1
|
Pramono H, Yoshida A, Hirashima Y, Sone Y, Terada T, Kosono S, Nishiyama M. Crystal structure of a novel heterooligomeric aminotransferase from Serratia sp. ATCC 39006 provides insights into function. FEBS Lett 2025; 599:74-88. [PMID: 39618122 PMCID: PMC11726168 DOI: 10.1002/1873-3468.15068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 11/11/2024] [Indexed: 01/14/2025]
Abstract
Serratia sp. ATCC 39006 has two tandemly positioned genes, ser4 and ser5, both annotated as sugar aminotransferases, in a putative secondary metabolite biosynthetic gene cluster. Ser5 possesses a complete fold-type I aminotransferase fold, while Ser4 lacks the N- and C-terminal regions and a catalytically important lysine residue of fold-type I aminotransferase. We herein revealed that Ser4 and Ser5 formed a heterotetrameric complex (SerTA) with aminotransferase activity and determined the crystal structures. MD simulations and activity assays with SerTA variants indicated that residues from helix α-8* of inactive Ser4 are important for activity, confirming the importance of heterocomplex formation for activity. Furthermore, the structures suggest that SerTA recognizes a substrate loaded on the carrier protein.
Collapse
Affiliation(s)
- Heru Pramono
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
- Present address:
Department of Marine Sciences, Faculty of Fisheries and MarineUniversitas AirlanggaSurabayaIndonesia
| | - Ayako Yoshida
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuJapan
| | - Yuki Hirashima
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
| | - Yusuke Sone
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
| | - Tohru Terada
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuJapan
| | - Saori Kosono
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuJapan
| | - Makoto Nishiyama
- Graduate School of Agriculture and Life SciencesThe University of TokyoBunkyo‐kuJapan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuJapan
| |
Collapse
|
2
|
Rogowska-van der Molen MA, Savova HV, Janssen EAT, van Alen T, Coolen S, Jansen RS, Welte CU. Unveiling detoxifying symbiosis and dietary influence on the Southern green shield bug microbiota. FEMS Microbiol Ecol 2024; 100:fiae150. [PMID: 39510962 PMCID: PMC11585277 DOI: 10.1093/femsec/fiae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/13/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024] Open
Abstract
The Southern green shield bug, Nezara viridula, is an invasive piercing and sucking pest insect that feeds on crops and poses a threat to global food production. Insects live in close relationships with microorganisms providing their host with unique capabilities, such as resistance to toxic plant metabolites. In this study, we investigated the resistance to and detoxification of the plant metabolite 3-nitropropionic acid (NPA) by core and transient members of the N. viridula microbial community. Microbial community members showed a different tolerance to the toxin and we determined that six out of eight strains detoxified NPA. Additionally, we determined that NPA might interfere with the biosynthesis and transport of l-leucine. Moreover, our study explored the influence of diet on the gut microbial composition of N. viridula, demonstrating that switching to a single-plant diet shifts the abundance of core microbes. In line with this, testing pairwise microbial interactions revealed that core microbiota members support each other and repress the growth of transient microorganisms. With this work, we provide novel insights into the factors shaping the insect gut microbial communities and demonstrate that N. viridula harbours many toxin-degrading bacteria that could support its resistance to plant defences.
Collapse
Affiliation(s)
- Magda A Rogowska-van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Hristina V Savova
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Elke A T Janssen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Theo van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
- Translational Plant Biology, Department of Biology, Faculty of Science, Utrecht University, P.Box 800.56, 3508 TB Utrecht, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, PO Box 9010, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
3
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
4
|
Jansen LM, den Bakker PC, Venbrux N, van Rijbroek KWM, Klaassen-Heshof DJ, Lenferink WB, Lücker S, Ranoux A, Raaijmakers HWC, Boltje TJ. Synthesis and Performance of Bio-Based Amphoteric Surfactants. Chemistry 2024; 30:e202400986. [PMID: 38705867 DOI: 10.1002/chem.202400986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
As the global surfactant market continues to expand, there is an increasing need to develop bio-based alternatives in the shift towards a circular economy. This study focuses on the synthesis of polar, amphoteric, amine-oxide surfactants starting from biomass-derived monosaccharides and demonstrating their potential in various applications. The synthesis involved a reductive amination of the sugars with an alkylamine and formaldehyde followed by oxidation to produce N-oxide surfactants. These bio-based surfactants exhibited promising properties, including high solubility, foamability, surface tension reduction, and critical micelle concentration. In particular, N-GalA1.10 and N-GalA1.12 showed comparable performance to commercial surfactants. Furthermore, these bio-based surfactants demonstrated significantly lower skin irritation potential when compared to petrochemical-derived counterparts like sodium laureth sulfate (SLES), making them potentially suitable for personal care products. The biodegradability assessment revealed that N-GalA1.12 exhibited good biodegradation, indicating its potential environmental compatibility. In conclusion, this study highlights the potential of bio-based N-oxide surfactants derived from monosaccharides as sustainable and skin-friendly alternatives to traditional amphoteric surfactants, like cocamidopropyl betaine (CAPB).
Collapse
Affiliation(s)
- Laura M Jansen
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Pieter C den Bakker
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Niek Venbrux
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | - Kim W M van Rijbroek
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| | | | - Wouter B Lenferink
- Department of Microbiology, Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Adeline Ranoux
- Cosun RD & I, Cosun Innovation Center, Dinteloord, The Netherlands
| | | | - Thomas J Boltje
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Liu YL, Chen XW, Tian SQ, Tan XH, Peng B. Edwardsiella tarda Attenuates Virulence upon Oxytetracycline Resistance. J Proteome Res 2024; 23:2576-2586. [PMID: 38860290 DOI: 10.1021/acs.jproteome.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The relationship between antibiotic resistance and bacterial virulence has not yet been fully explored. Here, we use Edwardsiella tarda as the research model to investigate the proteomic change upon oxytetracycline resistance (LTB4-ROTC). Compared to oxytetracycline-sensitive E. tarda (LTB4-S), LTB4-ROTC has 234 differentially expressed proteins, of which the abundance of 84 proteins is downregulated and 15 proteins are enriched to the Type III secretion system, Type VI secretion system, and flagellum pathways. Functional analysis confirms virulent phenotypes, including autoaggregation, biofilm formation, hemolysis, swimming, and swarming, are impaired in LTB4-ROTC. Furthermore, the in vivo bacterial challenge in both tilapia and zebrafish infection models suggests that the virulence of LTB4-ROTC is attenuated. Analysis of immune gene expression shows that LTB4-ROTC induces a stronger immune response in the spleen but a weaker response in the head kidney than that induced by LTB4-S, suggesting it's a potential vaccine candidate. Zebrafish and tilapia were challenged with a sublethal dose of LTB4-ROTC as a live vaccine followed by LTB4-S challenge. The relative percentage of survival of zebrafish is 60% and that of tilapia is 75% after vaccination. Thus, our study suggests that bacteria that acquire antibiotic resistance may attenuate virulence, which can be explored as a potential live vaccine to tackle bacterial infection in aquaculture.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xuan-Wei Chen
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Si-Qi Tian
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xiao-Hua Tan
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bo Peng
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510275, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
| |
Collapse
|
6
|
Koper K, Han SW, Kothadia R, Salamon H, Yoshikuni Y, Maeda HA. Multisubstrate specificity shaped the complex evolution of the aminotransferase family across the tree of life. Proc Natl Acad Sci U S A 2024; 121:e2405524121. [PMID: 38885378 PMCID: PMC11214133 DOI: 10.1073/pnas.2405524121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Aminotransferases (ATs) are an ancient enzyme family that play central roles in core nitrogen metabolism, essential to all organisms. However, many of the AT enzyme functions remain poorly defined, limiting our fundamental understanding of the nitrogen metabolic networks that exist in different organisms. Here, we traced the deep evolutionary history of the AT family by analyzing AT enzymes from 90 species spanning the tree of life (ToL). We found that each organism has maintained a relatively small and constant number of ATs. Mapping the distribution of ATs across the ToL uncovered that many essential AT reactions are carried out by taxon-specific AT enzymes due to wide-spread nonorthologous gene displacements. This complex evolutionary history explains the difficulty of homology-based AT functional prediction. Biochemical characterization of diverse aromatic ATs further revealed their broad substrate specificity, unlike other core metabolic enzymes that evolved to catalyze specific reactions today. Interestingly, however, we found that these AT enzymes that diverged over billion years share common signatures of multisubstrate specificity by employing different nonconserved active site residues. These findings illustrate that AT family enzymes had leveraged their inherent substrate promiscuity to maintain a small yet distinct set of multifunctional AT enzymes in different taxa. This evolutionary history of versatile ATs likely contributed to the establishment of robust and diverse nitrogen metabolic networks that exist throughout the ToL. The study provides a critical foundation to systematically determine diverse AT functions and underlying nitrogen metabolic networks across the ToL.
Collapse
Affiliation(s)
- Kaan Koper
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| | - Sang-Woo Han
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Department of Biotechnology, Konkuk University, Chungju27478, South Korea
| | - Ramani Kothadia
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Hugh Salamon
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- The US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Global Center for Food, Land, and Water Resources, Research Faculty of Agriculture, Hokkaido University, Hokkaido, Japan 060-8589
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo183-8538, Japan
| | - Hiroshi A. Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
7
|
Poulton NC, DeJesus MA, Munsamy-Govender V, Kanai M, Roberts CG, Azadian ZA, Bosch B, Lin KM, Li S, Rock JM. Beyond antibiotic resistance: The whiB7 transcription factor coordinates an adaptive response to alanine starvation in mycobacteria. Cell Chem Biol 2024; 31:669-682.e7. [PMID: 38266648 PMCID: PMC11031301 DOI: 10.1016/j.chembiol.2023.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 01/26/2024]
Abstract
Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. The conserved whiB7 stress response reduces the effectiveness of antibiotic therapy by activating several intrinsic antibiotic resistance mechanisms. Despite our comprehensive biochemical understanding of WhiB7, the complex set of signals that induce whiB7 expression remain less clear. We employed a reporter-based, genome-wide CRISPRi epistasis screen to identify a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 expression. We show that whiB7 expression is determined by the amino acid composition of the 5' regulatory uORF, thereby allowing whiB7 to sense amino acid starvation. Although deprivation of many amino acids can induce whiB7, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. These findings describe a metabolic function for whiB7 and help explain its evolutionary conservation across mycobacterial species occupying diverse ecological niches.
Collapse
Affiliation(s)
- Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | | | - Mariko Kanai
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Cameron G Roberts
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Karl Matthew Lin
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
8
|
Shi A, Ji X, Li W, Dong L, Wu Y, Zhang Y, Liu X, Zhang Y, Wang S. The Interaction between Human Microbes and Advanced Glycation End Products: The Role of Klebsiella X15 on Advanced Glycation End Products' Degradation. Nutrients 2024; 16:754. [PMID: 38474882 DOI: 10.3390/nu16050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Previous studies have shown that advanced glycation end products (AGEs) are implicated in the occurrence and progression of numerous diseases, with dietary AGEs being particularly associated with intestinal disorders. In this study, methylglyoxal-beta-lactoglobulin AGEs (MGO-β-LG AGEs) were utilized as the exclusive nitrogen source to investigate the interaction between protein-bound AGEs and human gut microbiota. The high-resolution mass spectrometry analysis of alterations in peptides containing AGEs within metabolites before and after fermentation elucidated the capacity of intestinal microorganisms to enzymatically hydrolyze long-chain AGEs into short-chain counterparts. The 16S rRNA sequencing revealed Klebsiella, Lactobacillus, Escherichia-Shigella, and other genera as dominant microbiota at different fermentation times. A total of 187 potential strains of AGE-metabolizing bacteria were isolated from the fermentation broth at various time points. Notably, one strain of Klebsiella exhibited the most robust growth capacity when AGEs served as the sole nitrogen source. Subsequently, proteomics was employed to compare the changes in protein levels of Klebsiella X15 following cultivation in unmodified proteins and proteins modified with AGEs. This analysis unveiled a remodeled amino acid and energy metabolism pathway in Klebsiella in response to AGEs, indicating that Klebsiella may possess a metabolic pathway specifically tailored to AGEs. This study found that fermenting AGEs in healthy human intestinal microbiota altered the bacterial microbiota structure, especially by increasing Klebsiella proliferation, which could be a key factor in AGEs' role in causing diseases, particularly intestinal inflammation.
Collapse
Affiliation(s)
- Aiying Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xuemeng Ji
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Wanhua Li
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuekun Wu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoxia Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Sao Emani C, Reiling N. The efflux pumps Rv1877 and Rv0191 play differential roles in the protection of Mycobacterium tuberculosis against chemical stress. Front Microbiol 2024; 15:1359188. [PMID: 38516013 PMCID: PMC10956863 DOI: 10.3389/fmicb.2024.1359188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background It was previously shown that GlnA3sc enabled Streptomyces coelicolor to survive in excess polyamines. However, subsequent studies revealed that Rv1878, the corresponding Mycobacterium tuberculosis (M.tb) ortholog, was not essential for the detoxification of spermine (Spm), in M.tb. On the other hand, the multi-drug efflux pump Rv1877 was previously shown to enable export of a wide range of compounds, while Rv0191 was shown to be more specific to chloramphenicol. Rationale Therefore, we first wanted to determine if detoxification of Spm by efflux can be achieved by any efflux pump, or if that was dependent upon the function of the pump. Next, since Rv1878 was found not to be essential for the detoxification of Spm, we sought to follow-up on the investigation of the physiological role of Rv1878 along with Rv1877 and Rv0191. Approach To evaluate the specificity of efflux pumps in the mycobacterial tolerance to Spm, we generated unmarked ∆rv1877 and ∆rv0191 M.tb mutants and evaluated their susceptibility to Spm. To follow up on the investigation of any other physiological roles they may have, we characterized them along with the ∆rv1878 M.tb mutant. Results The ∆rv1877 mutant was sensitive to Spm stress, while the ∆rv0191 mutant was not. On the other hand, the ∆rv1878 mutant grew better than the wild-type during iron starvation yet was sensitive to cell wall stress. The proteins Rv1877 and Rv1878 seemed to play physiological roles during hypoxia and acidic stress. Lastly, the ∆rv0191 mutant was the only mutant that was sensitive to oxidative stress. Conclusion The multidrug MFS-type efflux pump Rv1877 is required for Spm detoxification, as opposed to Rv0191 which seems to play a more specific role. Moreover, Rv1878 seems to play a role in the regulation of iron homeostasis and the reconstitution of the cell wall of M.tb. On the other hand, the sensitivity of the ∆rv0191 mutant to oxidative stress, suggests that Rv0191 may be responsible for the transport of low molecular weight thiols.
Collapse
Affiliation(s)
- Carine Sao Emani
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Norbert Reiling
- Microbial Interface Biology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| |
Collapse
|
10
|
Echeveste Medrano MJ, Leu AO, Pabst M, Lin Y, McIlroy SJ, Tyson GW, van Ede J, Sánchez-Andrea I, Jetten MSM, Jansen R, Welte CU. Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress. THE ISME JOURNAL 2024; 18:wrae137. [PMID: 39030685 PMCID: PMC11337218 DOI: 10.1093/ismejo/wrae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.
Collapse
Affiliation(s)
- Maider J Echeveste Medrano
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Andy O Leu
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Martin Pabst
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yuemei Lin
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Simon J McIlroy
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Jitske van Ede
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Irene Sánchez-Andrea
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga 12, 40003 Segovia, Spain
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Robert Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
11
|
Schildkraut JA, Coolen JPM, Ruesen C, van den Heuvel JJMW, Aceña LE, Wertheim HFL, Jansen RS, Koenderink JB, Te Brake LHM, van Ingen J. The potential role of drug transporters and amikacin modifying enzymes in M. avium. J Glob Antimicrob Resist 2023; 34:161-165. [PMID: 37453496 DOI: 10.1016/j.jgar.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
OBJECTIVES Mycobacterium avium (M. avium) complex bacteria cause opportunistic infections in humans. Treatment yields cure rates of 60% and consists of a macrolide, a rifamycin, and ethambutol, and in severe cases, amikacin. Mechanisms of antibiotic tolerance remain mostly unknown. Therefore, we studied the contribution of efflux and amikacin modification to antibiotic susceptibility. METHODS We characterised M. avium ABC transporters and studied their expression together with other transporters following exposure to clarithromycin, amikacin, ethambutol, and rifampicin. We determined the effect of combining the efflux pump inhibitors berberine, verapamil and CCCP (carbonyl cyanide m-chlorophenyl hydrazone), to study the role of efflux on susceptibility. Finally, we studied the modification of amikacin by M. avium using metabolomic analysis. RESULTS Clustering shows conservation between M. avium and M. tuberculosis and transporters from most bacterial subfamilies (2-6, 7a/b, 10-12) were found. The largest number of transporter encoding genes was up-regulated after clarithromycin exposure, and the least following amikacin exposure. Only berberine increased the susceptibility to clarithromycin. Finally, because of the limited effect of amikacin on transporter expression, we studied amikacin modification and showed that M. avium, in contrast to M. abscessus, is not able to modify amikacin. CONCLUSION We show that M. avium carries ABC transporters from all major families important for antibiotic efflux, including homologues shown to have affinity for drugs included in treatment. Efflux inhibition in M. avium can increase susceptibility, but this effect is efflux pump inhibitor- and antibiotic-specific. Finally, the lack of amikacin modifying activity in M. avium is important for its activity.
Collapse
Affiliation(s)
- Jodie A Schildkraut
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Jordy P M Coolen
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Carolien Ruesen
- Centre for Epidemiology and Surveillance of Infectious Diseases, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Laura Edo Aceña
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Heiman F L Wertheim
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Robert S Jansen
- Department of Microbiology, RIBES, Radboud University, Nijmegen, the Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and toxicology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Lindsey H M Te Brake
- Radboudumc Centre for Infectious Diseases, Department of Pharmacy, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jakko van Ingen
- Radboudumc Centre for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Poulton NC, DeJesus MA, Munsamy-Govender V, Roberts CG, Azadian ZA, Bosch B, Lin KM, Li S, Rock JM. Beyond antibiotic resistance: the whiB7 transcription factor coordinates an adaptive response to alanine starvation in mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543512. [PMID: 37333137 PMCID: PMC10274678 DOI: 10.1101/2023.06.02.543512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Pathogenic mycobacteria are a significant cause of morbidity and mortality worldwide. These bacteria are highly intrinsically drug resistant, making infections challenging to treat. The conserved whiB7 stress response is a key contributor to mycobacterial intrinsic drug resistance. Although we have a comprehensive structural and biochemical understanding of WhiB7, the complex set of signals that activate whiB7 expression remain less clear. It is believed that whiB7 expression is triggered by translational stalling in an upstream open reading frame (uORF) within the whiB7 5' leader, leading to antitermination and transcription into the downstream whiB7 ORF. To define the signals that activate whiB7, we employed a genome-wide CRISPRi epistasis screen and identified a diverse set of 150 mycobacterial genes whose inhibition results in constitutive whiB7 activation. Many of these genes encode amino acid biosynthetic enzymes, tRNAs, and tRNA synthetases, consistent with the proposed mechanism for whiB7 activation by translational stalling in the uORF. We show that the ability of the whiB7 5' regulatory region to sense amino acid starvation is determined by the coding sequence of the uORF. The uORF shows considerable sequence variation among different mycobacterial species, but it is universally and specifically enriched for alanine. Providing a potential rationalization for this enrichment, we find that while deprivation of many amino acids can activate whiB7 expression, whiB7 specifically coordinates an adaptive response to alanine starvation by engaging in a feedback loop with the alanine biosynthetic enzyme, aspC. Our results provide a holistic understanding of the biological pathways that influence whiB7 activation and reveal an extended role for the whiB7 pathway in mycobacterial physiology, beyond its canonical function in antibiotic resistance. These results have important implications for the design of combination drug treatments to avoid whiB7 activation, as well as help explain the conservation of this stress response across a wide range of pathogenic and environmental mycobacteria.
Collapse
Affiliation(s)
- Nicholas C Poulton
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Michael A DeJesus
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Vanisha Munsamy-Govender
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Cameron G Roberts
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Zachary A Azadian
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Barbara Bosch
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Karl Matthew Lin
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Shuqi Li
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| | - Jeremy M Rock
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, New York, United States of America
| |
Collapse
|
13
|
Xu Y, Ma S, Huang Z, Wang L, Raza SHA, Wang Z. Nitrogen metabolism in mycobacteria: the key genes and targeted antimicrobials. Front Microbiol 2023; 14:1149041. [PMID: 37275154 PMCID: PMC10232911 DOI: 10.3389/fmicb.2023.1149041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Nitrogen metabolism is an important physiological process that affects the survival and virulence of Mycobacterium tuberculosis. M. tuberculosis's utilization of nitrogen in the environment and its adaptation to the harsh environment of acid and low oxygen in macrophages are closely related to nitrogen metabolism. In addition, the dormancy state and drug resistance of M. tuberculosis are closely related to nitrogen metabolism. Although nitrogen metabolism is so important, limited research was performed on nitrogen metabolism as compared with carbon metabolism. M. tuberculosis can use a variety of inorganic or organic nitrogen sources, including ammonium salts, nitrate, glutamine, asparagine, etc. In these metabolic pathways, some enzymes encoded by key genes, such as GlnA1, AnsP2, etc, play important regulatory roles in the pathogenesis of TB. Although various small molecule inhibitors and drugs have been developed for different nitrogen metabolism processes, however, long-term validation is needed before their practical application. Most importantly, with the emergence of multidrug-resistant strains, eradication, and control of M. tuberculosis will still be very challenging.
Collapse
Affiliation(s)
- Yufan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiwei Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Longlong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
| | - Zhe Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
de Jonge NF, Louwen JJR, Chekmeneva E, Camuzeaux S, Vermeir FJ, Jansen RS, Huber F, van der Hooft JJJ. MS2Query: reliable and scalable MS 2 mass spectra-based analogue search. Nat Commun 2023; 14:1752. [PMID: 36990978 PMCID: PMC10060387 DOI: 10.1038/s41467-023-37446-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Metabolomics-driven discoveries of biological samples remain hampered by the grand challenge of metabolite annotation and identification. Only few metabolites have an annotated spectrum in spectral libraries; hence, searching only for exact library matches generally returns a few hits. An attractive alternative is searching for so-called analogues as a starting point for structural annotations; analogues are library molecules which are not exact matches but display a high chemical similarity. However, current analogue search implementations are not yet very reliable and relatively slow. Here, we present MS2Query, a machine learning-based tool that integrates mass spectral embedding-based chemical similarity predictors (Spec2Vec and MS2Deepscore) as well as detected precursor masses to rank potential analogues and exact matches. Benchmarking MS2Query on reference mass spectra and experimental case studies demonstrate improved reliability and scalability. Thereby, MS2Query offers exciting opportunities to further increase the annotation rate of metabolomics profiles of complex metabolite mixtures and to discover new biology.
Collapse
Affiliation(s)
- Niek F de Jonge
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.
| | - Joris J R Louwen
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands
| | - Elena Chekmeneva
- National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Stephane Camuzeaux
- National Phenome Centre, Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Femke J Vermeir
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525ED, Nijmegen, the Netherlands
| | - Robert S Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525ED, Nijmegen, the Netherlands
| | - Florian Huber
- Centre for Digitalization and Digitality (ZDD), University of Applied Sciences Düsseldorf, Düsseldorf, Germany.
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, 6708 PB, Wageningen, the Netherlands.
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa.
| |
Collapse
|
15
|
Singh V, Dziwornu GA, Chibale K. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics. Nat Rev Chem 2023; 7:340-354. [PMID: 37117810 PMCID: PMC10026799 DOI: 10.1038/s41570-023-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 03/29/2023]
Abstract
Drug metabolism is generally associated with liver enzymes. However, in the case of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), Mtb-mediated drug metabolism plays a significant role in treatment outcomes. Mtb is equipped with enzymes that catalyse biotransformation reactions on xenobiotics with consequences either in its favour or as a hindrance by deactivating or activating chemical entities, respectively. Considering the range of chemical reactions involved in the biosynthetic pathways of Mtb, information related to the biotransformation of antitubercular compounds would provide opportunities for the development of new chemical tools to study successful TB infections while also highlighting potential areas for drug discovery, host-directed therapy, dose optimization and elucidation of mechanisms of action. In this Review, we discuss Mtb-mediated biotransformations and propose a holistic approach to address drug metabolism in TB drug discovery and related areas. ![]()
Mycobacterium tuberculosis-mediated metabolism of xenobiotics poses an important research question for antitubercular drug discovery. Identification of the metabolic fate of compounds can inform requisite structure–activity relationship strategies early on in a drug discovery programme towards improving the properties of the compound.
Collapse
Affiliation(s)
- Vinayak Singh
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
| | - Godwin Akpeko Dziwornu
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
| | - Kelly Chibale
- grid.7836.a0000 0004 1937 1151Holistic Drug Discovery and Development (H3D) Centre, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151South African Medical Research Council Drug Discovery and Development Research Unit, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, South Africa
- grid.7836.a0000 0004 1937 1151Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
16
|
Zhang K, Sowers ML, Cherryhomes EI, Singh VK, Mishra A, Restrepo BI, Khan A, Jagannath C. Sirtuin-dependent metabolic and epigenetic regulation of macrophages during tuberculosis. Front Immunol 2023; 14:1121495. [PMID: 36993975 PMCID: PMC10040548 DOI: 10.3389/fimmu.2023.1121495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/01/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are the preeminent phagocytic cells which control multiple infections. Tuberculosis a leading cause of death in mankind and the causative organism Mycobacterium tuberculosis (MTB) infects and persists in macrophages. Macrophages use reactive oxygen and nitrogen species (ROS/RNS) and autophagy to kill and degrade microbes including MTB. Glucose metabolism regulates the macrophage-mediated antimicrobial mechanisms. Whereas glucose is essential for the growth of cells in immune cells, glucose metabolism and its downsteam metabolic pathways generate key mediators which are essential co-substrates for post-translational modifications of histone proteins, which in turn, epigenetically regulate gene expression. Herein, we describe the role of sirtuins which are NAD+-dependent histone histone/protein deacetylases during the epigenetic regulation of autophagy, the production of ROS/RNS, acetyl-CoA, NAD+, and S-adenosine methionine (SAM), and illustrate the cross-talk between immunometabolism and epigenetics on macrophage activation. We highlight sirtuins as emerging therapeutic targets for modifying immunometabolism to alter macrophage phenotype and antimicrobial function.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ellie I. Cherryhomes
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Vipul K. Singh
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Blanca I. Restrepo
- University of Texas Health Houston, School of Public Health, Brownsville, TX, United States
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
17
|
Effects of glutamate oxaloacetate transaminase on reactive oxygen species in Ganoderma lucidum. Appl Microbiol Biotechnol 2023; 107:1845-1861. [PMID: 36754884 DOI: 10.1007/s00253-023-12417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/10/2023]
Abstract
Nitrogen metabolism can regulate mycelial growth and secondary metabolism in Ganoderma lucidum. As an important enzyme in intracellular amino acid metabolism, glutamate oxaloacetate transaminase (GOT) has many physiological functions in animals and plants, but its function in fungi has been less studied. In the present study, two GOT isoenzymes were found in G. lucidum; one is located in the mitochondria (GOT1), and the other is located in the cytoplasm (GOT2). The reactive oxygen species (ROS) level was increased in got1 silenced strains and was approximately 1.5-fold higher than that in the wild-type (WT) strain, while silencing got2 did not affect the ROS level. To explore how GOT affects ROS in G. lucidum, experiments related to the generation and elimination of intracellular ROS were conducted. First, compared with that in the WT strain, the glutamate content, one of the substrates of GOT, decreased when got1 or got2 was knocked down, and the glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH) content decreased by approximately 38.6%, 19.3%, and 40.1% in got1 silenced strains, got2 silenced strains, and got1/2 co-silenced strains respectively. Second, GOT also affects glucose metabolism. The pyruvate (PA), acetyl-CoA and α-ketoglutarate (α-KG) contents decreased in got1 and got2 silenced strains, and the transcription levels of most genes involved in the glycolytic pathway and the tricarboxylic acid cycle increased. The NADH content was increased in got1 silenced strains and got2 silenced strains, and the NAD+/NADH ratio was decreased, which might result in mitochondrial ROS production. Compared with the WT strain, the mitochondrial ROS level was approximately 1.5-fold higher in the got1 silenced strains. In addition, silencing of got1 or got2 resulted in a decrease in antioxidant enzymes, including superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase. Finally, ganoderic acid (GA) was increased by approximately 40% in got1 silenced strains compared with the WT strain, while silencing of got2 resulted in a 10% increase in GA biosynthesis. These findings provide new insights into the effect of GOT on ROS and secondary metabolism in fungi. KEY POINTS: • GOT plays important roles in ROS level in Ganoderma lucidum. • Silencing of got1 resulted in decrease in GSH content and antioxidant enzymes activities, but an increase in mitochondrial ROS level in G. lucidum. • Silencing of got1 and got2 resulted in an increase in ganoderic acid biosynthesis in G. lucidum.
Collapse
|
18
|
Hogendoorn C, Pol A, de Graaf R, White PB, Mesman R, van Galen PM, van Alen TA, Cremers G, Jansen RS, Jetten MSM, Op den Camp HJM. " Candidatus Hydrogenisulfobacillus filiaventi" strain R50 gen. nov. sp. nov., a highly efficient producer of extracellular organic compounds from H 2 and CO 2. Front Microbiol 2023; 14:1151097. [PMID: 37032882 PMCID: PMC10080006 DOI: 10.3389/fmicb.2023.1151097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Production of organic molecules is largely depending on fossil fuels. A sustainable alternative would be the synthesis of these compounds from CO2 and a cheap energy source, such as H2, CH4, NH3, CO, sulfur compounds or iron(II). Volcanic and geothermal areas are rich in CO2 and reduced inorganic gasses and therefore habitats where novel chemolithoautotrophic microorganisms for the synthesis of organic compounds could be discovered. Here we describe "Candidatus Hydrogenisulfobacillus filiaventi" R50 gen. nov., sp. nov., a thermoacidophilic, autotrophic H2-oxidizing microorganism, that fixed CO2 and excreted no less than 0.54 mol organic carbon per mole fixed CO2. Extensive metabolomics and NMR analyses revealed that Val, Ala and Ile are the most dominant form of excreted organic carbon while the aromatic amino acids Tyr and Phe, and Glu and Lys were present at much lower concentrations. In addition to these proteinogenic amino acids, the excreted carbon consisted of homoserine lactone, homoserine and an unidentified amino acid. The biological role of the excretion remains uncertain. In the laboratory, we noticed the production under high growth rates (0.034 h-1, doubling time of 20 h) in combination with O2-limitation, which will most likely not occur in the natural habitat of this strain. Nevertheless, this large production of extracellular organic molecules from CO2 may open possibilities to use chemolithoautotrophic microorganisms for the sustainable production of important biomolecules.
Collapse
Affiliation(s)
- Carmen Hogendoorn
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Arjan Pol
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Rob de Graaf
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Paul B. White
- Department of Synthetic Organic Chemistry, IMM, Radboud University, Nijmegen, Netherlands
| | - Rob Mesman
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Peter M. van Galen
- Department of Systems Chemistry, IMM, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Theo A. van Alen
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Geert Cremers
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Robert S. Jansen
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Mike S. M. Jetten
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
| | - Huub J. M. Op den Camp
- Department of Microbiology, RIBES, Radboud University, Nijmegen, Netherlands
- *Correspondence: Huub J. M. Op den Camp,
| |
Collapse
|
19
|
Xia M, Zhang X, Xiao Y, Sheng Q, Tu L, Chen F, Yan Y, Zheng Y, Wang M. Interaction of acetic acid bacteria and lactic acid bacteria in multispecies solid-state fermentation of traditional Chinese cereal vinegar. Front Microbiol 2022; 13:964855. [PMID: 36246224 PMCID: PMC9557190 DOI: 10.3389/fmicb.2022.964855] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
The microbial community plays an important role on the solid-state fermentation (SSF) of Chinese cereal vinegar, where acetic acid bacteria (AAB) and lactic acid bacteria (LAB) are the dominant bacteria. In this study, the top-down (in situ) and bottom-up (in vitro) approaches were employed to reveal the interaction of AAB and LAB in SSF of Shanxi aged vinegar (SAV). The results of high-throughput sequencing indicates that Acetobacter pasteurianus and Lactobacillus helveticus are the predominant species of AAB and LAB, respectively, and they showed negative interrelationship during the fermentation. A. pasteurianus CGMCC 3089 and L. helveticus CGMCC 12062, both of which were isolated from fermentation of SAV, showed no nutritional competition when they were co-cultured in vitro. However, the growth and metabolism of L. helveticus CGMCC 12062 were inhibited during SSF due to the presence of A. pasteurianus CGMCC 3089, indicating an amensalism phenomenon between these two species. The transcriptomic results shows that there are 831 differentially expressed genes (|log2 (Fold Change)| > 1 and, p ≤ 0.05) in L. helveticus CGMCC 12062 under co-culture condition comparing to its mono-culture, which are mainly classified into Gene Ontology classification of molecular function, biological process, and cell composition. Of those 831 differentially expressed genes, 202 genes are up-regulated and 629 genes are down-regulated. The down-regulated genes were enriched in KEGG pathways of sugar, amino acid, purine, and pyrimidine metabolism. The transcriptomic results for A. pasteurianus CGMCC 3089 under co-culture condition reveals 529 differentially expressed genes with 393 up-regulated and 136 down-regulated, and the genes within KEGG pathways of sugar, amino acid, purine, and pyrimidine metabolism are up-regulated. Results indicate an amensalism relationship in co-culture of A. pasteurianus and L. helveticus. Therefore, this work gives a whole insight on the interaction between the predominant species in SSF of cereal vinegar from nutrient utilization, endogenous factors inhibition and the regulation of gene transcription.
Collapse
Affiliation(s)
- Menglei Xia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaofeng Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yun Xiao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qing Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Linna Tu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
| | - Yufeng Yan
- Shanxi Zilin Vinegar Industry Co., Ltd., Shanxi Province Key Laboratory of Vinegar Fermentation Science and Engineering, Taiyuan, China
| | - Yu Zheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Yu Zheng, Min Wang,
| | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China,*Correspondence: Yu Zheng, Min Wang,
| |
Collapse
|
20
|
Insect Gut Isolate Pseudomonas sp. Strain Nvir Degrades the Toxic Plant Metabolite Nitropropionic Acid. Appl Environ Microbiol 2022; 88:e0071922. [PMID: 36154165 PMCID: PMC9552603 DOI: 10.1128/aem.00719-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitropropionic acid (NPA) is a widely distributed naturally occurring nitroaliphatic toxin produced by leguminous plants and fungi. The Southern green shield bug feeds on leguminous plants and shows no symptoms of intoxication. Likewise, its gut-associated microorganisms are subjected to high levels of this toxic compound. In this study, we isolated a bacterium from this insect's gut system, classified as Pseudomonas sp. strain Nvir, that was highly resistant to NPA and was fully degrading it to inorganic nitrogen compounds and carbon dioxide. In order to understand the metabolic fate of NPA, we traced the fate of all atoms of the NPA molecule using isotope tracing experiments with [15N]NPA and [1-13C]NPA, in addition to experiments with uniformly 13C-labeled biomass that was used to follow the incorporation of 12C atoms from [U-12C]NPA into tricarboxylic acid cycle intermediates. With the help of genomics and transcriptomics, we uncovered the isolate’s NPA degradation pathway, which involves a putative propionate-3-nitronate monooxygenase responsible for the first step of NPA degradation. The discovered protein shares only 32% sequence identity with previously described propionate-3-nitronate monooxygenases. Finally, we advocate that NPA-degrading bacteria might find application in biotechnology, and their unique enzymes might be used in biosynthesis, bioremediation, and in dealing with postharvest NPA contamination in economically important products. IMPORTANCE Plants have evolved sophisticated chemical defense mechanisms, such as the production of plant toxins in order to deter herbivores. One example of such a plant toxin is nitropropionic acid (NPA), which is produced by leguminous plants and also by certain fungi. In this project, we have isolated a bacterium from the intestinal tract of a pest insect, the Southern green shield bug, that is able to degrade NPA. Through a multiomics approach, we identified the respective metabolic pathway and determined the metabolic fate of all atoms of the NPA molecule. In addition, we provide a new genetic marker that can be used for genome mining toward NPA degradation. The discovery of degradation pathways of plant toxins by environmental bacteria opens new possibilities for pretreatment of contaminated food and feed sources and characterization of understudied enzymes allows their broad application in biotechnology.
Collapse
|
21
|
Rhee KY, Jansen RS, Grundner C. Activity-based annotation: the emergence of systems biochemistry. Trends Biochem Sci 2022; 47:785-794. [PMID: 35430135 PMCID: PMC9378515 DOI: 10.1016/j.tibs.2022.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/22/2022] [Indexed: 01/21/2023]
Abstract
Current tools to annotate protein function have failed to keep pace with the speed of DNA sequencing and exponentially growing number of proteins of unknown function (PUFs). A major contributing factor to this mismatch is the historical lack of high-throughput methods to experimentally determine biochemical activity. Activity-based methods, such as activity-based metabolite and protein profiling, are emerging as new approaches for unbiased, global, biochemical annotation of protein function. In this review, we highlight recent experimental, activity-based approaches that offer new opportunities to determine protein function in a biologically agnostic and systems-level manner.
Collapse
Affiliation(s)
- Kyu Y Rhee
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Robert S Jansen
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands.
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
22
|
Romano GE, Silva-Pereira TT, de Melo FM, Sisco MC, Banari AC, Zimpel CK, Soler-Camargo NC, Guimarães AMDS. Unraveling the metabolism of Mycobacterium caprae using comparative genomics. Tuberculosis (Edinb) 2022; 136:102254. [PMID: 36126496 DOI: 10.1016/j.tube.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 08/01/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022]
Abstract
In our laboratory, Mycobacterium caprae has poor growth in standard medium (SM) 7H9-OADC supplemented with pyruvate and Tween-80. Our objectives were to identify mutations affecting M. caprae metabolism and use this information to design a culture medium to improve its growth. We selected 77 M. caprae genomes and sequenced M. caprae NLA000201913 used in our experiments. Mutations present in >95% of the strains compared to Mycobacterium tuberculosis H37Rv were analyzed in silico for their deleterious effects on proteins of metabolic pathways. Apart from the known defect in the pyruvate kinase, M. caprae has important lesions in enzymes of the TCA cycle, methylmalonyl cycle, B12 metabolism, and electron-transport chain. We provide evidence of enzymatic redundancy elimination and epistatic mutations, and possible production of toxic metabolites hindering M. caprae growth in vitro. A newly designed SM supplemented with l-glutamate allowed faster growth and increased final microbial mass of M. caprae. However, possible accumulation of metabolic waste-products and/or nutritional limitations halted M. caprae growth prior to a M. tuberculosis-like stationary phase. Our findings suggest that M. caprae relies on GABA and/or glyoxylate shunts for in vitro growth in routine media. The newly developed medium will improve experiments with this bacterium by allowing faster growth in vitro.
Collapse
Affiliation(s)
- Giovanni Emiddio Romano
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Filipe Menegatti de Melo
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Maria Carolina Sisco
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil.
| | - Alexandre Campos Banari
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Cristina Kraemer Zimpel
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Preventive Veterinary Medicine and Animal Health, College of Veterinary Medicine, University of São Paulo, 87 Prof Dr Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-270, Brazil.
| | - Ana Marcia de Sá Guimarães
- Laboratory of Applied Research in Mycobacteria (LaPAM), Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 1374 Prof Lineu Prestes Avenue, Room 229, São Paulo, SP, 05508-000, Brazil; Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University. 625 Harrison Street, West Lafayette, IN, 47907, USA.
| |
Collapse
|
23
|
Samuels AN, Wang ER, Harrison GA, Valenta JC, Stallings CL. Understanding the contribution of metabolism to Mycobacterium tuberculosis drug tolerance. Front Cell Infect Microbiol 2022; 12:958555. [PMID: 36072222 PMCID: PMC9441742 DOI: 10.3389/fcimb.2022.958555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Treatment of Mycobacterium tuberculosis (Mtb) infections is particularly arduous. One challenge to effectively treating tuberculosis is that drug efficacy in vivo often fails to match drug efficacy in vitro. This is due to multiple reasons, including inadequate drug concentrations reaching Mtb at the site of infection and physiological changes of Mtb in response to host derived stresses that render the bacteria more tolerant to antibiotics. To more effectively and efficiently treat tuberculosis, it is necessary to better understand the physiologic state of Mtb that promotes drug tolerance in the host. Towards this end, multiple studies have converged on bacterial central carbon metabolism as a critical contributor to Mtb drug tolerance. In this review, we present the evidence that changes in central carbon metabolism can promote drug tolerance, depending on the environment surrounding Mtb. We posit that these metabolic pathways could be potential drug targets to stymie the development of drug tolerance and enhance the efficacy of current antimicrobial therapy.
Collapse
Affiliation(s)
| | | | | | | | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
24
|
Du Z, Lin W, Zhu J, Li J. Amino acids profiling and transcriptomic data integration demonstrates the dynamic regulation of amino acids synthesis in the leaves of Cyclocarya paliurus. PeerJ 2022; 10:e13689. [PMID: 35811808 PMCID: PMC9266588 DOI: 10.7717/peerj.13689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Background Cyclocarya paliurus is a tree well known for its edible and medicinal leaves. Amino acids are essential nutritional components that are present in foods and closely related to the flavor and quality of tea. However, the abundance of amino acids and the regulation of amino acid biosynthesis in the leaves of C. paliurus have not been investigated across different developmental stages. Methods A combined metabolomic and transcriptomic analysis was employed to investigate the changes in the amino acid profile over several developmental stages (S1, the smallest fully expanded leaf; S3, full leaf enlargement and full leaf thickness; and S2, an intermediate developmental stage between S1 and S3) and the molecular mechanism was elucidated. Results The results showed that leaves at the S1 stage had the highest content, while those at the S3 stage had the lowest content of amino acids; fourteen differentially expressed genes were involved in the glycolysis pathway, the tricarboxylic acid cycle and the pentose phosphate pathway, which indicated that the reduced abundance of amino acids in the leaves of C. paliurus (mature leaves) may be attributable to reduced gene expression related to carbohydrate metabolism. Four basic leucine zipper transcription factors might play important roles in the regulation of the biosynthesis of amino acids in the leaves of C. paliurus. Conclusions Leaves at the S1 stage are recommended for high quality tea production because of their high content of amino acids, while leaves at the S2 stage are recommended for generous tea production because of their high levels of sweet flavor amino acids (alanine) and essential amino acids (methionine, phenylalanine, threonine, and tryptophan).
Collapse
Affiliation(s)
- Zhaokui Du
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Weida Lin
- Taizhou Vocational College of Science and Technology, Taizhou, Zhejiang, China
| | - Jinxing Zhu
- Suichang County Bureau of Agriculture and Rural Affairs, Suichang, Zhejiang, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
25
|
Antitubercular, Cytotoxicity, and Computational Target Validation of Dihydroquinazolinone Derivatives. Antibiotics (Basel) 2022; 11:antibiotics11070831. [PMID: 35884084 PMCID: PMC9311641 DOI: 10.3390/antibiotics11070831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
A series of 2,3-dihydroquinazolin-4(1H)-one derivatives (3a–3m) was screened for in vitro whole-cell antitubercular activity against the tubercular strain H37Rv and multidrug-resistant (MDR) Mycobacterium tuberculosis (MTB) strains. Compounds 3l and 3m with di-substituted aryl moiety (halogens) attached to the 2-position of the scaffold showed a minimum inhibitory concentration (MIC) of 2 µg/mL against the MTB strain H37Rv. Compound 3k with an imidazole ring at the 2-position of the dihydroquinazolin-4(1H)-one also showed significant inhibitory action against both the susceptible strain H37Rv and MDR strains with MIC values of 4 and 16 µg/mL, respectively. The computational results revealed the mycobacterial pyridoxal-5′-phosphate (PLP)-dependent aminotransferase (BioA) enzyme as the potential target for the tested compounds. In vitro, ADMET calculations and cytotoxicity studies against the normal human dermal fibroblast cells indicated the safety and tolerability of the test compounds 3k–3m. Thus, compounds 3k–3m warrant further optimization to develop novel BioA inhibitors for the treatment of drug-sensitive H37Rv and drug-resistant MTB.
Collapse
|
26
|
Rang J, Cao L, Shuai L, Liu Y, Zhu Z, Xia Z, Jin D, Sun Y, Yu Z, Hu S, Xie Q, Xia L. Promoting Butenyl-spinosyn Production Based on Omics Research and Metabolic Network Construction in Saccharopolyspora pogona. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3557-3567. [PMID: 35245059 DOI: 10.1021/acs.jafc.2c00285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Understanding the metabolism of Saccharopolyspora pogona on a global scale is essential for manipulating its metabolic capabilities to improve butenyl-spinosyn biosynthesis. Here, we combined multiomics analysis to parse S. pogona genomic information, construct a metabolic network, and mine important functional genes that affect the butenyl-spinosyn biosynthesis. This research not only elucidated the relationship between butenyl-spinosyn biosynthesis and the primary metabolic pathway but also showed that the low expression level and continuous downregulation of the bus cluster and the competitive utilization of acetyl-CoA were the main reasons for reduced butenyl-spinosyn production. Our framework identified 148 genes related to butenyl-spinosyn biosynthesis that were significantly differentially expressed, confirming that butenyl-spinosyn polyketide synthase (PKS) and succinic semialdehyde dehydrogenase (GabD) play an important role in regulating butenyl-spinosyn biosynthesis. Combined modification of these genes increased overall butenyl-spinosyn production by 6.38-fold to 154.1 ± 10.98 mg/L. Our results provide an important strategy for further promoting the butenyl-spinosyn titer.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Zirong Zhu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Duo Jin
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Yunjun Sun
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Ziquan Yu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, Hunan 410081, People's Republic of China
| |
Collapse
|
27
|
Sun M, Liu J, Li J, Huang Y. Endophytic Bacterium Serratia plymuthica From Chinese Leek Suppressed Apple Ring Rot on Postharvest Apple Fruit. Front Microbiol 2022; 12:802887. [PMID: 35310399 PMCID: PMC8929176 DOI: 10.3389/fmicb.2021.802887] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/21/2021] [Indexed: 11/24/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is an economically significant plant disease that spreads across the apple production areas in China. The pathogen infects apple fruits during the growing season and results in postharvest fruits rot during storage, which brings about a huge loss to plant growers. The study demonstrated that an endophytic bacterium Serratia plymuthica isolated from Chinese leek (Allium tuberosum) significantly suppressed the mycelial growth, severely damaging the typical morphology of B. dothidea, and exerted a high inhibition of 84.64% against apple ring rot on postharvest apple fruit. Furthermore, S. plymuthica significantly reduced the titratable acidity (TA) content, enhanced the soluble sugar (SS) content, vitamin C content, and SS/TA ratio, and maintained the firmness of the fruits. Furthermore, comparing the transcriptomes of the control and the S. plymuthica treated mycelia revealed that S. plymuthica significantly altered the expressions of genes related to membrane (GO:0016020), catalytic activity (GO:0003824), oxidation-reduction process (GO:0055114), and metabolism pathways, including tyrosine metabolism (ko00280), glycolysis/gluconeogenesis (ko00010), and glycerolipid metabolism (ko00561). The present study provided a possible way to control apple ring rot on postharvest fruit and a solid foundation for further exploring the underlying molecular mechanism.
Collapse
Affiliation(s)
- Meng Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Junping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jinghui Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China.,Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China.,National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China.,Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| |
Collapse
|
28
|
Hubert CB, de Carvalho LPS. Metabolomic approaches for enzyme function and pathway discovery in bacteria. Methods Enzymol 2022; 665:29-47. [DOI: 10.1016/bs.mie.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Zhang W, Xu L, Zhu L, Liu Y, Yang S, Zhao M. Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Front Physiol 2021; 12:746749. [PMID: 34925055 PMCID: PMC8678573 DOI: 10.3389/fphys.2021.746749] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid droplets (LDs) are commonly found in various biological cells and are organelles related to cell metabolism. LDs, the number and size of which are heterogeneous across cell type, are primarily composed of polar lipids and proteins on the surface with neutral lipids in the core. Neutral lipids stored in LDs can be degraded by lipolysis and lipophagocytosis, which are regulated by various proteins. The process of LD formation can be summarized in four steps. In addition to energy production, LDs play an extremely pivotal role in a variety of physiological and pathological processes, such as endoplasmic reticulum stress, lipid toxicity, storage of fat-soluble vitamins, regulation of oxidative stress, and reprogramming of cell metabolism. Interestingly, LDs, the hub of integration between metabolism and the immune system, are involved in antitumor immunity, anti-infective immunity (viruses, bacteria, parasites, etc.) and some metabolic immune diseases. Herein, we summarize the role of LDs in several major immune cells as elucidated in recent years, including T cells, dendritic cells, macrophages, mast cells, and neutrophils. Additionally, we analyze the role of the interaction between LDs and immune cells in two typical metabolic immune diseases: atherosclerosis and Mycobacterium tuberculosis infection.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya Hospital, Central South University, Changsha, China
| | - Linyong Xu
- School of Life Sciences, Central South University, Changsha, China
| | - Ling Zhu
- School of Life Sciences, Central South University, Changsha, China
| | - Yifan Liu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Siwei Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
30
|
Deb PK, Al-Shar’i NA, Venugopala KN, Pillay M, Borah P. In vitro anti-TB properties, in silico target validation, molecular docking and dynamics studies of substituted 1,2,4-oxadiazole analogues against Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2021; 36:869-884. [PMID: 34060396 PMCID: PMC8172222 DOI: 10.1080/14756366.2021.1900162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
The alarming increase in multi- and extensively drug-resistant (MDR and XDR) strains of Mycobacterium tuberculosis (MTB) has triggered the scientific community to search for novel, effective, and safer therapeutics. To this end, a series of 3,5-disubstituted-1,2,4-oxadiazole derivatives (3a-3i) were tested against H37Rv, MDR and XDR strains of MTB. Of which, compound 3a with para-trifluorophenyl substituted oxadiazole showed excellent activity against the susceptible H37Rv and MDR-MTB strain with a MIC values of 8 and 16 µg/ml, respectively.To understand the mechanism of action of these compounds (3a-3i) and identify their putative drug target, molecular docking and dynamics studies were employed against a panel of 20 mycobacterial enzymes reported to be essential for mycobacterial growth and survival. These computational studies revealed polyketide synthase (Pks13) enzyme as the putative target. Moreover, in silico ADMET predictions showed satisfactory properties for these compounds, collectively, making them, particularly compound 3a, promising leads worthy of further optimisation.
Collapse
Affiliation(s)
- Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| | - Nizar A. Al-Shar’i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Melendhran Pillay
- Department of Microbiology, National Health Laboratory Services, KZN Academic Complex, Inkosi Albert Luthuli Central Hospital, Durban, South Africa
| | - Pobitra Borah
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, India
| |
Collapse
|
31
|
Lee J, Heo L, Han SW. Comparative Proteomic Analysis for a Putative Pyridoxal Phosphate-Dependent Aminotransferase Required for Virulence in Acidovorax citrulli. THE PLANT PATHOLOGY JOURNAL 2021; 37:673-680. [PMID: 34897258 PMCID: PMC8666244 DOI: 10.5423/ppj.nt.09.2021.0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/06/2021] [Accepted: 10/13/2021] [Indexed: 06/14/2023]
Abstract
Acidovorax citrulli (Ac) is the causative agent of bacterial fruit blotch disease in watermelon. Since resistant cultivars have not yet been developed, the virulence factors/mechanisms of Ac need to be characterized. This study reports the functions of a putative pyridoxal phosphate-dependent aminotransferase (PpdaAc) that transfers amino groups to its substrates and uses pyridoxal phosphate as a coenzyme. It was observed that a ppdaAc knockout mutant had a significantly reduced virulence in watermelon when introduced via germinated-seed inoculation as well as leaf infiltration. Comparative proteomic analysis predicted the cellular mechanisms related to PpdaAc. Apart from causing virulence, the PpdaAc may have significant roles in energy production, cell membrane, motility, chemotaxis, post-translational modifications, and iron-related mechanisms. Therefore, it is postulated that PpdaAc may possess pleiotropic effects. These results provide new insights into the functions of a previously unidentified PpdaAc in Ac.
Collapse
Affiliation(s)
| | | | - Sang-Wook Han
- Corresponding author: Phone) +82-31-670-3150, FAX) +82-2-670-8845, E-mail)
| |
Collapse
|
32
|
Jiang J, Li Z, Chen C, Jiang W, Xu B, Zhao Q. Metabolomics Strategy Assisted by Transcriptomics Analysis to Identify Potential Biomarkers Associated with Tuberculosis. Infect Drug Resist 2021; 14:4795-4807. [PMID: 34815677 PMCID: PMC8604652 DOI: 10.2147/idr.s330493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose To investigate the dysregulated pathways and identify reliable diagnostic biomarkers for tuberculosis using integrated analysis of metabolomics and transcriptomics. Methods Three groups of samples, untargeted metabolomics analysis of healthy controls (HC), latent tuberculosis infection patients (LTBI), and active tuberculosis patients (TB), were analyzed using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) and ultra-high performance liquid chromatography-quantitative mass spectrometry (UHPLC-QE-MS). Both univariate and multivariate and statistical analyses were used to select differential metabolites (DMs) among group comparison, and LASSO regression analysis was employed to discover potential diagnostic biomarkers. Metabolite set enrichment analysis was performed to identify the altered metabolic pathways specifically in patients with TB. Meanwhile, a transcriptomic dataset GSEG4992 was downloaded from the GEO database to explore the differentially expressed genes (DEGs) between TB and HC identified in significantly enriched pathways. Finally, an integrative analysis of DMs and DEGs was performed to investigate the possible molecular mechanisms of TB. Results Thirty-three specific metabolites were significantly different between TB and HC, of which 7 (5-hydroxyindoleacetic acid, isoleucyl-isoleucine, heptadecanoic acid, indole acetaldehyde, 5-ethyl-2,4-dimethyloxazole, and 2-hydroxycaproic acid, unknown 71) were chosen as combinational potential biomarkers for TB. The area under the curve (AUC) value of these biomarkers was 0.97 (95% CI: 0.92–1.00). Metabolites set enrichment analysis (MSEA) displayed that there were 3 significantly enriched pathways among all. The genes in 3 significantly enriched pathways were further analyzed, of which 9(ALDH3B1, BCAT1, BCAT2, GLYAT, GOT1, IL4I1, MIF, SDS, SDSL) were expressed differentially. The area under the curve (AUC) values of these DEGs enriched in pathways mostly were greater than 0.8. As a result, a connected network of metabolites and genes in the pathways were established, which provides insights into the credibility of selected metabolites. Conclusion The newly identified metabolic biomarkers display a high potential to be developed into a promising tool for TB screening, diagnosis, and therapeutic effect monitoring.
Collapse
Affiliation(s)
- Jiayan Jiang
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China
| | - Zhipeng Li
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China
| | - Cheng Chen
- Department of Chronic Communicable Disease, Center for Disease Control and Prevention of Jiangsu Province, Nanjing, Jiangsu, People's Republic of China
| | - Weili Jiang
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China
| | - Biao Xu
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China
| | - Qi Zhao
- School of Public Health and Key Laboratory of Public Health Safety, Fudan University, Shanghai, People's Republic of China.,NHC Key Laboratory of Health Technology Assessment,Fudan University, Shanghai, People's Republic of China.,Shanghai Clinical Research Center for infectious disease (Tuberculosis), Shanghai, People's Republic of China
| |
Collapse
|
33
|
Beites T, Jansen RS, Wang R, Jinich A, Rhee KY, Schnappinger D, Ehrt S. Multiple acyl-CoA dehydrogenase deficiency kills Mycobacterium tuberculosis in vitro and during infection. Nat Commun 2021; 12:6593. [PMID: 34782606 PMCID: PMC8593149 DOI: 10.1038/s41467-021-26941-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/26/2021] [Indexed: 11/14/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis depends on host fatty acids as a carbon source. However, fatty acid β-oxidation is mediated by redundant enzymes, which hampers the development of antitubercular drugs targeting this pathway. Here, we show that rv0338c, which we refer to as etfD, encodes a membrane oxidoreductase essential for β-oxidation in M. tuberculosis. An etfD deletion mutant is incapable of growing on fatty acids or cholesterol, with long-chain fatty acids being bactericidal, and fails to grow and survive in mice. Analysis of the mutant’s metabolome reveals a block in β-oxidation at the step catalyzed by acyl-CoA dehydrogenases (ACADs), which in other organisms are functionally dependent on an electron transfer flavoprotein (ETF) and its cognate oxidoreductase. We use immunoprecipitation to show that M. tuberculosis EtfD interacts with FixA (EtfB), a protein that is homologous to the human ETF subunit β and is encoded in an operon with fixB, encoding a homologue of human ETF subunit α. We thus refer to FixA and FixB as EtfB and EtfA, respectively. Our results indicate that EtfBA and EtfD (which is not homologous to human EtfD) function as the ETF and oxidoreductase for β-oxidation in M. tuberculosis and support this pathway as a potential target for tuberculosis drug development. The pathogen Mycobacterium tuberculosis depends on host fatty acids and cholesterol as carbon sources. Here, Beites et al. identify a protein complex that is essential for fatty acid and cholesterol utilization and thus for survival of M. tuberculosis during infection, supporting this pathway as a potential target for tuberculosis drug development.
Collapse
Affiliation(s)
- Tiago Beites
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Robert S Jansen
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Microbiology, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Ruojun Wang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Adrian Jinich
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Kyu Y Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.,Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Structure-Aware Mycobacterium tuberculosis Functional Annotation Uncloaks Resistance, Metabolic, and Virulence Genes. mSystems 2021; 6:e0067321. [PMID: 34726489 PMCID: PMC8562490 DOI: 10.1128/msystems.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Accurate and timely functional genome annotation is essential for translating basic pathogen research into clinically impactful advances. Here, through literature curation and structure-function inference, we systematically update the functional genome annotation of Mycobacterium tuberculosis virulent type strain H37Rv. First, we systematically curated annotations for 589 genes from 662 publications, including 282 gene products absent from leading databases. Second, we modeled 1,711 underannotated proteins and developed a semiautomated pipeline that captured shared function between 400 protein models and structural matches of known function on Protein Data Bank, including drug efflux proteins, metabolic enzymes, and virulence factors. In aggregate, these structure- and literature-derived annotations update 940/1,725 underannotated H37Rv genes and generate hundreds of functional hypotheses. Retrospectively applying the annotation to a recent whole-genome transposon mutant screen provided missing function for 48% (13/27) of underannotated genes altering antibiotic efficacy and 33% (23/69) required for persistence during mouse tuberculosis (TB) infection. Prospective application of the protein models enabled us to functionally interpret novel laboratory generated pyrazinamide (PZA)-resistant mutants of unknown function, which implicated the emerging coenzyme A depletion model of PZA action in the mutants’ PZA resistance. Our findings demonstrate the functional insight gained by integrating structural modeling and systematic literature curation, even for widely studied microorganisms. Functional annotations and protein structure models are available at https://tuberculosis.sdsu.edu/H37Rv in human- and machine-readable formats. IMPORTANCEMycobacterium tuberculosis, the primary causative agent of tuberculosis, kills more humans than any other infectious bacterium. Yet 40% of its genome is functionally uncharacterized, leaving much about the genetic basis of its resistance to antibiotics, capacity to withstand host immunity, and basic metabolism yet undiscovered. Irregular literature curation for functional annotation contributes to this gap. We systematically curated functions from literature and structural similarity for over half of poorly characterized genes, expanding the functionally annotated Mycobacterium tuberculosis proteome. Applying this updated annotation to recent in vivo functional screens added functional information to dozens of clinically pertinent proteins described as having unknown function. Integrating the annotations with a prospective functional screen identified new mutants resistant to a first-line TB drug, supporting an emerging hypothesis for its mode of action. These improvements in functional interpretation of clinically informative studies underscore the translational value of this functional knowledge. Structure-derived annotations identify hundreds of high-confidence candidates for mechanisms of antibiotic resistance, virulence factors, and basic metabolism and other functions key in clinical and basic tuberculosis research. More broadly, they provide a systematic framework for improving prokaryotic reference annotations.
Collapse
|
35
|
Borah K, Xu Y, McFadden J. Dissecting Host-Pathogen Interactions in TB Using Systems-Based Omic Approaches. Front Immunol 2021; 12:762315. [PMID: 34795672 PMCID: PMC8593131 DOI: 10.3389/fimmu.2021.762315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/18/2021] [Indexed: 01/10/2023] Open
Abstract
Tuberculosis (TB) is a devastating infectious disease that kills over a million people every year. There is an increasing burden of multi drug resistance (MDR) and extensively drug resistance (XDR) TB. New and improved therapies are urgently needed to overcome the limitations of current treatment. The causative agent, Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens that can manipulate host cell environment for adaptation, evading immune defences, virulence, and pathogenesis of TB infection. Host-pathogen interaction is important to establish infection and it involves a complex set of processes. Metabolic cross talk between the host and pathogen is a facet of TB infection and has been an important topic of research where there is growing interest in developing therapies and drugs that target these interactions and metabolism of the pathogen in the host. Mtb scavenges multiple nutrient sources from the host and has adapted its metabolism to survive in the intracellular niche. Advancements in systems-based omic technologies have been successful to unravel host-pathogen interactions in TB. In this review we discuss the application and usefulness of omics in TB research that provides promising interventions for developing anti-TB therapies.
Collapse
Affiliation(s)
- Khushboo Borah
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Johnjoe McFadden
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
36
|
Schrader SM, Botella H, Jansen R, Ehrt S, Rhee K, Nathan C, Vaubourgeix J. Multiform antimicrobial resistance from a metabolic mutation. SCIENCE ADVANCES 2021; 7:7/35/eabh2037. [PMID: 34452915 PMCID: PMC8397267 DOI: 10.1126/sciadv.abh2037] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/08/2021] [Indexed: 05/07/2023]
Abstract
A critical challenge for microbiology and medicine is how to cure infections by bacteria that survive antibiotic treatment by persistence or tolerance. Seeking mechanisms behind such high survival, we developed a forward-genetic method for efficient isolation of high-survival mutants in any culturable bacterial species. We found that perturbation of an essential biosynthetic pathway (arginine biosynthesis) in a mycobacterium generated three distinct forms of resistance to diverse antibiotics, each mediated by induction of WhiB7: high persistence and tolerance to kanamycin, high survival upon exposure to rifampicin, and minimum inhibitory concentration-shifted resistance to clarithromycin. As little as one base change in a gene that encodes, a metabolic pathway component conferred multiple forms of resistance to multiple antibiotics with different targets. This extraordinary resilience may help explain how substerilizing exposure to one antibiotic in a regimen can induce resistance to others and invites development of drugs targeting the mediator of multiform resistance, WhiB7.
Collapse
Affiliation(s)
- Sarah M Schrader
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Hélène Botella
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Robert Jansen
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
- Department of Microbiology, Radboud University, Nijmegen, Netherlands
| | - Sabine Ehrt
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kyu Rhee
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| | - Julien Vaubourgeix
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
37
|
Tounta V, Liu Y, Cheyne A, Larrouy-Maumus G. Metabolomics in infectious diseases and drug discovery. Mol Omics 2021; 17:376-393. [PMID: 34125125 PMCID: PMC8202295 DOI: 10.1039/d1mo00017a] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 12/23/2022]
Abstract
Metabolomics has emerged as an invaluable tool that can be used along with genomics, transcriptomics and proteomics to understand host-pathogen interactions at small-molecule levels. Metabolomics has been used to study a variety of infectious diseases and applications. The most common application of metabolomics is for prognostic and diagnostic purposes, specifically the screening of disease-specific biomarkers by either NMR-based or mass spectrometry-based metabolomics. In addition, metabolomics is of great significance for the discovery of druggable metabolic enzymes and/or metabolic regulators through the use of state-of-the-art flux analysis, for example, via the elucidation of metabolic mechanisms. This review discusses the application of metabolomics technologies to biomarker screening, the discovery of drug targets in infectious diseases such as viral, bacterial and parasite infections and immunometabolomics, highlights the challenges associated with accessing metabolite compartmentalization and discusses the available tools for determining local metabolite concentrations.
Collapse
Affiliation(s)
- Vivian Tounta
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Yi Liu
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Ashleigh Cheyne
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College LondonLondonUK
| |
Collapse
|
38
|
Welte CU, de Graaf R, Dalcin Martins P, Jansen RS, Jetten MSM, Kurth JM. A novel methoxydotrophic metabolism discovered in the hyperthermophilic archaeon Archaeoglobus fulgidus. Environ Microbiol 2021; 23:4017-4033. [PMID: 33913565 PMCID: PMC8359953 DOI: 10.1111/1462-2920.15546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 11/29/2022]
Abstract
Methoxylated aromatic compounds (MACs) are important components of lignin found in significant amounts in the subsurface. Recently, the methanogenic archaeon Methermicoccus shengliensis was shown to be able to use a variety of MACs during methoxydotrophic growth. After a molecular survey, we found that the hyperthermophilic non‐methanogenic archaeon Archaeoglobus fulgidus also encodes genes for a bacterial‐like demethoxylation system. In this study, we performed growth and metabolite analysis, and used transcriptomics to investigate the response of A. fulgidus during growth on MACs in comparison to growth on lactate. We observed that A. fulgidus converts MACs to their hydroxylated derivatives with CO2 as the main product and sulfate as electron acceptor. Furthermore, we could show that MACs improve the growth of A. fulgidus in the presence of organic substrates such as lactate. We also found evidence that other archaea such as Bathyarchaeota, Lokiarchaeota, Verstraetearchaeota, Korarchaeota, Helarchaeota and Nezhaarchaeota encode a demethoxylation system. In summary, we here describe the first non‐methanogenic archaeon with the ability to grow on MACs indicating that methoxydotrophic archaea might play a so far underestimated role in the global carbon cycle.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Rob de Graaf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paula Dalcin Martins
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Robert S Jansen
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, Utrecht, 3584 CS, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Julia M Kurth
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
39
|
Park JH, Shim D, Kim KES, Lee W, Shin SJ. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2021; 11:635335. [PMID: 33796480 PMCID: PMC8007978 DOI: 10.3389/fcimb.2021.635335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) causes chronic granulomatous lung disease in humans. Recently, novel strategies such as host-directed therapeutics and adjunctive therapies that enhance the effect of existing antibiotics have emerged to better control Mtb infection. Recent advances in understanding the metabolic interplay between host immune cells and pathogens have provided new insights into how their interactions ultimately influence disease outcomes and antibiotic-treatment efficacy. In this review, we describe how metabolic cascades in immune environments and relevant metabolites produced from immune cells during Mtb infection play critical roles in the progression of diseases and induction of anti-Mtb protective immunity. In addition, we introduce how metabolic alterations in Mtb itself can lead to the development of persister cells that are resistant to host immunity and can eventually evade antibiotic attacks. Further understanding of the metabolic link between host cells and Mtb may contribute to not only the prevention of Mtb persister development but also the optimization of host anti-Mtb immunity together with enhanced efficacy of existing antibiotics. Overall, this review highlights novel approaches to improve and develop host-mediated therapeutic strategies against Mtb infection by restoring and switching pathogen-favoring metabolic conditions with host-favoring conditions.
Collapse
Affiliation(s)
- Ji-Hae Park
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Keu Eun San Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
40
|
Yelamanchi SD, Surolia A. Targeting amino acid metabolism of Mycobacterium tuberculosis for developing inhibitors to curtail its survival. IUBMB Life 2021; 73:643-658. [PMID: 33624925 DOI: 10.1002/iub.2455] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/29/2022]
Abstract
Tuberculosis caused by the bacterium, Mycobacterium tuberculosis (Mtb), continues to remain one of the most devastating infectious diseases afflicting humans. Although there are several drugs for treating tuberculosis available currently, the emergence of the drug resistant forms of this pathogen has made its treatment and eradication a challenging task. While the replication machinery, protein synthesis and cell wall biogenesis of Mtb have been targeted often for anti-tubercular drug development a number of essential metabolic pathways crucial to its survival have received relatively less attention. In this context a number of amino acid biosynthesis pathways have recently been shown to be essential for the survival and pathogenesis of Mtb. Many of these pathways and or their key enzymes homologs are absent in humans hence they could be harnessed for anti-tubercular drug development. In this review, we describe comprehensively the amino acid metabolic pathways essential in Mtb and the key enzymes involved therein that are being investigated for developing inhibitors that compromise the survival and pathogenesis caused by this pathogen.
Collapse
Affiliation(s)
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| |
Collapse
|
41
|
Lei Y, Cao X, Xu W, Yang B, Xu Y, Zhou W, Dong S, Wu Q, Rahman K, Tyagi R, Zhao S, Chen X, Cao G. Rv3722c Promotes Mycobacterium tuberculosis Survival in Macrophages by Interacting With TRAF3. Front Cell Infect Microbiol 2021; 11:627798. [PMID: 33718275 PMCID: PMC7947218 DOI: 10.3389/fcimb.2021.627798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis (M.tb) secretes numerous proteins to interfere with host immune response for its long-term survival. As one of the top abundant M.tb secreted proteins, Rv3722c was found to be essential for bacilli growth. However, it remains elusive how this protein interferes with the host immune response and regulates M.tb survival. Here, we confirmed that Rv3722c interacted with host TRAF3 to promote M.tb replication in macrophages. Knock-down of TRAF3 attenuated the effect of Rv3722c on the intracellular M.tb survival. The interaction between Rv3722c and TRAF3 hampered MAPK and NF-κB pathways, resulting in a significant increase of IFN-β expression and decrease of IL-1β, IL-6, IL-12p40, and TNF-α expression. Our study revealed that Rv3722c interacted with TRAF3 and interrupted its downstream pathways to promote M.tb survival in macrophages. These findings facilitate further understanding of the mechanism of M.tb secreted proteins in regulating the host cell immune response and promoting its intracellular survival.
Collapse
Affiliation(s)
- Yingying Lei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaojian Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Weize Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Bing Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qijun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Khaista Rahman
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rohit Tyagi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China.,College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,Bio-Medical Center, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
42
|
Couvillion SP, Agrawal N, Colby SM, Brandvold KR, Metz TO. Who Is Metabolizing What? Discovering Novel Biomolecules in the Microbiome and the Organisms Who Make Them. Front Cell Infect Microbiol 2020; 10:388. [PMID: 32850487 PMCID: PMC7410922 DOI: 10.3389/fcimb.2020.00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Even as the field of microbiome research has made huge strides in mapping microbial community composition in a variety of environments and organisms, explaining the phenotypic influences on the host by microbial taxa-both known and unknown-and their specific functions still remain major challenges. A pressing need is the ability to assign specific functions in terms of enzymes and small molecules to specific taxa or groups of taxa in the community. This knowledge will be crucial for advancing personalized therapies based on the targeted modulation of microbes or metabolites that have predictable outcomes to benefit the human host. This perspective article advocates for the combined use of standards-free metabolomics and activity-based protein profiling strategies to address this gap in functional knowledge in microbiome research via the identification of novel biomolecules and the attribution of their production to specific microbial taxa.
Collapse
Affiliation(s)
- Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Neha Agrawal
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Sean M. Colby
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Kristoffer R. Brandvold
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|