1
|
Drescher S, Blume A. The 8 th International Symposium on Phospholipids in Pharmaceutical Research - An Update on Current Research in Phospholipids presented at the biennial Symposium of the Phospholipid Research Center Heidelberg. Eur J Pharm Sci 2025:107126. [PMID: 40374026 DOI: 10.1016/j.ejps.2025.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/05/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
This Conference Report recaps recent advances in the research on phospholipids and their applications for advanced drug delivery and analytical purposes that have been presented at the "8th International Symposium on Phospholipids in Pharmaceutical Research" of the Phospholipid Research Center (PRC), held from September 09-11, 2024, at the University of Heidelberg, Germany. The PRC is a non-profit organization focused on expanding and sharing scientific and technological knowledge of phospholipids in pharmaceutical and related applications. This is accomplished by, e.g., funding doctoral and postdoctoral research projects at universities worldwide. The PRC organizes this symposium every two years, at which international experts from science and industry present innovative and new applications of phospholipids. This year's symposium highlighted advancements in lipid-based gene and RNA delivery, anisotropic lipid nanoparticles, PEGylation challenges, tetraether lipids for drug delivery, ethical considerations in publishing, multifunctional lipopeptides, and phospholipid applications in therapeutics. Discussions also showcased award-winning research on optimizing liposome drug compatibility, reflecting the expanding role of phospholipids in pharmaceutical science.
Collapse
Affiliation(s)
- Simon Drescher
- Phospholipid Research Center, Im Neuenheimer Feld 515, D-69120, Heidelberg, Germany.
| | - Alfred Blume
- Martin-Luther-University Halle-Wittenberg, Institute of Chemistry - Physical Chemistry, von-Danckelmann-Platz 4, D-06120, Halle (Saale), Germany
| |
Collapse
|
2
|
Yin D, Wang P, Hao Y, Yue W, Jiang X, Yao K, Wang Y, Hang X, Xiao A, Zhou J, Lin L, Rao Z, Wu H, Liu F, Dong Z, Wu M, Xu C, Huang J, Chang H, Fan Y, Yu X, Yu C, Chang L, Li M. A battery-free nanofluidic intracellular delivery patch for internal organs. Nature 2025:10.1038/s41586-025-08943-x. [PMID: 40307560 DOI: 10.1038/s41586-025-08943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
The targeted delivery of therapeutics to internal organs to, for example, promote healing or apoptosis holds promise in the treatment of numerous diseases1-4. Currently, the prevailing delivery modality relies on the circulation; however, this modality has substantial efficiency, safety and/or controllability limitations5-9. Here we report a battery-free, chipless, soft nanofluidic intracellular delivery (NanoFLUID) patch that provides enhanced and customized delivery of payloads in targeted internal organs. The chipless architecture and the flexible nature of thin functional layers facilitate integration with internal organs. The nanopore-microchannel-microelectrode structure enables safe, efficient and precise electroperforation of the cell membrane, which in turn accelerates intracellular payload transport by approximately 105 times compared with conventional diffusion methods while operating under relatively low-amplitude pulses (20 V). Through evaluations of the NanoFLUID patch in multiple in vivo scenarios, including treatment of breast tumours and acute injury in the liver and modelling tumour development, we validated its efficiency, safety and controllability for organ-targeted delivery. NanoFLUID-mediated in vivo transfection of a gene library also enabled efficient screening of essential drivers of breast cancer metastasis in the lung and liver. Through this approach, DUS2 was identified as a lung-specific metastasis driver. Thus, NanoFLUID represents an innovative bioelectronic platform for the targeted delivery of payloads to internal organs to treat various diseases and to uncover new insights in biology.
Collapse
Affiliation(s)
- Dedong Yin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Institute of Science and Technology of National Health Commission, Beijing, China
| | - Pan Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yongcun Hao
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
- Ningbo Institute of Northwestern Polytechnical University, Ningbo, China
| | - Wei Yue
- Interdisciplinary Eye Research Institute (EYE-X Institute), Bengbu Medical University, Bengbu, China
| | - Xinran Jiang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuqiong Wang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinxin Hang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ao Xiao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Long Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zhoulyu Rao
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Han Wu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Feng Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Meng Wu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chenjie Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiandong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China
| | - Honglong Chang
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yubo Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
- Institute of Digital Medicine, City University of Hong Kong, Hong Kong, China.
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Hong Kong, China.
| | - Cunjiang Yu
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Bioengineering, Department of Mechanical Science and Engineering, Nick Holonyak Micro and Nanotechnology Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Mo Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Third Hospital, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| |
Collapse
|
3
|
Chin WL, Lee BH, Hsu QY, Hou CY, Pai MC, Lin CW, Hsu WH. Small intestine-residing probiotics suppress neurotoxic bile acid production via extracellular vesicle-mediated inhibition of Clostridium scindens. Food Res Int 2025; 207:116049. [PMID: 40086955 DOI: 10.1016/j.foodres.2025.116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/02/2025] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
Dysbiosis in gut microbiota and abnormalities in bile acids have been linked to neurodegenerative diseases. While many studies have focused on the relationship between colonic bacteria and Alzheimer's disease (AD), this study propose that alterations in the small intestine microbiota may play a more critical role. This is because the small intestine is pivotal in recycling bile acids through enterohepatic circulation. This study uses amyloid precursor protein knock-in (APPNL-G-F/NL-G-F) transgenic mice to investigate the association between intestinal microbiota and bile acid metabolism. The results showed that the accumulation of beta-amyloid (Aβ) leads to a significant decrease in Lactobacillus johnsonii and a notable increase in bacteria of the genus Clostridium in the small intestine, which are important microorganisms for producing toxic bile acids. Extracellular vesicles (EVs) involved in bacterial interactions and bacteria-host interactions are currently a focus of research. Treatment with L. johnsonii-derived EVs at concentrations of 1010 and 1012/mL) inhibited the growth of Clostridium scindens and suppressed the production of toxic secondary lithocholic acid (TLA) at non-cytotoxic concentrations (108/mL). Furthermore, the removal of small RNA from L. johnsonii-derived EVs resulted in the loss of their ability to suppress TLA production. These results suggest that the small intestine microbiota may play a more critical role than the colonic microbiota in AD. Deterioration of small intestine microbiota led to the metabolism disruption of certain secondary bile acids, which have been reported to exacerbate AD pathology. The EVs released by L. johnsonii, which is abundant in the small intestine, can suppress toxic TLA and have the potential to be developed into health-promoting probiotics.
Collapse
Affiliation(s)
- Wei-Leng Chin
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; Department of Chemical Engineering and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 824005, Taiwan
| | - Bao-Hong Lee
- Department of Horticultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Qiao-Yu Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| | - Ming-Chyi Pai
- Division of Behavioral Neurology, Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chi-Wei Lin
- Department of Family Medicine and Community Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan; School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Hsuan Hsu
- Department of Food Safety/Hygiene and Risk Management, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan.
| |
Collapse
|
4
|
Ngo JM, Williams JK, Temoche-Diaz MM, Murugupandiyan A, Schekman R. p62 sorts Lupus La and selected microRNAs into breast cancer-derived exosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644464. [PMID: 40166149 PMCID: PMC11957149 DOI: 10.1101/2025.03.20.644464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Exosomes are multivesicular body-derived extracellular vesicles that are secreted by metazoan cells. Exosomes have utility as disease biomarkers, and exosome-mediated miRNA secretion has been proposed to facilitate tumor growth and metastasis. Previously, we demonstrated that the Lupus La protein (La) mediates the selective incorporation of miR-122 into metastatic breast cancer-derived exosomes; however, the mechanism by which La itself is sorted into exosomes remains unknown. Using unbiased proximity labeling proteomics, biochemical fractionation, superresolution microscopy and genetic tools, we establish that the selective autophagy receptor p62 sorts La and miR-122 into exosomes. We then performed small RNA sequencing and found that p62 depletion reduces the exosomal secretion of tumor suppressor miRNAs and results in their accumulation within cells. Our data indicate that p62 is a quality control factor that modulates the miRNA composition of exosomes. Cancer cells may exploit p62-dependent exosome cargo sorting to eliminate tumor suppressor miRNAs and thus to promote cell proliferation.
Collapse
Affiliation(s)
- Jordan Matthew Ngo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Justin Krish Williams
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | | | - Abinayaa Murugupandiyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
5
|
Yao B, Yang Q, Gonçalves MAFV, Schiffelers R, Sluijter JPG, Lei Z. Comparative Analysis of Methods for Assessing On-Target Gene Editing Efficiencies. Methods Protoc 2025; 8:23. [PMID: 40126241 PMCID: PMC11932317 DOI: 10.3390/mps8020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/25/2025] Open
Abstract
Genome editing based on CRISPR-derived technologies has become a cornerstone in both fundamental research and clinical applications. Accurately measuring editing efficiency is crucial for developing and applying genome editing strategies. This study offers a detailed comparison of widely used techniques for evaluating on-target gene editing efficiency, including T7 Endonuclease I (T7EI), Tracking of Indels by Decomposition (TIDE), Inference of CRISPR Edits (ICE), droplet digital PCR (ddPCR), and live-cell assays involving engineered fluorescent reporter cells. Through a comparative analysis, this study highlights the unique strengths and limitations of each method, aiding researchers in choosing the most appropriate method for their specific needs, ensuring more tailored monitoring of genome editing outcomes in a precise and reliable manner.
Collapse
Affiliation(s)
- Bing Yao
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (B.Y.); (J.P.G.S.)
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, 3584 CT Utrecht, The Netherlands
| | - Qiangbing Yang
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (B.Y.); (J.P.G.S.)
- CDL Research, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Manuel A. F. V. Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Centre, 2333 ZA Leiden, The Netherlands
| | - Raymond Schiffelers
- CDL Research, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (B.Y.); (J.P.G.S.)
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, 3584 CT Utrecht, The Netherlands
| | - Zhiyong Lei
- Experimental Cardiology Laboratory, Department of Cardiology, Division of Heart and Lungs, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands; (B.Y.); (J.P.G.S.)
- Regenerative Medicine Center Utrecht, Circulatory Health Research Center, University Medical Center Utrecht, University Utrecht, 3584 CT Utrecht, The Netherlands
- CDL Research, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
6
|
Liu S, Hamilton MC, Cowart T, Barrera A, Bounds LR, Nelson AC, Dornbaum SF, Riley JW, Doty RW, Allen AS, Crawford GE, Majoros WH, Gersbach CA. Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER. CELL GENOMICS 2025; 5:100766. [PMID: 39914388 PMCID: PMC11872138 DOI: 10.1016/j.xgen.2025.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/09/2024] [Accepted: 01/08/2025] [Indexed: 02/12/2025]
Abstract
Single-cell RNA sequencing CRISPR (perturb-seq) screens enable high-throughput investigation of the genome, allowing for characterization of thousands of genomic perturbations on gene expression. Ambient gRNAs, which are contaminating gRNAs, are a major source of noise in perturb-seq experiments because they result in an excess of false-positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNAs in perturb-seq screens. We use these datasets to develop CRISPR Library Evaluation and Ambient Noise Suppression for Enhanced single-cell RNA-seq (CLEANSER), a mixture model that filters ambient gRNAs. CLEANSER includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy across multiple screen formats.
Collapse
Affiliation(s)
- Siyan Liu
- Computational Biology and Bioinformatics Program, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA
| | - Marisa C Hamilton
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA
| | - Thomas Cowart
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Alejandro Barrera
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA
| | - Lexi R Bounds
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA
| | | | - Sophie F Dornbaum
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA
| | - Julia W Riley
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Richard W Doty
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Andrew S Allen
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA.
| | - Gregory E Crawford
- Computational Biology and Bioinformatics Program, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA; Department of Pediatrics, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA.
| | - William H Majoros
- Computational Biology and Bioinformatics Program, Duke University, Durham, NC, USA; Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA.
| | - Charles A Gersbach
- Computational Biology and Bioinformatics Program, Duke University, Durham, NC, USA; University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC USA.
| |
Collapse
|
7
|
Balaraman AK, Babu MA, Moglad E, Mandaliya V, Rekha MM, Gupta S, Prasad GVS, Kumari M, Chauhan AS, Ali H, Goyal K. Exosome-mediated delivery of CRISPR-Cas9: A revolutionary approach to cancer gene editing. Pathol Res Pract 2025; 266:155785. [PMID: 39708520 DOI: 10.1016/j.prp.2024.155785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/08/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Several molecular strategies based on targeted gene delivery systems have been developed in recent years; however, the CRISPR-Cas9 technology introduced a new era of targeted gene editing, precisely modifying oncogenes, tumor suppressor genes, and other regulatory genes involved in carcinogenesis. However, efficiently and safely delivering CRISPR-Cas9 to cancer cells across the cell membrane and the nucleus is still challenging. Using viral vectors and nanoparticles presents issues of immunogenicity, off-target effects, and low targeting affinity. Naturally, extracellular vesicles called exosomes have garnered the most attention as delivery vehicles in oncology-related CRISPR-Cas9 calls due to their biocompatibility, loading capacity, and inherent targeting features. The following review discusses the current progress in using exosomes to deliver CRISPR-Cas9 components, the approaches to load the CRISPR components into exosomes, and the modification of exosomes to increase stability and tumor-targeted delivery. We discuss the latest strategies in targeting recently accomplished in the exosome field, including modifying the surface of exosomes to enhance their internalization by cancer cells, as well as the measures taken to overcome the impacts of TME on delivery efficiency. Focusing on in vitro and in vivo experimentation, this review shows that exosome-mediated CRISPR-Cas9 can potentially treat cancer types, including pancreatic, lymphoma, and leukemia, for given gene targets. This paper compares exosome-mediated delivery and conventional vectors regarding safety, immune response, and targeting ability. Last but not least, we present the major drawbacks and potential development of the seemingly promising field of exosome engineering in gene editing, with references to CRISPR technologies and applications that may help make the target exosomes therapeutic in oncology.
Collapse
Affiliation(s)
- Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Viralkumar Mandaliya
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot, Gujarat 360003, India
| | - M M Rekha
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Sofia Gupta
- Department of Chemistry, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab 140307, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh 531162, India
| | - Mukesh Kumari
- Department of Applied Sciences-Chemistry, NIMS Institute of Engineering & Technology, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India.
| |
Collapse
|
8
|
Garcia-Guerra A, Sathyaprakash C, de Jong O, Lim W, Vader P, El Andaloussi S, Bath J, Reine J, Aoki Y, Turberfield A, Wood MA, Rinaldi C. Tissue-specific modulation of CRISPR activity by miRNA-sensing guide RNAs. Nucleic Acids Res 2025; 53:gkaf016. [PMID: 39844454 PMCID: PMC11754125 DOI: 10.1093/nar/gkaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/24/2025] Open
Abstract
Nucleic acid nanostructures offer unique opportunities for biomedical applications due to their sequence-programmable structures and functions, which enable the design of complex responses to molecular cues. Control of the biological activity of therapeutic cargoes based on endogenous molecular signatures holds the potential to overcome major hurdles in translational research: cell specificity and off-target effects. Endogenous microRNAs (miRNAs) can be used to profile cell type and cell state, and are ideal inputs for RNA nanodevices. Here, we present CRISPR MiRAGE (miRNA-activated genome editing), a tool comprising a dynamic single-guide RNA that senses miRNA complexed with Argonaute proteins and controls downstream CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) activity based on the detected miRNA signature. We study the operation of the miRNA-sensing single-guide RNA and attain muscle-specific activation of gene editing through CRISPR MiRAGE in models of Duchenne muscular dystrophy. By enabling RNA-controlled gene editing activity, this technology creates opportunities to advance tissue-specific CRISPR treatments for human diseases.
Collapse
Affiliation(s)
- Antonio Garcia-Guerra
- Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| | - Chaitra Sathyaprakash
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Wooi F Lim
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| | - Pieter Vader
- CDL Research, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Samir El Andaloussi
- Department of Laboratory Medicine, TRACK, Karolinska Institutet, 141 52 Huddinge, Sweden
| | - Jonathan Bath
- Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Jesus Reine
- Oxford Vaccine Group, University of Oxford, OX3 7LE Oxford, United Kingdom
- Clinical Sciences, Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, 187-8551 Tokyo, Japan
| | - Andrew J Turberfield
- Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
- Kavli Institute for Nanoscience Discovery, University of Oxford, OX1 3QU Dorothy Crowfoot Hodgkin Building, Oxford, United Kingdom
| | - Matthew J A Wood
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| | - Carlo Rinaldi
- Department of Paediatrics, University of Oxford, OX3 7TY Oxford, United Kingdom
- Institute of Developmental and Regenerative Medicine (IDRM), IMS-Tetsuya Nakamura Building, Old Road Campus, OX3 7TY Oxford, United Kingdom
| |
Collapse
|
9
|
Zhang Y, Liu Z, Chopp M, Millman M, Li Y, Cepparulo P, Kemper A, Li C, Zhang L, Zhang ZG. Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery. Neural Regen Res 2025; 20:224-233. [PMID: 38767487 PMCID: PMC11246145 DOI: 10.4103/nrr.nrr-d-22-01292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/14/2023] [Accepted: 01/22/2024] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00030/figure1/v/2024-05-14T021156Z/r/image-tiff Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery. Our previous in vitro study demonstrated that exosomes/small extracellular vesicles (sEVs) isolated from cerebral endothelial cells (CEC-sEVs) of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a (miR-27a) is an elevated miRNA in ischemic CEC-sEVs. In the present study, we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a (27a-sEVs) further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs. 27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector. Small EVs isolated from CECs transfected with a scramble vector (Scra-sEVs) were used as a control. Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs. An array of behavior assays was used to measure neurological function. Compared with treatment of ischemic stroke with Scra-sEVs, treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side, and significantly improved neurological outcomes. In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth. Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone, while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a, and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone. Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs. Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes. Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Michael Millman
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Yanfeng Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | | - Amy Kemper
- Department of Pathology, Henry Ford Hospital, Detroit, MI, USA
| | - Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | | |
Collapse
|
10
|
Vázquez-Domínguez I, Öktem M, Winkelaar FA, Nguyen TH, Hoogendoorn AD, Roschi E, Astuti GD, Timmermans R, Suárez-Herrera N, Bruno I, Ruiz-Llombart A, Brealey J, de Jong OG, Collin RW, Mastrobattista E, Garanto A. Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102345. [PMID: 39494150 PMCID: PMC11531624 DOI: 10.1016/j.omtn.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 09/24/2024] [Indexed: 11/05/2024]
Abstract
Deep-intronic (DI) variants represent approximately 10%-12% of disease-causing genetic defects in ABCA4-associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population. In this study, we investigated the therapeutic potential of the CRISPR-Cas9 system combined with the amphipathic lipopeptide C18:1-LAH5 for intracellular delivery to correct splicing defects caused by different DI variants within the same intron. The combination of these components facilitated efficient editing of two target introns (introns 30 and 36) of ABCA4 in which several recurrent DI variants are found. The partial removal of these introns did not affect ABCA4 splicing or its expression levels when assessed in two different human cellular models: fibroblasts and induced pluripotent stem cell-derived photoreceptor precursor cells (PPCs). Furthermore, the DNA editing in STGD1 patient-derived PPCs led to a ∼50% reduction of the pseudoexon-containing transcripts resulting from the c.4539+2001G>A variant in intron 30. Overall, we provide proof-of-concept evidence of the use of C18:1-LAH5 as a delivery system for therapeutic genome editing for ABCA4-associated DI variants, offering new opportunities for clinical translation.
Collapse
Affiliation(s)
- Irene Vázquez-Domínguez
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Mert Öktem
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Florian A. Winkelaar
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Thai Hoang Nguyen
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Anita D.M. Hoogendoorn
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| | - Eleonora Roschi
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Galuh D.N. Astuti
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Raoul Timmermans
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Nuria Suárez-Herrera
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Ilaria Bruno
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Albert Ruiz-Llombart
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Joseph Brealey
- NanoFCM Co Ltd. MediCity, D6 Thane Road, Nottingham NG90 6BH, UK
| | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Rob W.J. Collin
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Alejandro Garanto
- Radboud University Medical Center, Department of Human Genetics, 6525 GA Nijmegen, the Netherlands
- Radboud University Medical Center, Amalia Children’s Hospital, Department of Pediatrics, 6525 GA Nijmegen, the Netherlands
| |
Collapse
|
11
|
de Voogt WS, Frunt R, Leandro RM, Triesscheijn CS, Monica B, Paspali I, Tielemans M, François JJJM, Seinen CW, de Jong OG, Kooijmans SAA. EV-Elute: A universal platform for the enrichment of functional surface marker-defined extracellular vesicle subpopulations. J Extracell Vesicles 2024; 13:e70017. [PMID: 39692115 DOI: 10.1002/jev2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Intercellular communication via extracellular vesicles (EVs) has been identified as a vital component of a steadily expanding number of physiological and pathological processes. To accommodate these roles, EVs have highly heterogeneous molecular compositions. Given that surface molecules on EVs determine their interactions with their environment, EV functionality likely differs between subpopulations with varying surface compositions. However, it has been technically challenging to examine such functional heterogeneity due to a lack of non-destructive methods to separate EV subpopulations based on their surface markers. Here, we used the Design-of-Experiments (DoE) methodology to optimize a protocol, which we name 'EV-Elute', to elute intact EVs from commercially available Protein G-coated magnetic beads. We captured EVs from various cell types on these beads using antibodies against CD9, CD63, CD81 and a custom-made protein binding phosphatidylserine (PS). When applying EV-Elute, over 70% of bound EVs could be recovered from the beads in a pH- and incubation-time-dependent fashion. EV subpopulations showed intact integrity by electron microscopy and Proteinase K protection assays and showed uptake patterns similar to whole EV isolates in co-cultures of peripheral blood mononuclear cells (PBMCs) and endothelial cells. However, in Cas9/sgRNA delivery assays, CD63+ EVs showed a lower capacity to functionally deliver cargo as compared to CD9+, CD81+ and PS+ EVs. Taken together, we developed a novel, easy-to-use platform to isolate and functionally compare surface marker-defined EV subpopulations. This platform does not require specialized equipment or reagents and is universally applicable to any capturing antibody and EV source. Hence, EV-Elute can open new opportunities to study EV functionality at the subpopulation level.
Collapse
Affiliation(s)
| | - Rowan Frunt
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raul M Leandro
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Bella Monica
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ioanna Paspali
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark Tielemans
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Cor W Seinen
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Sander A A Kooijmans
- CDL Research, University Medical Center Utrecht, Utrecht, The Netherlands
- Metabolic Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Metabolic Diseases, Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
13
|
DaCunza JT, Wickman JR, Ajit SK. miRNA packaging into small extracellular vesicles and implications in pain. Pain Rep 2024; 9:e1198. [PMID: 39450410 PMCID: PMC11500789 DOI: 10.1097/pr9.0000000000001198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 10/26/2024] Open
Abstract
Extracellular vesicles (EVs) are a heterogenous group of lipid bilayer bound particles naturally released by cells. These vesicles are classified based on their biogenesis pathway and diameter. The overlap in size of exosomes generated from the exosomal pathway and macrovesicles that are pinched off from the surface of the plasma membrane makes it challenging to isolate pure populations. Hence, isolated vesicles that are less than 200 nm are called small extracellular vesicles (sEVs). Extracellular vesicles transport a variety of cargo molecules, and multiple mechanisms govern the packaging of cargo into sEVs. Here, we discuss the current understanding of how miRNAs are targeted into sEVs, including the role of RNA binding proteins and EXOmotif sequences present in miRNAs in sEV loading. Several studies in human pain disorders and rodent models of pain have reported alterations in sEV cargo, including miRNAs. The sorting mechanisms and target regulation of miR-939, a miRNA altered in individuals with complex regional pain syndrome, is discussed in the context of inflammation. We also provide a broad overview of the therapeutic strategies being pursued to utilize sEVs in the clinic and the work needed to further our understanding of EVs to successfully deploy sEVs as a pain therapeutic.
Collapse
Affiliation(s)
- Jason T. DaCunza
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
- Molecular & Cell Biology & Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jason R. Wickman
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Seena K. Ajit
- Department of Pharmacology & Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
14
|
Zickler AM, Liang X, Gupta D, Mamand DR, De Luca M, Corso G, Errichelli L, Hean J, Sen T, Elsharkasy OM, Kamei N, Niu Z, Zhou G, Zhou H, Roudi S, Wiklander OPB, Görgens A, Nordin JZ, Castilla‐Llorente V, EL Andaloussi S. Novel Endogenous Engineering Platform for Robust Loading and Delivery of Functional mRNA by Extracellular Vesicles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407619. [PMID: 39246205 PMCID: PMC11558116 DOI: 10.1002/advs.202407619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Messenger RNA (mRNA) has emerged as an attractive therapeutic molecule for a plethora of clinical applications. For in vivo functionality, mRNA therapeutics require encapsulation into effective, stable, and safe delivery systems to protect the cargo from degradation and reduce immunogenicity. Here, a bioengineering platform for efficient mRNA loading and functional delivery using bionormal nanoparticles, extracellular vesicles (EVs), is established by expressing a highly specific RNA-binding domain fused to CD63 in EV producer cells stably expressing the target mRNA. The additional combination with a fusogenic endosomal escape moiety, Vesicular Stomatitis Virus Glycoprotein, enables functional mRNA delivery in vivo at doses substantially lower than currently used clinically with synthetic lipid-based nanoparticles. Importantly, the application of EVs loaded with effective cancer immunotherapy proves highly effective in an aggressive melanoma mouse model. This technology addresses substantial drawbacks currently associated with EV-based nucleic acid delivery systems and is a leap forward to clinical EV applications.
Collapse
Affiliation(s)
- Antje M. Zickler
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Xiuming Liang
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Cancer Research LaboratoryShandong University‐Karolinska Institutet collaborative LaboratorySchool of Basic Medical ScienceShandong UniversityNo. 44, Wenhua Xi RoadJi'nanShandong250012P. R. China
| | - Dhanu Gupta
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Institute of Developmental and Regenerative Medicine, Department of Paediatrics.University of OxfordOld Road Campus, Roosevelt Dr, HeadingtonOxfordOX3 7TYUK
| | - Doste R. Mamand
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Breast Center, Karolinska Comprehensive Cancer CenterKarolinska University HospitalStockholm14186Sweden
| | - Mariacristina De Luca
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Human TechnopoleViale Rita Levi Montalcini, 1Milan20157Italy
| | - Giulia Corso
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Evercyte GmbHLeberstrasse 20Vienna1110Austria
| | - Lorenzo Errichelli
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
| | - Justin Hean
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
| | - Titash Sen
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Lonza BiologicsChesterford Research ParkCambridgeCB10 1XLUK
| | - Omnia M. Elsharkasy
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Noriyasu Kamei
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Laboratory of Drug Delivery SystemsFaculty of Pharmaceutical SciencesKobe Gakuin University1‐1‐3 Minatojima, Chuo‐kuKobeHyogo650‐8586Japan
| | - Zheyu Niu
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Department of Hepatobiliary SurgeryShandong Provincial Hospital Affiliated to Shandong First Medical UniversityNo. 324, Five Jing RoadJi'nanShandong250012P. R. China
| | - Guannan Zhou
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Department of GynecologyThe Obstetrics and Gynecology Hospital of Fudan UniversityNo. 419, Fangxie RoadShanghai200011P. R. China
| | - Houze Zhou
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Samantha Roudi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| | - Oscar P. B. Wiklander
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Breast Center, Karolinska Comprehensive Cancer CenterKarolinska University HospitalStockholm14186Sweden
| | - André Görgens
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐Essen45147EssenGermany
| | - Joel Z. Nordin
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Clinical Immunology and Transfusion Medicine (KITM)Karolinska University HospitalStockholm14186Sweden
| | - Virginia Castilla‐Llorente
- Evox Therapeutics Ltd.Oxford Science ParkMedawar CentreRobert Robinson AvenueOxfordOX4 4HGUK
- Uncommon BioCambridge TechnoparkNewmarket RdCambridgeCB5 8PBUK
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm14186Sweden
- Karolinska ATMP Center, Karolinska InstitutetANA FuturaAlfred‐Nobels‐Allé 8, HuddingeStockholm14152Sweden
| |
Collapse
|
15
|
Buck AH, Nolte-'t Hoen ENM. The Nature and Nurture of Extracellular Vesicle-Mediated Signaling. Annu Rev Genet 2024; 58:409-432. [PMID: 39231450 DOI: 10.1146/annurev-genet-111523-102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In the last decade, it has become clear that extracellular vesicles (EVs) are a ubiquitous component of living systems. These small membrane-enclosed particles can confer diverse functions to the cells that release, capture, or coexist with them in an environment. We use examples across living systems to produce a conceptual framework that classifies three modes by which EVs exert functions: (a) EV release that serves a function for producing cells, (b) EV modification of the extracellular environment, and (c) EV interactions with, and alteration of, receiving cells. We provide an overview of the inherent properties of EVs (i.e., their nature) as well as factors in the environment and receiving cell (i.e., nurture) that determine whether transmission of EV cargo leads to functional cellular responses. This review broadens the context for ruminating on EV functions and highlights the emergent properties of EVs that define their role in biology and will shape their applications in medicine.
Collapse
Affiliation(s)
- Amy H Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom;
| | - Esther N M Nolte-'t Hoen
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands;
| |
Collapse
|
16
|
Zhao H, Li Z, Liu D, Zhang J, You Z, Shao Y, Li H, Yang J, Liu X, Wang M, Wu C, Chen J, Wang J, Kong G, Zhao L. PlexinA1 (PLXNA1) as a novel scaffold protein for the engineering of extracellular vesicles. J Extracell Vesicles 2024; 13:e70012. [PMID: 39508411 PMCID: PMC11541859 DOI: 10.1002/jev2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) had been described as a next-generation drug delivery system, due to the compelling evidence that they can facilitate the transfer of a variety of biomolecules between cells. The most frequently used strategy for loading protein cargoes is the endogenous engineering of EVs through genetic fusion of the protein of interest (POI) and scaffold proteins with high EV-sorting ability. However, the lack of scaffold proteins had become a major issue hindering the promotion of this technology. Herein, we proposed novel screening criteria that relax the inclusion requirement of candidate scaffold proteins and eventually identified a new scaffold protein, PLXNA1. The truncated PLXNA1 not only inherits the high EV-sorting ability of its full-length counterpart but also allows the fusion expression of POI in both outer surface and luminal areas, individually or simultaneously. In conclusion, our screening criteria expanded the range of potential scaffold proteins. The identified scaffold protein PLXNA1 showed great potential in developing therapeutic EVs.
Collapse
Affiliation(s)
| | - Zhi Li
- Echo Biotech Co., LtdBeijingChina
- The Center for Heart DevelopmentKey Lab of MOE for Development Biology and Protein ChemistryCollege of Life SciencesHunan Normal UniversityChangshaHunanChina
| | - Da Liu
- Echo Biotech Co., LtdBeijingChina
| | | | | | - Yuzhang Shao
- Department of PathologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | | | - Jun Yang
- Echo Biotech Co., LtdBeijingChina
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Bonacquisti EE, Ferguson SW, Wadsworth GM, Jasiewicz NE, Wang J, Chaudhari AP, Kussatz CC, Nogueira AT, Keeley DP, Itano MS, Bolton ML, Hahn KM, Banerjee PR, Nguyen J. Fluorogenic RNA-based biomaterials for imaging and tracking the cargo of extracellular vesicles. J Control Release 2024; 374:349-368. [PMID: 39111600 PMCID: PMC11550487 DOI: 10.1016/j.jconrel.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/25/2024]
Abstract
Extracellular vesicles (EVs), or exosomes, play important roles in physiological and pathological cellular communication and have gained substantial traction as biological drug carriers. EVs contain both short and long non-coding RNAs that regulate gene expression and epigenetic processes. To fully capitalize on the potential of EVs as drug carriers, it is important to study and understand the intricacies of EV function and EV RNA-based communication. Here we developed a genetically encodable RNA-based biomaterial, termed EXO-Probe, for tracking EV RNAs. The EXO-Probe comprises an EV-loading RNA sequence (EXO-Code), fused to a fluorogenic RNA Mango aptamer for RNA imaging. This fusion construct allowed the visualization and tracking of EV RNA and colocalization with markers of multivesicular bodies; imaging RNA within EVs, and non-destructive quantification of EVs. Overall, the new RNA-based biomaterial provides a useful and versatile means to interrogate the role of EVs in cellular communication via RNA trafficking to EVs and to study cellular sorting decisions. The system will also help lay the foundation to further improve the therapeutic efficacy of EVs as drug carriers.
Collapse
Affiliation(s)
- Emily E Bonacquisti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott W Ferguson
- Department of Pharmaceutical Sciences, University at Buffalo, USA
| | - Gable M Wadsworth
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Natalie E Jasiewicz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jinli Wang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Ameya P Chaudhari
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Caden C Kussatz
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ana T Nogueira
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Daniel P Keeley
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA
| | - Michelle S Itano
- UNC Neuroscience Microscopy Core, Carolina Institute for Developmental Disabilities, UNC Neuroscience Center, University of North Carolina at Chapel Hill, NC 25799, USA; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Matthew L Bolton
- Department of Systems and Information Engineering, University of Virginia, Charlottesville, 22903, USA
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Priya R Banerjee
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA
| | - Juliane Nguyen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
18
|
Alekseenko I, Zhukova L, Kondratyeva L, Buzdin A, Chernov I, Sverdlov E. Tumor Cell Communications as Promising Supramolecular Targets for Cancer Chemotherapy: A Possible Strategy. Int J Mol Sci 2024; 25:10454. [PMID: 39408784 PMCID: PMC11476449 DOI: 10.3390/ijms251910454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Fifty-two years have passed since President Nixon launched the "War on Cancer". Despite unparalleled efforts and funds allocated worldwide, the outlined goals were not achieved because cancer treatment approaches such as chemotherapy, radiation therapy, hormonal and targeted therapies have not fully met the expectations. Based on the recent literature, a new direction in cancer therapy can be proposed which targets connections between cancer cells and their microenvironment by chemical means. Cancer-stromal synapses such as immunological synapses between cancer and immune cells provide an attractive target for this approach. Such synapses form ligand-receptor clusters on the interface of the interacting cells. They share a common property of involving intercellular clusters of spatially proximate and cooperatively acting proteins. Synapses provide the space for the focused intercellular signaling molecules exchange. Thus, the disassembly of cancer-stromal synapses may potentially cause the collapse of various tumors. Additionally, the clustered arrangement of synapse components offers opportunities to enhance treatment safety and precision by using targeted crosslinking chemical agents which may inactivate cancer synapses even in reduced concentrations. Furthermore, attaching a cleavable cell-permeable toxic agent(s) to a crosslinker may further enhance the anti-cancer effect of such therapeutics. The highlighted approach promises to be universal, relatively simple and cost-efficient. We also hope that, unlike chemotherapeutic and immune drugs that interact with a single target, by using supramolecular large clusters that include many different components as a target, the emergence of a resistance characteristic of chemo- and immunotherapy is extremely unlikely.
Collapse
Affiliation(s)
- Irina Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Lyudmila Zhukova
- Department of Oncology, SBIH “Moscow Clinical Scientific and Practical Center Named After A.S. Loginov” DHM, 111123 Moscow, Russia;
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, 119992 Moscow, Russia
- Oncobox LLC, 121205 Moscow, Russia
| | - Igor Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.); (A.B.); (I.C.)
| | - Eugene Sverdlov
- National Research Center “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
19
|
Park DJ, Choi W, Sayeed S, Dorschner RA, Rainaldi J, Ho K, Kezios J, Nolan JP, Mali P, Costantini T, Eliceiri BP. Defining the activity of pro-reparative extracellular vesicles in wound healing based on miRNA payloads and cell type-specific lineage mapping. Mol Ther 2024; 32:3059-3079. [PMID: 38379282 PMCID: PMC11403212 DOI: 10.1016/j.ymthe.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/02/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024] Open
Abstract
Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.
Collapse
Affiliation(s)
- Dong Jun Park
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Wooil Choi
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Sakeef Sayeed
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Rainaldi
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kayla Ho
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Jenny Kezios
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Todd Costantini
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Brian P Eliceiri
- Department of Surgery, University of California San Diego, La Jolla, CA 92093, USA; Department of Dermatology, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Liu S, Hamilton MC, Cowart T, Barrera A, Bounds LR, Nelson AC, Doty RW, Allen AS, Crawford GE, Majoros WH, Gersbach CA. Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611293. [PMID: 39282389 PMCID: PMC11398468 DOI: 10.1101/2024.09.04.611293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Recent technological developments in single-cell RNA-seq CRISPR screens enable high-throughput investigation of the genome. Through transduction of a gRNA library to a cell population followed by transcriptomic profiling by scRNA-seq, it is possible to characterize the effects of thousands of genomic perturbations on global gene expression. A major source of noise in scRNA-seq CRISPR screens are ambient gRNAs, which are contaminating gRNAs that likely originate from other cells. If not properly filtered, ambient gRNAs can result in an excess of false positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNA noise in single-cell CRISPR screens. We use these datasets to develop and train CLEANSER, a mixture model that identifies and filters ambient gRNA noise. This model takes advantage of the bimodal distribution between native and ambient gRNAs and includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy.
Collapse
Affiliation(s)
- Siyan Liu
- Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marisa C. Hamilton
- University Program in Genetics and Genomics, Duke University Medical Center, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Thomas Cowart
- Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Alejandro Barrera
- Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | - Lexi R. Bounds
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Richard W. Doty
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | - Andrew S. Allen
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, USA
| | | | | | - Charles A. Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC USA
| |
Collapse
|
21
|
Wang S, Kong H, Zhuo C, Liu L, Lv S, Cheng D, Lao YH, Tao Y, Li M. Functionalized extracellular nanovesicles as advanced CRISPR delivery systems. Biomater Sci 2024; 12:3480-3499. [PMID: 38808607 DOI: 10.1039/d4bm00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) system, an emerging tool for genome editing, has garnered significant public interest for its potential in treating genetic diseases. Despite the rapid advancements in CRISPR technology, the progress in developing effective delivery strategies lags, impeding its clinical application. Extracellular nanovesicles (EVs), either in their endogenous forms or with engineered modifications, have emerged as a promising solution for CRISPR delivery. These EVs offer several advantages, including high biocompatibility, biological permeability, negligible immunogenicity, and straightforward production. Herein, we first summarize various types of functional EVs for CRISPR delivery, such as unmodified, modified, engineered virus-like particles (VLPs), and exosome-liposome hybrid vesicles, and examine their distinct intracellular pathways. Then, we outline the cutting-edge techniques for functionalizing extracellular vesicles, involving producer cell engineering, vesicle engineering, and virus-like particle engineering, emphasizing the diverse CRISPR delivery capabilities of these nanovesicles. Lastly, we address the current challenges and propose rational design strategies for their clinical translation, offering future perspectives on the development of functionalized EVs.
Collapse
Affiliation(s)
- Siqing Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Li Liu
- Department of Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518000, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Du Cheng
- PCFM Lab of Ministry of Education, School of Material Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
22
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
23
|
Wang FZ, Bao Y, Li Z, Xiong X, Li JF. A dual-function selection system enables positive selection of multigene CRISPR mutants and negative selection of Cas9-free progeny in Arabidopsis. ABIOTECH 2024; 5:140-150. [PMID: 38974862 PMCID: PMC11224197 DOI: 10.1007/s42994-023-00132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/14/2023] [Indexed: 07/09/2024]
Abstract
The CRISPR/Cas9 technology revolutionizes targeted gene knockout in diverse organisms including plants. However, screening edited alleles, particularly those with multiplex editing, from herbicide- or antibiotic-resistant transgenic plants and segregating out the Cas9 transgene represent two laborious processes. Current solutions to facilitate these processes rely on different selection markers. Here, by taking advantage of the opposite functions of a d-amino acid oxidase (DAO) in detoxifying d-serine and in metabolizing non-toxic d-valine to a cytotoxic product, we develop a DAO-based selection system that simultaneously enables the enrichment of multigene edited alleles and elimination of Cas9-containing progeny in Arabidopsis thaliana. Among five DAOs tested in Escherichia coli, the one encoded by Trigonopsis variabilis (TvDAO) could confer slightly stronger d-serine resistance than other homologs. Transgenic expression of TvDAO in Arabidopsis allowed a clear distinction between transgenic and non-transgenic plants in both d-serine-conditioned positive selection and d-valine-conditioned negative selection. As a proof of concept, we combined CRISPR-induced single-strand annealing repair of a dead TvDAO with d-serine-based positive selection to help identify transgenic plants with multiplex editing, where d-serine-resistant plants exhibited considerably higher co-editing frequencies at three endogenous target genes than those selected by hygromycin. Subsequently, d-valine-based negative selection successfully removed Cas9 and TvDAO transgenes from the survival offspring carrying inherited mutations. Collectively, this work provides a novel strategy to ease CRISPR mutant identification and Cas9 transgene elimination using a single selection marker, which promises more efficient and simplified multiplex CRISPR editing in plants. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-023-00132-6.
Collapse
Affiliation(s)
- Feng-Zhu Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Ying Bao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Zhenxiang Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Xiangyu Xiong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275 China
| |
Collapse
|
24
|
Nishida‐Aoki N, Ochiya T. Impacts of tissue context on extracellular vesicles-mediated cancer-host cell communications. Cancer Sci 2024; 115:1726-1737. [PMID: 38532284 PMCID: PMC11145126 DOI: 10.1111/cas.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Tumor tissue is densely packed with cancer cells, non-cancerous cells, and ECM, forming functional structures. Cancer cells transfer extracellular vesicles (EVs) to modify surrounding normal cells into cancer-promoting cells, establishing a tumor-favorable environment together with other signaling molecules and structural components. Such tissue environments largely affect cancer cell properties, and so as EV-mediated cellular communications within tumor tissue. However, current research on EVs focuses on functional analysis of vesicles isolated from the liquid phase, including cell culture supernatants and blood draws, 2D-cultured cell assays, or systemic analyses on animal models for biodistribution. Therefore, we have a limited understanding of local EV transfer within tumor tissues. In this review, we discuss the need to study EVs in a physiological tissue context by summarizing the current findings on the impacts of tumor tissue environment on cancer EV properties and transfer and the techniques required for the analysis. Tumor tissue environment is likely to alter EV properties, pose physical barriers, interactions, and interstitial flows for the dynamics, and introduce varieties in the cell types taken up. Utilizing physiological experimental settings and spatial analyses, we need to tackle the remaining questions on physiological EV-mediated cancer-host cell interactions. Understanding cancer EV-mediated cellular communications in physiological tumor tissues will lead to developing interaction-targeting therapies and provide insight into EV-mediated non-cancerous cells and interspecies interactions.
Collapse
Affiliation(s)
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Center for Future Medical Research, Institute of Medical ScienceTokyo Medical UniversityTokyoJapan
| |
Collapse
|
25
|
Shahi S, Kang T, Fonseka P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024; 13:754. [PMID: 38727289 PMCID: PMC11083420 DOI: 10.3390/cells13090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.
Collapse
Affiliation(s)
| | | | - Pamali Fonseka
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (S.S.); (T.K.)
| |
Collapse
|
26
|
Engineering cell-derived extracellular vesicles for gene therapy. Nat Biomed Eng 2024; 8:343-344. [PMID: 38135765 DOI: 10.1038/s41551-023-01167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
|
27
|
Dellar ER, Hill C, Carter DRF, Baena‐Lopez LA. Oxidative stress-induced changes in the transcriptomic profile of extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e150. [PMID: 38938847 PMCID: PMC11080704 DOI: 10.1002/jex2.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/04/2024] [Accepted: 04/04/2024] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) have been proposed to play dual roles in cellular homeostasis, functioning both to remove unwanted intracellular molecules, and to enable communication between cells as a means of modulating cellular responses in different physiological and pathological scenarios. EVs contain a broad range of cargoes, including multiple biotypes of RNA, which can vary depending on the cell status, and may function as signalling molecules. In this study, we carried out comparative transcriptomic analysis of Drosophila EVs and cells, demonstrating that the RNA profile of EVs is distinct from cells and shows dose-dependent changes in response to oxidative stress. We identified a high abundance of snoRNAs in EVs, alongside an enrichment of intronic and untranslated regions (UTRs) of mRNAs under stress. We also observed an increase in the relative abundance of either aberrant or modified mRNAs under stress. These findings suggest that EVs may function both for the elimination of specific cellular RNAs, and for the incorporation of RNAs that may hold signalling potential.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Centre for Public HealthQueen's University BelfastBelfastUK
| | - David R. F. Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityOxfordUK
- Evox Therapeutics LimitedOxford Science ParkOxfordUK
| | | |
Collapse
|
28
|
Stranford DM, Simons LM, Berman KE, Cheng L, DiBiase BN, Hung ME, Lucks JB, Hultquist JF, Leonard JN. Genetically encoding multiple functionalities into extracellular vesicles for the targeted delivery of biologics to T cells. Nat Biomed Eng 2024; 8:397-414. [PMID: 38012307 PMCID: PMC11088532 DOI: 10.1038/s41551-023-01142-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
The genetic modification of T cells has advanced cellular immunotherapies, yet the delivery of biologics specifically to T cells remains challenging. Here we report a suite of methods for the genetic engineering of cells to produce extracellular vesicles (EVs)-which naturally encapsulate and transfer proteins and nucleic acids between cells-for the targeted delivery of biologics to T cells without the need for chemical modifications. Specifically, the engineered cells secreted EVs that actively loaded protein cargo via a protein tag and that displayed high-affinity T-cell-targeting domains and fusogenic glycoproteins. We validated the methods by engineering EVs that delivered Cas9-single-guide-RNA complexes to ablate the gene encoding the C-X-C chemokine co-receptor type 4 in primary human CD4+ T cells. The strategy is amenable to the targeted delivery of biologics to other cell types.
Collapse
Affiliation(s)
- Devin M Stranford
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Lacy M Simons
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Katherine E Berman
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
| | - Luyi Cheng
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
| | - Beth N DiBiase
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
| | - Michelle E Hung
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
| | - Julius B Lucks
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Training Program, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
29
|
Kong W, Li X, Guo X, Sun Y, Chai W, Chang Y, Huang Q, Wang P, Wang X. Ultrasound-Assisted CRISPRi-Exosome for Epigenetic Modification of α-Synuclein Gene in a Mouse Model of Parkinson's Disease. ACS NANO 2024; 18:7837-7851. [PMID: 38437635 DOI: 10.1021/acsnano.3c05864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Currently, there is a lack of effective treatment for Parkinson's disease (PD). In PD patients, aberrant methylation of SNCA (α-synuclein gene) has been reported and may be a potential therapeutic target. In this study, we established an epigenetic regulation platform based on an exosomal CRISPR intervention system. With the assist of focused ultrasound (FUS) opening the blood-brain barrier, engineered exosomes carrying RVG (rabies viral glycoprotein) targeting peptide, sgRNA (single guide RNA), and dCas9-DNMT3A (named RVG-CRISPRi-Exo) were efficiently delivered into the brain lesions and induced specific methylation of SNCA. In vivo, FUS combined with RVG-CRISPRi-Exo significantly improved motor performance, balance coordination, and neurosensitivity in PD mice, greatly down-regulated the elevation of α-synuclein (α-syn) caused by modeling, rescued cell apoptosis, and alleviated the progression of PD in mice. [18F]-FP-DTBZ imaging suggested that the synaptic function of the nigrostriatal pathway could be restored, which was conducive to the control of motor behavior in PD mice. Pyrosequencing results showed that RVG-CRISPRi-Exo could methylate CpG at specific sites of SNCA, and this fine-tuned editing achieved good therapeutic effects in PD model mice. In vitro, RVG-CRISPRi-Exo down-regulated SNCA transcripts and α-syn expression and relieved neuronal cell damage. Collectively, our findings provide a proof-of-principle for the development of targeted brain nanodelivery based on engineered exosomes and provide insights into epigenetic regulation of brain diseases.
Collapse
Affiliation(s)
- Weirong Kong
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Xin Li
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Xiaoyu Guo
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Yue Sun
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Wenyu Chai
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Yawei Chang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Qichao Huang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Pan Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| | - Xiaobing Wang
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, #620 West Chang'an Road, Xi'an 710119, China
| |
Collapse
|
30
|
Lattmann E, Räss L, Tognetti M, Gómez JMM, Lapaire V, Bruderer R, Reiter L, Feng Y, Steinmetz LM, Levesque MP. Size-exclusion chromatography combined with DIA-MS enables deep proteome profiling of extracellular vesicles from melanoma plasma and serum. Cell Mol Life Sci 2024; 81:90. [PMID: 38353833 PMCID: PMC10867102 DOI: 10.1007/s00018-024-05137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Luca Räss
- Biognosys AG, Schlieren, Switzerland
| | | | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Valérie Lapaire
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | | | | | | | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
31
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 1098] [Impact Index Per Article: 1098.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
32
|
Adnani L, Rak J. Intercellular Molecular Transfer Mediated by Extracellular Vesicles in Cancer. Results Probl Cell Differ 2024; 73:327-352. [PMID: 39242385 DOI: 10.1007/978-3-031-62036-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among multiple pathways of intercellular communication operative in multicellular organisms, the trafficking of extracellular vesicles (EVs) and particles (EP) represents a unique mode of cellular information exchange with emerging roles in health and disease, including cancer. A distinctive feature of EV/EP-mediated cell-cell communication is that it involves simultaneous short- or long-range transfer of numerous molecular constituents (cargo) from donor to recipient cells. EV/EP uptake by donor cells elicits signalling or metabolic responses, or else leads to EV-re-emission or degradation. EVs are heterogeneous membranous structures released from cells via increasingly defined mechanisms involving either formation of multivesicular endosomes (exosomes) or budding from the plasma membrane (ectosomes). EPs (exomeres, supermeres) are membraneless complex particles, smaller than EVs and of less defined biogenesis and function. EVs/EPs carry complex assemblies of proteins, lipids and nucleic acids (RNA, DNA), which they shuttle into intercellular milieu, body fluids and recipient cells, via surface contact, fusion and different forms of internalization (endocytosis, micropinocytosis). While the physiological functions of EVs/EPs communication pathways continue to be investigated, their roles in cancer are increasingly well-defined. For example, EVs are involved in the transmission of cancer-specific molecular cargo, including mutant, oncogenic, transforming, or regulatory macromolecules to indolent, or normal cells, sometimes triggering their quasi-transformation-like states, or phenotypic alterations. Conversely, a reciprocal and avid uptake of stromal EVs by cancer cells may be responsible for modulating their oncogenic repertoire, as exemplified by the angiocrine effects of endothelial EVs influencing cancer cell stemness. EV exchanges during cancer progression have also been implicated in the formation of tumour stroma, angiogenesis and non-angiogenic neovascularization processes, immunosuppression, colonization of metastatic organ sites (premetastatic niche), paraneoplastic and systemic pathologies (thrombosis, diabetes, hepatotoxicity). Thus, an EV/EP-mediated horizontal transfer of cellular content emerges as a new dimension in cancer pathogenesis with functional, diagnostic, and therapeutic implications.
Collapse
Affiliation(s)
- Lata Adnani
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada
| | - Janusz Rak
- The Research Institute of the McGill University Health Centre, McGill University, QC, Canada.
| |
Collapse
|
33
|
Lu Y, Godbout K, Lamothe G, Tremblay JP. CRISPR-Cas9 delivery strategies with engineered extracellular vesicles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102040. [PMID: 37842166 PMCID: PMC10571031 DOI: 10.1016/j.omtn.2023.102040] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Therapeutic genome editing has the potential to cure diseases by directly correcting genetic mutations in tissues and cells. Recent progress in the CRISPR-Cas9 systems has led to breakthroughs in gene editing tools because of its high orthogonality, versatility, and efficiency. However, its safe and effective administration to target organs in patients is a major hurdle. Extracellular vesicles (EVs) are endogenous membranous particles secreted spontaneously by all cells. They are key actors in cell-to-cell communication, allowing the exchange of select molecules such as proteins, lipids, and RNAs to induce functional changes in the recipient cells. Recently, EVs have displayed their potential for trafficking the CRISPR-Cas9 system during or after their formation. In this review, we highlight recent developments in EV loading, surface functionalization, and strategies for increasing the efficiency of delivering CRISPR-Cas9 to tissues, organs, and cells for eventual use in gene therapies.
Collapse
Affiliation(s)
- Yaoyao Lu
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Kelly Godbout
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Gabriel Lamothe
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| | - Jacques P. Tremblay
- Centre de Recherche du CHU de Québec -Université Laval, Québec city, QC G1V4G2, Canada
| |
Collapse
|
34
|
Ghodasara A, Raza A, Wolfram J, Salomon C, Popat A. Clinical Translation of Extracellular Vesicles. Adv Healthc Mater 2023; 12:e2301010. [PMID: 37421185 DOI: 10.1002/adhm.202301010] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Indexed: 07/10/2023]
Abstract
Extracellular vesicles (EVs) occur in a variety of bodily fluids and have gained recent attraction as natural materials due to their bioactive surfaces, internal cargo, and role in intercellular communication. EVs contain various biomolecules, including surface and cytoplasmic proteins; and nucleic acids that are often representative of the originating cells. EVs can transfer content to other cells, a process that is thought to be important for several biological processes, including immune responses, oncogenesis, and angiogenesis. An increased understanding of the underlying mechanisms of EV biogenesis, composition, and function has led to an exponential increase in preclinical and clinical assessment of EVs for biomedical applications, such as diagnostics and drug delivery. Bacterium-derived EV vaccines have been in clinical use for decades and a few EV-based diagnostic assays regulated under Clinical Laboratory Improvement Amendments have been approved for use in single laboratories. Though, EV-based products are yet to receive widespread clinical approval from national regulatory agencies such as the United States Food and Drug Administration (USFDA) and European Medicine Agency (EMA), many are in late-stage clinical trials. This perspective sheds light on the unique characteristics of EVs, highlighting current clinical trends, emerging applications, challenges and future perspectives of EVs in clinical use.
Collapse
Affiliation(s)
- Aayushi Ghodasara
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
| | - Aun Raza
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- The School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia
- Department of Research, Postgraduate and Further Education (DIPEC), Falcuty of Health Sciences, University of Alba, Santiago, 8320000, Chile
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
| |
Collapse
|
35
|
Öktem M, Mastrobattista E, de Jong OG. Amphipathic Cell-Penetrating Peptide-Aided Delivery of Cas9 RNP for In Vitro Gene Editing and Correction. Pharmaceutics 2023; 15:2500. [PMID: 37896260 PMCID: PMC10609989 DOI: 10.3390/pharmaceutics15102500] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The therapeutic potential of the CRISPR-Cas9 gene editing system in treating numerous genetic disorders is immense. To fully realize this potential, it is crucial to achieve safe and efficient delivery of CRISPR-Cas9 components into the nuclei of target cells. In this study, we investigated the applicability of the amphipathic cell-penetrating peptide LAH5, previously employed for DNA delivery, in the intracellular delivery of spCas9:sgRNA ribonucleoprotein (RNP) and the RNP/single-stranded homology-directed repair (HDR) template. Our findings reveal that the LAH5 peptide effectively formed nanocomplexes with both RNP and RNP/HDR cargo, and these nanocomplexes demonstrated successful cellular uptake and cargo delivery. The loading of all RNP/HDR components into LAH5 nanocomplexes was confirmed using an electrophoretic mobility shift assay. Functional screening of various ratios of peptide/RNP nanocomplexes was performed on fluorescent reporter cell lines to assess gene editing and HDR-mediated gene correction. Moreover, targeted gene editing of the CCR5 gene was successfully demonstrated across diverse cell lines. This LAH5-based delivery strategy represents a significant advancement toward the development of therapeutic delivery systems for CRISPR-Cas-based genetic engineering in in vitro and ex vivo applications.
Collapse
Affiliation(s)
| | | | - Olivier G. de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands; (M.Ö.); (E.M.)
| |
Collapse
|
36
|
Tagore M, Hergenreder E, Perlee SC, Cruz NM, Menocal L, Suresh S, Chan E, Baron M, Melendez S, Dave A, Chatila WK, Nsengimana J, Koche RP, Hollmann TJ, Ideker T, Studer L, Schietinger A, White RM. GABA Regulates Electrical Activity and Tumor Initiation in Melanoma. Cancer Discov 2023; 13:2270-2291. [PMID: 37553760 PMCID: PMC10551668 DOI: 10.1158/2159-8290.cd-23-0389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Oncogenes can initiate tumors only in certain cellular contexts, which is referred to as oncogenic competence. In melanoma, whether cells in the microenvironment can endow such competence remains unclear. Using a combination of zebrafish transgenesis coupled with human tissues, we demonstrate that GABAergic signaling between keratinocytes and melanocytes promotes melanoma initiation by BRAFV600E. GABA is synthesized in melanoma cells, which then acts on GABA-A receptors in keratinocytes. Electron microscopy demonstrates specialized cell-cell junctions between keratinocytes and melanoma cells, and multielectrode array analysis shows that GABA acts to inhibit electrical activity in melanoma/keratinocyte cocultures. Genetic and pharmacologic perturbation of GABA synthesis abrogates melanoma initiation in vivo. These data suggest that GABAergic signaling across the skin microenvironment regulates the ability of oncogenes to initiate melanoma. SIGNIFICANCE This study shows evidence of GABA-mediated regulation of electrical activity between melanoma cells and keratinocytes, providing a new mechanism by which the microenvironment promotes tumor initiation. This provides insights into the role of the skin microenvironment in early melanomas while identifying GABA as a potential therapeutic target in melanoma. See related commentary by Ceol, p. 2128. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Sarah C. Perlee
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelly M. Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Menocal
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maayan Baron
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Stephanie Melendez
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J. Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Roerig J, Schulz-Siegmund M. Standardization Approaches for Extracellular Vesicle Loading with Oligonucleotides and Biologics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301763. [PMID: 37287374 DOI: 10.1002/smll.202301763] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/13/2023] [Indexed: 06/09/2023]
Abstract
Extracellular vesicles (EVs) are widely recognized for their potential as drug delivery systems. EVs are membranous nanoparticles shed from cells. Among their natural features are their ability to shield cargo molecules against degradation and enable their functional internalization into target cells. Especially biological or bio-inspired large molecules (LMs), like nucleic acids, proteins, peptides, and others, may profit from encapsulation in EVs for drug delivery purposes. In the last years, a variety of loading protocols are explored for different LMs. The lack of standardization in the EV drug delivery field has impeded their comparability so far. Currently, the first reporting frameworks and workflows for EV drug loading are proposed. The aim of this review is to summarize these evolving standardization approaches and set recently developed methods into context. This will allow for enhanced comparability of future work on EV drug loading with LMs.
Collapse
Affiliation(s)
- Josepha Roerig
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04317, Leipzig, Germany
| | - Michaela Schulz-Siegmund
- Pharmaceutical Technology, Institute of Pharmacy, Medical Faculty, Leipzig University, 04317, Leipzig, Germany
| |
Collapse
|
38
|
Nair S, Ormazabal V, Carrion F, Handberg A, McIntyre H, Salomon C. Extracellular vesicle-mediated targeting strategies for long-term health benefits in gestational diabetes. Clin Sci (Lond) 2023; 137:1311-1332. [PMID: 37650554 PMCID: PMC10472199 DOI: 10.1042/cs20220150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Extracellular vesicles (EVs) are critical mediators of cell communication, playing important roles in regulating molecular cross-talk between different metabolic tissues and influencing insulin sensitivity in both healthy and gestational diabetes mellitus (GDM) pregnancies. The ability of EVs to transfer molecular cargo between cells imbues them with potential as therapeutic agents. During pregnancy, the placenta assumes a vital role in metabolic regulation, with multiple mechanisms of placenta-mediated EV cross-talk serving as central components in GDM pathophysiology. This review focuses on the role of the placenta in the pathophysiology of GDM and explores the possibilities and prospects of targeting the placenta to address insulin resistance and placental dysfunction in GDM. Additionally, we propose the use of EVs as a novel method for targeted therapeutics in treating the dysfunctional placenta. The primary aim of this review is to comprehend the current status of EV targeting approaches and assess the potential application of these strategies in placental therapeutics, thereby delivering molecular cargo and improving maternal and fetal outcomes in GDM. We propose that EVs have the potential to revolutionize GDM management, offering hope for enhanced maternal-fetal health outcomes and more effective treatments.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - H David McIntyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| |
Collapse
|
39
|
Palanisamy CP, Pei J, Alugoju P, Anthikapalli NVA, Jayaraman S, Veeraraghavan VP, Gopathy S, Roy JR, Janaki CS, Thalamati D, Mironescu M, Luo Q, Miao Y, Chai Y, Long Q. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs). Theranostics 2023; 13:4138-4165. [PMID: 37554286 PMCID: PMC10405853 DOI: 10.7150/thno.83066] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of neurons and intricate interactions between different cell types within the affected regions. Reliable biomarkers that can accurately reflect disease activity, diagnose, and monitor the progression of neurodegenerative diseases are crucial for the development of effective therapies. However, identifying suitable biomarkers has been challenging due to the heterogeneous nature of these diseases, affecting specific subsets of neurons in different brain regions. One promising approach for promoting brain regeneration and recovery involves the transplantation of mesenchymal stem cells (MSCs). MSCs have demonstrated the ability to modulate the immune system, promote neurite outgrowth, stimulate angiogenesis, and repair damaged tissues, partially through the release of their extracellular vesicles (EVs). MSC-derived EVs retain some of the therapeutic characteristics of their parent MSCs, including their ability to regulate neurite outgrowth, promote angiogenesis, and facilitate tissue repair. This review aims to explore the potential of MSC-derived EVs as an emerging therapeutic strategy for neurodegenerative diseases, highlighting their role in modulating disease progression and promoting neuronal recovery. By elucidating the mechanisms by which MSC-derived EVs exert their therapeutic effects, we can advance our understanding and leverage their potential for the development of novel treatment approaches in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chella Perumal Palanisamy
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Phaniendra Alugoju
- Department of Clinical Chemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sridevi Gopathy
- Department of Physiology, SRM Dental College, Ramapuram campus, Chennai, Tamil Nadu 600089, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Coimbatore Sadagopan Janaki
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | | | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, 550024 Sibiu, Romania
| | - Qiang Luo
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yu Miao
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Yuan Chai
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| | - Qianfa Long
- Mini-invasive Neurosurgery and Translational Medical Center, Xi'an Central Hospital, Xi'an Jiaotong University, No. 161, West 5th Road, Xincheng District, Xi'an, 710003, PR China
| |
Collapse
|
40
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
41
|
Yin F, Zhao H, Lu S, Shen J, Li M, Mao X, Li F, Shi J, Li J, Dong B, Xue W, Zuo X, Yang X, Fan C. DNA-framework-based multidimensional molecular classifiers for cancer diagnosis. NATURE NANOTECHNOLOGY 2023; 18:677-686. [PMID: 36973399 DOI: 10.1038/s41565-023-01348-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
A molecular classification of diseases that accurately reflects clinical behaviour lays the foundation of precision medicine. The development of in silico classifiers coupled with molecular implementation based on DNA reactions marks a key advance in more powerful molecular classification, but it nevertheless remains a challenge to process multiple molecular datatypes. Here we introduce a DNA-encoded molecular classifier that can physically implement the computational classification of multidimensional molecular clinical data. To produce unified electrochemical sensing signals across heterogeneous molecular binding events, we exploit DNA-framework-based programmable atom-like nanoparticles with n valence to develop valence-encoded signal reporters that enable linearity in translating virtually any biomolecular binding events to signal gains. Multidimensional molecular information in computational classification is thus precisely assigned weights for bioanalysis. We demonstrate the implementation of a molecular classifier based on programmable atom-like nanoparticles to perform biomarker panel screening and analyse a panel of six biomarkers across three-dimensional datatypes for a near-deterministic molecular taxonomy of prostate cancer patients.
Collapse
Affiliation(s)
- Fangfei Yin
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haipei Zhao
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shasha Lu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Juwen Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Li
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Baijun Dong
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Xue
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xiurong Yang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Department of Urology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Wettengel JM, Hansen-Palmus L, Yusova S, Rust L, Biswas S, Carson J, Ryu J, Bimber BN, Hennebold JD, Burwitz BJ. A Multifunctional and Highly Adaptable Reporter System for CRISPR/Cas Editing. Int J Mol Sci 2023; 24:8271. [PMID: 37175977 PMCID: PMC10179647 DOI: 10.3390/ijms24098271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
CRISPR/Cas systems are some of the most promising tools for therapeutic genome editing. The use of these systems is contingent on the optimal designs of guides and homology-directed repair (HDR) templates. While this design can be achieved in silico, validation and further optimization are usually performed with the help of reporter systems. Here, we describe a novel reporter system, termed BETLE, that allows for the fast, sensitive, and cell-specific detection of genome editing and template-specific HDR by encoding multiple reporter proteins in different open-reading frames. Out-of-frame non-homologous end joining (NHEJ) leads to the expression of either secretable NanoLuc luciferase, enabling a highly sensitive and low-cost analysis of editing, or fluorescent mTagBFP2, allowing for the enumeration and tissue-specific localization of genome-edited cells. BETLE includes a site to validate CRISPR/Cas systems for a sequence-of-interest, making it broadly adaptable. We evaluated BETLE using a defective moxGFP with a 39-base-pair deletion and showed spCas9, saCas9, and asCas12a editing as well as sequence-specific HDR and the repair of moxGFP in cell lines with single and multiple reporter integrants. Taken together, these data show that BETLE allows for the rapid detection and optimization of CRISPR/Cas genome editing and HDR in vitro and represents a state-of the art tool for future applications in vivo.
Collapse
Affiliation(s)
- Jochen M. Wettengel
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.M.W.)
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, 81675 München, Germany
| | - Lea Hansen-Palmus
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, 81675 München, Germany
| | - Sofiya Yusova
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.M.W.)
| | - Lauren Rust
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.M.W.)
| | - Sreya Biswas
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.M.W.)
| | - Julien Carson
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.M.W.)
| | - Junghyun Ryu
- Division of Reproductive & Developmental, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.)
| | - Benjamin N. Bimber
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Jon D. Hennebold
- Division of Reproductive & Developmental, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.R.)
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Benjamin J. Burwitz
- Vaccine & Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR 97006, USA; (J.M.W.)
- Division of Pathobiology & Immunology, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| |
Collapse
|
43
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
44
|
Qian J, Zhang Q, Lu M. Integration of on-chip lysis and paper-based sensor for rapid detection of viral and exosomal RNAs. Biosens Bioelectron 2023; 226:115114. [PMID: 36753990 DOI: 10.1016/j.bios.2023.115114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
In recent years, paper-based nucleic acid sensors have been demonstrated for the ability to detect DNA and RNA molecules extracted from viruses and bacteria. In clinical samples, these nucleic acids are mostly encapsulated in lipid membranes and need to be released before being analyzed using paper-based sensors. For the nucleic acid amplification tests (NAATs), it is also desirable to remove the interfering molecules that can inhibit the nucleic acid amplification. To achieve a field deployable NAAT, we report a portable sensor system that combines the thermolysis and paper-based NAATs to detect target RNA molecules carried by viral and exosomal nanoparticles. The sensor cartridge includes a lysis chamber with a pressure-controlled diaphragm valve, paper flow channels, and three paper-based NAAT reaction chambers to extract, transport, and detect nucleic acids respectively. A compact instrument was prototyped to automate the assay, collect fluorescence images of the nucleic acid amplification, and generate amplification curves for NAATs. The pump-free and paper-based sensor achieved quantitative analysis of influenza A virus (IAV) RNA and exosome microRNA within 1 h, with the lowest detect concentration of 104 TCID50/mL and 106 EV/mL for IAV and exosome, respectively. Owing to the advantages of easy storage, simple operation, and low cost, such as system has great potential to be used as a point-of-care test for in-field diagnosis of viral and bacterial infections.
Collapse
Affiliation(s)
- Jingjing Qian
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Qinming Zhang
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA
| | - Meng Lu
- Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011, USA; Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
45
|
Hill C, Dellar ER, Baena‐Lopez LA. Caspases help to spread the message via extracellular vesicles. FEBS J 2023; 290:1954-1972. [PMID: 35246932 PMCID: PMC10952732 DOI: 10.1111/febs.16418] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
Cell-cell communication is an essential aspect of multicellular life, key for coordinating cell proliferation, growth, and death in response to environmental changes. Whilst caspases are well-known for facilitating apoptotic and pyroptotic cell death, several recent investigations are uncovering new roles for these enzymes in biological scenarios requiring long-range intercellular signalling mediated by extracellular vesicles (EVs). EVs are small membrane-bound nanoparticles released from cells that may carry and deliver cargo between distant cells, thus helping to coordinate their behaviour. Intriguingly, there is emerging evidence indicating a key contribution of caspases in the biogenesis of EVs, the selection of their cargo content, and EV uptake/function in recipient cells. Here, we discuss the latest findings supporting the interplay between caspases and EVs, and the biological relevance of this molecular convergence for cellular signalling, principally in non-apoptotic scenarios.
Collapse
Affiliation(s)
- Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
| | | |
Collapse
|
46
|
Davidson SM, Boulanger CM, Aikawa E, Badimon L, Barile L, Binder CJ, Brisson A, Buzas E, Emanueli C, Jansen F, Katsur M, Lacroix R, Lim SK, Mackman N, Mayr M, Menasché P, Nieuwland R, Sahoo S, Takov K, Thum T, Vader P, Wauben MHM, Witwer K, Sluijter JPG. Methods for the identification and characterization of extracellular vesicles in cardiovascular studies: from exosomes to microvesicles. Cardiovasc Res 2023; 119:45-63. [PMID: 35325061 PMCID: PMC10233250 DOI: 10.1093/cvr/cvac031] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are released from cells of the cardiovascular system, and are considered important mediators of intercellular and extracellular communications. Two types of EVs of particular interest are exosomes and microvesicles, which have been identified in all tissue and body fluids and carry a variety of molecules including RNAs, proteins, and lipids. EVs have potential for use in the diagnosis and prognosis of cardiovascular diseases and as new therapeutic agents, particularly in the setting of myocardial infarction and heart failure. Despite their promise, technical challenges related to their small size make it challenging to accurately identify and characterize them, and to study EV-mediated processes. Here, we aim to provide the reader with an overview of the techniques and technologies available for the separation and characterization of EVs from different sources. Methods for determining the protein, RNA, and lipid content of EVs are discussed. The aim of this document is to provide guidance on critical methodological issues and highlight key points for consideration for the investigation of EVs in cardiovascular studies.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Chantal M Boulanger
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
| | - Elena Aikawa
- Department of Medicine, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu i Santa Pau-IIBSantPau, CiberCV, Autonomous University of Barcelona, Barcelona, Spain
| | - Lucio Barile
- Laboratory for Cardiovascular Theranostics, Istituto Cardiocentro Ticino, Ente Ospedaliero Cantonale and Faculty of Biomedical Sciences, Università Svizzera italiana, 6900 Lugano, Switzerland
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Alain Brisson
- Molecular Imaging and NanoBioTechnology, UMR-5248-CBMN, CNRS-University of Bordeaux-IPB, Bat. B14, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Edit Buzas
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, HCEMM-SU and ELKH-SE Immune Proteogenomics Extracellular Vesicle Research Group, Budapest, Hungary
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Felix Jansen
- Department of Internal Medicine II, Heart Center, University Hospital Bonn, Bonn, Germany
| | - Miroslava Katsur
- The Hatter Cardiovascular Institute, University College London, WC1E 6HX London, UK
| | - Romaric Lacroix
- Aix Marseille University, INSERM 1263, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre de Recherche en CardioVasculaire et Nutrition (C2VN), Marseille, France
- Department of Haematology and Vascular Biology, CHU La Conception, APHM, Marseille, France
| | - Sai Kiang Lim
- Institute of Medical Biology and Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Manuel Mayr
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Paris, France
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rienk Nieuwland
- Vesicle Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaloyan Takov
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Pieter Vader
- Université Paris Cité, Paris-Cardiovascular Research Center, INSERM, Paris, France
- CDL Research, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Marca H M Wauben
- Faculty of Veterinary Medicine, Department of Biomolecular Health Sciences, Utrecht University, Yalelaan 2, Utrecht, The Netherlands
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joost P G Sluijter
- Laboratory of Experimental Cardiology, Department of Cardiology, UMC Utrecht Regenerative Medicine Center and Circulatory Health Laboratory, Utrecht University, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
47
|
Nieland L, Mahjoum S, Grandell E, Breyne K, Breakefield XO. Engineered EVs designed to target diseases of the CNS. J Control Release 2023; 356:493-506. [PMID: 36907561 DOI: 10.1016/j.jconrel.2023.03.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/28/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
Abstract
Diseases of the central nervous system (CNS) are challenging to treat, mainly due to the blood-brain barrier (BBB), which restricts drugs in circulation from entering target regions in the brain. To address this issue extracellular vesicles (EVs) have gained increasing scientific interest as carriers able to cross the BBB with multiplex cargos. EVs are secreted by virtually every cell, and their escorted biomolecules are part of an intercellular information gateway between cells within the brain and with other organs. Scientists have undertaken efforts to safeguard the inherent features of EVs as therapeutic delivery vehicles, such as protecting and transferring functional cargo, as well as loading them with therapeutic small molecules, proteins, and oligonucleotides and targeting them to specific cell types for the treatment of CNS diseases. Here, we review current emerging approaches that engineer the EV surface and cargo to improve targeting and functional responses in the brain. We summarize existing applications of engineered EVs as a therapeutic delivery platform for brain diseases, some of which have been evaluated clinically.
Collapse
Affiliation(s)
- Lisa Nieland
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden 2300 RC, the Netherlands.
| | - Shadi Mahjoum
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Emily Grandell
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Koen Breyne
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xandra O Breakefield
- Department of Neurology, Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
48
|
Ghanam J, Chetty VK, Zhu X, Liu X, Gelléri M, Barthel L, Reinhardt D, Cremer C, Thakur BK. Single Molecule Localization Microscopy for Studying Small Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205030. [PMID: 36635058 DOI: 10.1002/smll.202205030] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Small extracellular vesicles (sEVs) are 30-200 nm nanovesicles enriched with unique cargoes of nucleic acids, lipids, and proteins. sEVs are released by all cell types and have emerged as a critical mediator of cell-to-cell communication. Although many studies have dealt with the role of sEVs in health and disease, the exact mechanism of sEVs biogenesis and uptake remain unexplored due to the lack of suitable imaging technologies. For sEVs functional studies, imaging has long relied on conventional fluorescence microscopy that has only 200-300 nm resolution, thereby generating blurred images. To break this resolution limit, recent developments in super-resolution microscopy techniques, specifically single-molecule localization microscopy (SMLM), expanded the understanding of subcellular details at the few nanometer level. SMLM success relies on the use of appropriate fluorophores with excellent blinking properties. In this review, the basic principle of SMLM is highlighted and the state of the art of SMLM use in sEV biology is summarized. Next, how SMLM techniques implemented for cell imaging can be translated to sEV imaging is discussed by applying different labeling strategies to study sEV biogenesis and their biomolecular interaction with the distant recipient cells.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | | | - Xingfu Zhu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Xiaomin Liu
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Márton Gelléri
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
- Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| | - Christoph Cremer
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
49
|
van Solinge TS, Mahjoum S, Ughetto S, Sammarco A, Broekman ML, Breakefield XO, O’Brien KP. Illuminating cellular and extracellular vesicle-mediated communication via a split-Nanoluc reporter in vitro and in vivo. CELL REPORTS METHODS 2023; 3:100412. [PMID: 36936071 PMCID: PMC10014296 DOI: 10.1016/j.crmeth.2023.100412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023]
Abstract
Tools to effectively demonstrate and quantify functional delivery in cellular communication have been lacking. This study reports the use of a fluorescently labeled split Nanoluc reporter system to demonstrate and quantify functional transfer between cells in vitro and in a subcutaneous tumor mouse model. Our construct allows monitoring of direct, indirect, and specifically extracellular vesicle-mediated functional communication.
Collapse
Affiliation(s)
- Thomas S. van Solinge
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Shadi Mahjoum
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stefano Ughetto
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Oncology, University of Turin, Candiolo, Italy
| | - Alessandro Sammarco
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Marike L.D. Broekman
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands
| | - Xandra O. Breakefield
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Killian P. O’Brien
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Afzal A, Khawar MB, Habiba U, Shahzaman S, Hamid SE, Rafiq M, Abbasi MH, Sheikh N. Nanoengineering of Extracellular Vesicles for Drug Delivery Systems: Current Advances and Future Directions. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|