1
|
Wei H, Xia D, Li L, Liang L, Ning L, Gan C, Wu Y. Baicalin Modulates Glycolysis via the PKC/Raf/MEK/ERK and PI3K/AKT Signaling Pathways to Attenuate IFN-I-Induced Neutrophil NETosis. Mediators Inflamm 2025; 2025:8822728. [PMID: 40420943 PMCID: PMC12105894 DOI: 10.1155/mi/8822728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/19/2025] [Indexed: 05/28/2025] Open
Abstract
Type I interferon (IFN-I), a pivotal component of the host's innate antiviral immune system, can induce the formation of neutrophil extracellular traps (NETs) and facilitate inflammatory responses. Baicalin exhibits a range of pharmacological activities, including anti-inflammatory and immunomodulatory effects. It has been reported that neutrophil glycolysis plays a pivotal role in the formation of NETs and the regulation of inflammatory response in immune modulation, regulated by IFN-I. However, it remains unclear whether baicalin regulates IFN-I-induced NETs formation through glycolysis. In this study, we induced the formation of NETs in vitro using IFN-I and observed that baicalin significantly reduced the formation of IFN-I-induced NETs. Furthermore, baicalin inhibited the production of pro-inflammatory cytokines, specifically interleukin-1 beta (IL-1β) and interleukin-6 (IL-6), as well as the generation of reactive oxygen species (ROS) and chemotactic responses. Our findings further indicated that baicalin could inhibit both lactic acid and ATP levels in IFN-I-induced neutrophils, as well as the expression of glycolytic-related proteins, including HK2, HK3, PKM2, and LDHA. Moreover, following the administration of glycolytic agonists insulin, it was observed that heightened glycolytic activity significantly augmented NETs formation and the release of inflammatory cytokines, potentially regulated by PKC/Raf/MEK/ERK and PI3K/AKT signaling pathways. In conclusion, our findings indicated that baicalin may exert inhibitory effects on IFN-I-induced NETs formation and inflammatory cytokine production by modulating glycolysis, thereby providing further evidence for the potential clinical application of baicalin in the treatment of IFN-I-related inflammatory diseases.
Collapse
Affiliation(s)
- Hong Wei
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Dongni Xia
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Li
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Linpan Liang
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China
| | - Lijun Ning
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Cuiliu Gan
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Ying Wu
- Liuzhou Key laboratory of Infection Disease and Immunology, Research Center of Medical Sciences, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| |
Collapse
|
2
|
Du G, Zheng K, Sun C, Sun M, Pan J, Meng D, Guan W, Zhao H. The relationship mammalian p38 with human health and its homolog Hog1 in response to environmental stresses in Saccharomyces cerevisiae. Front Cell Dev Biol 2025; 13:1522294. [PMID: 40129568 PMCID: PMC11931143 DOI: 10.3389/fcell.2025.1522294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
The mammalian p38 MAPK pathway plays a vital role in transducing extracellular environmental stresses into numerous intracellular biological processes. The p38 MAPK have been linked to a variety of cellular processes including inflammation, cell cycle, apoptosis, development and tumorigenesis in specific cell types. The p38 MAPK pathway has been implicated in the development of many human diseases and become a target for treatment of cancer. Although MAPK p38 pathway has been extensively studied, many questions still await clarification. More comprehensive understanding of the MAPK p38 pathway will provide new possibilities for the treatment of human diseases. Hog1 in S. cerevisiae is the conserved homolog of p38 in mammalian cells and the HOG MAPK signaling pathway in S. cerevisiae has been extensively studied. The deep understanding of HOG MAPK signaling pathway will help provide clues for clarifying the p38 signaling pathway, thereby furthering our understanding of the relationship between p38 and disease. In this review, we elaborate the functions of p38 and the relationship between p38 and human disease. while also analyzing how Hog1 regulates cellular processes in response to environmental stresses. 1, p38 in response to various stresses in mammalian cells.2, The functions of mammalian p38 in human health.3, Hog1 as conserved homolog of p38 in response to environmental stresses in Saccharomyces cerevisiae. 1, p38 in response to various stresses in mammalian cells. 2, The functions of mammalian p38 in human health. 3, Hog1 as conserved homolog of p38 in response to environmental stresses in S. cerevisiae.
Collapse
Affiliation(s)
- Gang Du
- *Correspondence: Gang Du, ; Wenqiang Guan, ; Hui Zhao,
| | | | | | | | | | | | - Wenqiang Guan
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| | - Hui Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, China
| |
Collapse
|
3
|
Dumesic PA, Wilensky SE, Bose S, Van Vranken JG, Gygi SP, Spiegelman BM. RBM43 controls PGC1α translation and a PGC1α-STING signaling axis. Cell Metab 2025; 37:742-757.e8. [PMID: 39965564 PMCID: PMC11885043 DOI: 10.1016/j.cmet.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 10/17/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Obesity is associated with systemic inflammation that impairs mitochondrial function. This disruption curtails oxidative metabolism, limiting adipocyte lipid metabolism and thermogenesis, a metabolically beneficial program that dissipates chemical energy as heat. Here, we show that PGC1α, a key governor of mitochondrial biogenesis, is negatively regulated at the level of its mRNA translation by the RNA-binding protein RBM43. RBM43 is induced by inflammatory cytokines and suppresses mitochondrial biogenesis in a PGC1α-dependent manner. In mice, adipocyte-selective Rbm43 disruption elevates PGC1α translation and oxidative metabolism. In obesity, Rbm43 loss improves glucose tolerance, reduces adipose inflammation, and suppresses activation of the innate immune sensor cGAS-STING in adipocytes. We further identify a role for PGC1α in safeguarding against cytoplasmic accumulation of mitochondrial DNA, a cGAS ligand. The action of RBM43 defines a translational regulatory axis by which inflammatory signals dictate cellular energy metabolism and contribute to metabolic disease pathogenesis.
Collapse
Affiliation(s)
- Phillip A Dumesic
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah E Wilensky
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Symanthika Bose
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Teruya H, Shoda H, Itamiya T, Tsuchida Y, Okamura T, Fujio K. Body weight in systemic lupus erythematosus is associated with disease activity and the adaptive immune system, independent of type I IFN. Front Immunol 2025; 16:1503559. [PMID: 40040694 PMCID: PMC11876045 DOI: 10.3389/fimmu.2025.1503559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Objective To explore the relationship between physique and immunological disturbances in systemic lupus erythematosus (SLE), we analyzed the clinical, immunological and transcriptomic characteristics of patients with SLE in relation to body mass index (BMI). Methods Clinical characteristics were obtained from patient charts, and serum cytokine levels were measured. Phenotypes and transcriptomes of peripheral immune cells from patients with SLE in the ImmuNexUT database were analyzed in relation to BMI. Results Thirty-four SLE patients were included in the analysis. Fever and mucocutaneous symptoms were commonly observed in SLE patients with a low BMI. BMI was negatively correlated with the SLE disease activity (SLEDAI)-2K scores. Multiple regression analysis revealed that BMI was an independent explanatory variable for SLEDAI-2K scores, irrespective of anti-dsDNA antibody or complement levels. Although serum interferon (IFN)-alpha and IFN-gamma levels were negatively associated with BMI, causal mediation analysis showed that BMI had a direct effect on SLEDAI-2K scores, independent of IFN-alpha levels. Immunophenotyping indicated that BMI was primarily correlated with T cell subsets. BMI-related gene expression was mainly enriched in the regulatory T cells and B cell subsets. BMI was negatively correlated with several cellular metabolic pathways, including glucose metabolism-related pathways in Th1 and effector memory CD8+ T cells, but not with IFN signaling. Conclusion We characterized the clinical, immunological and transcriptomic profiles of SLE patients with varying BMI. As low BMI was identified as an independent parameter for explaining disease activity, cachexia is considered one of the systemic symptoms of active SLE. Additionally, BMI influenced the phenotypic and transcriptomic alterations of acquired immune cells, independent of IFN signaling. These findings provide insights into the pathogenesis of SLE.
Collapse
Affiliation(s)
- Hiroyuki Teruya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Rheumatology, Tokyo Medical University Hospital, Tokyo, Japan
| | - Takahiro Itamiya
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yumi Tsuchida
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Guan C, Yang K, Ma C, Hao W, An J, Liu J, Jiang N, Fu S, Zhen D, Tang X. STING1 targets MYH9 to drive adipogenesis through the AKT/GSK3β/β-catenin pathway. Biochem Biophys Res Commun 2025; 749:151352. [PMID: 39847995 DOI: 10.1016/j.bbrc.2025.151352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1), as an innate immune adaptor protein that mediates DNA sensing, has attracted tremendous biomedical interest. However, several recent researches have revealed the key role of STING1 in regulating the metabolic pathway. Here, we investigated its role in adipocyte differentiation. Preadipocytes with lentivirus-mediated Sting1 knockdown or overexpression were constructed to examine the effect of STING1 on adipocyte differentiation in vitro. Proteomics was performed in adipocytes to explore the mechanisms by which STING1 exerts pro-adipogenesis effects. Coimmunoprecipitation (CoIP)/mass spectrometry (MS) assay were used to identify the interacting partners of STING1. Our results showed that STING1 was upregulated during adipogenic differentiation of 3T3-L1 and white adipose tissue-derived stromal vascular precursor cells (WAT-SVF), accompanied by upregulation of adipocyte marker genes, peroxisome proliferator-activated receptor gamma (Pparg) and CCAAT/enhancer-binding protein beta (Cebpβ). Knockdown or overexpression of Sting1 altered adipogenesis in adipocytes. Mechanistically, proteomics and CoIP/MS assay revealed that STING1 targets non-muscle myosin protein (MYH9) to block its expression, which enhances AKT/GSK3β signaling and mediates β-catenin accumulation, affecting adipogenesis-related genes in adipocytes. These findings suggest that STING1 targeting combined with MYH9 regulates adipocyte differentiation through the AKT/GSK3β/β-catenin pathway. This is a new potential target for the treatment of hypertrophic adipose tissue, or obesity.
Collapse
Affiliation(s)
- Conghui Guan
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Kuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Chengxu Ma
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Wankun Hao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jinyang An
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Jinjin Liu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Na Jiang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Songbo Fu
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Donghu Zhen
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
| | - Xulei Tang
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China; The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Carey A, Pitcher LE, Jang IH, Nguyen K, Cholensky S, Robbins PD, Camell CD. B-cell interleukin 1 receptor 1 modulates the female adipose tissue immune microenvironment during aging. J Leukoc Biol 2025; 117:qiae219. [PMID: 39378334 PMCID: PMC11878995 DOI: 10.1093/jleuko/qiae219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024] Open
Abstract
Myeloid cell production of interleukin-1β (IL-1β) drives inflammaging in visceral white adipose tissue (vWAT) and contributes to the expansion of interleukin-1 receptor 1 (Il1r1)-positive aged adipose B cells (AABs). AABs promote metabolic dysfunction and inflammation under inflammatory challenges. However, whether IL-1β contributes to AAB-associated inflammation during aging is unclear. Using a B-cell-specific knockout of Il1r1 (BKO mice), we characterized old vWAT in the absence of IL-1β-B-cell signaling. In addition to sex-specific metabolic improvements in females, we identified a reduction in the proportion of B cells and a sex-specific increase in the B1/B2 B-cell ratio in BKO vWAT. Using single-cell RNA sequencing of vWAT immune cells, we observed that BKO differentially affected inflammatory signaling in vWAT immune cells. These data suggest that IL-1β-B-cell signaling supports the inflammatory response in multiple cell types and provides insight into the complex microenvironment in aged vWAT.
Collapse
Affiliation(s)
- Anna Carey
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Center for Immunology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
| | - Louise E Pitcher
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| | - In Hwa Jang
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Center for Immunology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| | - Katie Nguyen
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Center for Immunology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
| | - Stephanie Cholensky
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Center for Immunology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
| | - Paul D Robbins
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| | - Christina D Camell
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota, 312 Church Street SE, Minneapolis, MN 55455, United States
- Center for Immunology, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, United States
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| |
Collapse
|
7
|
Wu J, Singh K, Shing V, Gupta A, Arenberg BC, Huffstutler RD, Lee DY, Sack MN. Mitochondrial fatty acid oxidation regulates monocytic type I interferon signaling via histone acetylation. SCIENCE ADVANCES 2025; 11:eadq9301. [PMID: 39841826 PMCID: PMC11753372 DOI: 10.1126/sciadv.adq9301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. 13C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1. Chromatin accessibility at the Stat1 locus was diminished in ACAT1-/- cells. Chromatin immunoprecipitation analysis demonstrated reduced acetyl-H3 binding to Stat1 promoter/enhancer regions, and increasing histone acetylation rescued Stat1 expression. Interferon-β release was blunted in ACAT1-/- and recovered by ACAT1 reconstitution. Furthermore, ACAT1-dependent histone acetylation required an intact acetylcarnitine shuttle. Last, obese subjects' monocytes exhibited increased ACAT1 and histone acetylation levels. Thus, our study identifies an intriguing link between FAO-mediated epigenetic control of type I interferon signaling and uncovers a potential mechanistic nexus between obesity and type I interferon signaling.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Shing
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand Gupta
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brett C. Arenberg
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca D. Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duck-Yeon Lee
- Biochemistry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael N. Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
8
|
Harrison AG, Yang D, Cahoon JG, Geng T, Cao Z, Karginov TA, Hu Y, Li X, Chiari CC, Qyang Y, Vella AT, Fan Z, Vanaja SK, Rathinam VA, Witczak CA, Bogan JS, Wang P. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. Nat Immunol 2024; 25:2234-2246. [PMID: 39567760 PMCID: PMC12067455 DOI: 10.1038/s41590-024-02004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/04/2024] [Indexed: 11/22/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is trapped at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 translocation, sequestration of RLRs and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
Affiliation(s)
- Andrew G Harrison
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Jason G Cahoon
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Tingting Geng
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziming Cao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Timofey A Karginov
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Youjia Hu
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Xin Li
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Conner C Chiari
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Yibing Qyang
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Sivapriya Kailasan Vanaja
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Carol A Witczak
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jonathan S Bogan
- Section of Endocrinology, Department of Internal Medicine, and Department of Cell Biology, and Yale Center for Molecular and Systems Metabolism, Yale School of Medicine, New Haven, CT, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
9
|
Carey A, Camell CD. Protocol to examine murine visceral adipose tissue immune cells using fluorescence-based flow cytometry. STAR Protoc 2024; 5:103227. [PMID: 39126656 PMCID: PMC11456973 DOI: 10.1016/j.xpro.2024.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024] Open
Abstract
Adipose tissue immune cells are heterogeneous and dynamic, alter metabolism, and drive immune responses. Here, we present a protocol for assessment and characterization of murine adipose tissue immune cells using fluorescence-based flow cytometry and sorting into pure populations. We describe steps for isolation of the stromovascular fraction, antibody staining, and data collection by flow cytometry. We also discuss common issues and troubleshooting steps. For complete details on the use and execution of this protocol, please refer to Carey et al.1.
Collapse
Affiliation(s)
- Anna Carey
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christina D Camell
- Molecular Pharmacology and Therapeutics Graduate Program, Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Laviano HD, Gómez G, Núñez Y, García-Casco JM, Benítez RM, de Las Heras-Molina A, Gómez F, Sánchez-Esquiliche F, Martínez-Fernández B, González-Bulnes A, Rey AI, López-Bote CJ, Muñoz M, Óvilo C. Maternal dietary antioxidant supplementation regulates weaned piglets' adipose tissue transcriptome and morphology. PLoS One 2024; 19:e0310399. [PMID: 39264906 PMCID: PMC11392410 DOI: 10.1371/journal.pone.0310399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Antioxidant supplementation in critical periods may be useful for improvement of piglet early viability and development. We have evaluated the effects of maternal perinatal diet inclusion of a high vitamin E level (VE, 100 mg all-rac-α-tocopheryl acetate /kg), hydroxytyrosol (HT, 1.5 mg/kg), or their combination (VEHT), in comparison to a control diet (C, 30 mg all-rac-α-tocopheryl acetate /kg), on the offspring homeostasis and metabolism, analysing the weaned piglets' adipose tissue transcriptome and adipocyte morphology. Diets were provided to pregnant Iberian sows (n = 48, 12 per treatment) from gestation day 85 to weaning (28 days postpartum) and 48 piglets (n = 12 per treatment) were sampled 5 days postweaning for dorsal subcutaneous adipose tissue analyses. RNA obtained from 6 animals for each diet was used for paired-end RNA sequencing. Results show that supplementation of sows' diet with either vitamin E or hydroxytyrosol had substantial effects on weaned piglet adipose transcriptome, with 664 and 587 genes being differentially expressed, in comparison to C, respectively (q-value<0.10, Fold Change>1.5). Genes upregulated in C were mainly involved in inflammatory and immune response, as well as oxidative stress, and relevant canonical pathways and upstream regulators involved in these processes were predicted as activated, such as TNF, IFNB or NFKB. Vitamin E, when supplemented alone at high dose, activated lipid biosynthesis functions, pathways and regulators, this finding being accompanied by increased adipocyte size. Results suggest an improved metabolic and antioxidant status of adipose tissue in animals born from sows supplemented with individual antioxidants, while the combined supplementation barely affected gene expression, with VEHT showing a prooxidant/proinflamatory functional profile similar to C animals. Different hypothesis are proposed to explain this unexpected result. Findings allow a deeper understanding of the processes taking place in adipose tissue of genetically fat animals and the role of antioxidants in the regulation of fat cells function.
Collapse
Affiliation(s)
- Hernán D Laviano
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Gerardo Gómez
- Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), Toledo, Spain
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | | | - Rita M Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | - Ana de Las Heras-Molina
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | - Antonio González-Bulnes
- Departamento de Producción y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, Valencia, Spain
| | - Ana I Rey
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Clemente J López-Bote
- Departamento Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Muñoz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, CSIC, Madrid, Spain
| |
Collapse
|
11
|
Röszer T. MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles. Cells 2024; 13:1298. [PMID: 39120327 PMCID: PMC11311276 DOI: 10.3390/cells13151298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs as intercellular messengers. However, we know little about the miRNA profile of EVs secreted by adipocytes during postnatal development. Here, we defined the miRNA cargo of EVs secreted by mouse adipocytes in two distinct phases of development: on postnatal day 6, when adipocytes are lipolytic and thermogenic, and on postnatal day 56, when adipocytes have active lipogenesis. EVs were collected from cell culture supernatants, and their miRNA profile was defined by small RNA sequencing. The most abundant miRNA of mouse adipocyte-derived EVs was mmu-miR-148a-3p. Adipocyte EVs on postnatal day 6 were hallmarked with mmu-miR-98-5p, and some miRNAs were specific to this developmental stage, such as mmu-miR-466i-5p and 12 novel miRNAs. Adipocytes on postnatal day 56 secreted mmu-miR-365-3p, and 16 miRNAs were specific to this developmental stage. The miRNA cargo of adipocyte EVs targeted gene networks of cell proliferation, insulin signaling, interferon response, thermogenesis, and lipogenesis. We provided here a database of miRNAs secreted by developing mouse adipocytes, which may be a tool for further studies on the regulation of gene networks that control mouse adipocyte development.
Collapse
Affiliation(s)
- Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
12
|
Ding L, Weger BD, Liu J, Zhou L, Lim Y, Wang D, Xie Z, Liu J, Ren J, Zheng J, Zhang Q, Yu M, Weger M, Morrison M, Xiao X, Gachon F. Maternal high fat diet induces circadian clock-independent endocrine alterations impacting the metabolism of the offspring. iScience 2024; 27:110343. [PMID: 39045103 PMCID: PMC11263959 DOI: 10.1016/j.isci.2024.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms, prior research has indicated potential disruptions in circadian rhythms and gut microbiota in the offspring. To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during pregnancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts offspring birth weight and glucose and lipid metabolisms. However, we found minimal impact on circadian rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory response without disrupting the hepatic circadian clock. These changes could be explained by a masculinization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intriguingly, such alterations seem to provide the first-generation offspring with a degree of protection against obesity when exposed to a high fat diet.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Benjamin D. Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, China
| | - Yenkai Lim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Dongmei Wang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ziyan Xie
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jia Zheng
- Department of Endocrinology, Peking University First Hospital, Beijing 100034, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Meltem Weger
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark Morrison
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
- Australian Infectious Diseases Research Centre, St. Lucia, QLD 4072, Australia
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Frédéric Gachon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
13
|
Deb W, Rosenfelt C, Vignard V, Papendorf JJ, Möller S, Wendlandt M, Studencka-Turski M, Cogné B, Besnard T, Ruffier L, Toutain B, Poirier L, Cuinat S, Kritzer A, Crunk A, diMonda J, Vengoechea J, Mercier S, Kleinendorst L, van Haelst MM, Zuurbier L, Sulem T, Katrínardóttir H, Friðriksdóttir R, Sulem P, Stefansson K, Jonsdottir B, Zeidler S, Sinnema M, Stegmann APA, Naveh N, Skraban CM, Gray C, Murrell JR, Isikay S, Pehlivan D, Calame DG, Posey JE, Nizon M, McWalter K, Lupski JR, Isidor B, Bolduc FV, Bézieau S, Krüger E, Küry S, Ebstein F. PSMD11 loss-of-function variants correlate with a neurobehavioral phenotype, obesity, and increased interferon response. Am J Hum Genet 2024; 111:1352-1369. [PMID: 38866022 PMCID: PMC11267520 DOI: 10.1016/j.ajhg.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.
Collapse
Affiliation(s)
- Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Cory Rosenfelt
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Virginie Vignard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Jonas Johannes Papendorf
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Sophie Möller
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Martin Wendlandt
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Maja Studencka-Turski
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Thomas Besnard
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Ruffier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Bérénice Toutain
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Léa Poirier
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Silvestre Cuinat
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Amy Kritzer
- Division of Genetics and Genomics, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA, USA
| | | | - Janette diMonda
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jaime Vengoechea
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Lotte Kleinendorst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke M van Haelst
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Emma Center for Personalized Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Linda Zuurbier
- Amsterdam Reproduction & Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam UMC, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands
| | - Telma Sulem
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | | | | | | | | | - Berglind Jonsdottir
- Childrens Hospital Hringurinn, National University Hospital of Iceland, Reykjavik, Iceland
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Margje Sinnema
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alexander P A Stegmann
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Natali Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Departments of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Gray
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Roberts Individualized Medical Genetics Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jill R Murrell
- Department of Pathology and Laboratory Medicine, Children's Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Sedat Isikay
- Division of Pediatric Neurology, Department of Pediatrics, Gaziantep Islam, Science and Technology University Faculty of Medicine, Gaziantep, Türkiye
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - François V Bolduc
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000 Nantes, France; Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France
| | - Frédéric Ebstein
- Nantes Université, CNRS, INSERM, l'institut du thorax, 44000 Nantes, France; Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
14
|
Wang P, Harrison A, Yang D, Cahoon J, Geng T, Cao Z, Karginov T, Chiari C, Li X, Qyang Y, Vella A, Fan Z, Vanaja SK, Rathinam V, Witczak C, Bogan J. UBXN9 governs GLUT4-mediated spatial confinement of RIG-I-like receptors and signaling. RESEARCH SQUARE 2024:rs.3.rs-3373803. [PMID: 38883790 PMCID: PMC11177981 DOI: 10.21203/rs.3.rs-3373803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The cytoplasmic RIG-I-like receptors (RLRs) recognize viral RNA and initiate innate antiviral immunity. RLR signaling also triggers glycolytic reprogramming through glucose transporters (GLUTs), whose role in antiviral immunity is elusive. Here, we unveil that insulin-responsive GLUT4 inhibits RLR signaling independently of glucose uptake in adipose and muscle tissues. At steady state, GLUT4 is docked at the Golgi matrix by ubiquitin regulatory X domain 9 (UBXN9, TUG). Following RNA virus infection, GLUT4 is released and translocated to the cell surface where it spatially segregates a significant pool of cytosolic RLRs, preventing them from activating IFN-β responses. UBXN9 deletion prompts constitutive GLUT4 trafficking, sequestration of RLRs, and attenuation of antiviral immunity, whereas GLUT4 deletion heightens RLR signaling. Notably, reduced GLUT4 expression is uniquely associated with human inflammatory myopathies characterized by hyperactive interferon responses. Overall, our results demonstrate a noncanonical UBXN9-GLUT4 axis that controls antiviral immunity via plasma membrane tethering of cytosolic RLRs.
Collapse
|
15
|
Gupta P, Hiller A, Chowdhury J, Lim D, Lim DY, Saeij JPJ, Babaian A, Rodriguez F, Pereira L, Morales-Tapia A. A parasite odyssey: An RNA virus concealed in Toxoplasma gondii. Virus Evol 2024; 10:veae040. [PMID: 38817668 PMCID: PMC11137675 DOI: 10.1093/ve/veae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 06/01/2024] Open
Abstract
We are entering a 'Platinum Age of Virus Discovery', an era marked by exponential growth in the discovery of virus biodiversity, and driven by advances in metagenomics and computational analysis. In the ecosystem of a human (or any animal) there are more species of viruses than simply those directly infecting the animal cells. Viruses can infect all organisms constituting the microbiome, including bacteria, fungi, and unicellular parasites. Thus the complexity of possible interactions between host, microbe, and viruses is unfathomable. To understand this interaction network we must employ computationally assisted virology as a means of analyzing and interpreting the millions of available samples to make inferences about the ways in which viruses may intersect human health. From a computational viral screen of human neuronal datasets, we identified a novel narnavirus Apocryptovirus odysseus (Ao) which likely infects the neurotropic parasite Toxoplasma gondii. Previously, several parasitic protozoan viruses (PPVs) have been mechanistically established as triggers of host innate responses, and here we present in silico evidence that Ao is a plausible pro-inflammatory factor in human and mouse cells infected by T. gondii. T. gondii infects billions of people worldwide, yet the prognosis of toxoplasmosis disease is highly variable, and PPVs like Ao could function as a hitherto undescribed hypervirulence factor. In a broader screen of over 7.6 million samples, we explored phylogenetically proximal viruses to Ao and discovered nineteen Apocryptovirus species, all found in libraries annotated as vertebrate transcriptome or metatranscriptomes. While samples containing this genus of narnaviruses are derived from sheep, goat, bat, rabbit, chicken, and pigeon samples, the presence of virus is strongly predictive of parasitic Apicomplexa nucleic acid co-occurrence, supporting the fact that Apocryptovirus is a genus of parasite-infecting viruses. This is a computational proof-of-concept study in which we rapidly analyze millions of datasets from which we distilled a mechanistically, ecologically, and phylogenetically refined hypothesis. We predict that this highly diverged Ao RNA virus is biologically a T. gondii infection, and that Ao, and other viruses like it, will modulate this disease which afflicts billions worldwide.
Collapse
Affiliation(s)
- Purav Gupta
- The Woodlands Secondary School, 3225 Erindale Station Rd,Mississauga, ON L5C 1Y5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Aiden Hiller
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Jawad Chowdhury
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Declan Lim
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Dillon Yee Lim
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Physiology, Anatomy and Genetics, University of Oxford, Sherrington Building, Sherrington Road, Oxford, Oxfordshire, OX1 3PT, UK
| | - Jeroen P J Saeij
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Artem Babaian
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Felipe Rodriguez
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Ave, Davis, CA 95616, USA
| | - Luke Pereira
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| | - Alejandro Morales-Tapia
- Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
- The Donnelly Centre for Cellular + Biomolecular Research, University of Toronto, 160 College St, Toronto, ON M5S 3E1, Canada
- The Woodlands Secondary School, 3225 Erindale Station Rd, Mississauga, ON L5C 1Y5, Canada
| |
Collapse
|
16
|
Radványi Á, Röszer T. Interleukin-6: An Under-Appreciated Inducer of Thermogenic Adipocyte Differentiation. Int J Mol Sci 2024; 25:2810. [PMID: 38474057 DOI: 10.3390/ijms25052810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Adipose tissue inflammation is a key factor leading to obesity-associated immune disorders, such as insulin resistance, beta cell loss in the pancreatic islets, meta-inflammation, and autoimmunity. Inhibiting adipose tissue inflammation is considered a straightforward approach to abrogate these diseases. However, recent findings show that certain pro-inflammatory cytokines are essential for the proper differentiation and functioning of adipocytes. Lipolysis is stimulated, and the thermogenic competence of adipocytes is unlocked by interleukin-6 (IL-6), a cytokine that was initially recognized as a key trigger of adipose tissue inflammation. Coherently, signal transducer and activator of transcription 3 (STAT3), which is a signal transducer for IL-6, is necessary for thermogenic adipocyte development. Given the impact of thermogenic adipocytes in increasing energy expenditure and reducing body adiposity, functions of IL-6 in the adipose tissue have gained attention recently. In this review, we show that IL-6 signaling may protect from excess fat accumulation by stimulating thermogenesis in adipocytes.
Collapse
Affiliation(s)
- Ádám Radványi
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
17
|
Wang J, Liu Y, Guo Y, Liu C, Yang Y, Fan X, Yang H, Liu Y, Ma T. Function and inhibition of P38 MAP kinase signaling: Targeting multiple inflammation diseases. Biochem Pharmacol 2024; 220:115973. [PMID: 38103797 DOI: 10.1016/j.bcp.2023.115973] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a natural host defense mechanism that protects the body from pathogenic microorganisms. A growing body of research suggests that inflammation is a key factor in triggering other diseases (lung injury, rheumatoid arthritis, etc.). However, there is no consensus on the complex mechanism of inflammatory response, which may include enzyme activation, mediator release, and tissue repair. In recent years, p38 MAPK, a member of the MAPKs family, has attracted much attention as a central target for the treatment of inflammatory diseases. However, many p38 MAPK inhibitors attempting to obtain marketing approval have failed at the clinical trial stage due to selectivity and/or toxicity issues. In this paper, we discuss the mechanism of p38 MAPK in regulating inflammatory response and its key role in major inflammatory diseases and summarize the synthetic or natural products targeting p38 MAPK to improve the inflammatory response in the last five years, which will provide ideas for the development of novel clinical anti-inflammatory drugs based on p38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jiahui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yongjian Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yushi Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cen Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuping Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoxiao Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hongliu Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yonggang Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Tao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
18
|
Hao J, Zhang J, Wu T. Fucoxanthin extract ameliorates obesity associated with modulation of bile acid metabolism and gut microbiota in high-fat-diet fed mice. Eur J Nutr 2024; 63:231-242. [PMID: 37831134 DOI: 10.1007/s00394-023-03256-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE Fucoxanthin extract (FX) is a type of carotenoid with a beneficial effect against obesity. The purpose of this study was to explore its precise action mechanism of losing weight. METHODS A high-fat diet induced obesity mouse model was established to study the effects of different doses of FX on C57BL/6J male mice for 12 weeks. Following intervention, serum indices, tissue sections, liver gene expression, and intestinal microorganisms were analyzed. RESULTS FX at low, medium, and high dosages (80, 160, and 320 mg/kg/day, respectively) for 12 weeks was associated with the lower body weight of mice when compared to that of high-fat-diet fed mice. It also improved glucose tolerance as well as serum lipid levels, and reduced fat accumulation. Significant regulation of bile acid metabolism and intestinal microbiota may contribute to the above effects. The bile acids in the FXH group were significantly increased. A low-dose and a medium-dose FX increased the level of transmembrane G protein-coupled receptor 5 (TGR5); a low-dose and high-dose FX increased the farnesoid X receptor (FXR) expression, and a medium-dose had no effect. 16S rRNA sequencing indicated that the Lachnospiraceae and Oscillospiraceae contributed to the beneficial effects of FX. CONCLUSION Our study sheds light on mechanisms behind the weight-lowering of FX, and manifested that bile acid metabolism and gut microbiota may be potential therapies. These results support that FX is a valuable candidate for promoting health and alleviating obesity.
Collapse
Affiliation(s)
- Junyu Hao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jinxuan Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
19
|
Wu J, Singh K, Shing V, Gupta AK, Huffstutler RD, Lee DY, Sack MN. The mitochondrial thiolase ACAT1 regulates monocyte/macrophage type I interferon via epigenetic control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577773. [PMID: 38410425 PMCID: PMC10896343 DOI: 10.1101/2024.01.29.577773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Lipid-derived acetyl-CoA is shown to be the major carbon source for histone acetylation. However, there is no direct evidence demonstrating lipid metabolic pathway contribututions to this process. Mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1) catalyzes the final step of ß-oxidation, the aerobic process catabolizing fatty acids (FA) into acetyl-CoA. To investigate this in the context of immunometabolism, we generated macrophage cell line lacking ACAT1. 13C-carbon tracing combined with mass spectrometry confirmed incorporation of FA-derived carbons into histone H3 and this incorporation was reduced in ACAT1 KO macrophage cells. RNA-seq identified a subset of genes downregulated in ACAT1 KO cells including STAT1/2 and interferon stimulated genes (ISGs). CHIP analysis demonstrated reduced acetyl-H3 binding to STAT1 promoter/enhancer regions. Increasing histone acetylation rescued STAT1/2 expression in ACAT1 KO cells. Concomitantly, ligand triggered IFNβ release was blunted in ACAT1 KO cells and rescued by reconstitution of ACAT1. Furthermore, ACAT1 promotes FA-mediated histone acetylation in an acetylcarnitine shuttle-dependent manner. In patients with obesity, levels of ACAT1 and histone acetylation are abnormally elevated. Thus, our study identified a novel link between ACAT1 mediated FA metabolism and epigenetic modification on STAT1/2 that uncovers a regulatory role of lipid metabolism in innate immune signaling and opens novel avenues for interventions in human diseases such as obesity.
Collapse
Affiliation(s)
- Jing Wu
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Komudi Singh
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivian Shing
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anand K Gupta
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca D Huffstutler
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Duck-Yeon Lee
- Biochemistry Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael N Sack
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Cardiovascular Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
21
|
Alarcon PC, Damen MSMA, Ulanowicz CJ, Sawada K, Oates JR, Toth A, Wayland JL, Chung H, Stankiewicz TE, Moreno-Fernandez ME, Szabo S, Zacharias WJ, Divanovic S. Obesity amplifies influenza virus-driven disease severity in male and female mice. Mucosal Immunol 2023; 16:843-858. [PMID: 37730122 PMCID: PMC10842771 DOI: 10.1016/j.mucimm.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Influenza virus-induced respiratory pneumonia remains a major public health concern. Obesity, metabolic diseases, and female sex are viewed as independent risk factors for worsened influenza virus-induced lung disease severity. However, lack of experimental models of severe obesity in female mice limits discovery-based studies. Here, via utility of thermoneutral housing (30 °C) and high-fat diet (HFD) feeding, we induced severe obesity and metabolic disease in female C57BL/6 mice and compared their responses to severely obese male C57BL/6 counterparts during influenza virus infection. We show that lean male and female mice have similar lung edema, inflammation, and immune cell infiltration during influenza virus infection. At standard housing conditions, HFD-fed male, but not female, mice exhibit severe obesity, metabolic disease, and exacerbated influenza disease severity. However, combining thermoneutral housing and HFD feeding in female mice induces severe obesity and metabolic disease, which is sufficient to amplify influenza virus-driven disease severity to a level comparable to severely obese male counterparts. Lastly, increased total body weights of male and female mice at time of infection correlated with worsened influenza virus-driven disease severity metrics. Together, our findings confirm the impact of obesity and metabolic disease as key risk factors to influenza disease severity and present a novel mouse experimental model suitable for future mechanistic interrogation of sex, obesity, and metabolic disease traits in influenza virus-driven disease severity.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Cassidy J Ulanowicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Andrea Toth
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jennifer L Wayland
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Gastroenterology, Hepatology and Nutrition Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sara Szabo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - William J Zacharias
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
22
|
Sawada K, Chung H, Softic S, Moreno-Fernandez ME, Divanovic S. The bidirectional immune crosstalk in metabolic dysfunction-associated steatotic liver disease. Cell Metab 2023; 35:1852-1871. [PMID: 37939656 PMCID: PMC10680147 DOI: 10.1016/j.cmet.2023.10.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an unabated risk factor for end-stage liver diseases with no available therapies. Dysregulated immune responses are critical culprits of MASLD pathogenesis. Independent contributions from either the innate or adaptive arms of the immune system or their unidirectional interplay are commonly studied in MASLD. However, the bidirectional communication between innate and adaptive immune systems and its impact on MASLD remain insufficiently understood. Given that both innate and adaptive immune cells are indispensable for the development and progression of inflammation in MASLD, elucidating pathogenic contributions stemming from the bidirectional interplay between these two arms holds potential for development of novel therapeutics for MASLD. Here, we review the immune cell types and bidirectional pathways that influence the pathogenesis of MASLD and highlight potential pharmacologic approaches to combat MASLD based on current knowledge of this bidirectional crosstalk.
Collapse
Affiliation(s)
- Keisuke Sawada
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA
| | - Hak Chung
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Samir Softic
- Department of Pediatrics and Gastroenterology, University of Kentucky, Lexington, KY 40536, USA; Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45220, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
23
|
Varga KZ, Gyurina K, Radványi Á, Pál T, Sasi-Szabó L, Yu H, Felszeghy E, Szabó T, Röszer T. Stimulator of Interferon Genes (STING) Triggers Adipocyte Autophagy. Cells 2023; 12:2345. [PMID: 37830559 PMCID: PMC10572001 DOI: 10.3390/cells12192345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023] Open
Abstract
Innate immune signaling in adipocytes affects systemic metabolism. Cytosolic nucleic acid sensing has been recently shown to stimulate thermogenic adipocyte differentiation and protect from obesity; however, DNA efflux from adipocyte mitochondria is a potential proinflammatory signal that causes adipose tissue dysfunction and insulin resistance. Cytosolic DNA activates the stimulator of interferon response genes (STING), a key signal transducer which triggers type I interferon (IFN-I) expression; hence, STING activation is expected to induce IFN-I response and adipocyte dysfunction. However, we show herein that mouse adipocytes had a diminished IFN-I response to STING stimulation by 2'3'-cyclic-GMP-AMP (cGAMP). We also show that cGAMP triggered autophagy in murine and human adipocytes. In turn, STING inhibition reduced autophagosome number, compromised the mitochondrial network and caused inflammation and fat accumulation in adipocytes. STING hence stimulates a process that removes damaged mitochondria, thereby protecting adipocytes from an excessive IFN-I response to mitochondrial DNA efflux. In summary, STING appears to limit inflammation in adipocytes by promoting mitophagy under non-obesogenic conditions.
Collapse
Affiliation(s)
- Kornél Z. Varga
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Katalin Gyurina
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Ádám Radványi
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tibor Pál
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - László Sasi-Szabó
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Haidong Yu
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| | - Enikő Felszeghy
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Szabó
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamás Röszer
- Pediatric Obesity Research Division, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Institute of Neurobiology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
24
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
25
|
Nasuhidehnavi A, McCall LI. It takes two to tango: How immune responses and metabolic changes jointly shape cardiac Chagas disease. PLoS Pathog 2023; 19:e1011399. [PMID: 37262078 PMCID: PMC10234536 DOI: 10.1371/journal.ppat.1011399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Affiliation(s)
- Azadeh Nasuhidehnavi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, United States of America
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, United States of America
| |
Collapse
|
26
|
Qi Y, Wu Z, Chen D, Zhu L, Yang Y. A role of STING signaling in obesity-induced lung inflammation. Int J Obes (Lond) 2023; 47:325-334. [PMID: 36782056 PMCID: PMC9924210 DOI: 10.1038/s41366-023-01272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND It is established that pulmonary disorders are comorbid with metabolic disorders such as obesity. Previous studies show that the stimulator of interferon genes (STING) signaling plays crucial roles in obesity-induced chronic inflammation via TANK-binding kinase 1 (TBK1) pathways. However, it remains unknown whether and how the STING signaling is implicated in the inflammatory processes in the lung in obesity. METHODS Human lung tissues were obtained from obese patients (n = 3) and controls (n = 3). Mice were fed with the high-fat diet or regular control diet to establish the diet-induced obese (DIO) and lean mice, and were treated with C-176 (a specific STING inhibitor) or vehicle respectively. The lung macrophages were exposed to palmitic acid (PA) in vitro. The levels of STING singaling and metabolic inflammation factors were detected and anlyzed. RESULTS We find that STING+/CD68+ macrophages are increased in lung tissues in patients with obesity. Our data also show that the expressions of STING and the levels of proinflammatory cytokines are increased both in lung tissues and bronchoalveolar lavage fluid (BALF) in obesity compared to controls, and inhibition of the STING blunted the obesity-induced lung inflammation. Mechanistically, our data demonstrate that the STING signaling pathway is involved in the PA-induced inflammation through the STING-TBK1-IRF3 (interferon regulatory factor 3)/NF-κB (nuclear factor kappa B) pathways in the lung macrophages. CONCLUSIONS Our results collectively suggest that the STING signaling contributes to obesity-associated inflammation by stimulating proinflammatory processes in lung macrophages, one that may serve as a therapeutic target in ameliorating obesity-related lung dysfunctions.
Collapse
Affiliation(s)
- Yong Qi
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Zhuhua Wu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Dan Chen
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Li Zhu
- Department of Pulmonary and Critical Care Medicine, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Yunlei Yang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
27
|
Sarver DC, Xu C, Velez LM, Aja S, Jaffe AE, Seldin MM, Reeves RH, Wong GW. Dysregulated systemic metabolism in a Down syndrome mouse model. Mol Metab 2023; 68:101666. [PMID: 36587842 PMCID: PMC9841171 DOI: 10.1016/j.molmet.2022.101666] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leandro M Velez
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew E Jaffe
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; The Lieber Institute for Brain Development, Baltimore, MD, USA; Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California Irvine, Irvine, USA
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
29
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
30
|
Hoang AC, Sasi-Szabó L, Pál T, Szabó T, Diedrich V, Herwig A, Landgraf K, Körner A, Röszer T. Mitochondrial RNA stimulates beige adipocyte development in young mice. Nat Metab 2022; 4:1684-1696. [PMID: 36443525 PMCID: PMC9771821 DOI: 10.1038/s42255-022-00683-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/10/2022] [Indexed: 11/30/2022]
Abstract
Childhood obesity is a serious public health crisis and a critical factor that determines future obesity prevalence. Signals affecting adipocyte development in early postnatal life have a strong potential to trigger childhood obesity; however, these signals are still poorly understood. We show here that mitochondrial (mt)RNA efflux stimulates transcription of nuclear-encoded genes for mitobiogenesis and thermogenesis in adipocytes of young mice and human infants. While cytosolic mtRNA is a potential trigger of the interferon (IFN) response, young adipocytes lack such a response to cytosolic mtRNA due to the suppression of IFN regulatory factor (IRF)7 expression by vitamin D receptor signalling. Adult and obese adipocytes, however, strongly express IRF7 and mount an IFN response to cytosolic mtRNA. In turn, suppressing IRF7 expression in adult adipocytes restores mtRNA-induced mitobiogenesis and thermogenesis and eventually mitigates obesity. Retrograde mitochondrion-to-nucleus signalling by mtRNA is thus a mechanism to evoke thermogenic potential during early adipocyte development and to protect against obesity.
Collapse
Affiliation(s)
| | - László Sasi-Szabó
- Institute of Pediatrics, Clinical Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tibor Pál
- Institute of Pediatrics, Clinical Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Szabó
- Institute of Pediatrics, Clinical Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- Center for Pediatric Research, University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Tamás Röszer
- Institute of Neurobiology, Ulm University, Ulm, Germany.
- Institute of Pediatrics, Clinical Centre, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
31
|
Campos-Sánchez JC, Gonzalez-Silvera D, Gong X, Broughton R, Guardiola FA, Betancor MB, Esteban MÁ. Implication of adipocytes from subcutaneous adipose tissue and fatty acids in skin inflammation caused by λ-carrageenin in gilthead seabream (Sparusaurata). FISH & SHELLFISH IMMUNOLOGY 2022; 131:160-171. [PMID: 36210005 DOI: 10.1016/j.fsi.2022.09.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The role of subcutaneous adipose tissue adipocytes and the effects of fatty acids on carrageenan-induced skin inflammation in gilthead seabream (Sparus aurata) were studied. Fish were injected intramuscularly with phosphate-buffered saline (control) or λ-carrageenin (1%), and skin samples collected at the injection site at 3 and 6 h post-injection (p.i.) were processed for histological study. In addition, the presence and levels of lipid classes, fatty acid methyl esters (FAME) and eicosanoids were evaluated in the skin samples obtained from the injected areas. Histological results indicated an increase in adipocyte area in fish sampled at 3 h p.i. with λ-carrageenin compared to fish in the control group. Furthermore, the frequency of adipocytes between 4500 and 5000 μm2 was increased at 6 h in the λ-carrageenin group compared to the control group. Analysis of lipid classes found that fish injected with λ-carrageenan showed increased free fatty acid (FFA) and sphingomyelin content at 3 and 6 h, respectively, compared to the control group. An increase in saturated fatty acids (SFA), n-6 polyunsaturated fatty acids (PUFA), and a decrease in the values of monounsaturated fatty acids (MUFA), n-3 PUFA and minor fatty acids were observed in fish skin at 6 h after λ-carrageenin injection, with respect to the values obtained in the control group. Regarding the analysis of eicosanoids, an increase in hydroxyeicosatetraenoic acid (5-HETE) was detected in the skin of fish at 6 h post-carrageenin injection compared to the control group. The presented results indicate the contribution of adipocytes and fatty acids in the development and regulation of the inflammatory response triggered by λ-carrageenin in gilthead seabream skin.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Daniel Gonzalez-Silvera
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Xu Gong
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Richard Broughton
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Mónica B Betancor
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology. Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
32
|
Mitochondrial RNA stimulates heat production in young adipocytes to reduce obesity. Nat Metab 2022; 4:1628-1629. [PMID: 36474008 DOI: 10.1038/s42255-022-00686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Prolonged Antiretroviral Treatment Induces Adipose Tissue Remodelling Associated with Mild Inflammation in SIV-Infected Macaques. Cells 2022; 11:cells11193104. [PMID: 36231066 PMCID: PMC9561982 DOI: 10.3390/cells11193104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
During chronic SIV/HIV infection, adipose tissue (AT) is the target of both antiretroviral treatment (ART) and the virus. AT might subsequently contribute to the low-grade systemic inflammation observed in patients on ART. To evaluate the inflammatory profile of AT during chronic SIV/HIV infection, we assayed subcutaneous and visceral abdominal AT from non-infected (SIV−, control), ART-naïve SIV-infected (SIV+) and ART-controlled SIV-infected (SIV+ART+) cynomolgus macaques for the mRNA expression of genes coding for factors related to inflammation. Significant differences were observed only when comparing the SIV+ART+ group with the SIV+ and/or SIV− groups. ART-treated infection impacted the metabolic fraction (with elevated expression of PPARγ and CEBPα), the extracellular matrix (with elevated expression of COL1A2 and HIF-1α), and the inflammatory profile. Both pro- and anti-inflammatory signatures were detected in AT, with greater mRNA expression of anti-inflammatory markers (adiponectin and CD163) and markers associated with inflammation (TNF-α, Mx1, CCL5 and CX3CL1). There were no intergroup differences in other markers (IL-6 and MCP-1). In conclusion, we observed marked differences in the immune and metabolic profiles of AT in the context of an ART-treated, chronic SIV infection; these differences were related more to ART than to SIV infection per se.
Collapse
|
34
|
Nishimura Y, Iwashita M, Hayashi M, Shinjo T, Watanabe Y, Zeze T, Yamashita A, Fukuda T, Sanui T, Sano T, Asano T, Nishimura F. XAF1 overexpression exacerbates diabetes by promoting pancreatic β-cell apoptosis. Acta Diabetol 2022; 59:1275-1286. [PMID: 35829914 PMCID: PMC9402739 DOI: 10.1007/s00592-022-01930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
AIMS Pancreatic β-cell apoptosis may be involved in the onset and progression of type 2 diabetes mellitus, although its mechanism remains unclear. We previously demonstrated that macrophage-derived interferon (IFN) β induced X-linked inhibitor of apoptosis-associated factor 1 (XAF1) expression in β-cells and accelerated β-cell apoptosis in vitro. Here, we explored the effects of XAF1 on β-cell function and progression of diabetes in vivo. METHODS Pancreatic β-cell-selective XAF1 overexpressing (Xaf1 Tg) mice were generated. Xaf1 Tg mice and their wild-type (WT) littermates were fed either a normal diet or a 40% or 60% high-fat diet (HFD). The effects of β-cell XAF1 on β-cell apoptosis and exacerbation of diabetes were investigated. RESULTS Palmitic acid induced IFNβ expression in macrophages, and HFD intake promoted macrophage infiltration in pancreatic islets, both of which cooperatively upregulated XAF1 expression in mouse islets. Furthermore, HFD-fed Xaf1 Tg mice demonstrated increased β-cell apoptosis, lowered insulin expression, and impaired glucose tolerance compared with WT mice fed the same diet. These effects were more pronounced in the 60%HFD group than in the 40%HFD group. CONCLUSIONS Pancreatic β-cell XAF1 expression was enhanced via HFD-induced, macrophage-derived IFNβ, which promoted β-cell apoptosis and led to a reduction in insulin secretion and progression of diabetes. To our knowledge, this is the first report to demonstrate an association between pancreatic β-cell XAF1 overexpression and exacerbation of diabetes, thus providing insight into the mechanism of β-cell mass reduction in diabetes.
Collapse
Affiliation(s)
- Yuki Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Misaki Iwashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masato Hayashi
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takanori Shinjo
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yukari Watanabe
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tatsuro Zeze
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akiko Yamashita
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takao Fukuda
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Terukazu Sanui
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomomi Sano
- Department of Cell Biology and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Tomoichiro Asano
- Department of Medical Chemistry, Division of Molecular Medical Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
35
|
Abstract
Metabolic adaptation to viral infections critically determines the course and manifestations of disease. At the systemic level, a significant feature of viral infection and inflammation that ensues is the metabolic shift from anabolic towards catabolic metabolism. Systemic metabolic sequelae such as insulin resistance and dyslipidaemia represent long-term health consequences of many infections such as human immunodeficiency virus, hepatitis C virus and severe acute respiratory syndrome coronavirus 2. The long-held presumption that peripheral and tissue-specific 'immune responses' are the chief line of defence and thus regulate viral control is incomplete. This Review focuses on the emerging paradigm shift proposing that metabolic engagements and metabolic reconfiguration of immune and non-immune cells following virus recognition modulate the natural course of viral infections. Early metabolic footprints are likely to influence longer-term disease manifestations of infection. A greater appreciation and understanding of how local biochemical adjustments in the periphery and tissues influence immunity will ultimately lead to interventions that curtail disease progression and identify new and improved prognostic biomarkers.
Collapse
Affiliation(s)
- Clovis S Palmer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
36
|
Ryu S, Sidorov S, Ravussin E, Artyomov M, Iwasaki A, Wang A, Dixit VD. The matricellular protein SPARC induces inflammatory interferon-response in macrophages during aging. Immunity 2022; 55:1609-1626.e7. [PMID: 35963236 PMCID: PMC9474643 DOI: 10.1016/j.immuni.2022.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 01/01/2023]
Abstract
The risk of chronic diseases caused by aging is reduced by caloric restriction (CR)-induced immunometabolic adaptation. Here, we found that the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), was inhibited by 2 years of 14% sustained CR in humans and elevated by obesity. SPARC converted anti-inflammatory macrophages into a pro-inflammatory phenotype with induction of interferon-stimulated gene (ISG) expression via the transcription factors IRF3/7. Mechanistically, SPARC-induced ISGs were dependent on toll-like receptor-4 (TLR4)-mediated TBK1, IRF3, IFN-β, and STAT1 signaling without engaging the Myd88 pathway. Metabolically, SPARC dampened mitochondrial respiration, and inhibition of glycolysis abrogated ISG induction by SPARC in macrophages. Furthermore, the N-terminal acidic domain of SPARC was required for ISG induction, while adipocyte-specific deletion of SPARC reduced inflammation and extended health span during aging. Collectively, SPARC, a CR-mimetic adipokine, is an immunometabolic checkpoint of inflammation and interferon response that may be targeted to delay age-related metabolic and functional decline.
Collapse
Affiliation(s)
- Seungjin Ryu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav Sidorov
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Maxim Artyomov
- Section of Immunology, Washington School of Medicine, St Louis, MO 63110, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Andrew Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA
| | - Vishwa Deep Dixit
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06520, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, USA; Yale Center for Research on Aging, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
37
|
Vella V, De Francesco EM, Bonavita E, Lappano R, Belfiore A. IFN-I signaling in cancer: the connection with dysregulated Insulin/IGF axis. Trends Endocrinol Metab 2022; 33:569-586. [PMID: 35691786 DOI: 10.1016/j.tem.2022.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023]
Abstract
Type I interferons (IFN-Is) are prototypical inflammatory cytokines produced in response to stress. IFN-Is have a critical role in antitumor immunity by driving the activation of leukocytes and favoring the elimination of malignant cells. However, IFN-I signaling in cancer, specifically in the tumor microenvironment (TME), can have opposing roles. Sustained IFN-I stimulation can promote immune exhaustion or enable tumor cell-intrinsic malignant features. Herein, we discuss the potential impact of the insulin/insulin-like growth factor system (I/IGFs) and of metabolic disorders in aberrant IFN-I signaling in cancer. We consider the possibility that targeting I/IGFs, especially in patients with cancer affected by metabolic disorders, contributes to an effective strategy to inhibit deleterious IFN-I signaling, thereby restoring sensitivity to various cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
- Veronica Vella
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Eduardo Bonavita
- IRCCS Humanitas Research Hospital, Fondazione Humanitas per la Ricerca, Laboratory of Cellular and Molecular Oncoimmunology, 20089 Rozzano, Italy; Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Antonino Belfiore
- Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy.
| |
Collapse
|
38
|
Ka NL, Lim GY, Kim SS, Hwang S, Han J, Lee YH, Lee MO. Type I IFN stimulates IFI16-mediated aromatase expression in adipocytes that promotes E 2-dependent growth of ER-positive breast cancer. Cell Mol Life Sci 2022; 79:306. [PMID: 35593921 PMCID: PMC9122892 DOI: 10.1007/s00018-022-04333-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/24/2022]
Abstract
Although type I interferons (IFNs) play multifaceted roles during tumorigenesis and cancer treatment, the interplay between type I IFNs and estrogen signaling in breast cancer (BC) microenvironment is not well understood. Here, we report a novel function of type I IFNs in inducing aromatase expression in adipose tissues surrounding BC, which potentiates the E2-dependent growth of estrogen receptor (ER)-positive BC. First, we found that expression levels of type I IFNs correlate negatively with clinical outcome but positively with tumor grade in patients with ER-positive BC. Levels of type I IFNs were elevated in cocultured media of immune cells and BC cells, which increased aromatase expression and E2 production in Simpson-Golabi-Behmel syndrome preadipocytes. The type I IFN-induced aromatase expression was dependent on IFN-γ-inducible protein 16 (IFI16), which is encoded by an interferon-stimulated gene. At the molecular level, type I IFNs led to recruitment of HIF1α-IFI16-PRMT2 complex to the hypoxia-response element located in the aromatase PI.3/PII promoter. Next, we generated an adipocyte-specific Ifi204, which is a mouse ortholog of human IFI16, knockout mouse (Ifi204-AKO). IFNβ induced E2 production in the preadipocytes isolated from the control mice, but such E2 production was far lower in the Ifi204-AKO preadipocytes. Importantly, the growth of orthotopically inoculated E0771 ER-positive mammary tumors was reduced significantly in the Ifi204-AKO mice. Taken together, our findings provide novel insights into the crosstalk between type I IFNs and estrogen signaling in the progression of ER-positive BC.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Ga Young Lim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Seung-Su Kim
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Sewon Hwang
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Juhyeong Han
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Yun-Hee Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, South Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
39
|
Cao W. IFN-Aging: Coupling Aging With Interferon Response. FRONTIERS IN AGING 2022; 3:870489. [PMID: 35821859 PMCID: PMC9261325 DOI: 10.3389/fragi.2022.870489] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 11/19/2022]
Abstract
Chronic inflammation affects many diseases and conditions, including aging. Interferons are a part of the immune defense against viral infections. Paradoxically, various aging tissues and organs from mammalian hosts perpetually accumulate changes brought by interferon pathway activation. Herein, we connote the mechanisms behind this phenomenon and discuss its implications in age-related pathology.
Collapse
Affiliation(s)
- Wei Cao
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
40
|
Damen MSMA, Alarcon PC, Shah AS, Divanovic S. Greasing the inflammatory pathogenesis of viral pneumonias in diabetes. Obes Rev 2022; 23:e13415. [PMID: 34989117 PMCID: PMC9771603 DOI: 10.1111/obr.13415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D) and obesity are independent risk factors for increased morbidity and mortality associated with influenza and SARS-CoV-2 infection. Skewed cellular metabolism shapes immune cell inflammatory responsiveness and function in obesity, T2D, and infection. However, altered immune cell responsiveness and levels of systemic proinflammatory mediators, partly independent of peripheral immune cell contribution, are linked with SARS-CoV-2-associated disease severity. Despite such knowledge, the role of tissue parenchymal cell-driven inflammatory responses, and specifically those dominantly modified in obesity (e.g., adipocytes), in influenza and SARS-CoV-2 infection pathogenesis remain poorly defined. Whether obesity-dependent skewing of adipocyte cellular metabolism uncovers inflammatory clades and promotes the existence of a 'pathogenic-inflammatory' adipocyte phenotype that amplifies SARS-CoV-2 infection diseases severity in individuals with obesity and individuals with obesity and T2D has not been examined. Here, using the knowledge gained from studies of immune cell responses in obesity, T2D, and infection, we highlight the key knowledge gaps underlying adipocyte cellular functions that may sculpt and grease pathogenic processes associated with influenza and SARS-CoV-2 disease severity in diabetes.
Collapse
Affiliation(s)
- Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Amy S Shah
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Medical Scientist Training Program, Cincinnati Childrens Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Immunology Graduate Program, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
41
|
Yang G, Lee HE, Seok JK, Kang HC, Cho YY, Lee HS, Lee JY. RIG-I Deficiency Promotes Obesity-Induced Insulin Resistance. Pharmaceuticals (Basel) 2021; 14:ph14111178. [PMID: 34832960 PMCID: PMC8624253 DOI: 10.3390/ph14111178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation and immunity are linked to the onset and development of obesity and metabolic disorders. Pattern recognition receptors (PRRs) are key regulators of inflammation and immunity in response to infection and stress, and they have critical roles in metainflammation. In this study, we investigated whether RIG-I (retinoic acid-inducible gene I)-like receptors were involved in the regulation of obesity-induced metabolic stress in RIG-I knockout (KO) mice fed a high-fat diet (HFD). RIG-I KO mice fed an HFD for 12 weeks showed greater body weight gain, higher fat composition, lower lean body mass, and higher epididymal white adipose tissue (eWAT) weight than WT mice fed HFD. In contrast, body weight gain, fat, and lean mass compositions, and eWAT weight of MDA5 (melanoma differentiation-associated protein 5) KO mice fed HFD were similar to those of WT mice fed a normal diet. RIG-I KO mice fed HFD exhibited more severely impaired glucose tolerance and higher HOMA-IR values than WT mice fed HFD. IFN-β expression induced by ER stress inducers, tunicamycin and thapsigargin, was abolished in RIG-I-deficient hepatocytes and macrophages, showing that RIG-I is required for ER stress-induced IFN-β expression. Our results show that RIG-I deficiency promotes obesity and insulin resistance induced by a high-fat diet, presenting a novel role of RIG-I in the development of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Gabsik Yang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- Department of Pharmacology, College of Korean Medicine, Woosuk University, Jeonju 55338, Korea
| | - Hye Eun Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Han Chang Kang
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
| | - Yong-Yeon Cho
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- BK21FOUR Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- BK21FOUR Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea; (G.Y.); (H.E.L.); (J.K.S.); (H.C.K.); (Y.-Y.C.); (H.S.L.)
- BK21FOUR Team, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Korea
- Correspondence: ; Tel.: +82-2-2164-4095
| |
Collapse
|
42
|
Alarcon PC, Damen MSMA, Madan R, Deepe GS, Spearman P, Way SS, Divanovic S. Adipocyte inflammation and pathogenesis of viral pneumonias: an overlooked contribution. Mucosal Immunol 2021; 14:1224-1234. [PMID: 33958704 PMCID: PMC8100369 DOI: 10.1038/s41385-021-00404-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/18/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Epidemiological evidence establishes obesity as an independent risk factor for increased susceptibility and severity to viral respiratory pneumonias associated with H1N1 influenza and SARS-CoV-2 pandemics. Given the global obesity prevalence, a better understanding of the mechanisms behind obese susceptibility to infection is imperative. Altered immune cell metabolism and function are often perceived as a key causative factor of dysregulated inflammation. However, the contribution of adipocytes, the dominantly altered cell type in obesity with broad inflammatory properties, to infectious disease pathogenesis remains largely ignored. Thus, skewing of adipocyte-intrinsic cellular metabolism may lead to the development of pathogenic inflammatory adipocytes, which shape the overall immune responses by contributing to either premature immunosenescence, delayed hyperinflammation, or cytokine storm in infections. In this review, we discuss the underappreciated contribution of adipocyte cellular metabolism and adipocyte-produced mediators on immune system modulation and how such interplay may modify disease susceptibility and pathogenesis of influenza and SARS-CoV-2 infections in obese individuals.
Collapse
Affiliation(s)
- Pablo C Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, Cincinnati, OH, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajat Madan
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - George S Deepe
- Division of Infectious Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul Spearman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Divisions of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Medical Scientist Training Program, Cincinnati, OH, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Bai J, Liu F. cGAS‒STING signaling and function in metabolism and kidney diseases. J Mol Cell Biol 2021; 13:728-738. [PMID: 34665236 PMCID: PMC8718186 DOI: 10.1093/jmcb/mjab066] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/03/2022] Open
Abstract
The cyclic GMP‒AMP synthase (cGAS)‒stimulator of interferon genes (STING) signaling pathway senses the presence of cytosolic DNA and, in turn, triggers downstream signaling to induce the expression of inflammatory and type I interferon genes in immune cells. Whereas the innate immune function of the cGAS‒STING pathway is well studied over the past years, emerging evidence suggests that this signaling pathway may have additional functions beyond innate immune surveillance. Consistent with this notion, dysregulation of the cGAS‒STING signaling pathway in adipocytes, hepatocytes, and renal proximal tubule epithelial cells are associated with metabolic dysfunction, impaired energy homeostasis, and kidney diseases. In this review, we summarize current understanding of the cGAS‒STING pathway in several metabolic diseases such as obesity, insulin resistance, alcoholic and nonalcoholic fatty liver diseases, as well as acute kidney injury and chronic kidney disease. We also review the interaction between the cGAS‒STING pathway and lipid metabolism. Lastly, we discuss potential mechanisms by which cGAS‒STING signaling regulates metabolism and point toward future avenues of research targeting the cGAS‒STING pathway as possible means to treat common metabolic disorders.
Collapse
Affiliation(s)
- Juli Bai
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA.,National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Feng Liu
- Departments of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX 78229, USA.,National Clinical Research Center for Metabolic Diseases, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
44
|
Thomas AL, Alarcon PC, Divanovic S, Chougnet CA, Hildeman DA, Moreno-Fernandez ME. Implications of Inflammatory States on Dysfunctional Immune Responses in Aging and Obesity. FRONTIERS IN AGING 2021; 2:732414. [PMID: 35822048 PMCID: PMC9261339 DOI: 10.3389/fragi.2021.732414] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022]
Abstract
Aging and obesity are two conditions characterized by chronic, low-grade inflammation. While both conditions are also associated with dysfunctional immune responses, the shared and distinct underlying mechanisms are just starting to be uncovered. In fact, recent findings have suggested that the effects of obesity on the immune system can be thought of as a state of accelerated aging. Here we propose that chronic, low-grade inflammation seen in obesity and aging is complex, affects multiple cell types, and results in an altered basal immune state. In aging, part of this altered state is the emergence of regulatory immune populations that lead to further immune dysfunction in an attempt to reduce chronic inflammation. While in obesity, part of the altered state is the effect of expanding adipose tissue on immune cell function. Thus, in this review, we compare, and contrast altered immune states in aging and obesity and discuss their potential contribution to a shared clinical problem- decreased vaccine responsiveness.
Collapse
Affiliation(s)
- Alyssa L. Thomas
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Pablo C. Alarcon
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David A. Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Immunology Graduate Program and Medical Scientist Training Program, Cincinnati Children's Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, Cincinnati Children’s Hospital Medical Center and The University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Transplant Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Maria E. Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Immunobiology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
45
|
Machado H, Bizarra-Rebelo T, Costa-Sequeira M, Trindade S, Carvalho T, Rijo-Ferreira F, Rentroia-Pacheco B, Serre K, Figueiredo LM. Trypanosoma brucei triggers a broad immune response in the adipose tissue. PLoS Pathog 2021; 17:e1009933. [PMID: 34525131 PMCID: PMC8476018 DOI: 10.1371/journal.ppat.1009933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/27/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is one of the major reservoirs of Trypanosoma brucei parasites, the causative agent of sleeping sickness, a fatal disease in humans. In mice, the gonadal adipose tissue (AT) typically harbors 2–5 million parasites, while most solid organs show 10 to 100-fold fewer parasites. In this study, we tested whether the AT environment responds immunologically to the presence of the parasite. Transcriptome analysis of T. brucei infected adipose tissue revealed that most upregulated host genes are involved in inflammation and immune cell functions. Histochemistry and flow cytometry confirmed an increasingly higher number of infiltrated macrophages, neutrophils and CD4+ and CD8+ T lymphocytes upon infection. A large proportion of these lymphocytes effectively produce the type 1 effector cytokines, IFN-γ and TNF-α. Additionally, the adipose tissue showed accumulation of antigen-specific IgM and IgG antibodies as infection progressed. Mice lacking T and/or B cells (Rag2-/-, Jht-/-), or the signature cytokine (Ifng-/-) displayed a higher parasite load both in circulation and in the AT, demonstrating the key role of the adaptive immune system in both compartments. Interestingly, infections of C3-/- mice showed that while complement system is dispensable to control parasite load in the blood, it is necessary in the AT and other solid tissues. We conclude that T. brucei infection triggers a broad and robust immune response in the AT, which requires the complement system to locally reduce parasite burden. African trypanosomiasis is a neglected disease with significant socio-economic burden in sub-Saharan Africa. The protozoan parasite Trypanosoma brucei, a causative agent of African trypanosomiasis, can be found in the blood and extra-vascular spaces of the infected host. For an unknown reason, T. brucei accumulates in adipose tissue (AT) in very high numbers. Here we used a multidisciplinary approach to assess whether an immune response was mounted in AT during a T. brucei infection. We found that as infection progresses, a broad variety of immune cells and antibodies accumulate in the AT. We also found that this broad immune response is partially able to control parasite numbers in the AT. Our study provides evidence that T. brucei parasites present in the AT are subjected to immune surveillance. The reason why T. brucei accumulates to such a high extent in AT remains to be elucidated.
Collapse
Affiliation(s)
- Henrique Machado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Bizarra-Rebelo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana Costa-Sequeira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra Trindade
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Filipa Rijo-Ferreira
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Barbara Rentroia-Pacheco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail: (KS); (LMF)
| | - Luisa M. Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- * E-mail: (KS); (LMF)
| |
Collapse
|
46
|
Bourgeois C, Gorwood J, Olivo A, Le Pelletier L, Capeau J, Lambotte O, Béréziat V, Lagathu C. Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment. Front Immunol 2021; 12:670566. [PMID: 34220817 PMCID: PMC8250865 DOI: 10.3389/fimmu.2021.670566] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (AT) contributes significantly to inflammation – especially in the context of obesity. Several of AT’s intrinsic features favor its key role in local and systemic inflammation: (i) large distribution throughout the body, (ii) major endocrine activity, and (iii) presence of metabolic and immune cells in close proximity. In obesity, the concomitant pro-inflammatory signals produced by immune cells, adipocytes and adipose stem cells help to drive local inflammation in a vicious circle. Although the secretion of adipokines by AT is a prime contributor to systemic inflammation, the lipotoxicity associated with AT dysfunction might also be involved and could affect distant organs. In HIV-infected patients, the AT is targeted by both HIV infection and antiretroviral therapy (ART). During the primary phase of infection, the virus targets AT directly (by infecting AT CD4 T cells) and indirectly (via viral protein release, inflammatory signals, and gut disruption). The initiation of ART drastically changes the picture: ART reduces viral load, restores (at least partially) the CD4 T cell count, and dampens inflammatory processes on the whole-body level but also within the AT. However, ART induces AT dysfunction and metabolic side effects, which are highly dependent on the individual molecules and the combination used. First generation thymidine reverse transcriptase inhibitors predominantly target mitochondrial DNA and induce oxidative stress and adipocyte death. Protease inhibitors predominantly affect metabolic pathways (affecting adipogenesis and adipocyte homeostasis) resulting in insulin resistance. Recently marketed integrase strand transfer inhibitors induce both adipocyte adipogenesis, hypertrophy and fibrosis. It is challenging to distinguish between the respective effects of viral persistence, persistent immune defects and ART toxicity on the inflammatory profile present in ART-controlled HIV-infected patients. The host metabolic status, the size of the pre-established viral reservoir, the quality of the immune restoration, and the natural ageing with associated comorbidities may mitigate and/or reinforce the contribution of antiretrovirals (ARVs) toxicity to the development of low-grade inflammation in HIV-infected patients. Protecting AT functions appears highly relevant in ART-controlled HIV-infected patients. It requires lifestyle habits improvement in the absence of effective anti-inflammatory treatment. Besides, reducing ART toxicities remains a crucial therapeutic goal.
Collapse
Affiliation(s)
- Christine Bourgeois
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Anaelle Olivo
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Laura Le Pelletier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Olivier Lambotte
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France.,AP-HP, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Claire Lagathu
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| |
Collapse
|
47
|
Moreno-Fernandez ME, Sharma V, Stankiewicz TE, Oates JR, Doll JR, Damen MSMA, Almanan MATA, Chougnet CA, Hildeman DA, Divanovic S. Aging mitigates the severity of obesity-associated metabolic sequelae in a gender independent manner. Nutr Diabetes 2021; 11:15. [PMID: 34099626 PMCID: PMC8184786 DOI: 10.1038/s41387-021-00157-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Understanding gender-associated bias in aging and obesity-driven metabolic derangements has been hindered by the inability to model severe obesity in female mice. METHODS Here, using chow- or high fat diet (HFD)-feeding regimens at standard (TS) and thermoneutral (TN) housing temperatures, the latter to model obesity in female mice, we examined the impact of gender and aging on obesity-associated metabolic derangements and immune responsiveness. Analysis included quantification of: (i) weight gain and adiposity; (ii) the development and severity of glucose dysmetabolism and non-alcoholic fatty liver disease (NAFLD); and (iii) induction of inflammatory pathways related to metabolic dysfunction. RESULTS We show that under chow diet feeding regimen, aging was accompanied by increased body weight and white adipose tissue (WAT) expansion in a gender independent manner. HFD feeding regimen in aged, compared to young, male mice at TS, resulted in attenuated glucose dysmetabolism and hepatic steatosis. However, under TS housing conditions only aged, but not young, HFD fed female mice developed obesity. At TN however, both young and aged HFD fed female mice developed severe obesity. Independent of gender or housing conditions, aging attenuated the severity of metabolic derangements in HFD-fed obese mice. Tempered severity of metabolic derangements in aged mice was associated with increased splenic frequency of regulatory T (Treg) cells, Type I regulatory (Tr1)-like cells and circulating IL-10 levels and decreased vigor of HFD-driven induction of inflammatory pathways in adipose and liver tissues. CONCLUSION Our findings suggest that aging-associated altered immunological profile and inflammatory vigor may play a dominant role in the attenuation of obesogenic diet-driven metabolic dysfunction.
Collapse
Affiliation(s)
- Maria E Moreno-Fernandez
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vishakha Sharma
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Traci E Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Jarren R Oates
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Jessica R Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle S M A Damen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Maha A T A Almanan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - Claire A Chougnet
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
| | - David A Hildeman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA
- Center for Transplant Immunology, and Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center Cincinnati, Ohio, 45229, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Division of Immunobiology Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Immunology Graduate Program Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, 45220, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
| |
Collapse
|
48
|
Chan CC, Harley ITW, Pfluger PT, Trompette A, Stankiewicz TE, Allen JL, Moreno-Fernandez ME, Damen MSMA, Oates JR, Alarcon PC, Doll JR, Flick MJ, Flick LM, Sanchez-Gurmaches J, Mukherjee R, Karns R, Helmrath M, Inge TH, Weisberg SP, Pamp SJ, Relman DA, Seeley RJ, Tschöp MH, Karp CL, Divanovic S. A BAFF/APRIL axis regulates obesogenic diet-driven weight gain. Nat Commun 2021; 12:2911. [PMID: 34006859 PMCID: PMC8131685 DOI: 10.1038/s41467-021-23084-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of immune mediators on weight homeostasis remains underdefined. Interrogation of resistance to diet-induced obesity in mice lacking a negative regulator of Toll-like receptor signaling serendipitously uncovered a role for B cell activating factor (BAFF). Here we show that overexpression of BAFF in multiple mouse models associates with protection from weight gain, approximating a log-linear dose response relation to BAFF concentrations. Gene expression analysis of BAFF-stimulated subcutaneous white adipocytes unveils upregulation of lipid metabolism pathways, with BAFF inducing white adipose tissue (WAT) lipolysis. Brown adipose tissue (BAT) from BAFF-overexpressing mice exhibits increased Ucp1 expression and BAFF promotes brown adipocyte respiration and in vivo energy expenditure. A proliferation-inducing ligand (APRIL), a BAFF homolog, similarly modulates WAT and BAT lipid handling. Genetic deletion of both BAFF and APRIL augments diet-induced obesity. Lastly, BAFF/APRIL effects are conserved in human adipocytes and higher BAFF/APRIL levels correlate with greater BMI decrease after bariatric surgery. Together, the BAFF/APRIL axis is a multifaceted immune regulator of weight gain and adipose tissue function.
Collapse
Affiliation(s)
- Calvin C Chan
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Isaac T W Harley
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Rheumatology, Department of Internal Medicine and Department of Immunology & Microbiology, The University of Colorado Denver, Aurora, CO, USA
| | - Paul T Pfluger
- Research Unit NeuroBiology of Diabetes, Helmholtz Center Munich, Neuherberg, Germany
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Aurelien Trompette
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Lausanne, Service de Pneumologie, CHUV, CLED 02.206, Epalinges, Switzerland
| | - Traci E Stankiewicz
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jessica L Allen
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- , Charlotte, NC, USA
| | - Maria E Moreno-Fernandez
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michelle S M A Damen
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jarren R Oates
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pablo C Alarcon
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jessica R Doll
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew J Flick
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leah M Flick
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- , Chapel Hill, NC, USA
| | - Joan Sanchez-Gurmaches
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajib Mukherjee
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rebekah Karns
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael Helmrath
- Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas H Inge
- Department of Surgery, Children's Hospital Colorado, Aurora, CO, USA
| | | | - Sünje J Pamp
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David A Relman
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Randy J Seeley
- Department of Surgery, Internal Medicine and Nutritional Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Christopher L Karp
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Global Health Discovery & Translational Sciences, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Senad Divanovic
- Department of Pediatrics, The University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Medical Scientist Training Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Immunology Graduate Program, The University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
49
|
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese. Biomed Pharmacother 2021; 137:111315. [PMID: 33561645 DOI: 10.1016/j.biopha.2021.111315] [Citation(s) in RCA: 426] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, obesity has become a global health issue and is referred to as an epidemic. Dysfunctional obese adipose tissue plays a pivotal role in the development of insulin resistance. However, the mechanism of how dysfunctional obese-adipose tissue develops insulin-resistant circumstances remains poorly understood. Therefore, this review attempts to highlight the potential mechanisms behind obesity-associated insulin resistance. Multiple risk factors are directly or indirectly associated with the increased risk of obesity; among them, environmental factors, genetics, aging, gut microbiota, and diets are prominent. Once an individual becomes obese, adipocytes increase in their size; therefore, adipose tissues become larger and dysfunctional, recruit macrophages, and then these polarize to pro-inflammatory states. Enlarged adipose tissues release excess free fatty acids (FFAs), reactive oxygen species (ROS), and pro-inflammatory cytokines. Excess systemic FFAs and dietary lipids enter inside the cells of non-adipose organs such as the liver, muscle, and pancreas, and are deposited as ectopic fat, generating lipotoxicity. Toxic lipids dysregulate cellular organelles, e.g., mitochondria, endoplasmic reticulum, and lysosomes. Dysregulated organelles release excess ROS and pro-inflammation, resulting in systemic inflammation. Long term low-grade systemic inflammation prevents insulin from its action in the insulin signaling pathway, disrupts glucose homeostasis, and results in systemic dysregulation. Overall, long-term obesity and overnutrition develop into insulin resistance and chronic low-grade systemic inflammation through lipotoxicity, creating the circumstances to develop clinical conditions. This review also shows that the liver is the most sensitive organ undergoing insulin impairment faster than other organs, and thus, hepatic insulin resistance is the primary event that leads to the subsequent development of peripheral tissue insulin resistance.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Department of Nutrition, Auburn University, Auburn, AL, 36849, United States.
| | - Rifat Sultana
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, United States
| | - Michael W Greene
- Department of Nutrition, Auburn University, Auburn, AL, 36849, United States
| |
Collapse
|
50
|
Ferriere A, Santa P, Garreau A, Bandopadhyay P, Blanco P, Ganguly D, Sisirak V. Self-Nucleic Acid Sensing: A Novel Crucial Pathway Involved in Obesity-Mediated Metaflammation and Metabolic Syndrome. Front Immunol 2021; 11:624256. [PMID: 33574823 PMCID: PMC7870860 DOI: 10.3389/fimmu.2020.624256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/10/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity and overweight are a global health problem affecting almost one third of the world population. There are multiple complications associated with obesity including metabolic syndrome that commonly lead to development of type II diabetes and non-alcoholic fatty liver disease. The development of metabolic syndrome and severe complications associated with obesity is attributed to the chronic low-grade inflammation that occurs in metabolic tissues such as the liver and the white adipose tissue. In recent years, nucleic acids (mostly DNA), which accumulate systemically in obese individuals, were shown to aberrantly activate innate immune responses and thus to contribute to metabolic tissue inflammation. This minireview will focus on (i) the main sources and forms of nucleic acids that accumulate during obesity, (ii) the sensing pathways required for their detection, and (iii) the key cellular players involved in this process. Fully elucidating the role of nucleic acids in the induction of inflammation induced by obesity would promote the identification of new and long-awaited therapeutic approaches to limit obesity-mediated complications.
Collapse
Affiliation(s)
| | - Pauline Santa
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| | - Anne Garreau
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence, Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Patrick Blanco
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France.,Immunology and Immunogenetic Department, Bordeaux University Hospital, Bordeaux, France
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence, Division of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Vanja Sisirak
- CNRS-UMR 5164, Immunoconcept, Bordeaux University, Bordeaux, France
| |
Collapse
|