1
|
Pereira R, Soomro S, Vanarsa K, Castillo J, Maruvada V, Kugathasan S, Mohan C. 1000-plex antibody array proteomic screen uncovers PGRPS, Haptoglobin, Serpin A4 and Fibrinogen as potential stool biomarkers of pediatric inflammatory bowel disease. Clin Immunol 2025; 276:110495. [PMID: 40252987 DOI: 10.1016/j.clim.2025.110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Easy to obtain and in close proximity to the affected areas, fecal samples offer significant potential for the advancement of non-invasive diagnostic methods for inflammatory bowel disease (IBD). A cross-sectional antibody array-based proteomic screen of 1000 fecal protein biomarkers was conducted using stool from treatment naïve control, Crohn's disease (CD), and ulcerative colitis (UC) subjects (control = 24, CD = 39, UC = 10). 71 proteins were significantly elevated in IBD stool (p < 0.05; FC > 2), pointing to cytokine signaling, inflammatory response and extra-cellular matrix functional pathways. Several proteins outperformed fecal calprotectin in distinguishing IBD from control stool, including Haptoglobin, IL-1 R9, GDF-15, PGRPS, Serpin A4, INSRR, SSEA-1, Fibrinogen, IGFBP-1, and TGF-β RI/ALK-5. Upon ELISA validation, PGRPS (AUC = 0.96), Haptoglobin (AUC = 0.91), Serpin A4 (AUC = 0.73), emerged as the most discriminatory biomarkers. Taken together with previous cross-sectional and longitudinal studies, the present findings authenticate stool PGRPS, Haptoglobin, Serpin A4 and fibrinogen as potential stool biomarkers of UC and CD, worthy of further prospective studies to identify more reliable and accurate non-invasive biomarkers for IBD.
Collapse
Affiliation(s)
- Ryan Pereira
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States; Department of Biomedical Engineering, University of Houston, TX, United States
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, TX, United States
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, TX, United States
| | - Jessica Castillo
- Department of Biomedical Engineering, University of Houston, TX, United States
| | - Vinaika Maruvada
- Department of Biomedical Engineering, University of Houston, TX, United States
| | | | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, TX, United States.
| |
Collapse
|
2
|
Valdés-Mas R, Leshem A, Zheng D, Cohen Y, Kern L, Zmora N, He Y, Katina C, Eliyahu-Miller S, Yosef-Hevroni T, Richman L, Raykhel B, Allswang S, Better R, Shmueli M, Saftien A, Cullin N, Slamovitz F, Ciocan D, Ouyang KS, Mor U, Dori-Bachash M, Molina S, Levin Y, Atarashi K, Jona G, Puschhof J, Harmelin A, Stettner N, Chen M, Suez J, Honda K, Lieb W, Bang C, Kori M, Maharshak N, Merbl Y, Shibolet O, Halpern Z, Shouval DS, Shamir R, Franke A, Abdeen SK, Shapiro H, Savidor A, Elinav E. Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease. Cell 2025; 188:1062-1083.e36. [PMID: 39837331 DOI: 10.1016/j.cell.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Host-microbiome-dietary interactions play crucial roles in regulating human health, yet their direct functional assessment remains challenging. We adopted metagenome-informed metaproteomics (MIM), in mice and humans, to non-invasively explore species-level microbiome-host interactions during commensal and pathogen colonization, nutritional modification, and antibiotic-induced perturbation. Simultaneously, fecal MIM accurately characterized the nutritional exposure landscape in multiple clinical and dietary contexts. Implementation of MIM in murine auto-inflammation and in human inflammatory bowel disease (IBD) characterized a "compositional dysbiosis" and a concomitant species-specific "functional dysbiosis" driven by suppressed commensal responses to inflammatory host signals. Microbiome transfers unraveled early-onset kinetics of these host-commensal cross-responsive patterns, while predictive analyses identified candidate fecal host-microbiome IBD biomarker protein pairs outperforming S100A8/S100A9 (calprotectin). Importantly, a simultaneous fecal nutritional MIM assessment enabled the determination of IBD-related consumption patterns, dietary treatment compliance, and small intestinal digestive aberrations. Collectively, a parallelized dietary-bacterial-host MIM assessment functionally uncovers trans-kingdom interactomes shaping gastrointestinal ecology while offering personalized diagnostic and therapeutic insights into microbiome-associated disease.
Collapse
Affiliation(s)
- Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Avner Leshem
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Danping Zheng
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yotam Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lara Kern
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Niv Zmora
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Yiming He
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | | | - Tal Yosef-Hevroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liron Richman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Barbara Raykhel
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shira Allswang
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Reut Better
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nyssa Cullin
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Fernando Slamovitz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Uria Mor
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Mally Dori-Bachash
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shahar Molina
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Koji Atarashi
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Ghil Jona
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jotham Suez
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenya Honda
- RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi, Yokohama, Kanagawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany; University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Michal Kori
- Pediatric Gastroenterology Unit, Kaplan Medical Center, Rehovot, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitsan Maharshak
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Shibolet
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Zamir Halpern
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Gastroenterology and Hepatology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Dror S Shouval
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Centre, Petach-Tikva, Israel
| | - Raanan Shamir
- School of Medicine, Faculty of Medicine and Health Sciences, Tel Aviv University, Tel Aviv, Israel; Institute of Gastroenterology, Nutrition, and Liver Diseases, Schneider Children's Medical Centre, Petach-Tikva, Israel
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Zu Kiel, Kiel, Germany; University Hospital of Schleswig-Holstein (UKSH), Kiel, Germany
| | - Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
3
|
Chen Y, Hu W, Qin F. Letter: Analysis of 'Faecal Biomarkers for Diagnosis and Prediction of Disease Course in Treatment-Naive Patients With IBD'. Aliment Pharmacol Ther 2025; 61:218-219. [PMID: 39491327 DOI: 10.1111/apt.18312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Yuxiang Chen
- College of Integrative Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjian Hu
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fengfeng Qin
- Department of Otorhinolaryngology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Kreimeyer H, Gonzalez CG, Fondevila MF, Hsu CL, Hartmann P, Zhang X, Stärkel P, Bosques-Padilla F, Verna EC, Abraldes JG, Brown RS, Vargas V, Altamirano J, Caballería J, Shawcross DL, Louvet A, Lucey MR, Mathurin P, Garcia-Tsao G, Bataller R, Investigators A, Gonzalez DJ, Schnabl B. Faecal proteomics links neutrophil degranulation with mortality in patients with alcohol-associated hepatitis. Gut 2024; 74:103-115. [PMID: 39033024 PMCID: PMC11631684 DOI: 10.1136/gutjnl-2024-332730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Patients with alcohol-associated hepatitis (AH) have a high mortality. Alcohol exacerbates liver damage by inducing gut dysbiosis, bacterial translocation and inflammation, which is characterised by increased numbers of circulating and hepatic neutrophils. DESIGN In this study, we performed tandem mass tag (TMT) proteomics to analyse proteins in the faeces of controls (n=19), patients with alcohol-use disorder (AUD; n=20) and AH (n=80) from a multicentre cohort (InTeam). To identify protein groups that are disproportionately represented, we conducted over-representation analysis using Reactome pathway analysis and Gene Ontology to determine the proteins with the most significant impact. A faecal biomarker and its prognostic effect were validated by ELISA in faecal samples from patients with AH (n=70), who were recruited in a second and independent multicentre cohort (AlcHepNet). RESULT Faecal proteomic profiles were overall significantly different between controls, patients with AUD and AH (principal component analysis p=0.001, dissimilarity index calculated by the method of Bray-Curtis). Proteins that showed notable differences across all three groups and displayed a progressive increase in accordance with the severity of alcohol-associated liver disease were predominantly those located in neutrophil granules. Over-representation and Reactome analyses confirmed that differentially regulated proteins are part of granules in neutrophils and the neutrophil degranulation pathway. Myeloperoxidase (MPO), the marker protein of neutrophil granules, correlates with disease severity and predicts 60-day mortality. Using an independent validation cohort, we confirmed that faecal MPO levels can predict short-term survival at 60 days. CONCLUSIONS We found an increased abundance of faecal proteins linked to neutrophil degranulation in patients with AH, which is predictive of short-term survival and could serve as a prognostic non-invasive marker.
Collapse
Affiliation(s)
- Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Carlos G Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Marcos F Fondevila
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Cynthia L Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| | - Phillipp Hartmann
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Divison of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital San Diego, San Diego, California, USA
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertehim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Peter Stärkel
- Department of Hepatology and Gastroenterology, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Francisco Bosques-Padilla
- Hospital Universitario, Departamento de Gastroenterología, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Robert S Brown
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, NY, USA
| | - Victor Vargas
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jose Altamirano
- Liver Unit, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Caballería
- Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
- Liver Unit, Hospital Clinic, Barcelona, Catalunya, Spain
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Alexandre Louvet
- Service des Maladies de L'appareil Digestif et Unité INFINITE 1286, Hôpital Huriez, Lille, France
| | - Michael R Lucey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Philippe Mathurin
- Service des Maladies de L'appareil Digestif et Unité INFINITE 1286, Hôpital Huriez, Lille, France
| | - Guadalupe Garcia-Tsao
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Section of Digestive Diseases, VA-CT Healthcare System, West Haven, CT, USA
| | - Ramón Bataller
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - David J Gonzalez
- Department of Pharmacology, University of California San Diego, La Jolla, California, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
5
|
Apte A, Dutta Dey P, Julakanti SR, Midura-Kiela M, Skopp SM, Canchis J, Fauser T, Bardill J, Seal S, Jackson DM, Ghishan FK, Kiela PR, Zgheib C, Liechty KW. Oral Delivery of miR146a Conjugated to Cerium Oxide Nanoparticles Improves an Established T Cell-Mediated Experimental Colitis in Mice. Pharmaceutics 2024; 16:1573. [PMID: 39771552 PMCID: PMC11679827 DOI: 10.3390/pharmaceutics16121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Dysregulated inflammation and oxidative stress are strongly implicated in the pathogenesis of inflammatory bowel disease. We have developed a novel therapeutic that targets inflammation and oxidative stress. It is comprised of microRNA-146a (miR146a)-loaded cerium oxide nanoparticles (CNPs) (CNP-miR146a). We hypothesized that oral delivery of CNP-miR146a would reduce colonic inflammation in a mouse model of established, chronic, T cell-mediated colitis. Methods: The stability of CNP-miR146a and mucosal delivery was assessed in vitro with simulated gastrointestinal fluid and in vivo after oral gavage by quantitative real-time RT-PCR. The efficacy of orally administered CNP-miR146a was tested in mice with established colitis using the model of adoptive naïve T-cell transfer in recombinant activating gene 2 knockout (Rag2-/-) mice. Measured outcomes included histopathology; CD45+ immune cell infiltration; oxidative DNA damage (tissue 8-hydroxy-2'-deoxyguanosine; 8-OHdG); expression of IL-6 and TNF mRNA and protein, and flow cytometry analysis of lamina propria Th1 and Th17 cell populations. Results: miR146a expression remained stable in simulated gastric and intestinal conditions. miR146a expression increased in the intestines of mice six hours following oral gavage of CNP-miR146a. Oral delivery of CNP-miR146a in mice with colitis was associated with reduced inflammation and oxidative stress in the proximal and distal colons as evidenced by histopathology scoring, reduced immune cell infiltration, reduced IL-6 and TNF expression, and decreased populations of CD4+Tbet+IFNg+ Th1, CD4+RorgT+IL17+ Th17, as well as pathogenic double positive IFNg+IL17+ T cells. Conclusions: CNP-miR146a represents a novel orally available therapeutic with high potential to advance into clinical trials.
Collapse
Affiliation(s)
- Anisha Apte
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Pujarini Dutta Dey
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Srisaianirudh Reddy Julakanti
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Monica Midura-Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Stacy M. Skopp
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Jimena Canchis
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - Tobias Fauser
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
| | - James Bardill
- Laboratory for Fetal and Regenerative Biology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO 80045, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Center, Nanoscience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | - Fayez K. Ghishan
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Pawel R. Kiela
- Department of Pediatrics, Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
- Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, AZ 85621, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| | - Kenneth W. Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Arizona Tucson College of Medicine, Banner Children’s at Diamond Children’s Medical Center, 1656 E Mabel St, Rm 230, Tucson, AZ 85721, USA
- Ceria Therapeutics, Inc., Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Lee KH, Assassi S, Mohan C, Pedroza C. Addressing statistical challenges in the analysis of proteomics data with extremely small sample size: a simulation study. BMC Genomics 2024; 25:1086. [PMID: 39543503 PMCID: PMC11566501 DOI: 10.1186/s12864-024-11018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND One of the most promising approaches for early and more precise disease prediction and diagnosis is through the inclusion of proteomics data augmented with clinical data. Clinical proteomics data is often characterized by its high dimensionality and extremely limited sample size, posing a significant challenge when employing machine learning techniques for extracting only the most relevant information. Although there is a wide array of statistical techniques and numerous analysis pipelines employed in proteomics data analysis, it is unclear which of these methods produce the most efficient, reproducible, and clinically meaningful results. RESULTS In this study, we compared 9 unique analysis schemes comprised of different machine learning and dimensionality reduction methods for the analysis of simulated proteomics data consisting of 1317 proteins measured in 26 subjects (i.e., 13 controls and 13 cases). In scenarios where the sample size is extremely small (i.e., n < 30), all schemes resulted in an exceptionally high level of performance metrics, indicating potential overfitting. While performance metrics did not exhibit significant differences across schemes, the set of proteins selected to be discriminatory between groups demonstrated a substantial level of heterogeneity. However, despite heterogeneity in the selected proteins, their biological pathways and genetic diseases exhibited similarities. A sensitivity analysis conducted using varying sample sizes indicated that the stability of a set of selected biomarkers improves with larger sample sizes within a scheme. CONCLUSIONS When the aim of the study is to identify a statistical model that best distinguishes between cohort groups using proteomics data and to uncover the biological pathways and disorders common among the selected proteins, the majority of widely used analysis pipelines perform similarly. However, if the main objective is to pinpoint a set of selected proteins that wield significant influence in discriminating cohort groups and utilize them for subsequent investigations, meticulous consideration is necessary when opting for statistical models, due to the possibility of heterogeneity in the sets of selected proteins.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- Institute for Clinical Research and Learning Health Care, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Shervin Assassi
- Department of Internal Medicine - Rheumatology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Claudia Pedroza
- Institute for Clinical Research and Learning Health Care, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
7
|
Vinolo E, Maillefer M, Jolly L, Colné N, Meiffren G, Carrasco K, Derive M. The potential of targeting TREM-1 in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:301-330. [PMID: 39521605 DOI: 10.1016/bs.apha.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Innate immune dysfunction is a hallmark of the pathogenesis of Inflammatory Bowel Disease, both in Crohn's disease and ulcerative colitis. Despite considerable efforts in research to better understand the pathophysiology of IBD and for the development of new therapeutic modalities for IBD patients, there is no therapy specifically targeting the dysregulations of the innate immune response available today in that field. TREM-1 is exclusively expressed by innate immune cells and is an immune amplifier. Its engagement following the primary activation of Pattern Recognition Receptors, including Toll-Like Receptors, triggers the development of a dysregulated and sustained innate immune response, promoting the perpetuation of the inflammatory response in the mucosa of IBD patients, microscopic mucosal tissue alterations, impaired autophagy, impaired epithelial barrier integrity and function, ulcerations, and mucosal damages. In patients, TREM-1 activation is associated with the active status of the disease as well as with severity. Blocking TREM-1 in experimental colitis attenuates the dysregulated innate immune response leading to improved clinical signs. Anti-TREM-1 approaches have the potential of controlling the pathogenic dysregulation of the immune response in IBD by targeting an upstream amplification loop of the activation of innate immunity.
Collapse
|
8
|
Li YY, Sun JW, Chen L, Lu YM, Wu QX, Yan C, Chen Y, Zhang M, Zhang WN. Structural characteristics of a polysaccharide from Armillariella tabescens and its protective effect on colitis mice via regulating gut microbiota and intestinal barrier function. Int J Biol Macromol 2024; 277:133719. [PMID: 38992544 DOI: 10.1016/j.ijbiomac.2024.133719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/10/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
A new polysaccharide fraction (ATP) was obtained from Armillariella tabescens mycelium. Structural analysis suggested that the backbone of ATP was →4)-α-D-Glcp(1 → 2)-α-D-Galp(1 → 2)-α-D-Glcp(1 → 4)-α-D-Glcp(1→, which branched at O-3 of →2)-α-D-Glcp(1 → and terminated with T-α-D-Glcp or T-α-D-Manp. Besides, ATP significantly alleviated ulcerative colitis (UC) symptoms and inhibited the production of pro-inflammation cytokines (IL-1β, IL-6). Meanwhile, ATP could improve colon tissue damage by elevating the expression of MUC2 and tight junction proteins (ZO-1, occludin and claudin-1) levels and enhance intestinal barrier function through inhibiting the activation of MMP12/MLCK/p-MLC2 signaling pathway. Further studies exhibited that ATP could increase the relative abundance of beneficial bacteria such as f. Muribaculacese, g. Muribaculaceae, and g. Alistips, and decrease the relative abundance of g. Desulfovibrio, g. Colidextribacter, g. Ruminococcaceae and g.Oscillibacter, and regulate the level of short-chain fatty acids. Importantly, FMT intervention with ATP-derived microbiome certified that gut microbiota was involved in the protective effects of ATP on UC. The results indicated that ATP was potential to be further developed into promising therapeutic agent for UC.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Jing-Wen Sun
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Lei Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yong-Ming Lu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Qing-Xi Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Chao Yan
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Afliated Hospital of Anhui Medical University, Hefei, China
| | - Wen-Na Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
9
|
Wangchuk P, Yeshi K, Loukas A. Ulcerative colitis: clinical biomarkers, therapeutic targets, and emerging treatments. Trends Pharmacol Sci 2024; 45:892-903. [PMID: 39261229 DOI: 10.1016/j.tips.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Ulcerative colitis (UC) is one of the two forms of inflammatory bowel disease. It affects 5 million people globally, and is a chronic and recurring inflammation of the gastrointestinal tract with clinical presentation of abdominal pain, chronic diarrhea, rectal bleeding, and weight loss. The cause and the etiology of UC remain poorly understood. There is no cure and no 'gold standard diagnostic' for UC. The existing treatments are ineffective, and UC patients have a lower life expectancy with a risk of colorectal cancer. Recent studies in pathophysiology, clinical presentation, and biomarkers have significantly improved our understanding of UC. In this review we summarize recent advances in identifying novel clinical biomarkers, diagnostics, treatment targets, and emerging therapeutics. These insights are expected to assist in developing effective treatments for UC.
Collapse
Affiliation(s)
- Phurpa Wangchuk
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns campus, James Cook University, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine (AITHM), Cairns campus, James Cook University, QLD 4878, Australia.
| | - Karma Yeshi
- College of Public Health, Medical, and Veterinary Sciences (CPHMVS), Cairns campus, James Cook University, QLD 4878, Australia; Australian Institute of Tropical Health and Medicine (AITHM), Cairns campus, James Cook University, QLD 4878, Australia
| | - Alex Loukas
- Australian Institute of Tropical Health and Medicine (AITHM), Cairns campus, James Cook University, QLD 4878, Australia
| |
Collapse
|
10
|
Pavelescu LA, Profir M, Enache RM, Roşu OA, Creţoiu SM, Gaspar BS. A Proteogenomic Approach to Unveiling the Complex Biology of the Microbiome. Int J Mol Sci 2024; 25:10467. [PMID: 39408795 PMCID: PMC11476728 DOI: 10.3390/ijms251910467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The complex biology of the microbiome was elucidated once the genomics era began. The proteogenomic approach analyzes and integrates genetic makeup (genomics) and microbial communities' expressed proteins (proteomics). Therefore, researchers gained insights into gene expression, protein functions, and metabolic pathways, understanding microbial dynamics and behavior, interactions with host cells, and responses to environmental stimuli. In this context, our work aims to bring together data regarding the application of genomics, proteomics, and bioinformatics in microbiome research and to provide new perspectives for applying microbiota modulation in clinical practice with maximum efficiency. This review also synthesizes data from the literature, shedding light on the potential biomarkers and therapeutic targets for various diseases influenced by the microbiome.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (L.A.P.); (M.P.); (O.A.R.)
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
11
|
Slater R, Tharmaratnam K, Belnour S, Auth MKH, Muhammed R, Spray C, Wang D, de Lacy Costello B, García-Fiñana M, Allen S, Probert C. Gas Chromatography-Sensor System Aids Diagnosis of Inflammatory Bowel Disease, and Separates Crohn's from Ulcerative Colitis, in Children. SENSORS (BASEL, SWITZERLAND) 2024; 24:5079. [PMID: 39124126 PMCID: PMC11314755 DOI: 10.3390/s24155079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
The diagnosis of inflammatory bowel disease (IBD) in children and the need to distinguish between subtypes (Crohn's disease (CD) and ulcerative colitis (UC)) requires lengthy investigative and invasive procedures. Non-invasive, rapid, and cost-effective tests to support these diagnoses are needed. Faecal volatile organic compounds (VOCs) are distinctive in IBD. VOC profiles can be rapidly determined using a gas chromatography-sensor device (OdoReader©). In an inception-cohort of children presenting with suspected IBD, we directly compared the diagnostic fidelity of faecal calprotectin (FCP, a non-specific protein marker of intestinal inflammation) with OdoReader© VOC profiles of children subsequently diagnosed with IBD with matched controls diagnosed with other gastrointestinal conditions. The OdoReader© was 82% (95% confidence interval 75-89%) sensitive and 71% (61-80%) specific but did not outperform FCP (sensitivity 93% (77-99%) and specificity 86% (67-96%); 250 µg/g FCP cut off) in the diagnosis of IBD from other gastrointestinal conditions when validated in a separate sample from the same cohort. However, unlike FCP and better than other similar technologies, the OdoReader© could distinguish paediatric CD from UC (up to 88% (82-93%) sensitivity and 80% (71-89%) specificity in the validation set) and justifies further validation in larger studies. A non-invasive test based on VOCs could help streamline and limit invasive investigations in children.
Collapse
Affiliation(s)
- Rachael Slater
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK;
| | - Kukatharmini Tharmaratnam
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK; (K.T.); (M.G.-F.)
| | - Salma Belnour
- Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, UK;
| | - Marcus Karl-Heinz Auth
- Paediatric Gastroenterology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (M.K.-H.A.); (S.A.)
| | - Rafeeq Muhammed
- Gastroenterology and Nutrition, Birmingham Children’s NHS Foundation Trust, Birmingham B4 6NH, UK;
| | - Christine Spray
- Paediatric Gastroenterology, Bristol Children’s NHS Foundation Trust, Bristol BS2 8BJ, UK;
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Ben de Lacy Costello
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK;
| | - Marta García-Fiñana
- Department of Health Data Science, Institute of Population Health, University of Liverpool, Liverpool L69 3GF, UK; (K.T.); (M.G.-F.)
| | - Stephen Allen
- Paediatric Gastroenterology, Alder Hey Children’s NHS Foundation Trust, Liverpool L12 2AP, UK; (M.K.-H.A.); (S.A.)
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Chris Probert
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK;
| |
Collapse
|
12
|
Yang K, Tian Y, Zheng B, Wu F, Hu T, Yang Y, Pan J, Xiong H, Wang S. Fast-Responsive HClO-Activated Near-Infrared Fluorescent Probe for In Vivo Diagnosis of Inflammatory Bowel Disease and Ex Vivo Optical Fecal Analysis. Anal Chem 2024; 96:12065-12073. [PMID: 38982573 DOI: 10.1021/acs.analchem.4c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Inflammatory bowel disease (IBD) is an idiopathic intestinal inflammatory disease, whose etiology is intimately related to the overproduction of hypochlorous acid (HClO). Optical monitoring of HClO in the living body favors real-time diagnosis of inflammatory diseases. However, HClO-activated near-infrared (NIR) fluorescent probes with rapid response and high inflammatory cell uptake are still lacking. Herein, we report an activatable acceptor-π-acceptor (A-π-A)-type NIR fluorescent probe (Cy-DM) bearing two d-mannosamine groups for the sensitive detection of HClO in early IBD and stool testing. Once reacted with HClO, nonfluorescent Cy-DM could be turned on within 2 s by generating a donor-π-acceptor (D-π-A) structure due to the enhanced intramolecular charge transfer mechanism, showing intense NIR fluorescence emission at 700 nm and a large Stokes shift of 115 nm. Moreover, it was able to sensitively and selectively image exogenous and endogenous HClO in the lysosomes of living cells with a detection limit of 0.84 μM. More importantly, because of the d-mannosamine modification, Cy-DM was efficiently taken up by inflammatory cells in the intestine after intravenous administration, allowing noninvasive visualization of endogenous HClO in a lipopolysaccharide-induced IBD mouse model with a high fluorescence contrast of 6.8/1. In addition, water-soluble Cy-DM has also been successfully applied in ex vivo optical fecal analysis, exhibiting a 3.4-fold higher fluorescence intensity in the feces excreted by IBD mice. We believe that Cy-DM is promising as an invaluable tool for rapid diagnosis of HClO-related diseases as well as stool testing.
Collapse
Affiliation(s)
- Kairong Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yang Tian
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bingbing Zheng
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fapu Wu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tao Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuexia Yang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jingye Pan
- Zhejiang Key Laboratory of Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hu Xiong
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shan Wang
- Zhejiang Key Laboratory of Critical Care Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
13
|
Arosa L, Camba-Gómez M, Lorenzo-Martín LF, Clavaín L, López M, Conde-Aranda J. RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages. Int J Mol Sci 2024; 25:3167. [PMID: 38542140 PMCID: PMC10970096 DOI: 10.3390/ijms25063167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.
Collapse
Affiliation(s)
- Laura Arosa
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| | - Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| | | | - Laura Clavaín
- EGO Genomics, Scientific Park of the University of Salamanca, Adaja Street 4, Building M2, 37185 Villamayor, Spain;
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| |
Collapse
|
14
|
Hong JS, Shamim A, Atta H, Nonnecke EB, Merl S, Patwardhan S, Manell E, Gunes E, Jordache P, Chen B, Lu W, Shen B, Dionigi B, Kiran RP, Sykes M, Zorn E, Bevins CL, Weiner J. Application of enzyme-linked immunosorbent assay to detect antimicrobial peptides in human intestinal lumen. J Immunol Methods 2024; 525:113599. [PMID: 38081407 PMCID: PMC10956375 DOI: 10.1016/j.jim.2023.113599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Intestinal transplantation is the definitive treatment for intestinal failure. However, tissue rejection and graft-versus-host disease are relatively common complications, necessitating aggressive immunosuppression that can itself pose further complications. Tracking intraluminal markers in ileal effluent from standard ileostomies may present a noninvasive and sensitive way to detect developing pathology within the intestinal graft. This would be an improvement compared to current assessments, which are limited by poor sensitivity and specificity, contributing to under or over-immunosuppression, respectively, and by the need for invasive biopsies. Herein, we report an approach to reproducibly analyze ileal fluid obtained through stoma sampling for antimicrobial peptide/protein concentrations, reasoning that these molecules may provide an assessment of intestinal homeostasis and levels of intestinal inflammation over time. Concentrations of lysozyme (LYZ), myeloperoxidase (MPO), calprotectin (S100A8/A9) and β-defensin 2 (DEFB2) were assessed using adaptations of commercially available enzyme-linked immunosorbent assays (ELISAs). The concentration of α-defensin 5 (DEFA5) was assessed using a newly developed sandwich ELISA. Our data support that with proper preparation of ileal effluent specimens, precise and replicable determination of antimicrobial peptide/protein concentrations can be achieved for each of these target molecules via ELISA. This approach may prove to be reliable as a clinically useful assessment of intestinal homeostasis over time for patients with ileostomies.
Collapse
Affiliation(s)
- Julie S Hong
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America.
| | - Abrar Shamim
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; College of Dental Medicine, Columbia University, New York, NY, United States of America
| | - Hussein Atta
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Eric B Nonnecke
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Sarah Merl
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| | - Satyajit Patwardhan
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Elin Manell
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Esad Gunes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Philip Jordache
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Bryan Chen
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Wuyuan Lu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Bo Shen
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Beatrice Dionigi
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Ravi P Kiran
- Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Megan Sykes
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| | - Emmanuel Zorn
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America
| | - Charles L Bevins
- Department of Microbiology and Immunology, University of California Davis School of Medicine, Davis, CA, United States of America
| | - Joshua Weiner
- Columbia Center of Translational Immunology, Department of Medicine, Columbia University, New York, NY, United States of America; Department of Surgery, Columbia University/New York-Presbyterian Hospital, New York, NY, United States of America
| |
Collapse
|
15
|
Lv F, Chen J, Wan Y, Si J, Song M, Zhu F, Du S, Shang Y, Man T, Zhu L, Ren K, Piao Y, Zhu C, Deng SY. Amplification of an Electrochemiluminescence-Emissive Aptamer into DNA Nanotags for Sensitive Fecal Calprotectin Determination. Anal Chem 2023; 95:18564-18571. [PMID: 38060825 DOI: 10.1021/acs.analchem.3c04390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The precision additive manufacturing and tessellated multitasking out of the structural DNA nanotechnology enable a configurable expression of densified electrochemiluminescent (ECL) complexes, which would streamline the bioconjugation while multiplying signals. Herein, a completely DNA-scaffold ECL "polyploid" was replicated out via the living course of rolling circle amplification. The amplicon carried the aptameric sequences of ZnPPIX/TSPP porphyrin as photoreactive centers that rallied at periodical intervals of the persistent extension into a close-packed nanoflower, ZnPDFI/II. Both microscopies and electrophoresis proved the robust nesting of guests at their deployed gene loci, while multispectral comparisons among cofactor substituents pinpointed the pivotal roles of singlet seclusion and Zn2+-chelation for the sake of intensive ECL irradiation. The adversity-resilient hydrogel texture made lipoidal filmogens as porphyrinic ECL prerequisites to be of no need at all, thus not only simplifying assay flows but also inspiring an in situ labeling plan. Upon bioprocessing optimization, an enriched probe ZnPDFIII was further derived that interpolated the binding motif related to calprotectin as validated by molecular docking and affinity titration. With it being a strongly indicative marker of inflammatory bowel disease (IBD), a competitive ECL aptasensing strategy was contrived, managing a signal-on and sensitive detection in mild conditions with a subnanogram-per-milliliter limit of detection by 2 orders of magnitude lower than the standard method as well as a comparable accuracy in clinical stool sample testing. Distinct from those conventional chemophysical rebuilding routes, this de novo biosynthetic fusion demonstrated a promising alternative toward ECL-source bioengineering, which may intrigue vibrant explorations of other ECL-shedding fabrics and, accordingly, a new bioanalytic mode downstream.
Collapse
Affiliation(s)
- Fujin Lv
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jialiang Chen
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jingyi Si
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Meiyan Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Fulin Zhu
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Songyuan Du
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuzhe Shang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tiantian Man
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuhao Piao
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Sheng-Yuan Deng
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
16
|
Li J, Ji Y, Chen N, Dai L, Deng H. Colitis-associated carcinogenesis: crosstalk between tumors, immune cells and gut microbiota. Cell Biosci 2023; 13:194. [PMID: 37875976 PMCID: PMC10594787 DOI: 10.1186/s13578-023-01139-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/21/2023] [Indexed: 10/26/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. One of the main causes of colorectal cancer is inflammatory bowel disease (IBD), which includes ulcerative colitis (UC) and Crohn's disease (CD). Intestinal epithelial cells (IECs), intestinal mesenchymal cells (IMCs), immune cells, and gut microbiota construct the main body of the colon and maintain colon homeostasis. In the development of colitis and colitis-associated carcinogenesis, the damage, disorder or excessive recruitment of different cells such as IECs, IMCs, immune cells and intestinal microbiota play different roles during these processes. This review aims to discuss the various roles of different cells and the crosstalk of these cells in transforming intestinal inflammation to cancer, which provides new therapeutic methods for chemotherapy, targeted therapy, immunotherapy and microbial therapy.
Collapse
Affiliation(s)
- Junshu Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Yanhong Ji
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Na Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China
| | - Lei Dai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Ke Yuan Road 4, No. 1 Gao Peng Street, Chengdu, 610041, China.
| |
Collapse
|
17
|
Caliendo G, D'Elia G, Makker J, Passariello L, Albanese L, Molinari AM, Vietri MT. Biological, genetic and epigenetic markers in ulcerative colitis. Adv Med Sci 2023; 68:386-395. [PMID: 37813048 DOI: 10.1016/j.advms.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/15/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
In this review, we have summarized the existing knowledge of ulcerative colitis (UC) markers based on current literature, specifically, the roles of potential new biomarkers, such as circulating, fecal, genetic, and epigenetic alterations, in UC onset, disease activity, and in therapy response. UC is a complex multifactorial inflammatory disease. There are many invasive and non-invasive diagnostic methods in UC, including several laboratory markers which are employed in diagnosis and disease assessment; however, colonoscopy remains the most widely used method. Common laboratory abnormalities currently used in the clinical practice include inflammation-induced alterations, serum autoantibodies, and antibodies against bacterial antigens. Other new serum and fecal biomarkers are supportive in diagnosis and monitoring disease activity and therapy response; and potential salivary markers are currently being evaluated as well. Several UC-related genetic and epigenetic alterations are implied in its pathogenesis and therapeutic response. Moreover, the use of artificial intelligence in the integration of laboratory biomarkers and big data could potentially be useful in clinical translation and precision medicine in UC management.
Collapse
Affiliation(s)
- Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna D'Elia
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Jasmine Makker
- Department of GKT School of Medical Education, King's College London, London, UK
| | - Luana Passariello
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Anna Maria Molinari
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Unity of Clinical and Molecular Pathology, AOU University of Campania "Luigi Vanvitelli", Naples, Italy; Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
18
|
Karra DA, Chadwick CC, Stavroulaki EM, Pitropaki MN, Flouraki E, Allenspach K, Lidbury JA, Steiner JM, Xenoulis PG. Fecal acute phase proteins in cats with chronic enteropathies. J Vet Intern Med 2023; 37:1750-1759. [PMID: 37401847 PMCID: PMC10473003 DOI: 10.1111/jvim.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Chronic enteropathies (CE) are common in cats and reliable biomarkers that can distinguish different causes and predict or monitor response to treatment are currently lacking. HYPOTHESIS To evaluate certain acute phase proteins in feces that could potentially be used as biomarkers in cats with CE. ANIMALS Twenty-eight cats with either inflammatory bowel disease (IBD; n = 13), food-responsive enteropathy (FRE; n = 3) or small cell gastrointestinal lymphoma (SCGL; n = 12) and 29 healthy control cats were prospectively enrolled. METHODS Fecal concentrations of haptoglobin, alpha-1-acid-glycoprotein (AGP), pancreatitis-associated protein-1 (PAP-1), ceruloplasmin, and C-reactive protein (CRP) were measured using Spatial Proximity Analyte Reagent Capture Luminescence (SPARCL) immunoassays before and after initiation of treatment. Cats were treated with diet and/or prednisolone (IBD cats), plus chlorambucil (SCGL cats). RESULTS Compared with controls, median fecal AGP concentrations were significantly lower (25.1 vs 1.8 μg/g; P = .003) and median fecal haptoglobin (0.17 vs 0.5 μg/g), PAP-1 (0.04 vs 0.4 μg/g) and ceruloplasmin (0.15 vs 4.2 μg/g) concentrations were significantly higher (P < .001) in cats with CE. Median fecal AGP concentrations were significantly lower (P = .01) in cats with IBD and FRE (0.6 μg/g) compared with cats with SCGL (10.75 μg/g). A significant reduction was found in CE cats after treatment for median fecal ceruloplasmin concentrations (6.36 vs 1.16 μg/g; P = .04). CONCLUSIONS Fecal AGP concentration shows promise to differentiate cats with SCGL from cats with IBD and FRE. Fecal ceruloplasmin concentrations may be useful to objectively monitor response to treatment in cats with CE.
Collapse
Affiliation(s)
| | | | | | | | | | - Karin Allenspach
- Iowa State UniversityCollege of Veterinary Medicine, Veterinary Clinical SciencesAmesIowaUSA
| | - Jonathan A. Lidbury
- Texas A&M University – Gastrointestinal LaboratoryCollege of Veterinary Medicine & Biomedical SciencesCollege StationTexasUSA
| | - Joerg M. Steiner
- Texas A&M UniversityGastrointestinal LaboratoryCollege StationTexasUSA
| | - Panagiotis G. Xenoulis
- University of ThessalySmall Animal ClinicKarditsaGreece
- Texas A&M UniversityGastrointestinal LaboratoryCollege StationTexasUSA
| |
Collapse
|
19
|
Wang N, Fan T, Chen Y, Chen H, Qin Y, Jiang Y. Whole-Bacterium SELEX Aptamer Selection of Fusobacterium nucleatum and Application to Colorectal Cancer Noninvasive Screening in Human Feces. Anal Chem 2023; 95:12216-12222. [PMID: 37578005 DOI: 10.1021/acs.analchem.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In terms of cancer diagnoses and cancer-related deaths worldwide, colorectal cancer (CRC) is now the third most common malignancy. The drawbacks of current screening methods are their exorbitant costs, difficult procedures, and lengthy implementation timelines. The benefits of fecal screening for CRC are ease of operation, noninvasiveness, cost-effectiveness, and superior sensitivity. As a result of its enrichment in the malignant tissues and feces of CRC patients, Fusobacterium nucleatum (F. nucleatum) has emerged as a crucial biomarker for the incipient detection, identification, and prognostic prediction of CRC. Here, for the first time, the whole-bacterium SELEX method was used to screen the highly specific and affinity aptamers against F. nucleatum by 13 cycles of selection. The Apt-S-5 linear correlation equation is y = 0.7363x2.8315 (R2 = 0.9864) with a limit of detection (LOD) of 851 CFU/mL. The results of the experiment using fecal samples revealed a substantial disparity between the microorganisms in the CRC patients' feces and those in the feces of healthy individuals and were consistent with those of qPCR. The aptamers may therefore offer a crucial approach to identifying F. nucleatum and hold tremendous promise for CRC diagnosis and prognostic prediction.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Tingting Fan
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
| | - Yan Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
| | - Hui Chen
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
| | - Ying Qin
- Department of Gastrointestinal Surgery, Shenzhen Second People's Hospital, Shenzhen 518055, Guangdong, China
| | - Yuyang Jiang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, P. R. China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, P. R. China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, P. R. China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
20
|
Suzuki T, Ohishi T, Tanabe H, Miyoshi N, Nakamura Y. Anti-Inflammatory Effects of Dietary Polyphenols through Inhibitory Activity against Metalloproteinases. Molecules 2023; 28:5426. [PMID: 37513300 PMCID: PMC10385587 DOI: 10.3390/molecules28145426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent metalloproteinases that play important roles in a variety of diseases, including cancer, cardiovascular disease, diabetes, obesity, and brain diseases. Dietary polyphenols are thought to have a variety of beneficial effects on these diseases characterized by inflammation. Clinical studies have demonstrated that MMPs are in most cases upregulated in various inflammatory diseases, including osteoarthritis, rheumatoid arthritis, inflammatory bowel disease, and Alzheimer's disease. Studies using patient-derived human samples, animal studies, and cellular experiments have suggested that polyphenols may be beneficial against inflammatory diseases by suppressing MMP gene expression and enzyme activity. One important mechanism by which polyphenols exert their activity is the downregulation of reactive oxygen species that promote MMP expression. Another important mechanism is the direct binding of polyphenols to MMPs and their inhibition of enzyme activity. Molecular docking analyses have provided a structural basis for the interaction between polyphenols and MMPs and will help to explore new polyphenol-based drugs with anti-inflammatory properties.
Collapse
Affiliation(s)
- Takuji Suzuki
- Department of Food Science and Nutrition, Faculty of Human Life and Science, Doshisha Women's College of Liberal Arts, Kamigyo-ku, Kyoto 602-0893, Japan
| | - Tomokazu Ohishi
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shinagawa, Tokyo 141-0021, Japan
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Numazu, Shizuoka 410-0301, Japan
| | - Hiroki Tanabe
- Department of Nutritional Sciences, Faculty of Health and Welfare Science, Nayoro City University, Nayoro, Hokkaido 096-8641, Japan
| | - Noriyuki Miyoshi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
21
|
Yu J, Boland L, Catt M, Puk L, Wong N, Krockenberger M, Bennett P, Ruaux C, Wasinger VC. Serum proteome profiles in cats with chronic enteropathies. J Vet Intern Med 2023; 37:1358-1367. [PMID: 37279179 PMCID: PMC10365053 DOI: 10.1111/jvim.16743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Serum protein biomarkers are used to diagnose, monitor treatment response, and to differentiate various forms of chronic enteropathies (CE) in humans. The utility of liquid biopsy proteomic approaches has not been examined in cats. HYPOTHESIS/OBJECTIVES To explore the serum proteome in cats to identify markers differentiating healthy cats from cats with CE. ANIMALS Ten cats with CE with signs of gastrointestinal disease of at least 3 weeks duration, and biopsy-confirmed diagnoses, with or without treatment and 19 healthy cats were included. METHODS Cross-sectional, multicenter, exploratory study with cases recruited from 3 veterinary hospitals between May 2019 and November 2020. Serum samples were analyzed and evaluated using mass spectrometry-based proteomic techniques. RESULTS Twenty-six proteins were significantly (P < .02, ≥5-fold change in abundance) differentially expressed between cats with CE and controls. Thrombospondin-1 (THBS1) was identified with >50-fold increase in abundance in cats with CE (P < 0.001) compared to healthy cats. CONCLUSIONS AND CLINICAL IMPORTANCE Damage to the gut lining released marker proteins of chronic inflammation that were detectable in serum samples of cats. This early-stage exploratory study strongly supports THBS1 as a candidate biomarker for chronic inflammatory enteropathy in cats.
Collapse
Affiliation(s)
- Jane Yu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Lara Boland
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Melissa Catt
- Paddington Cat Hospital, Paddington, New South Wales, Australia
| | - Leah Puk
- Paddington Cat Hospital, Paddington, New South Wales, Australia
| | - Nadia Wong
- McIvor Road Veterinary Centre, Bendigo, Victoria, Australia
| | - Mark Krockenberger
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Craig Ruaux
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Mackay S, Frazer LC, Bailey GK, Miller CM, Gong Q, Dewitt ON, Singh DK, Good M. Identification of serum biomarkers for necrotizing enterocolitis using aptamer-based proteomics. Front Pediatr 2023; 11:1184940. [PMID: 37325361 PMCID: PMC10264655 DOI: 10.3389/fped.2023.1184940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Necrotizing enterocolitis (NEC) is a potentially fatal intestinal disease primarily affecting preterm infants. Early diagnosis of neonates with NEC is crucial to improving outcomes; however, traditional diagnostic tools remain inadequate. Biomarkers represent an opportunity to improve the speed and accuracy of diagnosis, but they are not routinely used in clinical practice. Methods In this study, we utilized an aptamer-based proteomic discovery assay to identify new serum biomarkers of NEC. We compared levels of serum proteins in neonates with and without NEC and identified ten differentially expressed serum proteins between these groups. Results We detected two proteins, C-C motif chemokine ligand 16 (CCL16) and immunoglobulin heavy constant alpha 1 and 2 heterodimer (IGHA1 IGHA2), that were significantly increased during NEC and eight that were significantly decreased. Generation of receiver operating characteristic (ROC) curves revealed that alpha-fetoprotein (AUC = 0.926), glucagon (AUC = 0.860), and IGHA1 IGHA2 (AUC = 0.826) were the proteins that best differentiated patients with and without NEC. Discussion These findings indicate that further investigation into these serum proteins as a biomarker for NEC is warranted. In the future, laboratory tests incorporating these differentially expressed proteins may improve the ability of clinicians to diagnose infants with NEC rapidly and accurately.
Collapse
Affiliation(s)
- Stephen Mackay
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Lauren C. Frazer
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Grace K. Bailey
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Claire M. Miller
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Qingqing Gong
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Olivia N. Dewitt
- Division of Newborn Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Dhirendra K. Singh
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| | - Misty Good
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of North Carolina at Chapel Hill, NC, United States
| |
Collapse
|
23
|
Yu J, Ruaux C, Griebsch C, Boland L, Wong N, Bennett P, Wasinger VC. Serum proteome of dogs with chronic enteropathy. J Vet Intern Med 2023; 37:925-935. [PMID: 37186013 DOI: 10.1111/jvim.16682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/24/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chronic enteropathy (CE) is common in dogs and can occur with multiple etiologies including food-responsive enteropathy (FRE) and idiopathic inflammatory bowel disease (IBD). HYPOTHESIS/OBJECTIVE To study the protein profile and pathway differences among dogs with FRE, IBD, and healthy controls using serum proteome analysis. ANIMALS Nine CE dogs with signs of gastrointestinal disease and histologically confirmed chronic inflammatory enteropathy and 16 healthy controls. METHODS A cross-sectional study with cases recruited from 2 veterinary hospitals between May 2019 and November 2020 was performed. Serum samples were analyzed using mass spectrometry-based proteomic techniques. RESULTS Proteomic profiles showed marked variation in relative protein abundances. Forty-five proteins were significantly (P ≤ .01) differentially expressed among the dogs with CE and controls with ≥2-fold change in abundance. The fold change of dogs with IBD normalized to controls was more pronounced for the majority of proteins than that seen in the dogs with FRE normalized to control dogs. Proteins involving reactive oxygen species, cytokine activation, acute phase response signaling, and lipid metabolism were altered in dogs with CE. CONCLUSIONS AND CLINICAL IMPORTANCE Cytokine alterations, acute phase response signaling, and lipid metabolism are likely involved in pathogenesis of CE. Although there are insufficient current data to justify the use of proteomic biomarkers for assessment of CE in dogs, our study identifies potential candidates.
Collapse
Affiliation(s)
- Jane Yu
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Craig Ruaux
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christine Griebsch
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Lara Boland
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nadia Wong
- McIvor Road Veterinary Centre, Bendigo, Victoria, Australia
| | - Peter Bennett
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Valerie C Wasinger
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Vanarsa K, Castillo J, Wang L, Lee KH, Pedroza C, Lotan Y, Mohan C. Comprehensive proteomics and platform validation of urinary biomarkers for bladder cancer diagnosis and staging. BMC Med 2023; 21:133. [PMID: 37016361 PMCID: PMC10074794 DOI: 10.1186/s12916-023-02813-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/02/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Bladder cancer (BC) is among the most common cancers diagnosed in men in the USA. The current gold standards for the diagnosis of BC are invasive or lack the sensitivity to correctly identify the disease. METHODS An aptamer-based screen analyzed the expression of 1317 proteins in BC compared to urology clinic controls. The top hits were subjected to systems biology analyses. Next, 30 urine proteins were ELISA-validated in an independent cohort of 68 subjects. Three of these proteins were next validated in an independent BC cohort of differing ethnicity. RESULTS Systems biology analysis implicated molecular functions related to the extracellular matrix, collagen, integrin, heparin, and transmembrane tyrosine kinase signaling in BC susceptibility, with HNF4A and NFKB1 emerging as key molecular regulators. STEM analysis of the dysregulated pathways implicated a functional role for the immune system, complement, and interleukins in BC disease progression. Of 21 urine proteins that discriminated BC from urology clinic controls (UC), urine D-dimer displayed the highest accuracy (0.96) and sensitivity of 97%. Furthermore, 8 urine proteins significantly discriminated MIBC from NMIBC (AUC = 0.75-0.99), with IL-8 and IgA being the best performers. Urine IgA and fibronectin exhibited the highest specificity of 80% at fixed sensitivity for identifying advanced BC. CONCLUSIONS Given the high sensitivity (97%) of urine D-dimer for BC, it may have a role in the initial diagnosis or detection of cancer recurrence. On the other hand, urine IL-8 and IgA may have the potential in identifying disease progression during patient follow-up. The use of these biomarkers for initial triage could have a significant impact as the current cystoscopy-based diagnostic and surveillance approach is costly and invasive when compared to a simple urine test.
Collapse
Affiliation(s)
- Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX, 77204-5060, USA
| | - Jessica Castillo
- Department Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX, 77204-5060, USA
| | - Long Wang
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yair Lotan
- Department of Urology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, 3517 Cullen Blvd., Room 2027, Houston, TX, 77204-5060, USA.
| |
Collapse
|
25
|
Louis Sam Titus ASC, Vanarsa K, Soomro S, Patel A, Prince J, Kugathasan S, Mohan C. Resistin, Elastase, and Lactoferrin as Potential Plasma Biomarkers of Pediatric Inflammatory Bowel Disease Based on Comprehensive Proteomic Screens. Mol Cell Proteomics 2023; 22:100487. [PMID: 36549591 PMCID: PMC9918796 DOI: 10.1016/j.mcpro.2022.100487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/10/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Inflammatory bowel disease (IBD) is an immune-mediated chronic inflammation of the intestine, which can present in the form of ulcerative colitis (UC) or as Crohn's disease (CD). Biomarkers are needed for reliable diagnosis and disease monitoring in IBD, especially in pediatric patients. Plasma samples from a pediatric IBD cohort were interrogated using an aptamer-based screen of 1322 proteins. The elevated biomarkers identified using the aptamer screen were further validated by ELISA using an independent cohort of 76 pediatric plasma samples, drawn from 30 CD, 30 UC, and 16 healthy controls. Of the 1322 proteins screened in plasma from IBD patients, 129 proteins were significantly elevated when compared with healthy controls. Of these 15 proteins had a fold change greater than 2 and 28 proteins had a fold change >1.5. Neutrophil and extracellular vesicle signatures were detected among the elevated plasma biomarkers. When seven of these proteins were validated by ELISA, resistin was the only protein that was significantly higher in both UC and CD (p < 0.01), with receiver operating characteristic area under the curve value of 0.82 and 0.77, respectively, and the only protein that exhibited high sensitivity and specificity for both CD and UC. The next most discriminatory plasma proteins were elastase and lactoferrin, particularly for UC, with receiver operating characteristic area under the curve values of 0.74 and 0.69, respectively. We have identified circulating resistin, elastase, and lactoferrin as potential plasma biomarkers of IBD in pediatric patients using two independent diagnostic platforms and two independent patient cohorts.
Collapse
Affiliation(s)
| | - Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Sanam Soomro
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Anjali Patel
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Jarod Prince
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, Georgia, USA.
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA.
| |
Collapse
|
26
|
Cisneros E, Martínez-Padilla A, Cardenas C, Márquez J, Ortega de Mues A, Roza C. Identification of Potential Visceral Pain Biomarkers in Colon Exudates from Mice with Experimental Colitis: An Exploratory In Vitro Study. THE JOURNAL OF PAIN 2023; 24:874-887. [PMID: 36638875 DOI: 10.1016/j.jpain.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023]
Abstract
Chronic visceral pain (CVP) is extremely difficult to diagnose, and available analgesic treatment options are quite limited. Identifying the proteins secreted from the colonic nociceptors, or their neighbor cells within the tube walls, in the context of disorders that course with visceral pain, might be useful to decipher the mechanism involved in the establishment of CVP. Addressing this question in human with gastrointestinal disorders entails multiple difficulties, as there is not a clear classification of disease severity, and colonic secretion is not easy to manage. We propose using of a murine model of colitis to identify new algesic molecules and pathways that could be explored as pain biomarkers or analgesia targets. Descending colons from naïve and colitis mice with visceral hyperalgesia were excised and maintained ex vivo. The proteins secreted in the perfusion fluid before and during acute noxious distension were evaluated using high-resolution mass spectrometry (MS). Haptoglobin (Hp), PZD and LIM domain protein 3 (Pdlim3), NADP-dependent malic enzyme (Me1), and Apolipoprotein A-I (Apoa1) were increased during visceral insult, whilst Triosephosphate isomerase (Tpi1), Glucose-6-phosphate isomerase (Gpi1), Alpha-enolase (Eno1), and Isoform 2 of Tropomyosin alpha-1 chain (Tpm1) were decreased. Most identified proteins have been described in the context of different chronic pain conditions and, according to gene ontology analysis, they are also involved in diverse biological processes of relevance. Thus, animal models that mimic human conditions in combination with unbiased omics approaches will ultimately help to identify new pathophysiological mechanisms underlying pain that might be useful in diagnosing and treating pain. PERSPECTIVE: Our study utilizes an unbiased proteomic approach to determine, first, the clinical relevance of a murine model of colitis and, second, to identify novel molecules/pathways involved in nociception that would be potential biomarkers or targets for chronic visceral pain.
Collapse
Affiliation(s)
- Elsa Cisneros
- Facultad de Ciencias de la Salud, Universidad Internacional de la Rioja (UNIR), Logroño, La Rioja, Spain
| | - Anabel Martínez-Padilla
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias e Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Málaga, Spain
| | - Casimiro Cardenas
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias e Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Málaga, Spain; Proteomics Unit, Central Facility of Research Infrastructures (SCAI), Universidad de Málaga, Málaga, Spain
| | - Javier Márquez
- Canceromics Lab, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias e Instituto de Investigación Biomédica de Málaga (IBIMA-Plataforma BIONAND), Universidad de Málaga, Málaga, Spain
| | | | - Carolina Roza
- Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
27
|
Michalak A, Kasztelan-Szczerbińska B, Cichoż-Lach H. Impact of Obesity on the Course of Management of Inflammatory Bowel Disease-A Review. Nutrients 2022; 14:3983. [PMID: 36235636 PMCID: PMC9573343 DOI: 10.3390/nu14193983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
It is already well-known that visceral adipose tissue is inseparably related to the pathogenesis, activity, and general outcome of inflammatory bowel disease (IBD). We are getting closer and closer to the molecular background of this loop, finding certain relationships between activated mesenteric tissue and inflammation within the lumen of the gastrointestinal tract. Recently, relatively new data have been uncovered, indicating a direct impact of body fat on the pattern of pharmacological treatment in the course of IBD. On the other hand, ileal and colonic types of Crohn's disease and ulcerative colitis appear to be more diversified than it was thought in the past. However, the question arises whether at this stage we are able to translate this knowledge into the practical management of IBD patients or we are still exploring the scientific background of this pathology, having no specific tools to be used directly in patients. Our review explores IBD in the context of obesity and associated disorders, focusing on adipokines, creeping fat, and possible relationships between these disorders and the treatment of IBD patients.
Collapse
Affiliation(s)
| | | | - Halina Cichoż-Lach
- Department of Gastroenterology, Medical University of Lublin, Jaczewski St 8, 20-954 Lublin, Poland
| |
Collapse
|
28
|
Swaminathan A, Borichevsky GM, Edwards TS, Hirschfeld E, Mules TC, Frampton CMA, Day AS, Hampton MB, Kettle AJ, Gearry RB. Faecal Myeloperoxidase as a Biomarker of Endoscopic Activity in Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:1862-1873. [PMID: 35803583 PMCID: PMC9721461 DOI: 10.1093/ecco-jcc/jjac098] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel disease [IBD], consisting of Crohn's disease [CD] and ulcerative colitis [UC], is a relapsing-remitting illness. Treat-to-target IBD management strategies require monitoring of gastrointestinal inflammation. This study aimed to investigate faecal myeloperoxidase [fMPO], a neutrophil granule enzyme, as a biomarker of IBD activity. METHODS Prospectively recruited participants with IBD, undergoing ileocolonoscopy for disease assessment, provided biological samples and completed symptom questionnaires prior to endoscopy. fMPO, C-reactive protein [CRP], and faecal calprotectin [fCal] were compared with validated endoscopic indices [simple endoscopic score for CD and UC endoscopic index of severity]. Receiver operating characteristic [ROC] curves assessed the performance of fMPO, CRP, and fCal in predicting endoscopic disease activity. Baseline biomarkers were used to predict a composite endpoint of complicated disease at 12 months [need for escalation of biologic/immunomodulator due to relapse, steroid use, IBD-related hospitalisation, and surgery]. RESULTS A total of 172 participants were recruited [91 female, 100 with CD]. fMPO was significantly correlated with endoscopic activity in both CD [r = 0.53, p < 0.01] and UC [r = 0.63, p < 0.01], and with fCal in all patients with IBD [r = 0.82, p < 0.01]. fMPO was effective in predicting moderate-to-severely active CD [AUROC 0.86, p < 0.01] and UC [AUROC 0.92, p < 0.01]. Individuals with a baseline fMPO > 26 µg/g were significantly more likely to reach the composite outcome at 12 months (hazard ratio [HR] 3.71, 95% confidence interval [CI] 2.07-6.64, p < 0.01). CONCLUSIONS Faecal myeloperoxidase is an accurate biomarker of endoscopic activity in IBD and predicted a more complicated IBD course during follow-up.
Collapse
Affiliation(s)
- Akhilesh Swaminathan
- Corresponding author: Dr Akhilesh Swaminathan, Department of Medicine, University of Otago, 2 Riccarton Avenue, Christchurch, New Zealand.
| | - Grace M Borichevsky
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Teagan S Edwards
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Esther Hirschfeld
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Thomas C Mules
- Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand
| | | | - Andrew S Day
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Richard B Gearry
- Department of Medicine, University of Otago, Christchurch, New Zealand,Department of Gastroenterology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
29
|
Czajkowska A, Guzinska-Ustymowicz K, Pryczynicz A, Lebensztejn D, Daniluk U. Are Matrix Metalloproteinase-9 and Tissue Inhibitor of Metalloproteinase-1 Useful as Markers in Diagnostic Management of Children with Newly Diagnosed Ulcerative Colitis? J Clin Med 2022; 11:jcm11092655. [PMID: 35566780 PMCID: PMC9103541 DOI: 10.3390/jcm11092655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/06/2023] Open
Abstract
Matrix Metaloproteinase-9 (MMP-9) and Tissue Inhibitor of Metaloproteinase-1 (TIMP-1), enzymes involved in tissue remodelling, have been previously reported to be overexpressed in the colonic mucosa of patients with Ulcerative colitis (UC). The aim of this study was to determine the relation of MMP-9 and TIMP-1 with UC phenotypes, the disease activity index and routinely tested inflammatory markers in newly diagnosed paediatric patients. The study group comprised 35 children diagnosed with UC and 20 control groups. Serum and faecal concentrations of MMP-9 and TIMP-1 were estimated using enzyme-like immunosorbent assay kits and correlated to the disease activity index (Paediatric Ulcerative Colitis Activity Index, PUCAI), UC phenotype (Paris Classification), inflammatory markers and endoscopic score (Mayo score). Children with UC presented with significantly higher serum and faecal concentrations of studied markers compared to the control group. Both serums, MMP-9 and TIMP-1, were higher in children with more extended and severe lesions in the colon. Furthermore, serum MMP-9 correlated with the Mayo score, Paris classification and C-reactive protein (CRP) levels. Serum TIMP-1 showed correlation with PUCAI, Paris Classification, CRP levels and the erythrocyte sedimentation rate. Serum and faecal levels of MMP-9 and TIMP-1 are useful in discriminating UC patients and non-invasive assessments of disease phenotypes. It seemed that simultaneous measurement of these proteins in combination with other common markers of inflammation could be applied in clinical practice.
Collapse
Affiliation(s)
- Aleksandra Czajkowska
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 17 Waszyngtona Street, 15-274 Bialystok, Poland; (D.L.); (U.D.)
- Correspondence: or
| | | | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Bialystok, 15-089 Bialystok, Poland; (K.G.-U.); (A.P.)
| | - Dariusz Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 17 Waszyngtona Street, 15-274 Bialystok, Poland; (D.L.); (U.D.)
| | - Urszula Daniluk
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, 17 Waszyngtona Street, 15-274 Bialystok, Poland; (D.L.); (U.D.)
| |
Collapse
|
30
|
Wang L, Dai X, Feng Y, Zhao Q, Liu L, Xue C, Xiao L, Wang R. Dual Catalytic Hairpin Assembly-Based Automatic Molecule Machine for Amplified Detection of Auxin Response Factor-Targeted MicroRNA-160. Molecules 2021; 26:molecules26216432. [PMID: 34770841 PMCID: PMC8588017 DOI: 10.3390/molecules26216432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of miRNA160. The detection system contains four hairpin-shaped DNA probes (HP1, HP2, HP3, and HP4). For HP1, the loop is designed to be complementary to miRNA160. A fragment of DNA with the same sequences as miRNA160 is separated into two pieces that are connected at the 3′ end of HP2 and 5′ end of HP3, respectively. In the presence of the target, four HPs are successively dissolved by the first catalytic hairpin assembly (CHA1), forming a four-way DNA junction (F-DJ) that enables the rearrangement of separated DNA fragments at the end of HP2 and HP3 and serving as an integrated target analogue for initiating the second CHA reaction, generating an enhanced fluorescence signal. Assay experiments demonstrate that D-CHA has a better performance compared with traditional CHA, achieving the detection limit as low as 10 pM for miRNA160 as deduced from its corresponding DNA surrogates. Moreover, non-target miRNAs, as well as single-base mutation targets, can be detected. Overall, the D-CHA strategy provides a competitive method for plant miRNAs detection.
Collapse
Affiliation(s)
- Lei Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Xing Dai
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Yujian Feng
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Qiyang Zhao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Zhejiang Provincial Key Laboratory of Medicine Genetics, School of Laboratory Medicine and Life Sciences, Institute of Functional Nucleic Acids and Personalized Cancer Theranostics, Wenzhou Medical University, Wenzhou 325035, China
- Correspondence: (C.X.); (L.X.); (R.W.)
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
- Correspondence: (C.X.); (L.X.); (R.W.)
| | - Ruozhong Wang
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; (L.W.); (X.D.); (Y.F.); (Q.Z.)
- Correspondence: (C.X.); (L.X.); (R.W.)
| |
Collapse
|