1
|
Pan R, Meyerholz DK, Perlman S. Cells that survive acute SARS-CoV-2 infection contribute to inflammation and lung regeneration in mice. mBio 2025; 16:e0369324. [PMID: 39878483 PMCID: PMC11898547 DOI: 10.1128/mbio.03693-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
Post-acute sequelae of COVID-19 involves several organs, but its basis remains poorly understood. Some infected cells in mice survive the acute infection and persist for extended periods in the respiratory tract but not in other tissues. Here, we describe two experimental models of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection to assess the effect of viral virulence on previously infected cells. Both approaches use lineage tracking of previously infected cells. In mice infected with a highly pathogenic mouse-adapted SARS-CoV-2, alveolar type 2 cells (AT2) but not alveolar type 1 (AT1) cells survived the acute infection. These cells became activated, differentiated into an AT2-to-AT1 transitional cell state (KRT8+ pre-alveolar type 1 transitional cell state). Additionally, nearby uninfected AT2 cells upregulated the transitional marker KRT8, thereby contributing to lung regeneration. In mice sensitized to infection by transduction with Ad5-hACE2, the infection is nonlethal, and AT1 cells survived the infection. Consequently, recovery in these mice was more rapid. Taken together, these results provide an explanation for how SARS-CoV-2 virulence contributes to poor outcomes and affects clinical recovery and lung regeneration. We also identified a new mechanism by which SARS-CoV-2 impacts lung recovery, even at times when infectious virus cannot be detected. IMPORTANCE A major consequence of the COVID-19 pandemic is that many survivors have long-term sequelae, which are not well understood. These involve many organs, with the respiratory tract being a common site of long-term effects. Many of these sequelae can be found in mice infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In this study, we have focused on the lungs, with particular interest in the fate and role of cells that were infected with SARS-CoV-2 and survived the acute infection. We found that some infected cells survive acute SARS-CoV-2 infection and that these surviving cells both contribute to the immune response in the lungs and are involved in lung recovery. These findings illustrate previously unexplored aspects of recovery from SARS-CoV-2 induced pneumonia and may be relevant for understanding aspects of post-acute sequelae of COVID-19.
Collapse
Affiliation(s)
- Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Niethamer TK, Planer JD, Morley MP, Babu A, Zhao G, Basil MC, Cantu E, Frank DB, Diamond JM, Nottingham AN, Li S, Sharma A, Hallquist H, Levin LI, Zhou S, Vaughan AE, Morrisey EE. Longitudinal single-cell profiles of lung regeneration after viral infection reveal persistent injury-associated cell states. Cell Stem Cell 2025; 32:302-321.e6. [PMID: 39818203 PMCID: PMC11805657 DOI: 10.1016/j.stem.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/12/2024] [Accepted: 12/02/2024] [Indexed: 01/18/2025]
Abstract
Functional regeneration of the lung's gas exchange surface following injury requires the coordination of a complex series of cell behaviors within the alveolar niche. Using single-cell transcriptomics combined with lineage tracing of proliferating progenitors, we examined mouse lung regeneration after influenza injury, demonstrating an asynchronously phased response across different cellular compartments. This longitudinal atlas of injury responses has produced a catalog of transient and persistent transcriptional alterations in cells as they transit across axes of differentiation. These cell states include an injury-induced capillary endothelial cell (iCAP) that arises after injury, persists indefinitely, and shares hallmarks with developing lung endothelium and endothelial aberrations found in degenerative human lung diseases. This dataset provides a foundational resource to understand the complexity of cellular and molecular responses to injury and correlations to responses found in human development and disease.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| | - Joseph D Planer
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gan Zhao
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria C Basil
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Cantu
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David B Frank
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua M Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ana N Nottingham
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shanru Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnav Sharma
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Hannah Hallquist
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lillian I Levin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew E Vaughan
- Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-Children's Hospital of Philadelphia Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2025; 11:135-153. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
4
|
Wang MY, Qiao Y, Wei SJ, Su ZL, Lu HY. MHC class II of different non-professional antigen-presenting cells mediate multiple effects of crosstalk with CD4 +T cells in lung diseases. Front Med (Lausanne) 2025; 12:1388814. [PMID: 39897591 PMCID: PMC11782049 DOI: 10.3389/fmed.2025.1388814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025] Open
Abstract
The respiratory system is continuously exposed to the outside world, making it vulnerable to airborne particles and harmful pathogens like bacteria and viruses that can enter through breathing. Antigen presenting cells (APCs) have a vital function in the innate immune response as they present antigens to T cells and initiate the response of adaptive immune cells. Professional APCs engulf foreign microorganisms and display their peptides to T lymphocytes using MHC molecules. MHC II on their cell surface and potentially present antigen to CD4+T cells. Furthermore, various other types of cells have similar function that can also serve as APCs by expressing MHC II, thus impacting the progression of lung diseases, such as alveolar epithelial cells (AECs), endothelial cells (ECs), fibroblasts, innate lymphoid cells (ILCs), eosinophils, interstitial cells, mast cells, etc. express MHC II and present antigen. The non-professional APCs type and the extra signals it provides have a direct impact on CD4+T cell programming and downstream effector mechanisms. Here, we summarize the existing research on the expression of MHC II on non-professional APCs in different lung diseases and its influence on CD4+T differentiation types and disease outcomes, in order to further clarify the role of MHC II of different non-professional APCs in lung diseases, such as asthma, chronic obstructive pulmonary disease (COPD), etc.
Collapse
Affiliation(s)
- Ming-Yan Wang
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Qiao
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shan-Jie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhao-Liang Su
- International Genome Center, Jiangsu University, Zhenjiang, China
- Institute for Medical Immunology, Jiangsu University, Zhenjiang, China
| | - Hong-Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Lao Y, Jin Y, Wu S, Fang T, Wang Q, Sun L, Sun B. Deciphering a profiling based on multiple post-translational modifications functionally associated regulatory patterns and therapeutic opportunities in human hepatocellular carcinoma. Mol Cancer 2024; 23:283. [PMID: 39732660 PMCID: PMC11681642 DOI: 10.1186/s12943-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized. METHODS Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment. RESULTS We detected robust preferences in locations of intrinsically disordered protein regions (IDRs) with phosphorylated sites and other site biases to locate in folded regions. Integrative analyses revealed that phosphorylated and multiple acylated-modified sites are enriched in proteins containing RRM1 domain, and RNA splicing is the key feature of this subset of proteins, as indicated by phosphorylation and acylation of splicing factor NCL at multiple residues. We confirmed that NCL-S67, K398, and K646 cooperate to regulate RNA processing. CONCLUSION Together, this proteome profiling represents a comprehensive study detailing regulatory patterns based on multiple PTMs of HCC.
Collapse
Affiliation(s)
- Yuanxiang Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Yirong Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Songfeng Wu
- Beijing Qinglian Biotech Co., Ltd, Beijing, China
| | - Ting Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Longqin Sun
- Beijing Qinglian Biotech Co., Ltd, Beijing, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China.
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China.
| |
Collapse
|
6
|
Kim SK, Sung E, Lim K. Recent advances and applications of human lung alveolar organoids. Mol Cells 2024; 47:100140. [PMID: 39490990 PMCID: PMC11629183 DOI: 10.1016/j.mocell.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The human lung alveolus is a well-structured and coordinated pulmonary unit, allowing them to perform diverse functions. While there has been significant progress in understanding the molecular and cellular mechanisms behind human alveolar development and pulmonary diseases, the underlying mechanisms of alveolar differentiation and disease development are still unclear, mainly due to the limited availability of human tissues and a lack of proper in vitro lung model systems mimicking human lung physiology. In this review, we summarize recent advances in creating human lung organoid models that mimic alveolar epithelial cell types. Moreover, we discuss how lung alveolar organoid systems are being applied to recent cutting-edge research on lung development, regeneration, and diseases.
Collapse
Affiliation(s)
- Sun Kyung Kim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Eunho Sung
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Kyungtae Lim
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
7
|
Choi J, Chudziak J, Lee JH. Bi-directional regulation between inflammation and stem cells in the respiratory tract. J Cell Sci 2024; 137:jcs263413. [PMID: 39508347 PMCID: PMC11574357 DOI: 10.1242/jcs.263413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Inflammation plays a crucial role in tissue injury, repair and disease, orchestrating a complex interplay of immune responses and cellular processes. Recent studies have uncovered the intricate connection between inflammation and stem cell dynamics, shedding light on the central role of stem cells in tissue regeneration. This Review highlights the significance of inflammation in shaping epithelial stem cell dynamics and its implications for tissue repair, regeneration and aging. We explore the multifaceted interactions between inflammation and stem cells, focusing on how inflammatory signals affect stem cell behavior and fate as well as the remodeling of their niche in the respiratory tract. We also discuss the concept of 'inflammatory memory' in epithelial stem cells, where prior inflammatory stimuli endow these cells with enhanced regenerative potential and confer long-lasting protective mechanisms for maintaining tissue integrity and function. Furthermore, we review the impact of cell senescence induced by inflammation on tissue regeneration and aging, delving into the molecular mechanisms underlying the modulation of signaling pathways, epigenetic modifications and cellular crosstalk. Understanding these dynamic processes not only deepens our knowledge of tissue homeostasis and repair but also holds profound implications for regenerative medicine strategies aimed at preventing pulmonary diseases.
Collapse
Affiliation(s)
- Jinwook Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jakub Chudziak
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB1 0AW, UK
| | - Joo-Hyeon Lee
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB1 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065, USA
| |
Collapse
|
8
|
Hargrave KE, Worrell JC, Pirillo C, Brennan E, Masdefiol Garriga A, Gray JI, Purnell T, Roberts EW, MacLeod MKL. Lung influenza virus-specific memory CD4 T cell location and optimal cytokine production are dependent on interactions with lung antigen-presenting cells. Mucosal Immunol 2024; 17:843-857. [PMID: 38851589 PMCID: PMC11464401 DOI: 10.1016/j.mucimm.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Influenza A virus (IAV) infection leads to the formation of mucosal memory CD4 T cells that can protect the host. An in-depth understanding of the signals that shape memory cell development is required for more effective vaccine design. We have examined the formation of memory CD4 T cells in the lung following IAV infection of mice, characterizing changes to the lung landscape and immune cell composition. IAV-specific CD4 T cells were found throughout the lung at both primary and memory time points. These cells were found near lung airways and in close contact with a range of immune cells including macrophages, dendritic cells, and B cells. Interactions between lung IAV-specific CD4 T cells and major histocompatibility complex (MHC)II+ cells during the primary immune response were important in shaping the subsequent memory pool. Treatment with an anti-MHCII blocking antibody increased the proportion of memory CD4 T cells found in lung airways but reduced interferon-γ expression by IAV-specific immunodominant memory CD4 T cells. The immunodominant CD4 T cells expressed higher levels of programmed death ligand 1 (PD1) than other IAV-specific CD4 T cells and PD1+ memory CD4 T cells were located further away from MHCII+ cells than their PD1-low counterparts. This distinction in location was lost in mice treated with anti-MHCII antibodies. These data suggest that sustained antigen presentation in the lung impacts the formation of memory CD4 T cells by regulating their cytokine production and location.
Collapse
Affiliation(s)
- Kerrie E Hargrave
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, UK
| | - Julie C Worrell
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, UK
| | | | - Euan Brennan
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, UK
| | | | - Joshua I Gray
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, UK
| | - Thomas Purnell
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, UK
| | | | - Megan K L MacLeod
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, UK.
| |
Collapse
|
9
|
Zhang G, Pei J, Wang Y, Wang G, Wang Y, Liu W, Xu J, An P, Huang H, Zheng L, Chu S, Dong J, Zhang J. Selective Activation of Lattice Oxygen Site Through Coordination Engineering to Boost the Activity and Stability of Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2024; 63:e202407509. [PMID: 38877769 DOI: 10.1002/anie.202407509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Although Ru-based materials are among the outstanding catalysts for the oxygen evolution reaction (OER), the instability issue still haunts them and impedes the widespread application. The instability of Ru-based OER catalysts is generally ascribed to the formation of soluble species through the over-oxidation of Ru and structural decomposition caused by involvement of lattice oxygen. Herein, an effective strategy of selectively activating the lattice oxygen around Ru site is proposed to improve the OER activity and stability. Our synthesized spinel-type electrocatalyst of Ru and Zn co-doped Co3O4 showed an ultralow overpotential of 172 mV at 10 mA cm-2 and a long-term stability reaching to 100 hours at 10 mA cm-2 for alkaline OER. The experimental results and theoretical simulations demonstrated that the lattice oxygen site jointly connected with the octahedral Ru and tetrahedral Zn atoms became more active than other oxygen sites near Ru atom, which further lowered the reaction energy barriers and avoided generating excessive oxygen vacancies to enhance the structural stability of Ru sites. The findings hope to provide a new perspective to improve the catalytic activity of Ru-incorporated OER catalysts and the stability of lattice-oxygen-mediated mechanism.
Collapse
Affiliation(s)
- Guikai Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajing Pei
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueshuai Wang
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Guowei Wang
- Beijing Key Lab of Microstructure and Property of Advanced Materials, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Yongsheng Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wenchao Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Huan Huang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Juncai Dong
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Liu X, Zhang X, Liang J, Noble PW, Jiang D. Aging-Associated Molecular Changes in Human Alveolar Type I Cells. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10012. [PMID: 39220636 PMCID: PMC11361087 DOI: 10.35534/jrbtm.2024.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human alveolar type I (AT1) cells are specialized epithelial cells that line the alveoli in the lungs where gas exchange occurs. The primary function of AT1 cells is not only to facilitate efficient gas exchange between the air and the blood in the lungs, but also to contribute to the structural integrity of the alveoli to maintain lung function and homeostasis. Aging has notable effects on the structure, function, and regenerative capacity of human AT1 cells. However, our understanding of the molecular mechanisms driving these age-related changes in AT1 cells remains limited. Leveraging a recent single-cell transcriptomics dataset we generated on healthy human lungs, we identified a series of significant molecular alterations in AT1 cells from aged lungs. Notably, the aged AT1 cells exhibited increased cellular senescence and chemokine gene expression, alongside diminished epithelial features such as decreases in cell junctions, endocytosis, and pulmonary matrisome gene expression. Gene set analyses also indicated that aged AT1 cells were resistant to apoptosis, a crucial mechanism for turnover and renewal of AT1 cells, thereby ensuring alveolar integrity and function. Further research on these alterations is imperative to fully elucidate the impact on AT1 cells and is indispensable for developing effective therapies to preserve lung function and promote healthy aging.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
11
|
Li J, Lin N, Zhang S, Weng L, Chen C, Ou W, Cao Y. Characterization of the tumor microenvironment in breast cancer brain metastasis. Heliyon 2024; 10:e34876. [PMID: 39157383 PMCID: PMC11328047 DOI: 10.1016/j.heliyon.2024.e34876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024] Open
Abstract
Objective The difference in the tumor microenvironment (TME) between primary breast cancer (PBC) and breast cancer brain metastasis (BCBM) is still unknown. Herein, we present the landscape of the TME in PBC and BCBM to better understand the process of BCBM. Methods The Gene Expression Omnibus (GEO) database was used to obtain suitable PBC and BCBM data. Hub genes that were differentially expressed between the two groups were searched. Gene Ontology (GO) and KEGG were used to define the gene's function. Single-cell data were also analyzed to determine the difference between PBC and BCBM. Results Two datasets (GSE100534 and GSE125989) were used to search for hub genes, and 79 genes were either upregulated or downregulated between the two groups. Four hub genes (COL1A1, PDGFR, MMP3 and FZD7) were related to prognosis. GO and KEGG analyses showed that extracellular matrix and focal adhesion play major roles in the metastasis process. Another two datasets (GSE176078 and GSE186344) were enrolled for single-cell analysis. Single-cell analysis demonstrated that immune cells (66.6 %) form the main part of PBC, while cancer-associated fibroblasts (CAFs) (21.7 %) are the main component of BCBM. Immune cell proportion analysis showed that CD4+/CD8+ T cells (28.9 % and 14.3 %, respectively) and macrophages(M2) accounted for the majority of cells in PBC and BCBM, respectively. Further analysis of the classification of CAFs showed that apCAFs were significantly higher in PBC. Conclusions This study presents the landscape of BCBM with hub gene searching and single-cell analysis. Showing the difference in the tumor/immune microenvironment of PBC and BCBM, would be beneficial to explore immunotherapy and targeted therapy for BCBM.
Collapse
Affiliation(s)
- Jingrong Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Nanping Lin
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Lihong Weng
- Fujian Cancer Hospital, Fuzhou, Fujian, 350001, China
| | - Chen Chen
- Department of Radiotherapy, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Wenshi Ou
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| |
Collapse
|
12
|
Zhao Y, Tang G, Li J, Bian X, Zhou X, Feng J. Integrative transcriptome analysis reveals the molecular events underlying impaired T-cell responses in EGFR-mutant lung cancer. Sci Rep 2024; 14:18366. [PMID: 39112565 PMCID: PMC11306370 DOI: 10.1038/s41598-024-69020-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
EGFR mutations are critical oncogenic drivers in lung adenocarcinoma (LUAD). However, the mechanisms by which they impact the tumor microenvironment (TME) and tumor immunity are unclear. Furthermore, the reasons underlying the poor response of EGFR-mutant (EGFR-MU) LUADs to immunotherapy with PD-1/PD-L1 inhibitors are unknown. Utilizing single-cell RNA (sc-RNA) and bulk RNA sequencing datasets, we conducted high-dimensional weighted gene coexpression network analysis to identify key genes and immune-related pathways contributing to the immunosuppressive TME. EGFR-MU cancer cells downregulated MHC class I genes to evade CD8+ cytotoxic T cells, expressed substantial levels of MHC class II molecules, and engaged with CD4+ regulatory T cells (Tregs). EGFR-MU tumors may recruit Tregs primarily through the CCL17/CCL22/CCR4 axis, leading to a Treg-enriched TME. High levels of MHC class II-positive cancer-associated fibroblasts and tumor endothelial cells were found within EGFR-MU tumors. Owing to the absence of costimulatory factors, they may inhibit rather than activate the tumor antigen-specific CD4+ T-cell response, contributing further to immune suppression. Multiplex immunohistochemistry analyses in a LUAD cohort confirmed increased expression of MHC class II molecules in cancer cells and fibroblasts in EGFR-MU tumors. Our research elucidates the highly immunosuppressive TME in EGFR-MU LUAD and suggests potential targets for effective immunotherapy.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Gu Tang
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jun Li
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaorong Zhou
- Department of Immunology, Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
13
|
Lv J, Wang Z, Wang B, Deng C, Wang W, Sun L. S100A9 Induces Macrophage M2 Polarization and Immunomodulatory Role in the Lesion Site After Spinal Cord Injury in Rats. Mol Neurobiol 2024; 61:5525-5540. [PMID: 38206470 DOI: 10.1007/s12035-024-03920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024]
Abstract
Immune response is pivotal in the secondary injury of spinal cord injury (SCI). Polarization of macrophages (MΦ) influences the immune response in the secondary injury, which is regulated by several immune-related proteins. M2Φ plays the immunomodulatory role in the central nervous system. This study used bioinformatic analysis and machine algorithms to screen hub immune-related proteins after SCI and experimentally investigate the role of the target protein in the M2Φ polarization and immunomodulation in rats and in vitro after SCI. We downloaded GSE151371 and GSE45006, hub immune-related genes were screened using machine learning algorithms, and the expression of S100A9 was verified by datasets. Allen's weight-drop injury SCI model in Sprague-Dawley rat and bone marrow-derived rat MΦ with myelin debris model were used to study the effects of S100A9 on M2Φ polarization and immunomodulation at the lesion site and in vitro. Bioinformatic analysis showed that S100A9 acts as a hub immune-related gene in the SCI patients and rats. S100A9 increased at the lesion site in SCI rats, and its inhibition reduced CD206 and ARG-1 expression. Exogenous S100A9 promoted CD206 and ARG-1 expression in MΦ. S100A9 also increased the expression of PD-L1 and decreased MHC II at the lesion site in SCI rats and MΦ with myelin debris, and enhanced mitochondrial activity in rat MΦ with myelin debris. In conclusion, S100A9 is an indispensable factor in the immune process in secondary injury following SCI.
Collapse
Affiliation(s)
- Junqiao Lv
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhiqiang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Beiyang Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chen Deng
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Wei Wang
- Department of Urology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Lin Sun
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
14
|
Turner DL, Amoozadeh S, Baric H, Stanley E, Werder RB. Building a human lung from pluripotent stem cells to model respiratory viral infections. Respir Res 2024; 25:277. [PMID: 39010108 PMCID: PMC11251358 DOI: 10.1186/s12931-024-02912-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
To protect against the constant threat of inhaled pathogens, the lung is equipped with cellular defenders. In coordination with resident and recruited immune cells, this defence is initiated by the airway and alveolar epithelium following their infection with respiratory viruses. Further support for viral clearance and infection resolution is provided by adjacent endothelial and stromal cells. However, even with these defence mechanisms, respiratory viral infections are a significant global health concern, causing substantial morbidity, socioeconomic losses, and mortality, underlining the need to develop effective vaccines and antiviral medications. In turn, the identification of new treatment options for respiratory infections is critically dependent on the availability of tractable in vitro experimental models that faithfully recapitulate key aspects of lung physiology. For such models to be informative, it is important these models incorporate human-derived, physiologically relevant versions of all cell types that normally form part of the lungs anti-viral response. This review proposes a guideline using human induced pluripotent stem cells (iPSCs) to create all the disease-relevant cell types. iPSCs can be differentiated into lung epithelium, innate immune cells, endothelial cells, and fibroblasts at a large scale, recapitulating in vivo functions and providing genetic tractability. We advocate for building comprehensive iPSC-derived in vitro models of both proximal and distal lung regions to better understand and model respiratory infections, including interactions with chronic lung diseases.
Collapse
Affiliation(s)
- Declan L Turner
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Sahel Amoozadeh
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Hannah Baric
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Ed Stanley
- Murdoch Children's Research Institute, Melbourne, 3056, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia
| | - Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, 3056, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, 3056, Australia.
- Novo Nordisk Foundation Centre for Stem Cell Medicine, reNEW Melbourne, Melbourne, 3056, Australia.
| |
Collapse
|
15
|
Meldrum K, Evans SJ, Burgum MJ, Doak SH, Clift MJD. Determining the toxicological effects of indoor air pollution on both a healthy and an inflammatory-comprised model of the alveolar epithelial barrier in vitro. Part Fibre Toxicol 2024; 21:25. [PMID: 38760786 PMCID: PMC11100169 DOI: 10.1186/s12989-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| | - Stephen J Evans
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Michael J Burgum
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Swansea University Medical School, Swansea University, Singleton Park Campus, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
16
|
Martins LR, Sieverling L, Michelhans M, Schiller C, Erkut C, Grünewald TGP, Triana S, Fröhling S, Velten L, Glimm H, Scholl C. Single-cell division tracing and transcriptomics reveal cell types and differentiation paths in the regenerating lung. Nat Commun 2024; 15:2246. [PMID: 38472236 DOI: 10.1038/s41467-024-46469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Understanding the molecular and cellular processes involved in lung epithelial regeneration may fuel the development of therapeutic approaches for lung diseases. We combine mouse models allowing diphtheria toxin-mediated damage of specific epithelial cell types and parallel GFP-labeling of functionally dividing cells with single-cell transcriptomics to characterize the regeneration of the distal lung. We uncover cell types, including Krt13+ basal and Krt15+ club cells, detect an intermediate cell state between basal and goblet cells, reveal goblet cells as actively dividing progenitor cells, and provide evidence that adventitial fibroblasts act as supporting cells in epithelial regeneration. We also show that diphtheria toxin-expressing cells can persist in the lung, express specific inflammatory factors, and transcriptionally resemble a previously undescribed population in the lungs of COVID-19 patients. Our study provides a comprehensive single-cell atlas of the distal lung that characterizes early transcriptional and cellular responses to concise epithelial injury, encompassing proliferation, differentiation, and cell-to-cell interactions.
Collapse
Affiliation(s)
- Leila R Martins
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| | - Lina Sieverling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
| | - Michelle Michelhans
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Chiara Schiller
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany
| | - Cihan Erkut
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas G P Grünewald
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Hopp-Children's Cancer Center (KiTZ), Heidelberg, Germany
- Division of Translational Pediatric Sarcoma Research, DKFZ, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sergio Triana
- Structural and Computational Biology, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Broad Institute of Harvard and MIT, Cambridge, USA
- Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, USA
| | - Stefan Fröhling
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Lars Velten
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Hanno Glimm
- Department for Translational Medical Oncology, National Center for Tumor Diseases Dresden (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Translational Functional Cancer Genomics, DKFZ, Heidelberg, Germany
- DKTK, partner site Dresden, Dresden, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
17
|
Chu CY, Kim SY, Pryhuber GS, Mariani TJ, McGraw MD. Single-cell resolution of human airway epithelial cells exposed to bronchiolitis obliterans-associated chemicals. Am J Physiol Lung Cell Mol Physiol 2024; 326:L135-L148. [PMID: 38084407 PMCID: PMC11279737 DOI: 10.1152/ajplung.00304.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/31/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024] Open
Abstract
Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.
Collapse
Affiliation(s)
- Chin-Yi Chu
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Gloria S Pryhuber
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Thomas J Mariani
- Division of Neonatology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Matthew D McGraw
- Division of Pediatric Pulmonology, Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|
18
|
Bagato O, Balkema-Buschmann A, Todt D, Weber S, Gömer A, Qu B, Miskey C, Ivics Z, Mettenleiter TC, Finke S, Brown RJP, Breithaupt A, Ushakov DS. Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs. Microbiol Spectr 2024; 12:e0246923. [PMID: 38009950 PMCID: PMC10782978 DOI: 10.1128/spectrum.02469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE We present the first study of the 3D kinetics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the early host response in a large lung volume using a combination of tissue imaging and transcriptomics. This approach allowed us to make a number of important findings: Spatially restricted antiviral response is shown, including the formation of monocytic macrophage clusters and upregulation of the major histocompatibility complex II in infected epithelial cells. The monocyte-derived macrophages are linked to SARS-CoV-2 clearance, and the appearance of these cells is associated with post-infection endothelial damage; thus, we shed light on the role of these cells in infected tissue. An early onset of tissue repair occurring simultaneously with inflammatory and necrotizing processes provides the basis for longer-term alterations in the lungs.
Collapse
Affiliation(s)
- Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Water Pollution Research Department, Dokki, Giza, Egypt
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Daniel Todt
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Saskia Weber
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - André Gömer
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Bingqian Qu
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Csaba Miskey
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Zoltan Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Richard J. P. Brown
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| | - Dmitry S. Ushakov
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald – Insel Riems, Germany
| |
Collapse
|
19
|
Jain KG, Xi NM, Zhao R, Ahmad W, Ali G, Ji HL. Alveolar Type 2 Epithelial Cell Organoids: Focus on Culture Methods. Biomedicines 2023; 11:3034. [PMID: 38002035 PMCID: PMC10669847 DOI: 10.3390/biomedicines11113034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Lung diseases rank third in terms of mortality and represent a significant economic burden globally. Scientists have been conducting research to better understand respiratory diseases and find treatments for them. An ideal in vitro model must mimic the in vivo organ structure, physiology, and pathology. Organoids are self-organizing, three-dimensional (3D) structures originating from adult stem cells, embryonic lung bud progenitors, embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). These 3D organoid cultures may provide a platform for exploring tissue development, the regulatory mechanisms related to the repair of lung epithelia, pathophysiological and immunomodulatory responses to different respiratory conditions, and screening compounds for new drugs. To create 3D lung organoids in vitro, both co-culture and feeder-free methods have been used. However, there exists substantial heterogeneity in the organoid culture methods, including the sources of AT2 cells, media composition, and feeder cell origins. This article highlights the currently available methods for growing AT2 organoids and prospective improvements to improve the available culture techniques/conditions. Further, we discuss various applications, particularly those aimed at modeling human distal lung diseases and cell therapy.
Collapse
Affiliation(s)
- Krishan Gopal Jain
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nan Miles Xi
- Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Runzhen Zhao
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Waqas Ahmad
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Gibran Ali
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Hong-Long Ji
- Department of Surgery, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (K.G.J.); (R.Z.); (W.A.)
- Burn and Shock Trauma Research Institute, Health Sciences Division, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Herriges MJ, Yampolskaya M, Thapa BR, Lindstrom-Vautrin J, Wang F, Huang J, Na CL, Ma L, Montminy MM, Bawa P, Villacorta-Martin C, Mehta P, Kotton DN. Durable alveolar engraftment of PSC-derived lung epithelial cells into immunocompetent mice. Cell Stem Cell 2023; 30:1217-1234.e7. [PMID: 37625412 PMCID: PMC10529386 DOI: 10.1016/j.stem.2023.07.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Durable reconstitution of the distal lung epithelium with pluripotent stem cell (PSC) derivatives, if realized, would represent a promising therapy for diseases that result from alveolar damage. Here, we differentiate murine PSCs into self-renewing lung epithelial progenitors able to engraft into the injured distal lung epithelium of immunocompetent, syngeneic mouse recipients. After transplantation, these progenitors mature in the distal lung, assuming the molecular phenotypes of alveolar type 2 (AT2) and type 1 (AT1) cells. After months in vivo, donor-derived cells retain their mature phenotypes, as characterized by single-cell RNA sequencing (scRNA-seq), histologic profiling, and functional assessment that demonstrates continued capacity of the engrafted cells to proliferate and differentiate. These results indicate durable reconstitution of the distal lung's facultative progenitor and differentiated epithelial cell compartments with PSC-derived cells, thus establishing a novel model for pulmonary cell therapy that can be utilized to better understand the mechanisms and utility of engraftment.
Collapse
Affiliation(s)
- Michael J Herriges
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Bibek R Thapa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Feiya Wang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Cheng-Lun Na
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Liang Ma
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - McKenna M Montminy
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA 02215, USA
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
21
|
Finney GE, Hargrave KE, Pingen M, Purnell T, Todd D, MacDonald F, Worrell JC, MacLeod MKL. Triphasic production of IFN γ by innate and adaptive lymphocytes following influenza A virus infection. DISCOVERY IMMUNOLOGY 2023; 2:kyad014. [PMID: 37842651 PMCID: PMC10568397 DOI: 10.1093/discim/kyad014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 10/17/2023]
Abstract
Interferon gamma (IFNγ) is a potent antiviral cytokine that can be produced by many innate and adaptive immune cells during infection. Currently, our understanding of which cells produce IFNγ and where they are located at different stages of an infection is limited. We have used reporter mice to investigate in vivo expression of Ifnγ mRNA in the lung and secondary lymphoid organs during and following influenza A virus (IAV) infection. We observed a triphasic production of Ifnγ expression. Unconventional T cells and innate lymphoid cells, particularly NK cells, were the dominant producers of early Ifnγ, while CD4 and CD8 T cells were the main producers by day 10 post-infection. Following viral clearance, some memory CD4 and CD8 T cells continued to express Ifnγ in the lungs and draining lymph node. Interestingly, Ifnγ production by lymph node natural killer (NK), NKT, and innate lymphoid type 1 cells also continued to be above naïve levels, suggesting memory-like phenotypes for these cells. Analysis of the localization of Ifnγ+ memory CD4 and CD8 T cells demonstrated that cytokine+ T cells were located near airways and in the lung parenchyma. Following a second IAV challenge, lung IAV-specific CD8 T cells rapidly increased their expression of Ifnγ while CD4 T cells in the draining lymph node increased their Ifnγ response. Together, these data suggest that Ifnγ production fluctuates based on cellular source and location, both of which could impact subsequent immune responses.
Collapse
Affiliation(s)
- George E Finney
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Kerrie E Hargrave
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Marieke Pingen
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Thomas Purnell
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - David Todd
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Freya MacDonald
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Julie C Worrell
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Megan K L MacLeod
- Centre for Immunobiology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
| |
Collapse
|
22
|
Lee YJ, Seok SH, Lee NY, Choi HJ, Lee YW, Chang HJ, Hwang JY, On DI, Noh HA, Lee SB, Kwon HK, Yun JW, Shin JS, Seo JY, Nam KT, Lee H, Lee HY, Park JW, Seong JK. Murine Coronavirus Disease 2019 Lethality Is Characterized by Lymphoid Depletion Associated with Suppressed Antigen-Presenting Cell Functionality. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:866-882. [PMID: 37024046 PMCID: PMC10073095 DOI: 10.1016/j.ajpath.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.
Collapse
Affiliation(s)
- Yu Jin Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Sang Hyeok Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Na Yun Lee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Hee Jin Choi
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea
| | - Yoon Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Hee Jung Chang
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Ji-Yeon Hwang
- Preclinical Research Center, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Da In On
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Hyun Ah Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea
| | - Su-Bin Lee
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Won Yun
- College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Republic of Korea; Severance Biomedical Science Institute, and the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, and the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, and the Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Ho Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, ChunCheon, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK 21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Gavish A, Tyler M, Greenwald AC, Hoefflin R, Simkin D, Tschernichovsky R, Galili Darnell N, Somech E, Barbolin C, Antman T, Kovarsky D, Barrett T, Gonzalez Castro LN, Halder D, Chanoch-Myers R, Laffy J, Mints M, Wider A, Tal R, Spitzer A, Hara T, Raitses-Gurevich M, Stossel C, Golan T, Tirosh A, Suvà ML, Puram SV, Tirosh I. Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours. Nature 2023; 618:598-606. [PMID: 37258682 DOI: 10.1038/s41586-023-06130-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Each tumour contains diverse cellular states that underlie intratumour heterogeneity (ITH), a central challenge of cancer therapeutics1. Dozens of recent studies have begun to describe ITH by single-cell RNA sequencing, but each study typically profiled only a small number of tumours and provided a narrow view of transcriptional ITH2. Here we curate, annotate and integrate the data from 77 different studies to reveal the patterns of transcriptional ITH across 1,163 tumour samples covering 24 tumour types. Among the malignant cells, we identify 41 consensus meta-programs, each consisting of dozens of genes that are coordinately upregulated in subpopulations of cells within many tumours. The meta-programs cover diverse cellular processes including both generic (for example, cell cycle and stress) and lineage-specific patterns that we map into 11 hallmarks of transcriptional ITH. Most meta-programs of carcinoma cells are similar to those identified in non-malignant epithelial cells, suggesting that a large fraction of malignant ITH programs are variable even before oncogenesis, reflecting the biology of their cell of origin. We further extended the meta-program analysis to six common non-malignant cell types and utilize these to map cell-cell interactions within the tumour microenvironment. In summary, we have assembled a comprehensive pan-cancer single-cell RNA-sequencing dataset, which is available through the Curated Cancer Cell Atlas website, and leveraged this dataset to carry out a systematic characterization of transcriptional ITH.
Collapse
Affiliation(s)
- Avishai Gavish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Tyler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dor Simkin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roi Tschernichovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Einav Somech
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tomer Antman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Daniel Kovarsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas Barrett
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Debdatta Halder
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Chanoch-Myers
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Julie Laffy
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Mints
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Adi Wider
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Tal
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiro Hara
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Chani Stossel
- The Oncology Institute, Chaim Sheba Medical Center, Ramat Gan, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Golan
- The Oncology Institute, Chaim Sheba Medical Center, Ramat Gan, Israel
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amit Tirosh
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Xu J, Xie L. Advances in immune response to pulmonary infection: Nonspecificity, specificity and memory. Chronic Dis Transl Med 2023; 9:71-81. [PMID: 37305110 PMCID: PMC10249196 DOI: 10.1002/cdt3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 06/13/2023] Open
Abstract
The lung immune response consists of various cells involved in both innate and adaptive immune processes. Innate immunity participates in immune resistance in a nonspecific manner, whereas adaptive immunity effectively eliminates pathogens through specific recognition. It was previously believed that adaptive immune memory plays a leading role during secondary infections; however, innate immunity is also involved in immune memory. Trained immunity refers to the long-term functional reprogramming of innate immune cells caused by the first infection, which alters the immune response during the second challenge. Tissue resilience limits the tissue damage caused by infection by controlling excessive inflammation and promoting tissue repair. In this review, we summarize the impact of host immunity on the pathophysiological processes of pulmonary infections and discuss the latest progress in this regard. In addition to the factors influencing pathogenic microorganisms, we emphasize the importance of the host response.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical CenterChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
25
|
Kraemer AI, Chong C, Huber F, Pak H, Stevenson BJ, Müller M, Michaux J, Altimiras ER, Rusakiewicz S, Simó-Riudalbas L, Planet E, Wiznerowicz M, Dagher J, Trono D, Coukos G, Tissot S, Bassani-Sternberg M. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. NATURE CANCER 2023; 4:608-628. [PMID: 37127787 DOI: 10.1038/s43018-023-00548-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
One key barrier to improving efficacy of personalized cancer immunotherapies that are dependent on the tumor antigenic landscape remains patient stratification. Although patients with CD3+CD8+ T cell-inflamed tumors typically show better response to immune checkpoint inhibitors, it is still unknown whether the immunopeptidome repertoire presented in highly inflamed and noninflamed tumors is substantially different. We surveyed 61 tumor regions and adjacent nonmalignant lung tissues from 8 patients with lung cancer and performed deep antigen discovery combining immunopeptidomics, genomics, bulk and spatial transcriptomics, and explored the heterogeneous expression and presentation of tumor (neo)antigens. In the present study, we associated diverse immune cell populations with the immunopeptidome and found a relatively higher frequency of predicted neoantigens located within HLA-I presentation hotspots in CD3+CD8+ T cell-excluded tumors. We associated such neoantigens with immune recognition, supporting their involvement in immune editing. This could have implications for the choice of combination therapies tailored to the patient's mutanome and immune microenvironment.
Collapse
Affiliation(s)
- Anne I Kraemer
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Chloe Chong
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - HuiSong Pak
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Brian J Stevenson
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Markus Müller
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Justine Michaux
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Emma Ricart Altimiras
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Laia Simó-Riudalbas
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Evarist Planet
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, Poznań, Poland
- Poznań University of Medical Sciences, Poznań, Poland
| | - Julien Dagher
- Department of Pathology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
| | - Didier Trono
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Stephanie Tissot
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Department of Oncology, Centre hospitalier universitaire vaudois, Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
26
|
Abstract
The theory that cancer-associated fibroblasts (CAFs) are immunosuppressive cells has prevailed throughout the past decade. However, recent high-throughput, high-resolution mesenchyme-directed single-cell studies have harnessed computational advances to functionally characterize cell states, highlighting the existence of immunostimulatory CAFs. Our group and others have uncovered and experimentally substantiated key functions of cancer antigen-presenting CAFs in T cell immunity, both in vitro and in vivo, refuting the conventional assumption that CAFs impede adaptive immune rejection of tumours. In this Perspective, I unify the follicular and non-follicular, non-endothelial stroma of tumours under the 'peripheral adaptive immune mesenchyme' framework and position subsets of CAFs as direct positive regulators of the adaptive immune system. Building on the understanding of cancer antigen presentation by CAFs and the second touch hypothesis, which postulates that full T cell polarization requires interaction with antigen-presenting cells in the non-lymphoid tissue where the antigen resides, I re-design the 'cancer-immunity cycle' to incorporate intratumoural activation of cancer-specific CD4+ T cells. Lastly, a road map to therapeutic harnessing of immunostimulatory CAF states is proposed.
Collapse
Affiliation(s)
- Maria Tsoumakidou
- Institute of Bioinnovation, Biomedical Sciences Research Center 'Alexander Fleming', Vari, Greece.
| |
Collapse
|
27
|
Christenson JL, Williams MM, Richer JK. The underappreciated role of resident epithelial cell populations in metastatic progression: contributions of the lung alveolar epithelium. Am J Physiol Cell Physiol 2022; 323:C1777-C1790. [PMID: 36252127 PMCID: PMC9744653 DOI: 10.1152/ajpcell.00181.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Metastatic cancer is difficult to treat and is responsible for the majority of cancer-related deaths. After cancer cells initiate metastasis and successfully seed a distant site, resident cells in the tissue play a key role in determining how metastatic progression develops. The lung is the second most frequent site of metastatic spread, and the primary site of metastasis within the lung is alveoli. The most abundant cell type in the alveolar niche is the epithelium. This review will examine the potential contributions of the alveolar epithelium to metastatic progression. It will also provide insight into other ways in which alveolar epithelial cells, acting as immune sentinels within the lung, may influence metastatic progression through their various interactions with cells in the surrounding microenvironment.
Collapse
Affiliation(s)
- Jessica L Christenson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michelle M Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
28
|
Hargrave KE, MacLeod MK, Worrell JC. Antigen presenting cells: professionals, amateurs, and spectators in the 'long game' of lung immunity. Int J Biochem Cell Biol 2022; 153:106331. [DOI: 10.1016/j.biocel.2022.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
29
|
Phenotypic and Transcriptional Changes of Pulmonary Immune Responses in Dogs Following Canine Distemper Virus Infection. Int J Mol Sci 2022; 23:ijms231710019. [PMID: 36077417 PMCID: PMC9456005 DOI: 10.3390/ijms231710019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/25/2022] Open
Abstract
Canine distemper virus (CDV), a morbillivirus within the family Paramyxoviridae, is a highly contagious infectious agent causing a multisystemic, devastating disease in a broad range of host species, characterized by severe immunosuppression, encephalitis and pneumonia. The present study aimed at investigating pulmonary immune responses of CDV-infected dogs in situ using immunohistochemistry and whole transcriptome analyses by bulk RNA sequencing. Spatiotemporal analysis of phenotypic changes revealed pulmonary immune responses primarily driven by MHC-II+, Iba-1+ and CD204+ innate immune cells during acute and subacute infection phases, which paralleled pathologic lesion development and coincided with high viral loads in CDV-infected lungs. CD20+ B cell numbers initially declined, followed by lymphoid repopulation in the advanced disease phase. Transcriptome analysis demonstrated an increased expression of transcripts related to innate immunity, antiviral defense mechanisms, type I interferon responses and regulation of cell death in the lung of CDV-infected dogs. Molecular analyses also revealed disturbed cytokine responses with a pro-inflammatory M1 macrophage polarization and impaired mucociliary defense in CDV-infected lungs. The exploratory study provides detailed data on CDV-related pulmonary immune responses, expanding the list of immunologic parameters potentially leading to viral elimination and virus-induced pulmonary immunopathology in canine distemper.
Collapse
|
30
|
Addison MM, Ellis GI, Leslie GJ, Zawadzky NB, Riley JL, Hoxie JA, Eisenlohr LC. HIV-1-Infected CD4 + T Cells Present MHC Class II-Restricted Epitope via Endogenous Processing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:864-873. [PMID: 36130133 PMCID: PMC9512365 DOI: 10.4049/jimmunol.2200145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
HIV-1-specific CD4+ T cells (TCD4+s) play a critical role in controlling HIV-1 infection. Canonically, TCD4+s are activated by peptides derived from extracellular ("exogenous") Ags displayed in complex with MHC class II (MHC II) molecules on the surfaces of "professional" APCs such as dendritic cells (DCs). In contrast, activated human TCD4+s, which express MHC II, are not typically considered for their APC potential because of their low endocytic capacity and the exogenous Ag systems historically used for assessment. Using primary TCD4+s and monocyte-derived DCs from healthy donors, we show that activated human TCD4+s are highly effective at MHC II-restricted presentation of an immunodominant HIV-1-derived epitope postinfection and subsequent noncanonical processing and presentation of endogenously produced Ag. Our results indicate that, in addition to marshalling HIV-1-specific immune responses during infection, TCD4+s also act as APCs, leading to the activation of HIV-1-specific TCD4+s.
Collapse
Affiliation(s)
- Mary M. Addison
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Gavin I. Ellis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Noah B. Zawadzky
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
31
|
Bao T, Zhu H, Zheng Y, Hu J, Wang H, Cheng H, Zhang Y, Tian Z. Expression of long noncoding RNA uc.375 in bronchopulmonary dysplasia and its function in the proliferation and apoptosis of mouse alveolar epithelial cell line MLE 12. Front Physiol 2022; 13:971732. [PMID: 36111163 PMCID: PMC9468891 DOI: 10.3389/fphys.2022.971732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: According to our previous gene ChIP results, long noncoding RNA uc.375 was down-regulated in lung tissue of bronchopulmonary dysplasia (BPD) mice induced by hyperoxia. FoxA1 gene showed higher levels in lung tissue of BPD mice and is reported to promote the apoptosis of alveolar epithelial cells. We aimed to clarify the expression pattern of uc.375 in BPD and explore the interaction between uc.375 and FoxA1.Methods: Newborn mice were placed in a 95% high-oxygen environment for 7 days. Lung tissue samples from mice were used for lncRNA microarray to screen BPD related lncRNAs. Mouse alveolar epithelial cell line MLE 12 was stably transfected with uc.375 and FoxA1 silencing or overexpression lentiviral vectors. The proliferation activity of MLE 12 cells was detected by a cell counting kit 8 (CCK-8) assay. MLE 12 cell apoptosis was determined by Hoechst/PI staining and flow cytometry analysis. The protein levels of Cleaved Caspase-3, FoxA1, SP-C and UCP2 were investigated by western blot. The relative mRNA expression levels were detected by quantitative real-time PCR.Results: uc.375 is mainly distributed in the nucleus of alveolar epithelial cells, as revealed by In Situ Hybridization assay results. uc.375 was lowly expressed in the lung tissues of BPD mice. According to the results of CCK-8 assay, analysis of Hoechst/PI staining and western blotting, uc.375 silencing inhibited cell proliferation, facilitated apoptosis of MLE 12 cells, promoted caspase 3 and FoxA1 expression, and inhibited the expression of SP-C and UCP2. On the contrary, after overexpressing uc.375, the opposite results were obtained. Silencing FoxA1 inhibited MLE 12 apoptosis, promoted proliferation, inhibited apoptosis-related factor caspase 3, and promoted the expression of SP-C and UCP2. FoxA1 silencing also reversed the effect induced by uc.375 knockdown on the proliferation and apoptosis of MLE 12 cells.Conclusion: Based on the biomedical images-derived analysis results, uc.375 negatively regulates FoxA1 expression, affects alveolar development, and plays an important role in the initiation and progression of BPD, providing a new molecular target for the prevention and treatment of BPD.
Collapse
|
32
|
Beirag N, Kumar C, Madan T, Shamji MH, Bulla R, Mitchell D, Murugaiah V, Neto MM, Temperton N, Idicula-Thomas S, Varghese PM, Kishore U. Human surfactant protein D facilitates SARS-CoV-2 pseudotype binding and entry in DC-SIGN expressing cells, and downregulates spike protein induced inflammation. Front Immunol 2022; 13:960733. [PMID: 35967323 PMCID: PMC9367475 DOI: 10.3389/fimmu.2022.960733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Lung surfactant protein D (SP-D) and Dendritic cell-specific intercellular adhesion molecules-3 grabbing non-integrin (DC-SIGN) are pathogen recognising C-type lectin receptors. SP-D has a crucial immune function in detecting and clearing pulmonary pathogens; DC-SIGN is involved in facilitating dendritic cell interaction with naïve T cells to mount an anti-viral immune response. SP-D and DC-SIGN have been shown to interact with various viruses, including SARS-CoV-2, an enveloped RNA virus that causes COVID-19. A recombinant fragment of human SP-D (rfhSP-D) comprising of α-helical neck region, carbohydrate recognition domain, and eight N-terminal Gly-X-Y repeats has been shown to bind SARS-CoV-2 Spike protein and inhibit SARS-CoV-2 replication by preventing viral entry in Vero cells and HEK293T cells expressing ACE2. DC-SIGN has also been shown to act as a cell surface receptor for SARS-CoV-2 independent of ACE2. Since rfhSP-D is known to interact with SARS-CoV-2 Spike protein and DC-SIGN, this study was aimed at investigating the potential of rfhSP-D in modulating SARS-CoV-2 infection. Coincubation of rfhSP-D with Spike protein improved the Spike Protein: DC-SIGN interaction. Molecular dynamic studies revealed that rfhSP-D stabilised the interaction between DC-SIGN and Spike protein. Cell binding analysis with DC-SIGN expressing HEK 293T and THP- 1 cells and rfhSP-D treated SARS-CoV-2 Spike pseudotypes confirmed the increased binding. Furthermore, infection assays using the pseudotypes revealed their increased uptake by DC-SIGN expressing cells. The immunomodulatory effect of rfhSP-D on the DC-SIGN: Spike protein interaction on DC-SIGN expressing epithelial and macrophage-like cell lines was also assessed by measuring the mRNA expression of cytokines and chemokines. RT-qPCR analysis showed that rfhSP-D treatment downregulated the mRNA expression levels of pro-inflammatory cytokines and chemokines such as TNF-α, IFN-α, IL-1β, IL- 6, IL-8, and RANTES (as well as NF-κB) in DC-SIGN expressing cells challenged by Spike protein. Furthermore, rfhSP-D treatment was found to downregulate the mRNA levels of MHC class II in DC expressing THP-1 when compared to the untreated controls. We conclude that rfhSP-D helps stabilise the interaction between SARS- CoV-2 Spike protein and DC-SIGN and increases viral uptake by macrophages via DC-SIGN, suggesting an additional role for rfhSP-D in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Chandan Kumar
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Taruna Madan
- Department of Innate Immunity, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, India
| | - Mohamed H. Shamji
- Immunomodulation and Tolerance Group, Allergy and Clinical Immunology, Department of National Heart and Lung Institute and NIHR Biomedical Research Centre, Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London, United Kingdom
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Daniel Mitchell
- WMS - Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Martin Mayora Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, National Institute for Research in Reproductive and Child Health, ICMR, Mumbai, Maharashtra, India
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
- *Correspondence: Praveen M. Varghese, ; Uday Kishore,
| |
Collapse
|
33
|
Kawasaki T, Ikegawa M, Kawai T. Antigen Presentation in the Lung. Front Immunol 2022; 13:860915. [PMID: 35615351 PMCID: PMC9124800 DOI: 10.3389/fimmu.2022.860915] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
The lungs are constantly exposed to environmental and infectious agents such as dust, viruses, fungi, and bacteria that invade the lungs upon breathing. The lungs are equipped with an immune defense mechanism that involves a wide variety of immunological cells to eliminate these agents. Various types of dendritic cells (DCs) and macrophages (MACs) function as professional antigen-presenting cells (APCs) that engulf pathogens through endocytosis or phagocytosis and degrade proteins derived from them into peptide fragments. During this process, DCs and MACs present the peptides on their major histocompatibility complex class I (MHC-I) or MHC-II protein complex to naïve CD8+ or CD4+ T cells, respectively. In addition to these cells, recent evidence supports that antigen-specific effector and memory T cells are activated by other lung cells such as endothelial cells, epithelial cells, and monocytes through antigen presentation. In this review, we summarize the molecular mechanisms of antigen presentation by APCs in the lungs and their contribution to immune response.
Collapse
Affiliation(s)
| | | | - Taro Kawai
- *Correspondence: Takumi Kawasaki, ; Taro Kawai,
| |
Collapse
|
34
|
Skin immunity: dissecting the complex biology of our body's outer barrier. Mucosal Immunol 2022; 15:551-561. [PMID: 35361906 DOI: 10.1038/s41385-022-00505-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023]
Abstract
Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.
Collapse
|