QTL (qProl-SP-8.05) for prolificacy. The genotype possesses immense usage in breeding high-yielding baby-corn genotypes. 'Sikkim Primitive' is a native landrace of North Eastern Himalayas, and is characterized by having 7-9 ears per plant compared to 1-2 ears in normal maize. Though 'Sikkim Primitive' was identified in the 1960s, it has not been characterized at a whole-genome scale. Here, we sequenced the entire genome of an inbred (MGUSP101) derived from 'Sikkim Primitive' along with three non-prolific (HKI1128, UMI1200, and HKI1105) and three prolific (CM150Q, CM151Q and HKI323) inbreds. A total of 942,417 SNPs, 24,160 insertions, and 27,600 deletions were identified in 'Sikkim Primitive'. The gene-specific functional mutations in 'Sikkim Primitive' were classified as 10,847 missense (54.36%), 402 non-sense (2.015%), and 8,705 silent (43.625%) mutations. The number of transitions and transversions specific to 'Sikkim Primitive' were 666,021 and 279,950, respectively. Among all base changes, (G to A) was the most frequent (215,772), while (C to G) was the rarest (22,520). Polygalacturonate 4-α-galacturonosyltransferase enzyme involved in pectin biosynthesis, cell-wall organization, nucleotide sugar, and amino-sugar metabolism was found to have unique alleles in 'Sikkim Primitive'. The analysis further revealed the Zm00001eb365210 gene encoding glycosyltransferases as the putative candidate underlying QTL (qProl-SP-8.05) for prolificacy in 'Sikkim Primitive'. High-impact nucleotide variations were found in ramosa3 (Zm00001eb327910) and zeaxanthin epoxidase1 (Zm00001eb081460) genes having a role in branching and inflorescence development in 'Sikkim Primitive'. The information generated unraveled the genetic architecture and identified key genes/alleles unique to the 'Sikkim Primitive' genome. This is the first report of whole-genome characterization of the 'Sikkim Primitive' landrace unique for its high prolificacy.
Collapse
Affiliation(s)
- Nitish Ranjan Prakash
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India
| | - Kuldeep Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, Delhi, 110012, India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, 110012, India.
| |
Collapse
|
23
|
Jue D, Li Z, Zhang W, Tang J, Xie T, Sang X, Guo Q. Identification and functional analysis of the LEAFY gene in longan flower induction. BMC Genomics 2024; 25:308. [PMID: 38528464 DOI: 10.1186/s12864-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.
Collapse
Affiliation(s)
- Dengwei Jue
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, Beibei, China
| | - Zhexin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Wenlin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Jianmin Tang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Ting Xie
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China
| | - Xuelian Sang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, Chongqing Engineering Research Center for Special Plant Seedling, Institute of Special Plants, Chongqing University of Arts and Sciences, 402160, Yongchuan, China.
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, 400715, Chongqing, Beibei, China.
| |
Collapse
|
24
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
25
|
Miret JA, Griffiths CA, Paul MJ. Sucrose homeostasis: Mechanisms and opportunity in crop yield improvement. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154188. [PMID: 38295650 DOI: 10.1016/j.jplph.2024.154188] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 03/10/2024]
Abstract
Sugar homeostasis is a critical feature of biological systems. In humans, raised and dysregulated blood sugar is a serious health issue. In plants, directed changes in sucrose homeostasis and allocation represent opportunities in crop improvement. Plant tissue sucrose varies more than blood glucose and is found at higher concentrations (cytosol and phloem ca. 100 mM v 3.9-6.9 mM for blood glucose). Tissue sucrose varies with developmental stage and environment, but cytosol and phloem exhibit tight sucrose control. Sucrose homeostasis is a consequence of the integration of photosynthesis, synthesis of storage end-products such as starch, transport of sucrose to sinks and sink metabolism. Trehalose 6-phosphate (T6P)-SnRK1 and TOR play central, still emerging roles in regulating and coordinating these processes. Overall, tissue sucrose levels are more strongly related to growth than to photosynthesis. As a key sucrose signal, T6P regulates sucrose levels, transport and metabolic pathways to coordinate source and sink at a whole plant level. Emerging evidence shows that T6P interacts with meristems. With careful targeting, T6P manipulation through exploiting natural variation, chemical intervention and genetic modification is delivering benefits for crop yields. Regulation of cereal grain set, filling and retention may be the most strategically important aspect of sucrose allocation and homeostasis for food security.
Collapse
Affiliation(s)
- Javier A Miret
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Cara A Griffiths
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Matthew J Paul
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
26
|
van Es SW, Muñoz-Gasca A, Romero-Campero FJ, González-Grandío E, de Los Reyes P, Tarancón C, van Dijk ADJ, van Esse W, Pascual-García A, Angenent GC, Immink RGH, Cubas P. A gene regulatory network critical for axillary bud dormancy directly controlled by Arabidopsis BRANCHED1. THE NEW PHYTOLOGIST 2024; 241:1193-1209. [PMID: 38009929 DOI: 10.1111/nph.19420] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/21/2023] [Indexed: 11/29/2023]
Abstract
The Arabidopsis thaliana transcription factor BRANCHED1 (BRC1) plays a pivotal role in the control of shoot branching as it integrates environmental and endogenous signals that influence axillary bud growth. Despite its remarkable activity as a growth inhibitor, the mechanisms by which BRC1 promotes bud dormancy are largely unknown. We determined the genome-wide BRC1 binding sites in vivo and combined these with transcriptomic data and gene co-expression analyses to identify bona fide BRC1 direct targets. Next, we integrated multi-omics data to infer the BRC1 gene regulatory network (GRN) and used graph theory techniques to find network motifs that control the GRN dynamics. We generated an open online tool to interrogate this network. A group of BRC1 target genes encoding transcription factors (BTFs) orchestrate this intricate transcriptional network enriched in abscisic acid-related components. Promoter::β-GLUCURONIDASE transgenic lines confirmed that BTFs are expressed in axillary buds. Transient co-expression assays and studies in planta using mutant lines validated the role of BTFs in modulating the GRN and promoting bud dormancy. This knowledge provides access to the developmental mechanisms that regulate shoot branching and helps identify candidate genes to use as tools to adapt plant architecture and crop production to ever-changing environmental conditions.
Collapse
Affiliation(s)
- Sam W van Es
- Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Aitor Muñoz-Gasca
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisco J Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Ave. Américo Vespucio 49, 41092, Seville, Spain
- Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Ave. Reina Mercedes s/n, 41012, Seville, Spain
| | - Eduardo González-Grandío
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Pedro de Los Reyes
- Institute for Plant Biochemistry and Photosynthesis, Universidad de Sevilla - Consejo Superior de Investigaciones Científicas, Ave. Américo Vespucio 49, 41092, Seville, Spain
| | - Carlos Tarancón
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Aalt D J van Dijk
- Bioinformatics, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Wilma van Esse
- Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Alberto Pascual-García
- Department of Systems Biology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Gerco C Angenent
- Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Richard G H Immink
- Bioscience, Wageningen Plant Research, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Pilar Cubas
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas, Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
27
|
Pan Z, Lu X, Xu T, Chen J, Bao L, Li Y, Gong Y, Che Y, Zou X, Tan Z, Huang P, Ge M. Epigenetic inhibition of CTCF by HN1 promotes dedifferentiation and stemness of anaplastic thyroid cancer. Cancer Lett 2024; 580:216496. [PMID: 37993084 DOI: 10.1016/j.canlet.2023.216496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023]
Abstract
Anaplastic thyroid cancer (ATC) is one of the deadliest cancers, whose important malignant feature is dedifferentiation. Chromatin remodeling is critical for tumorigenesis and progression, while its roles and regulator in facilitating dedifferentiation of ATC had been poorly understood. In our study, an emerging function of hematological and neurological expressed 1 (HN1) in promoting dedifferentiation of ATC cells was uncovered. HN1 expression was negatively correlated with the thyroid differentiation markers both at mRNA and protein level. Knockdown of HN1 in ATC cells effectively upregulated the thyroid differentiation markers and impeded the sphere formation capacity, accompanying with the loss of cancer stemness. In contrast, overexpression of HN1 drove the gain of stemness and the loss of thyroid differentiation markers. Nude mouse and zebrafish xenograft models showed that inhibition of HN1 in ATC cells effectively hindered tumor growth due to the loss of cancer stemness. Further study showed that HN1 was negatively correlated with CTCF in an independent thyroid-cancer cohort, and inhibition of HN1 enhanced the expression of CTCF in ATC cells. Overexpression of CTCF significantly reversed the dedifferentiation phenotypes of ATC cells, whereas simultaneously inhibiting HN1 and CTCF was unable to recover the level of thyroid differentiation markers. The combination of ATAC-seq and ChIP-seq analysis confirmed that CTCF regulated genes relating with thyroid gland development through influencing their chromatin accessibility. HN1 inhibited the acetylation of H3K27 at the promoter of CTCF by recruiting HDAC2, thereby inhibiting the transcriptional activation of CTCF. These findings demonstrated an essential role of HN1 in regulating the chromatin accessibility of thyroid differentiation genes during ATC dedifferentiation.
Collapse
Affiliation(s)
- Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Xixuan Lu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Tong Xu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jinming Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Lisha Bao
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Ying Li
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yingying Gong
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yulu Che
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China; Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China; Clinical Research Center for Cancer of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
28
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
29
|
Duan A, Liu R, Liu C, Wu F, Su H, Zhou S, Huang M, Tian X, Jia H, Liu Y, Li M, Du H. Mutation of the gene encoding the PHD-type transcription factor SAB23 confers submergence tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:168-179. [PMID: 37798132 DOI: 10.1093/jxb/erad388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Submergence is a major constraint on rice production in South and Southeast Asia. In this study, we determined that a gene of the Sub1A-binding protein family, SAB23, encodes a plant homeodomain (PHD)-type transcription factor that has a novel function of negatively regulating submergence tolerance in rice. The T-DNA insertion mutant sab23 displayed reduced plant height, delayed seed maturation, and lower percentage seed set. Importantly, this mutant also exhibited enhanced submergence tolerance. In addition, CRISPR/Cas9 knock out of SAB23 resulted in a significant reduction in the content of the gibberellin GA4 and a dramatic increase in the content of GA1 in the plants. SAB23 binds to the promoter of CYTOCHROME P450 714B2 (CYP714B2), which encodes a GA13-oxidase that catalyses the conversion of GA53 to GA19. Disruption of SAB23 function led to increased CYP714B2 transcription, and overexpression of CYP714B2 produced phenotypes similar to those of the SAB23-knockout plants. Taken together, our results reveal that SAB23 negatively regulates rice submergence tolerance by modulating CYP714B2 expression, which has significant potential for use in future breeding.
Collapse
Affiliation(s)
- Ao Duan
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Rui Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Changchang Liu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Fei Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Hang Su
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Shuangzhen Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Min Huang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Xiaohai Tian
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, P.R. China
| | - Ya Liu
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences, Beijing 100097, P.R. China
| | - Manfei Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, P.R. China
- Hubei Collaborative Innovation Center for Grain Crops, Yangzte University, Jingzhou 434025, P.R. China
| |
Collapse
|
30
|
Gallagher JP, Man J, Chiaramida A, Rozza IK, Patterson EL, Powell MM, Schrager-Lavelle A, Multani DS, Meeley RB, Bartlett ME. GRASSY TILLERS1 ( GT1) and SIX-ROWED SPIKE1 ( VRS1) homologs share conserved roles in growth repression. Proc Natl Acad Sci U S A 2023; 120:e2311961120. [PMID: 38096411 PMCID: PMC10742383 DOI: 10.1073/pnas.2311961120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023] Open
Abstract
Crop engineering and de novo domestication using gene editing are new frontiers in agriculture. However, outside of well-studied crops and model systems, prioritizing engineering targets remains challenging. Evolution can guide us, revealing genes with deeply conserved roles that have repeatedly been selected in the evolution of plant form. Homologs of the transcription factor genes GRASSY TILLERS1 (GT1) and SIX-ROWED SPIKE1 (VRS1) have repeatedly been targets of selection in domestication and evolution, where they repress growth in many developmental contexts. This suggests a conserved role for these genes in regulating growth repression. To test this, we determined the roles of GT1 and VRS1 homologs in maize (Zea mays) and the distantly related grass brachypodium (Brachypodium distachyon) using gene editing and mutant analysis. In maize, gt1; vrs1-like1 (vrl1) mutants have derepressed growth of floral organs. In addition, gt1; vrl1 mutants bore more ears and more branches, indicating broad roles in growth repression. In brachypodium, Bdgt1; Bdvrl1 mutants have more branches, spikelets, and flowers than wild-type plants, indicating conserved roles for GT1 and VRS1 homologs in growth suppression over ca. 59 My of grass evolution. Importantly, many of these traits influence crop productivity. Notably, maize GT1 can suppress growth in arabidopsis (Arabidopsis thaliana) floral organs, despite ca. 160 My of evolution separating the grasses and arabidopsis. Thus, GT1 and VRS1 maintain their potency as growth regulators across vast timescales and in distinct developmental contexts. This work highlights the power of evolution to inform gene editing in crop improvement.
Collapse
Affiliation(s)
- Joseph P. Gallagher
- Biology Department, University of Massachusetts, Amherst, MA01003
- Forage Seed and Cereal Research Unit, US Department of Agriculture, Agricultural Research Service, Corvallis, OR97331
| | - Jarrett Man
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | | | | | - Morgan M. Powell
- Biology Department, University of Massachusetts, Amherst, MA01003
| | | | - Dilbag S. Multani
- Corteva Agriscience, Johnston, IA50131
- Napigen, Inc., Wilmington, DE19803
| | | | | |
Collapse
|
31
|
Göbel M, Fichtner F. Functions of sucrose and trehalose 6-phosphate in controlling plant development. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154140. [PMID: 38007969 DOI: 10.1016/j.jplph.2023.154140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Plants exhibit enormous plasticity in regulating their architecture to be able to adapt to a constantly changing environment and carry out vital functions such as photosynthesis, anchoring, and nutrient uptake. Phytohormones play a role in regulating these responses, but sugar signalling mechanisms are also crucial. Sucrose is not only an important source of carbon and energy fuelling plant growth, but it also functions as a signalling molecule that influences various developmental processes. Trehalose 6-phosphate (Tre6P), a sucrose-specific signalling metabolite, is emerging as an important regulator in plant metabolism and development. Key players involved in sucrose and Tre6P signalling pathways, including MAX2, SnRK1, bZIP11, and TOR, have been implicated in processes such as flowering, branching, and root growth. We will summarize our current knowledge of how these pathways shape shoot and root architecture and highlight how sucrose and Tre6P signalling are integrated with known signalling networks in shaping plant growth.
Collapse
Affiliation(s)
- Moritz Göbel
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Germany; Cluster of Excellences on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany
| | - Franziska Fichtner
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Plant Biochemistry, Germany; Cluster of Excellences on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
32
|
Sen S, Woodhouse MR, Portwood JL, Andorf CM. Maize Feature Store: A centralized resource to manage and analyze curated maize multi-omics features for machine learning applications. Database (Oxford) 2023; 2023:baad078. [PMID: 37935586 PMCID: PMC10634621 DOI: 10.1093/database/baad078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
The big-data analysis of complex data associated with maize genomes accelerates genetic research and improves agronomic traits. As a result, efforts have increased to integrate diverse datasets and extract meaning from these measurements. Machine learning models are a powerful tool for gaining knowledge from large and complex datasets. However, these models must be trained on high-quality features to succeed. Currently, there are no solutions to host maize multi-omics datasets with end-to-end solutions for evaluating and linking features to target gene annotations. Our work presents the Maize Feature Store (MFS), a versatile application that combines features built on complex data to facilitate exploration, modeling and analysis. Feature stores allow researchers to rapidly deploy machine learning applications by managing and providing access to frequently used features. We populated the MFS for the maize reference genome with over 14 000 gene-based features based on published genomic, transcriptomic, epigenomic, variomic and proteomics datasets. Using the MFS, we created an accurate pan-genome classification model with an AUC-ROC score of 0.87. The MFS is publicly available through the maize genetics and genomics database. Database URL https://mfs.maizegdb.org/.
Collapse
Affiliation(s)
- Shatabdi Sen
- Department of Plant Pathology & Microbiology, Iowa State University, 1344 Advanced Teaching & Research Bldg, 2213 Pammel Dr, Ames, IA 50011, USA
| | - Margaret R Woodhouse
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, IA 50011, USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 819 Wallace Road, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Atanasoff Hall, 2434 Osborn Dr, Ames, IA 50011, USA
| |
Collapse
|
33
|
Shanmugaraj N, Rajaraman J, Kale S, Kamal R, Huang Y, Thirulogachandar V, Garibay-Hernández A, Budhagatapalli N, Tandron Moya YA, Hajirezaei MR, Rutten T, Hensel G, Melzer M, Kumlehn J, von Wirén N, Mock HP, Schnurbusch T. Multilayered regulation of developmentally programmed pre-anthesis tip degeneration of the barley inflorescence. THE PLANT CELL 2023; 35:3973-4001. [PMID: 37282730 PMCID: PMC10615218 DOI: 10.1093/plcell/koad164] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Leaf and floral tissue degeneration is a common feature in plants. In cereal crops such as barley (Hordeum vulgare L.), pre-anthesis tip degeneration (PTD) starts with growth arrest of the inflorescence meristem dome, which is followed basipetally by the degeneration of floral primordia and the central axis. Due to its quantitative nature and environmental sensitivity, inflorescence PTD constitutes a complex, multilayered trait affecting final grain number. This trait appears to be highly predictable and heritable under standardized growth conditions, consistent with a developmentally programmed mechanism. To elucidate the molecular underpinnings of inflorescence PTD, we combined metabolomic, transcriptomic, and genetic approaches to show that barley inflorescence PTD is accompanied by sugar depletion, amino acid degradation, and abscisic acid responses involving transcriptional regulators of senescence, defense, and light signaling. Based on transcriptome analyses, we identified GRASSY TILLERS1 (HvGT1), encoding an HD-ZIP transcription factor, as an important modulator of inflorescence PTD. A gene-edited knockout mutant of HvGT1 delayed PTD and increased differentiated apical spikelets and final spikelet number, suggesting a possible strategy to increase grain number in cereals. We propose a molecular framework that leads to barley PTD, the manipulation of which may increase yield potential in barley and other related cereals.
Collapse
Affiliation(s)
- Nandhakumar Shanmugaraj
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Sandip Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Venkatasubbu Thirulogachandar
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nagaveni Budhagatapalli
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Mohammed R Hajirezaei
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Michael Melzer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, Seeland 06466,Germany
- Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle 06120,Germany
| |
Collapse
|
34
|
Chen S, Song X, Zheng Q, Liu Y, Yu J, Zhou Y, Xia X. The transcription factor SPL13 mediates strigolactone suppression of shoot branching by inhibiting cytokinin synthesis in Solanum lycopersicum. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5722-5735. [PMID: 37504507 PMCID: PMC10540736 DOI: 10.1093/jxb/erad303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
Plant architecture imposes a large impact on crop yield. IDEAL PLANT ARCHITECTURE 1 (IPA1), which encodes a SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor, is a target of molecular design for improving grain yield. However, the roles of SPL transcription factors in regulating tomato (Solanum lycopersicum) plant architecture are unclear. Here, we show that the expression of SPL13 is down-regulated in the lateral buds of strigolactone (SL)-deficient ccd mutants and is induced by GR24 (a synthetic analog of SL). Knockout of SPL13 by CRISPR/Cas9 resulted in higher levels of cytokinins (CKs) and transcripts of the CK synthesis gene ISOPENTENYL TRANSFERASES 1 (IPT1) in the stem nodes, and more growth of lateral buds. GR24 suppresses CK synthesis and lateral bud growth in ccd mutants, but is not effective in spl13 mutants. On the other hand, silencing of the IPT1 gene inhibited bud growth of spl13 mutants. Interestingly, SL levels in root extracts and exudates are significantly increased in spl13 mutants. Molecular studies indicated that SPL13 directly represses the transcription of IPT1 and the SL synthesis genes CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and MORE AXILLARY GROWTH 1 (MAX1). The results demonstrate that SPL13 acts downstream of SL to suppress lateral bud growth by inhibiting CK synthesis in tomato. Tuning the expression of SPL13 is a potential approach for decreasing the number of lateral shoots in tomato.
Collapse
Affiliation(s)
- Shangyu Chen
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Xuewei Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Qixiang Zheng
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Yuqi Liu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, PR China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
- Hainan Institute, Zhejiang University, Sanya 572025, PR China
| |
Collapse
|
35
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
36
|
Ma F, Zhang S, Yao Y, Chen M, Zhang N, Deng M, Chen W, Ma C, Zhang X, Guo C, Huang X, Zhang Z, Li Y, Li T, Zhou J, Sun Q, Sun J. Jujube witches' broom phytoplasmas inhibit ZjBRC1-mediated abscisic acid metabolism to induce shoot proliferation. HORTICULTURE RESEARCH 2023; 10:uhad148. [PMID: 37691966 PMCID: PMC10483173 DOI: 10.1093/hr/uhad148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023]
Abstract
Jujube witches' broom (JWB) phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission. In previous research, two JWB effectors, SJP1 and SJP2, were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux. However, the pathogenesis of JWB disease remains largely unknown. Here, tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection. JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence, including auxin, abscisic acid (ABA), ethylene, jasmonic acid, and salicylic acid. JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds. ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant. Furthermore, the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube. Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli. In addition, ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling, especially by binding to and suppressing ABA receptors. Therefore, these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion, providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
Collapse
Affiliation(s)
- Fuli Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Shanqi Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yu Yao
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mengting Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ning Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Mingsheng Deng
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Wei Chen
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chi Ma
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xinyue Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Chenglong Guo
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiang Huang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhenyuan Zhang
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yamei Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Tingyi Li
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Junyong Zhou
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Qibao Sun
- Horticulture Research Institute, Anhui Academy of Agricultural Sciences, 40 South Nongke Road, Hefei City 230031, Anhui Province, China
| | - Jun Sun
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
37
|
Li Z, Li C, Zhang R, Duan M, Tian H, Yi H, Xu L, Wang F, Shi Z, Wang X, Wang J, Su A, Wang S, Sun X, Zhao Y, Wang S, Zhang Y, Wang Y, Song W, Zhao J. Genomic analysis of a new heterotic maize group reveals key loci for pedigree breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1213675. [PMID: 37636101 PMCID: PMC10451083 DOI: 10.3389/fpls.2023.1213675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Genome-wide analyses of maize populations have clarified the genetic basis of crop domestication and improvement. However, limited information is available on how breeding improvement reshaped the genome in the process of the formation of heterotic groups. In this study, we identified a new heterotic group (X group) based on an examination of 512 Chinese maize inbred lines. The X group was clearly distinct from the other non-H&L groups, implying that X × HIL is a new heterotic pattern. We selected the core inbred lines for an analysis of yield-related traits. Almost all yield-related traits were better in the X lines than those in the parental lines, indicating that the primary genetic improvement in the X group during breeding was yield-related traits. We generated whole-genome sequences of these lines with an average coverage of 17.35× to explore genome changes further. We analyzed the identity-by-descent (IBD) segments transferred from the two parents to the X lines and identified 29 and 28 IBD conserved regions (ICRs) from the parents PH4CV and PH6WC, respectively, accounting for 28.8% and 12.8% of the genome. We also identified 103, 89, and 131 selective sweeps (SSWs) using methods that involved the π, Tajima's D, and CLR values, respectively. Notably, 96.13% of the ICRs co-localized with SSWs, indicating that SSW signals concentrated in ICRs. We identified 171 annotated genes associated with yield-related traits in maize both in ICRs and SSWs. To identify the genetic factors associated with yield improvement, we conducted QTL mapping for 240 lines from a DH population (PH4CV × PH6WC, which are the parents of X1132X) for ten key yield-related traits and identified a total of 55 QTLs. Furthermore, we detected three QTL clusters both in ICRs and SSWs. Based on the genetic evidence, we finally identified three key genes contributing to yield improvement in breeding the X group. These findings reveal key loci and genes targeted during pedigree breeding and provide new insights for future genomic breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuandong Wang
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Wei Song
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiuran Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
38
|
Balarynová J, Klčová B, Tarkowská D, Turečková V, Trněný O, Špundová M, Ochatt S, Smýkal P. Domestication has altered the ABA and gibberellin profiles in developing pea seeds. PLANTA 2023; 258:25. [PMID: 37351659 PMCID: PMC10290032 DOI: 10.1007/s00425-023-04184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
MAIN CONCLUSION We showed that wild pea seeds contained a more diverse combination of bioactive GAs and had higher ABA content than domesticated peas. Although the role of abscisic acid (ABA) and gibberellins (GAs) interplay has been extensively studied in Arabidopsis and cereals models, comparatively little is known about the effect of domestication on the level of phytohormones in legume seeds. In legumes, as in other crops, seed dormancy has been largely or entirely removed during domestication. In this study, we have measured the endogenous levels of ABA and GAs comparatively between wild and domesticated pea seeds during their development. We have shown that wild seeds contained more ABA than domesticated ones, which could be important for preparing the seeds for the period of dormancy. ABA was catabolised particularly by an 8´-hydroxylation pathway, and dihydrophaseic acid was the main catabolite in seed coats as well as embryos. Besides, the seed coats of wild and pigmented cultivated genotypes were characterised by a broader spectrum of bioactive GAs compared to non-pigmented domesticated seeds. GAs in both seed coat and embryo were synthesized mainly by a 13-hydroxylation pathway, with GA29 being the most abundant in the seed coat and GA20 in the embryos. Measuring seed water content and water loss indicated domesticated pea seeds´ desiccation was slower than that of wild pea seeds. Altogether, we showed that pea domestication led to a change in bioactive GA composition and a lower ABA content during seed development.
Collapse
Affiliation(s)
- Jana Balarynová
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Barbora Klčová
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc, Czech Republic
| | - Veronika Turečková
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany, Czech Academy of Sciences, 783 71, Olomouc, Czech Republic
| | - Oldřich Trněný
- Agriculture Research Ltd., 664 41, Troubsko, Czech Republic
| | - Martina Špundová
- Department of Biophysics, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic
| | - Sergio Ochatt
- Agroécologie, InstitutAgro Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, 21000, Dijon, France
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacky University, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
39
|
Tao XY, Guan XY, Hong GJ, He YQ, Li SJ, Feng SL, Wang J, Chen G, Xu F, Wang JW, Xu SC. Biotinylated Tn5 transposase-mediated CUT&Tag efficiently profiles transcription factor-DNA interactions in plants. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1191-1205. [PMID: 36786225 DOI: 10.1111/pbi.14029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 05/27/2023]
Abstract
In contrast to CUT&Tag approaches for profiling bulk histone modifications, current CUT&Tag methods for analysing specific transcription factor (TF)-DNA interactions remain technically challenging due to TFs having relatively low abundance. Moreover, an efficient CUT&Tag strategy for plant TFs is not yet available. Here, we first applied biotinylated Tn5 transposase-mediated CUT&Tag (B-CUT&Tag) to produce high-quality libraries for interrogating TF-DNA interactions. B-CUT&Tag combines streptavidin-biotin-based DNA purification with routine CUT&Tag, optimizing the removal of large amounts of intact chromatin not targeted by specific TFs. The biotinylated chromatin fragments are then purified for construction of deep sequencing libraries or qPCR analysis. We applied B-CUT&Tag to probe genome-wide DNA targets of Squamosa promoter-binding-like protein 9 (SPL9), a well-established TF in Arabidopsis; the resulting profiles were efficient and consistent in demonstrating its well-established target genes in juvenile-adult transition/flowering, trichome development, flavonoid biosynthesis, wax synthesis and branching. Interestingly, our results indicate functions of AtSPL9 in modulating growth-defence trade-offs. In addition, we established a method for applying qPCR after CUT&Tag (B-CUT&Tag-qPCR) and successfully validated the binding of SPL9 in Arabidopsis and PHR2 in rice. Our study thus provides a convenient and highly efficient CUT&Tag strategy for profiling TF-chromatin interactions that is widely applicable to the annotation of cis-regulatory elements for crop improvement.
Collapse
Affiliation(s)
- Xiao-Yuan Tao
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue-Ying Guan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Gao-Jie Hong
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu-Qing He
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Su-Juan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shou-Li Feng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sheng-Chun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| |
Collapse
|
40
|
Cao D, Chabikwa T, Barbier F, Dun EA, Fichtner F, Dong L, Kerr SC, Beveridge CA. Auxin-independent effects of apical dominance induce changes in phytohormones correlated with bud outgrowth. PLANT PHYSIOLOGY 2023; 192:1420-1434. [PMID: 36690819 PMCID: PMC10231355 DOI: 10.1093/plphys/kiad034] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 06/01/2023]
Abstract
The inhibition of shoot branching by the growing shoot tip of plants, termed apical dominance, was originally thought to be mediated by auxin. Recently, the importance of the shoot tip sink strength during apical dominance has re-emerged with recent studies highlighting roles for sugars in promoting branching. This raises many unanswered questions on the relative roles of auxin and sugars in apical dominance. Here we show that auxin depletion after decapitation is not always the initial trigger of rapid cytokinin (CK) increases in buds that are instead correlated with enhanced sugars. Auxin may also act through strigolactones (SLs) which have been shown to suppress branching after decapitation, but here we show that SLs do not have a significant effect on initial bud outgrowth after decapitation. We report here that when sucrose or CK is abundant, SLs are less inhibitory during the bud release stage compared to during later stages and that SL treatment rapidly inhibits CK accumulation in pea (Pisum sativum) axillary buds of intact plants. After initial bud release, we find an important role of gibberellin (GA) in promoting sustained bud growth downstream of auxin. We are, therefore, able to suggest a model of apical dominance that integrates auxin, sucrose, SLs, CKs, and GAs and describes differences in signalling across stages of bud release to sustained growth.
Collapse
Affiliation(s)
- Da Cao
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tinashe Chabikwa
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Francois Barbier
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Franziska Fichtner
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lili Dong
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephanie C Kerr
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
41
|
Ishizaki T, Ueda Y, Takai T, Maruyama K, Tsujimoto Y. In-frame mutation in rice TEOSINTE BRANCHED1 (OsTB1) improves productivity under phosphorus deficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111627. [PMID: 36737003 DOI: 10.1016/j.plantsci.2023.111627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/04/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Tillering is an important trait in rice productivity. We introduced mutations into the coding region of rice TEOSINTE BRANCHED1 (OsTB1), which is a negative regulator of tillering, using CRISPR/Cas9. The frameshift mutants exhibited substantially enhanced tillering and produced 3.5 times more panicles than the non-mutated plants at maturity. This enhanced tillering resulted in increased spikelet number; however, grain yields did not increase due to substantially reduced filled grain rate and 1,000-grain weight. In contrast, in-frame mutations in OsTB1 had the effect of slightly increasing tiller numbers, and the in-frame mutants had 40% more panicles than non-mutated plants. The grain yield of in-frame mutants also did not increase on nutrient-rich soil; however, under phosphorus-deficient conditions, where tillering is constrained, the in-frame mutants gave a significantly higher grain yield than non-mutated plants due to higher spikelet number and maintained filled grain rate. Rice grassy tiller1 (OsGT1)/OsHox12, which is directly regulated by OsTB1 to suppress tillering, was moderately down-regulated in in-frame mutants, suggesting that OsTB1 with the in-frame mutation shows partial function of intact OsTB1 in regulating OsGT1/OsHox12. We propose that mildly enhanced tillering by in-frame mutation of OsTB1 can improve grain yield under low phosphorus conditions.
Collapse
Affiliation(s)
- Takuma Ishizaki
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences (JIRCAS), Ishigaki, Okinawa 907-0002, Japan.
| | - Yoshiaki Ueda
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Toshiyuki Takai
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Kyonoshin Maruyama
- Biological Resources and Post-harvest Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| | - Yasuhiro Tsujimoto
- Crop, Livestock and Environment Division, JIRCAS, Tsukuba, Ibaraki 305-8686, Japan.
| |
Collapse
|
42
|
Siqueira JA, Batista-Silva W, Zsögön A, Fernie AR, Araújo WL, Nunes-Nesi A. Plant domestication: setting biological clocks. TRENDS IN PLANT SCIENCE 2023; 28:597-608. [PMID: 36822959 DOI: 10.1016/j.tplants.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 05/22/2023]
Abstract
Through domestication of wild species, humans have induced large changes in the developmental and circadian clocks of plants. As a result of these changes, modern crops are more productive and adaptive to contrasting environments from the center of origin of their wild ancestors, albeit with low genetic variability and abiotic stress tolerance. Likewise, a complete restructuring of plant metabolic timekeeping probably occurred during crop domestication. Here, we highlight that contrasting timings among organs in wild relatives of crops allowed them to recognize environmental adversities faster. We further propose that connections among biological clocks, which were established during plant domestication, may represent a fundamental source of genetic variation to improve crop resilience and yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Willian Batista-Silva
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Agustin Zsögön
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
43
|
Li Q, Liu N, Wu C. Novel insights into maize (Zea mays) development and organogenesis for agricultural optimization. PLANTA 2023; 257:94. [PMID: 37031436 DOI: 10.1007/s00425-023-04126-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
In maize, intrinsic hormone activities and sap fluxes facilitate organogenesis patterning and plant holistic development; these hormone movements should be a primary focus of developmental biology and agricultural optimization strategies. Maize (Zea mays) is an important crop plant with distinctive life history characteristics and structural features. Genetic studies have extended our knowledge of maize developmental processes, genetics, and molecular ecophysiology. In this review, the classical life cycle and life history strategies of maize are analyzed to identify spatiotemporal organogenesis properties and develop a definitive understanding of maize development. The actions of genes and hormones involved in maize organogenesis and sex determination, along with potential molecular mechanisms, are investigated, with findings suggesting central roles of auxin and cytokinins in regulating maize holistic development. Furthermore, investigation of morphological and structural characteristics of maize, particularly node ubiquity and the alternate attachment pattern of lateral organs, yields a novel regulatory model suggesting that maize organ initiation and subsequent development are derived from the stimulation and interaction of auxin and cytokinin fluxes. Propositions that hormone activities and sap flow pathways control organogenesis are thoroughly explored, and initiation and development processes of distinctive maize organs are discussed. Analysis of physiological factors driving hormone and sap movement implicates cues of whole-plant activity for hormone and sap fluxes to stimulate maize inflorescence initiation and organ identity determination. The physiological origins and biogenetic mechanisms underlying maize floral sex determination occurring at the tassel and ear spikelet are thoroughly investigated. The comprehensive outline of maize development and morphogenetic physiology developed in this review will enable farmers to optimize field management and will provide a reference for de novo crop domestication and germplasm improvement using genome editing biotechnologies, promoting agricultural optimization.
Collapse
Affiliation(s)
- Qinglin Li
- Crop Genesis and Novel Agronomy Center, Yangling, 712100, Shaanxi, China.
| | - Ning Liu
- Shandong ZhongnongTiantai Seed Co., Ltd, Pingyi, 273300, Shandong, China
| | - Chenglai Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Agronomy, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
44
|
Hong J, Rosental L, Xu Y, Xu D, Orf I, Wang W, Hu Z, Su S, Bai S, Ashraf M, Hu C, Zhang C, Li Z, Xu J, Liu Q, Zhang H, Zhang F, Luo Z, Chen M, Chen X, Betts N, Fernie A, Liang W, Chen G, Brotman Y, Zhang D, Shi J. Genetic architecture of seed glycerolipids in Asian cultivated rice. PLANT, CELL & ENVIRONMENT 2023; 46:1278-1294. [PMID: 35698268 DOI: 10.1111/pce.14378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Glycerolipids are essential for rice development and grain quality but its genetic regulation remains unknown. Here we report its genetic base using metabolite-based genome-wide association study and metabolite-based quantitative traits locus (QTL) analyses based on lipidomic profiles of seeds from 587 Asian cultivated rice accessions and 103 chromosomal segment substitution lines, respectively. We found that two genes encoding phosphatidylcholine (PC):diacylglycerol cholinephosphotransferase (OsLP1) and granule-bound starch synthase I (Waxy) contribute to variations in saturated triacylglycerol (TAG) and lyso-PC contents, respectively. We demonstrated that allelic variation in OsLP1 sequence between indica and japonica results in different enzymatic preference for substrate PC-16:0/16:0 and different saturated TAG levels. Further evidence demonstrated that OsLP1 also affects heading date, and that co-selection of OsLP1 and a flooding-tolerant QTL in Aus results in the abundance of saturated TAGs associated with flooding tolerance. Moreover, we revealed that the sequence polymorphisms in Waxy has pleiotropic effects on lyso-PC and amylose content. We proposed that rice seed glycerolipids have been unintentionally shaped during natural and artificial selection for adaptive or import seed quality traits. Collectively, our findings provide valuable genetic resources for rice improvement and evolutionary insights into seed glycerolipid variations in rice.
Collapse
Affiliation(s)
- Jun Hong
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Leah Rosental
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Dawei Xu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Isabel Orf
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Wengsheng Wang
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiqiang Hu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Su Su
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shaoxing Bai
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mohammed Ashraf
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaoyang Hu
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Changquan Zhang
- Department of Agronomy, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Zhikang Li
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Xu
- Department of Rice Molecular Design Technology and Application, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qiaoquan Liu
- Department of Agronomy, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Hui Zhang
- Department of Plant Science, School of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Fengli Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijing Luo
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingjiao Chen
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofei Chen
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Natalie Betts
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alisdair Fernie
- Department of Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Wanqi Liang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Yariv Brotman
- Department of Life Sciences, Ben Gurion University of the Negev, Beersheva, Israel
| | - Dabing Zhang
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Waite Research Institute, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Jianxin Shi
- Department of Genetics and Developmental Science, Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
45
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|
46
|
Jin HL, Duan S, Zhang P, Yang Z, Zeng Y, Chen Z, Hong L, Li M, Luo L, Chang Z, Hu J, Wang HB. Dual roles for CND1 in maintenance of nuclear and chloroplast genome stability in plants. Cell Rep 2023; 42:112268. [PMID: 36933214 DOI: 10.1016/j.celrep.2023.112268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The coordination of chloroplast and nuclear genome status is critical for plant cell function. Here, we report that Arabidopsis CHLOROPLAST AND NUCLEUS DUAL-LOCALIZED PROTEIN 1 (CND1) maintains genome stability in the chloroplast and the nucleus. CND1 localizes to both compartments, and complete loss of CND1 results in embryo lethality. Partial loss of CND1 disturbs nuclear cell-cycle progression and photosynthetic activity. CND1 binds to nuclear pre-replication complexes and DNA replication origins and regulates nuclear genome stability. In chloroplasts, CND1 interacts with and facilitates binding of the regulator of chloroplast genome stability WHY1 to chloroplast DNA. The defects in nuclear cell-cycle progression and photosynthesis of cnd1 mutants are respectively rescued by compartment-restricted CND1 localization. Light promotes the association of CND1 with HSP90 and its import into chloroplasts. This study provides a paradigm of the convergence of genome status across organelles to coordinately regulate cell cycle to control plant growth and development.
Collapse
Affiliation(s)
- Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 263, Longxi Avenue, Guangzhou, China.
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Pengxiang Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziyue Yang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Yunping Zeng
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Ziqi Chen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Liu Hong
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Mengshu Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lujun Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhenyi Chang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Jiliang Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China; Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
47
|
Guan JC, Li C, Flint-Garcia S, Suzuki M, Wu S, Saunders JW, Dong L, Bouwmeester HJ, McCarty DR, Koch KE. Maize domestication phenotypes reveal strigolactone networks coordinating grain size evolution with kernel-bearing cupule architecture. THE PLANT CELL 2023; 35:1013-1037. [PMID: 36573016 PMCID: PMC10015167 DOI: 10.1093/plcell/koac370] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
The maize (Zea mays) ear represents one of the most striking domestication phenotypes in any crop species, with the cob conferring an exceptional yield advantage over the ancestral form of teosinte. Remodeling of the grain-bearing surface required profound developmental changes. However, the underlying mechanisms remain unclear and can only be partly attributed to the known domestication gene Teosinte glume architecture 1 (Tga1). Here we show that a more complete conversion involves strigolactones (SLs), and that these are prominent players not only in the Tga1 phenotype but also other domestication features of the ear and kernel. Genetic combinations of a teosinte tga1 allele with three SL-related mutants progressively enhanced ancestral morphologies. The SL mutants, in addition to modulating the tga1 phenotype, also reshaped kernel-bearing pedicels and cupules in a teosinte-like manner. Genetic and molecular evidence are consistent with SL regulation of TGA1, including direct interaction of TGA1 with components of the SL-signaling system shown here to mediate TGA1 availability by sequestration. Roles of the SL network extend to enhancing maize seed size and, importantly, coordinating increased kernel growth with remodeling of protective maternal tissues. Collectively, our data show that SLs have central roles in releasing kernels from restrictive maternal encasement and coordinating other factors that increase kernel size, physical support, and their exposure on the grain-bearing surface.
Collapse
Affiliation(s)
- Jiahn-Chou Guan
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Changsheng Li
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Sherry Flint-Garcia
- United States Department of Agriculture – Agricultural Research Service, Columbia, Missouri 65211, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
| | - Jonathan W Saunders
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
| | - Lemeng Dong
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Harro J Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam 100 BE, The Netherlands
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Karen E Koch
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32610, USA
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, Florida 32610, USA
- Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
48
|
Mansilla N, Fonouni-Farde C, Ariel F, Lucero L. Differential chromatin binding preference is the result of the neo-functionalization of the TB1 clade of TCP transcription factors in grasses. THE NEW PHYTOLOGIST 2023; 237:2088-2103. [PMID: 36484138 DOI: 10.1111/nph.18664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The understanding of neo-functionalization of plant transcription factors (TFs) after gene duplication has been extensively focused on changes in protein-protein interactions, the expression pattern of TFs, or the variation of cis-elements bound by TFs. Yet, the main molecular role of a TF, that is, its specific chromatin binding for the direct regulation of target gene expression, continues to be mostly overlooked. Here, we studied the TB1 clade of the TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTORS (TCP) TF family within the grasses (Poaceae). We identified an Asp/Gly amino acid replacement within the TCP domain, originated within a paralog TIG1 clade exclusive for grasses. The heterologous expression of Zea mays TB1 and its two paralogs BAD1 and TIG1 in Arabidopsis mutant plants lacking the TB1 ortholog BRC1 revealed distinct functions in plant development. Notably, the Gly acquired in the TIG1 clade does not impair TF homodimerization and heterodimerization, while it modulates chromatin binding preferences. We found that in vivo TF recognition of target promoters depends on this Asp/Gly mutation and directly impacts downstream gene expression and subsequent plant development. These results provided new insights into how natural selection fine-tunes gene expression regulation after duplication of TFs to define plant architecture.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Camille Fonouni-Farde
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| | - Leandro Lucero
- Instituto de Agrobiotecnología del Litoral, CONICET, FBCB/FHUC, Universidad Nacional del Litoral, Colectora Ruta Nacional 168 km 0, 3000, Santa Fe, Argentina
| |
Collapse
|
49
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
50
|
Li L, Xia T, Yang H. Seasonal patterns of rhizosphere microorganisms suggest carbohydrate-degrading and nitrogen-fixing microbes contribute to the attribute of full-year shooting in woody bamboo Cephalostachyum pingbianense. Front Microbiol 2022; 13:1033293. [PMID: 36523824 PMCID: PMC9745117 DOI: 10.3389/fmicb.2022.1033293] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/11/2022] [Indexed: 10/15/2023] Open
Abstract
Compared with the ordinary single-season shooting among woody bamboos in Poaceae, the attribute of full-year shooting in Cephalostachyum pingbianense represents a unique shooting type or mechanism. Nevertheless, except for the overall physiological mechanism, the effect of ecological factors, especially soil microorganisms, on this full-year shooting characteristic remains unclear. In this study, 16S rRNA and ITS rRNA genes were sequenced using the Illumina platform. Our aims were to detect the seasonal changes in rhizospheric microbial communities of C. pingbianense and to discover the correlations of soil microbes with soil properties and bamboo shoot productivity. The results showed that seasonal change had no significant effect on bacterial alpha diversity, but significantly affected bacterial and fungal community structures as well as fungal richness. Among all soil properties examined, soil temperature, soil moisture and organic matter were the predominant factors affecting bacterial community diversity and structure. Soil temperature and soil moisture also significantly influenced fungal community structure, while available phosphorus had the greatest effect on fungal diversity. In each season, bacterial genera Acidothermus, Roseiarcus, and Bradyrhizobium, along with fungal genera Saitozyma, Mortierella, Trichoderma, etc., were dominant in bacterial and fungal communities, respectively. Bacterial community functions in four seasons were dominated by chemoheterotrophy, cellulolysis, and nitrogen fixation. Saprotrophic fungi occupied a high proportion in soil samples of all seasons. In addition, correlation analysis revealed that the bamboo shoot productivity was positively correlated with multiple microbial taxa involved in carbon and nitrogen cycles. It is proposed that highly abundant microbes involved in carbohydrate degradation and nitrogen fixation in the rhizosphere soil may contribute to the attribute of producing bamboo shoots all year round in C. pingbianense. This study is among the few cases revealing the connection between bamboo shooting characteristics and soil microorganisms, and provides new physiological and ecological insights into the forest management of woody bamboos.
Collapse
Affiliation(s)
| | | | - Hanqi Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan, China
| |
Collapse
|