1
|
Stobbelaar K, Jacobs L, Serrano-Cano FI, Fransen A, Van der Gucht W, Smet A, De Winter BY, Cos P, de Vos W, Van Hoorenbeeck K, Verhulst S, Delputte PL. Functional implications of respiratory syncytial virus F sequence variability: a comparative analysis using contemporary RSV isolates. mSphere 2025:e0086024. [PMID: 40227055 DOI: 10.1128/msphere.00860-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Respiratory syncytial virus (RSV) remains a major global health issue. Therapeutic options are limited, but new prophylactics, all targeting the fusion (F) glycoprotein, were recently licensed. Although F sequence variation is limited, it is unclear if and how this variability translates to phenotypical differences. We analyzed full F sequences of 105 contemporary RSV isolates, gathered from children presenting with acute lower respiratory tract infections. Based on F antigenic site variation, 20 isolates were selected for functional characterization. Although RSV F diversity is generally low, the overall mean pairwise distance between RSV-A strains is higher than RSV-B (0.014 vs 0.008, P < 0.001). Sequence variability in the known monoclonal antibody (mAb)-binding sites seems insufficient to explain the divergent and often subgroup-dependent sensitivity to mAb neutralization. Despite comparable growth rates, mean syncytium size was higher (mean 61.68 [SD 24.51] vs 31.72 [SD 11.64], P < 0.001), and mean syncytium frequency was lower (mean 25.37 [SD 9.20] vs 47.85 [11.52], P < 0.001) in RSV-A strains. For all isolates, higher temperatures were associated with increased inactivation, although some RSV-A isolates displayed manifestly higher stability. Genomic and phenotypic variability among our contemporary RSV isolates was limited, with noticeable exceptions. The availability of new prophylactics targeting RSV F corroborates the importance of continued RSV surveillance to identify changes in the F sequence, including mutations that reduce mAb efficacy or lead to escape mutants. Surveillance should include both sequencing data and an evaluation of sensitivity to prophylactic antibodies, using contemporary clinical isolates.IMPORTANCERespiratory syncytial virus (RSV) is a major cause of respiratory infections in young children worldwide. Recent progress has led to new ways to prevent serious RSV-associated disease. The virus's fusion (F) protein is a key focus for vaccine development because it helps the virus enter host cells and is well conserved across different virus strains. However, it is unclear if small differences in the F protein sequence could affect how the virus behaves in vitro. In this study, we, therefore, analyzed 105 RSV samples from children under two who presented with respiratory infections. We selected 20 samples (12 RSV-A and 8 RSV-B) for functional testing, based on their F protein sequences. Phenotypic differences between clinical isolates and reference strains, such as virus stability at 4°C and susceptibility to monoclonal antibody neutralization, highlight the importance of using viruses isolated from recent clinical samples. Although significant functional differences were observed in traits related to the F protein, both between the RSV subgroups and within, the underlying molecular mechanisms remain unclear. Ongoing monitoring of RSV is critical to ensure current and future vaccines remain effective.
Collapse
Affiliation(s)
- Kim Stobbelaar
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Lotte Jacobs
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Francisco I Serrano-Cano
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Axelle Fransen
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Winnok de Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
- Antwerp Center for Advanced Microscopy, University of Antwerp, Antwerp, Belgium
- µNeuro Research Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kim Van Hoorenbeeck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
| | - Stijn Verhulst
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Department of Pediatrics, Antwerp University Hospital, Edegem, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Peter L Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Faculty of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Infla-Med Center of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Bendall EE, Dimcheff D, Papalambros L, Fitzsimmons WJ, Zhu Y, Schmitz J, Halasa N, Chappell J, Martin ET, Biddle JE, Smith-Jeffcoat SE, Rolfes MA, Mellis A, Talbot HK, Grijalva C, Lauring AS. In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants. PLoS Pathog 2025; 21:e1013134. [PMID: 40294030 PMCID: PMC12074595 DOI: 10.1371/journal.ppat.1013134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/13/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. Here we combine daily longitudinal sampling of individuals with replicate sequencing to increase the accuracy of and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals in a household cohort during the BA.1/BA.2 variant period. Individuals exhibited extremely low viral diversity, and we estimated a low within-host evolutionary rate. Within-host dynamics were dominated by genetic drift and purifying selection. Positive selection was rare but highly concentrated in spike. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and S:339. This detectable immune-mediated selection is unusual in acute respiratory infections and may be caused by the relatively narrow antibody repertoire in individuals during the early Omicron phase of the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Derek Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Leigh Papalambros
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - William J. Fitzsimmons
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jonathan Schmitz
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jessica E. Biddle
- Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | | | - Melissa A. Rolfes
- Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | - Alexandra Mellis
- Centers for Disease Control and Prevention, Atlanta, GeorgiaUnited States of America
| | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee Tennessee, United States of America
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Carlos Grijalva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Simonich CA, McMahon TE, Ju X, Yu TC, Brunette N, Stevens-Ayers T, Boeckh MJ, King NP, Greninger AL, Bloom JD. RSV F evolution escapes some monoclonal antibodies but does not strongly erode neutralization by human polyclonal sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642476. [PMID: 40161760 PMCID: PMC11952455 DOI: 10.1101/2025.03.11.642476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Vaccines and monoclonal antibodies targeting the respiratory syncytial virus (RSV) fusion protein (F) have recently begun to be widely used to protect infants and high-risk adults. Some other viral proteins evolve to erode polyclonal antibody neutralization and escape individual monoclonal antibodies. However, little is known about how RSV F evolution affects antibodies. Here we develop an experimental system for measuring neutralization titers against RSV F using pseudotyped lentiviral particles. This system is easily adaptable to evaluate neutralization of relevant clinical strains. We apply this system to demonstrate that natural evolution of RSV F leads to escape from some monoclonal antibodies, but at most modestly affects neutralization by polyclonal serum antibodies. Overall, our work sheds light on RSV antigenic evolution and describes a tool to measure the ability of antibodies and sera to neutralize contemporary RSV strains.
Collapse
Affiliation(s)
- Cassandra A.L. Simonich
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA, 98195
- Pediatric Infectious Diseases Division, Seattle Children’s Hospital, Seattle, WA 98105
| | - Teagan E. McMahon
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Xiaohui Ju
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Timothy C. Yu
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Molecular and Cellular Biology Graduate Program, University of Washington and Fred Hutch Cancer Center, Seattle, WA 98109, USA
| | - Natalie Brunette
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Terry Stevens-Ayers
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Michael J. Boeckh
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, WA 98195
- Institute for Protein Design, University of Washington, Seattle, WA 98195
| | - Alexander L. Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA 98195
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Jesse D. Bloom
- Basic Sciences and Computational Biology Divisions, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Howard Hughes Medical Institute, Seattle, WA 98109
| |
Collapse
|
4
|
Li Q, Li H, Li Z, Wang Y. Vaccine and therapeutic agents against the respiratory syncytial virus: resolved and unresolved issue. MedComm (Beijing) 2024; 5:e70016. [PMID: 39575302 PMCID: PMC11581781 DOI: 10.1002/mco2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a predominant pathogen responsible for respiratory tract infections among infants, the elderly, and immunocompromised individuals. In recent years, significant progress has been made in innovative vaccines and therapeutic agents targeting RSV. Nevertheless, numerous challenges and bottlenecks persist in the prevention and treatment of RSV infections. This review will provide an overview of the resolved and unresolved issues surrounding the development of vaccines and therapeutic agents against RSV. As of September 2024, three RSV vaccines against acute lower respiratory infections (ALRI) have been approved globally. Additionally, there have been notable progress in the realm of passive immunoprophylactic antibodies, with the monoclonal antibody nirsevimab receiving regulatory approval for the prevention of RSV infections in infants. Furthermore, a variety of RSV therapeutic agents are currently under clinical investigation, with the potential to yield breakthrough advancements in the foreseeable future. This review delineates the advancements and challenges faced in vaccines and therapeutic agents targeting RSV. It aims to provide insights that will guide the development of effective preventive and control measures for RSV.
Collapse
Affiliation(s)
- Qianqian Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Huan Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Zhihua Li
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| | - Youchun Wang
- Institute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- State Key Laboratory of Respiratory Health and MultimorbidityInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College)Ministry of EducationInstitute of Medical BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeKunmingChina
| |
Collapse
|
5
|
Bendall EE, Dimcheff D, Papalambros L, Fitzsimmons WJ, Zhu Y, Schmitz J, Halasa N, Chappell J, Martin ET, Biddle JE, Smith-Jeffcoat SE, Rolfes MA, Mellis A, Talbot HK, Grijalva C, Lauring AS. In depth sequencing of a serially sampled household cohort reveals the within-host dynamics of Omicron SARS-CoV-2 and rare selection of novel spike variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624722. [PMID: 39605326 PMCID: PMC11601520 DOI: 10.1101/2024.11.21.624722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
SARS-CoV-2 has undergone repeated and rapid evolution to circumvent host immunity. However, outside of prolonged infections in immunocompromised hosts, within-host positive selection has rarely been detected. The low diversity within-hosts and strong genetic linkage among genomic sites make accurately detecting positive selection difficult. Longitudinal sampling is a powerful method for detecting selection that has seldom been used for SARS-CoV-2. Here we combine longitudinal sampling with replicate sequencing to increase the accuracy of and lower the threshold for variant calling. We sequenced 577 specimens from 105 individuals from a household cohort primarily during the BA.1/BA.2 variant period. There was extremely low diversity and a low rate of divergence. Specimens had 0-12 intrahost single nucleotide variants (iSNV) at >0.5% frequency, and the majority of the iSNV were at frequencies <2%. Within-host dynamics were dominated by genetic drift and purifying selection. Positive selection was rare but highly concentrated in spike. Two individuals with BA.1 infections had S:371F, a lineage defining substitution for BA.2. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 14 loci with 7 in spike, including S:448 and S:339. We also detected significant genetic hitchhiking between synonymous changes and nonsynonymous iSNV under selection. The detectable immune-mediated selection may be caused by the relatively narrow antibody repertoire in individuals during the early Omicron phase of the SARS-CoV-2 pandemic. As both the virus and population immunity evolve, understanding the corresponding shifts in SARS-CoV-2 within-host dynamics will be important.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Derek Dimcheff
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Leigh Papalambros
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan Schmitz
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carlos Grijalva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
B J A, Swamy AHV, Nyamagoud SB, George A, D N. Respiratory syncytial virus: an overview of clinical manifestations and management in the Indian pediatric population. Monaldi Arch Chest Dis 2024. [PMID: 39371038 DOI: 10.4081/monaldi.2024.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/07/2024] [Indexed: 10/08/2024] Open
Abstract
Respiratory syncytial virus (RSV) plays a major part in causing lower respiratory tract infections in younger populations, especially in infants and pediatric patients, causing a higher rate of morbidity and mortality in the respective population, affecting 60% of the population globally. Typically, identifying the virus in the patient's respiratory secretions is important for laboratory validation of a clinically suspected RSV infection. Unfortunately, the only available preventive measure to lower the incidence for infants who are at high risk of RSV-induced hospitalization is palivizumab prophylaxis. Treatment strategies to manage RSV involve using an antiviral drug that is Ribavirin along with bronchodilators, nebulized adrenaline (epinephrine), and nebulized hypertonic saline. Providing patients with alternative treatment options like vitamin D-cathelicidin as well as probiotics and prebiotics can help reduce the intensity of the infection. This review article focuses on the epidemiology, clinical manifestation, prophylaxis, and available treatment options for RSV infections in infants, children, and young adults.
Collapse
Affiliation(s)
- Abhishek B J
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | | | | | - Anupama George
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| | - Namratha D
- Department of Pharmacy Practice, KLE College of Pharmacy, Hubli, Karnataka.
| |
Collapse
|
7
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. Virus Evol 2024; 10:veae084. [PMID: 39444487 PMCID: PMC11498174 DOI: 10.1093/ve/veae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNVs) were identified at a 0.5% frequency threshold. Within-host populations exhibited low diversity, with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4 × 10-6 vs. 9.42 × 10-7 and 3.45 × 10-6, P < .001). Forty-five iSNVs had evidence of parallel evolution but were not over-represented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNVs across segments. A Wright-Fisher approximate Bayesian computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to genetic drift and purifying selection, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - William J Fitzsimmons
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - H Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Adam S Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
8
|
Mayne R, Secret S, Geoghegan C, Trebes A, Kean K, Reid K, Lin GL, Ansari MA, de Cesare M, Bonsall D, Elliott I, Piazza P, Brown A, Bray J, Knight JC, Harvala H, Breuer J, Simmonds P, Bowden RJ, Golubchik T. Castanet: a pipeline for rapid analysis of targeted multi-pathogen genomic data. Bioinformatics 2024; 40:btae591. [PMID: 39360992 PMCID: PMC11494375 DOI: 10.1093/bioinformatics/btae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
MOTIVATION Target enrichment strategies generate genomic data from multiple pathogens in a single process, greatly improving sensitivity over metagenomic sequencing and enabling cost-effective, high-throughput surveillance and clinical applications. However, uptake by research and clinical laboratories is constrained by an absence of computational tools that are specifically designed for the analysis of multi-pathogen enrichment sequence data. Here we present an analysis pipeline, Castanet, for use with multi-pathogen enrichment sequencing data. Castanet is designed to work with short-read data produced by existing targeted enrichment strategies, but can be readily deployed on any BAM file generated by another methodology. Also included are an optional graphical interface and installer script. RESULTS In addition to genome reconstruction, Castanet reports method-specific metrics that enable quantification of capture efficiency, estimation of pathogen load, differentiation of low-level positives from contamination, and assessment of sequencing quality. Castanet can be used as a traditional end-to-end pipeline for consensus generation, but its strength lies in the ability to process a flexible, pre-defined set of pathogens of interest directly from multi-pathogen enrichment experiments. In our tests, Castanet consensus sequences were accurate reconstructions of reference sequences, including in instances where multiple strains of the same pathogen were present. Castanet performs effectively on standard computers and can process the entire output of a 96-sample enrichment sequencing run (50M reads) using a single batch process command, in $<$2 h. AVAILABILITY AND IMPLEMENTATION Source code freely available under GPL-3 license at https://github.com/MultipathogenGenomics/castanet, implemented in Python 3.10 and supported in Ubuntu Linux 22.04. The data underlying this article are available in Europe Nucleotide Archives, at https://www.ebi.ac.uk/ena/browser/view/PRJEB77004.
Collapse
Affiliation(s)
- Richard Mayne
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Shannah Secret
- Radcliffe Department of Medicine, University of Oxford, West Wing John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- Microbiology Services, NHS Blood and Transplant, London NW9 5BG, United Kingdom
| | - Cyndi Geoghegan
- Centre for Human Genetics, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
| | - Amy Trebes
- Genewiz UK Ltd, Azenta Life Sciences, Oxfordshire OX14 1SG, United Kingdom
- Oxford Genomics Centre, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
| | - Kai Kean
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Kaitlin Reid
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, University of Oxford, Oxfordshire OX3 7LE, United Kingdom
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Mariateresa de Cesare
- National Facility for Genomics, Human Technopole, Viale Rita Levi-Montalcini, Milan 20157, Italy
| | - David Bonsall
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Ivo Elliott
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxfordshire OX3 7LE, United Kingdom
| | - Paolo Piazza
- Centre for Human Genetics, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
| | - Anthony Brown
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - James Bray
- Department of Biology, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Julian C Knight
- Oxford Genomics Centre, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxfordshire OX3 7BN, United Kingdom
- NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
| | - Heli Harvala
- Radcliffe Department of Medicine, University of Oxford, West Wing John Radcliffe Hospital, Oxfordshire OX3 9DU, United Kingdom
- Microbiology Services, NHS Blood and Transplant, London NW9 5BG, United Kingdom
| | - Judith Breuer
- Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
| | - Rory J Bowden
- Genomics Lab, The Walter and Eliza Hall Institute of Medical Research, Victoria 3052, Melbourne, Australia
| | - Tanya Golubchik
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxfordshire OX1 3SY, United Kingdom
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, New South Wales 2050, Sydney, Australia
| |
Collapse
|
9
|
Li F, Wu S, Lv L, Huang S, Zhang Z, Zerang Z, Li P, Cao Y, Bao H, Sun P, Bai X, He Y, Fu Y, Yuan H, Ma X, Zhao Z, Zhang J, Wang J, Wang T, Li D, Zhang Q, He J, Liu Z, Lu Z, Lei D, Li K. Discovery, recognized antigenic structures, and evolution of cross-serotype broadly neutralizing antibodies from porcine B-cell repertoires against foot-and-mouth disease virus. PLoS Pathog 2024; 20:e1012623. [PMID: 39405339 PMCID: PMC11508087 DOI: 10.1371/journal.ppat.1012623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
It is a great challenge to isolate the broadly neutralizing antibodies (bnAbs) against foot-and-mouth disease virus (FMDV) due to its existence as seven distinct serotypes without cross-protection. Here, by vaccination of pig with FMDV serotypes O and A whole virus antigens, we obtained 10 bnAbs against serotypes O, A and/or Asia1 by dissecting 216 common clonotypes of two serotypes O and A specific porcine B-cell receptor (BCR) gene repertoires containing total 12720 B cell clones, indicating the induction of cross-serotype bnAbs after sequential vaccination with serotypes O and A antigens. The majority of porcine bnAbs (9/10) were derived from terminally differentiated B cells of different clonal lineages, which convergently targeted the conserved "RGDL" motif on structural protein VP1 of FMDV by mimicking receptor recognition to inhibit viral attachment to cells. Cryo-EM complex structures revealed that the other bnAb pOA-2 specifically targets a novel inter-pentamer antigen structure surrounding the viral three-fold axis, with a highly conserved determinant at residue 68 on VP2. This unique binding pattern enabled cross-serotype neutralization by destabilizing the viral particle. The evolutionary analysis of pOA-2 demonstrated its origin from an intermediate B-cell, emphasizing the crucial role of somatic hypermutations (SHMs) in balancing the breadth and potency of neutralization. However, excessive SHMs may deviate from the trajectory of broad neutralization. This study provides a strategy to uncover bnAbs against highly mutable pathogens and the cross-serotype antigenic structures to explore broadly protective FMDV vaccine.
Collapse
Affiliation(s)
- Fengjuan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Shanquan Wu
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Lv Lv
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Shulun Huang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zelin Zhang
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Zhaxi Zerang
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Yong He
- School of Pharmaceutical Sciences, Shandong University, Ji’nan, P. R. China
| | - Yuanfang Fu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Xueqing Ma
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jian Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Jijun He
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| | - Dongsheng Lei
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- School of Physical Science and Technology, Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, P. R. China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, P. R. China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, P. R. China
| |
Collapse
|
10
|
Sevendal ATK, Hurley S, Bartlett AW, Rawlinson W, Walker GJ. Systematic Review of the Efficacy and Safety of RSV-Specific Monoclonal Antibodies and Antivirals in Development. Rev Med Virol 2024; 34:e2576. [PMID: 39209729 DOI: 10.1002/rmv.2576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute respiratory infection amongst all ages, causing a significant global health burden. Preventative and therapeutic options for RSV infection have long been under development, and recently, several widely-publicised vaccines targeting older adult and maternal populations have become available. Promising monoclonal antibody (mAb) and antiviral (AV) therapies are also progressing in clinical trials, with the prophylactic mAb nirsevimab recently approved for clinical use in infant populations. A systematic review on current progress in this area is lacking. We performed a systematic literature search (PubMed, Embase, Web of Science, ClinicalTrials.gov, EudraCT, ANZCTR-searched Nov 29th, 2023) to identify studies on all RSV-specific mAbs and AV therapies that has undergone human clinical trials since year 2000. Data extraction focused on outcomes related to the therapeutic efficacy and safety of the intervention on trial, and all studies were graded against the OCEBM Levels of Evidence Table. Results from 59 studies were extracted, covering efficacy and safety data on six mAbs (motavizumab, motavizumab-YTE, nirsevimab, ALX-0171, suptavumab, clesrovimab) and 12 AV therapies (ALN-RSV01, RSV604, presatovir, MDT-637, lumicitabine, IFN-α1b, rilematovir, enzaplatovir, AK0529, sisunatovir, PC786, EDP-938). Of the mAbs reviewed, nirsevimab and clesrovimab hold considerable promise. The timeline for RSV-specific AV availability is less advanced, although EDP-938 and AK0529 have reported promising phase 2 efficacy and safety data. Moving forward, passive immunisation and treatment options for RSV infection will play a significant role in reducing the health burden of RSV, complementing recent advancements in vaccine development. TRIAL REGISTRATION: PROSPERO registration: CRD42022376633.
Collapse
Affiliation(s)
- Andrea T K Sevendal
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Siobhan Hurley
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
| | - Adam W Bartlett
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital Network, Sydney, Australia
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - William Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Gregory J Walker
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608152. [PMID: 39229225 PMCID: PMC11370358 DOI: 10.1101/2024.08.15.608152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNV) were identified at a 0.5% frequency threshold. Within-host populations were subject to purifying selection with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4×10-6 vs. 9.42×10-7 and 3.45×10-6, p <0.001). Forty-five iSNV had evidence of parallel evolution, but were not overrepresented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNV across segments. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to purifying selection and genetic drift, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos G. Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Nuttens C, Moyersoen J, Curcio D, Aponte-Torres Z, Baay M, Vroling H, Gessner BD, Begier E. Differences Between RSV A and RSV B Subgroups and Implications for Pharmaceutical Preventive Measures. Infect Dis Ther 2024; 13:1725-1742. [PMID: 38971918 PMCID: PMC11266343 DOI: 10.1007/s40121-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Understanding the differences between respiratory syncytial virus (RSV) subgroups A and B provides insights for the development of prevention strategies and public health interventions. We aimed to describe the structural differences of RSV subgroups, their epidemiology, and genomic diversity. The associated immune response and differences in clinical severity were also investigated. METHODS A literature review from PubMed and Google Scholar (1985-2023) was performed and extended using snowballing from references in captured publications. RESULTS RSV has two major antigenic subgroups, A and B, defined by the G glycoprotein. The RSV F fusion glycoprotein in the prefusion conformation is a major target of virus neutralizing antibodies and differs in surface exposed regions between RSV A and RSV B. The subgroups co-circulate annually, but there is considerable debate as to whether clinical severity is impacted by the subgroup of the infecting RSV strain. Large variations between the studies reporting RSV subgroup impact on clinical severity were observed. A tendency for higher disease severity may be attributed to RSV A but no consensus could be reached as to whether infection by one of the subgroup caused more severe outcomes. RSV genotype diversity decreased over the last two decades, and ON and BA have become the sole lineages detected for RSV A and RSV B, since 2014. No studies with data obtained after 2014 reported a difference in disease severity between the two subgroups. RSV F is relatively well conserved and highly similar between RSV A and B, but changes in the amino acid sequence have been observed. Some of these changes led to differences in F antigenic sites compared to reference F sequences (e.g., RSV/A Long strain), which are more pronounced in antigenic sites of the prefusion conformation of RSV B. Initial results from the second season after vaccination suggest specific RSV B efficacy wanes more rapidly than RSV A for RSV PreF-based monovalent vaccines. CONCLUSIONS RSV A and RSV B both contribute substantially to the global RSV burden. Both RSV subgroups cause severe disease and none of the available evidence to date suggests any differences in clinical severity between the subgroups. Therefore, it is important to implement measures effective at preventing disease due to both RSV A and RSV B to ensure impactful public health interventions. Monitoring overtime will be needed to assess the impact of waning antibody levels on subgroup-specific efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | - Hilde Vroling
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | | | - Elizabeth Begier
- Scientific Affairs, Older Adult RSV Vaccine Program, Global Medical Development Scientific and Clinical Affairs, Pfizer Vaccines, 9 Riverwalk, Citywest Business Campus, Dublin 24, Dublin, Ireland.
| |
Collapse
|
13
|
Moumbeket Yifomnjou MH, Monamele GC, Modiyinji AF, Njankouo-Ripa M, Onana B, Njouom R. Genetic Diversity of Human Respiratory Syncytial Virus during COVID-19 Pandemic in Yaoundé, Cameroon, 2020-2021. Microorganisms 2024; 12:952. [PMID: 38792782 PMCID: PMC11123827 DOI: 10.3390/microorganisms12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Worldwide, human respiratory syncytial virus (HRSV) is a major cause of severe infections of the lower respiratory system, affecting individuals of all ages. This study investigated the genetic variability of HRSV during the COVID-19 outbreak in Yaoundé; nasopharyngeal samples positive for HRSV were collected from different age groups between July 2020 and October 2021. A semi-nested RT-PCR was performed on the second hypervariable region of the G gene of detected HRSV, followed by sequencing and phylogenetic assessment. Throughout the study, 40 (37.7%) of the 106 HRSV-positive samples successfully underwent G-gene amplification. HRSV A and HRSV B co-circulated at rates of 47.5% and 52.5%, respectively. HRSV A clustered in the GA2.3.5 genetic lineage (ON1) and HRSV B clustered in the GB5.0.5a genetic lineage (BA9). Differences in circulating genotypes were observed between pre- and post-pandemic years for HRSV A. Predictions revealed potential N-glycosylation sites at positions 237-318 of HRSV A and positions 228-232-294 of HRSV B. This study reports the molecular epidemiology of HRSV in Cameroon during the COVID-19 pandemic. It describes the exclusive co-circulation of two genetic lineages. These findings highlight the importance of implementing comprehensive molecular surveillance to prevent the unexpected emergence of other diseases.
Collapse
Affiliation(s)
- Moïse Henri Moumbeket Yifomnjou
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
- Laboratory of Microbiology, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Gwladys Chavely Monamele
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Abdou Fatawou Modiyinji
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Mohamadou Njankouo-Ripa
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| | - Boyomo Onana
- Laboratory of Microbiology, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Richard Njouom
- Virology Unit, Centre Pasteur du Cameroun, 451 Rue 2005, Yaoundé P.O. Box 1274, Cameroon; (M.H.M.Y.); (G.C.M.); (A.F.M.); (M.N.-R.)
| |
Collapse
|
14
|
Lin GL, Drysdale SB, Snape MD, O'Connor D, Brown A, MacIntyre-Cockett G, Mellado-Gomez E, de Cesare M, Ansari MA, Bonsall D, Bray JE, Jolley KA, Bowden R, Aerssens J, Bont L, Openshaw PJM, Martinon-Torres F, Nair H, Golubchik T, Pollard AJ. Targeted metagenomics reveals association between severity and pathogen co-detection in infants with respiratory syncytial virus. Nat Commun 2024; 15:2379. [PMID: 38493135 PMCID: PMC10944482 DOI: 10.1038/s41467-024-46648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for respiratory infection in young children. RSV disease severity is known to be age-dependent and highest in young infants, but other correlates of severity, particularly the presence of additional respiratory pathogens, are less well understood. In this study, nasopharyngeal swabs were collected from two cohorts of RSV-positive infants <12 months in Spain, the UK, and the Netherlands during 2017-20. We show, using targeted metagenomic sequencing of >100 pathogens, including all common respiratory viruses and bacteria, from samples collected from 433 infants, that burden of additional viruses is common (111/433, 26%) but only modestly correlates with RSV disease severity. In contrast, there is strong evidence in both cohorts and across age groups that presence of Haemophilus bacteria (194/433, 45%) is associated with higher severity, including much higher rates of hospitalisation (odds ratio 4.25, 95% CI 2.03-9.31). There is no evidence for association between higher severity and other detected bacteria, and no difference in severity between RSV genotypes. Our findings reveal the genomic diversity of additional pathogens during RSV infection in infants, and provide an evidence base for future causal investigations of the impact of co-infection on RSV disease severity.
Collapse
Affiliation(s)
- Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, Oxford, UK.
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
- Centre for Neonatal and Paediatric Infection, Institute for Infection and Immunity, St George's, University of London, London, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Anthony Brown
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | | | - Esther Mellado-Gomez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - Mariateresa de Cesare
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Human Technopole, Milan, Italy
| | - M Azim Ansari
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - David Bonsall
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James E Bray
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
- ReSViNET Foundation, Zeist, Netherlands
| | | | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
- Genetics, Vaccines, Infectious Diseases and Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago, University of Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Harish Nair
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Sydney Infectious Diseases Institute, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
15
|
Deng S, Guo L, Cohen C, Meijer A, Moyes J, Pasittungkul S, Poovorawan Y, Teirlinck A, van Boven M, Wanlapakorn N, Wolter N, Paget J, Nair H, Li Y. Impact of Subgroup Distribution on Seasonality of Human Respiratory Syncytial Virus: A Global Systematic Analysis. J Infect Dis 2024; 229:S25-S33. [PMID: 37249267 DOI: 10.1093/infdis/jiad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Previous studies reported inconsistent findings regarding the association between respiratory syncytial virus (RSV) subgroup distribution and timing of RSV season. We aimed to further understand the association by conducting a global-level systematic analysis. METHODS We compiled published data on RSV seasonality through a systematic literature review, and unpublished data shared by international collaborators. Using annual cumulative proportion (ACP) of RSV-positive cases, we defined RSV season onset and offset as ACP reaching 10% and 90%, respectively. Linear regression models accounting for meteorological factors were constructed to analyze the association of proportion of RSV-A with the corresponding RSV season onset and offset. RESULTS We included 36 study sites from 20 countries, providing data for 179 study-years in 1995-2019. Globally, RSV subgroup distribution was not significantly associated with RSV season onset or offset globally, except for RSV season offset in the tropics in 1 model, possibly by chance. Models that included RSV subgroup distribution and meteorological factors explained only 2%-4% of the variations in timing of RSV season. CONCLUSIONS Year-on-year variations in RSV season onset and offset are not well explained by RSV subgroup distribution or meteorological factors. Factors including population susceptibility, mobility, and viral interference should be examined in future studies.
Collapse
Affiliation(s)
- Shuyu Deng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Ling Guo
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Cheryl Cohen
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adam Meijer
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Jocelyn Moyes
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Siripat Pasittungkul
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yong Poovorawan
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Anne Teirlinck
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Michiel van Boven
- National Institute for Public Health and the Environment, Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Nasamon Wanlapakorn
- Centre of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nicole Wolter
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - John Paget
- Netherlands Institute for Health Services Research, Utrecht, The Netherlands
| | - Harish Nair
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - You Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Schaerlaekens S, Jacobs L, Stobbelaar K, Cos P, Delputte P. All Eyes on the Prefusion-Stabilized F Construct, but Are We Missing the Potential of Alternative Targets for Respiratory Syncytial Virus Vaccine Design? Vaccines (Basel) 2024; 12:97. [PMID: 38250910 PMCID: PMC10819635 DOI: 10.3390/vaccines12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Respiratory Syncytial Virus (RSV) poses a significant global health concern as a major cause of lower respiratory tract infections (LRTIs). Over the last few years, substantial efforts have been directed towards developing vaccines and therapeutics to combat RSV, leading to a diverse landscape of vaccine candidates. Notably, two vaccines targeting the elderly and the first maternal vaccine have recently been approved. The majority of the vaccines and vaccine candidates rely solely on a prefusion-stabilized conformation known for its highly neutralizing epitopes. Although, so far, this antigen design appears to be successful for the elderly, our current understanding remains incomplete, requiring further improvement and refinement in this field. Pediatric vaccines still have a long journey ahead, and we must ensure that vaccines currently entering the market do not lose efficacy due to the emergence of mutations in RSV's circulating strains. This review will provide an overview of the current status of vaccine designs and what to focus on in the future. Further research into antigen design is essential, including the exploration of the potential of alternative RSV proteins to address these challenges and pave the way for the development of novel and effective vaccines, especially in the pediatric population.
Collapse
Affiliation(s)
- Sofie Schaerlaekens
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Lotte Jacobs
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
| | - Kim Stobbelaar
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Pediatrics Department, Antwerp University Hospital (UZA), Wilrijkstraat 10, 2650 Edegem, Belgium
| | - Paul Cos
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium; (S.S.); (L.J.); (K.S.); (P.C.)
- Infla-Med Centre of Excellence, University of Antwerp (UA), Universiteitsplein 1 S.7, 2610 Antwerp, Belgium
| |
Collapse
|
17
|
Walker GJ, Foster CSP, Sevendal A, Domazetovska A, Kamalakkannan A, Williams PCM, Kim KW, Condylios A, Stelzer-Braid S, Bartlett AW, Rawlinson W. Clinical, Genomic, and Immunological Characterization of RSV Surge in Sydney, Australia, 2022. Pediatrics 2024; 153:e2023063667. [PMID: 38225912 DOI: 10.1542/peds.2023-063667] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
OBJECTIVES The 2022 seasonal respiratory syncytial virus (RSV) epidemic in Sydney, Australia saw an unprecedented number of RSV detections. We aimed to characterize genomic and immunologic factors associated with the surge in RSV cases. METHODS Whole genome sequences of RSV were generated from 264 RSV-infected infants and linked to case-matched clinical data from the 2022 southern hemisphere RSV season. We then performed an immunologic analysis of baseline RSV-specific humoral immunity in women of childbearing age before and throughout the coronavirus disease 2019 pandemic. RESULTS Clinical analysis revealed a high burden of disease across patients of all health backgrounds. More than one-half of RSV-related health care visits by infants resulted in hospitalization, and one-quarter required high-flow respiratory support or a higher level of care. Viral phylogenetic analyses revealed that 2022 Sydney RSV sequences were closely related to viruses that had been circulating globally since 2017, including those detected in recent US outbreaks. Nonsynonymous mutations within the palivizumab and nirsevimab binding sites were detected at low frequencies. There was no difference in baseline RSV-neutralizing antibody titers between 2020 and 2022. CONCLUSIONS Collectively, these findings suggest that neither the emergence of a novel RSV genotype nor hypothesized immune debt was associated with the surge of RSV cases and hospitalizations in 2022. Continued genomic and immunologic surveillance is required to further understand the factors driving outbreaks of RSV globally, and to inform guidelines for the rollout and ongoing use of recently developed immunotherapeutics and vaccines.
Collapse
Affiliation(s)
- Gregory J Walker
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health
| | - Charles S P Foster
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health
| | - Andrea Sevendal
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Ana Domazetovska
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Abbish Kamalakkannan
- School of Public Health, Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Phoebe C M Williams
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia
- Discipline of Paediatrics and Child Health, School of Clinical Medicine, Faculty of Medicine and Health
- Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Ki Wook Kim
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
- Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
| | - Anna Condylios
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Sacha Stelzer-Braid
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Adam W Bartlett
- Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital Network, Sydney, New South Wales, Australia
- National Centre for Immunisation Research and Surveillance, Westmead, New South Wales, Australia
| | - William Rawlinson
- Virology Research Laboratory, Serology and Virology Division (SAViD), NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
- School of Biomedical Sciences, Faculty of Medicine and Health
| |
Collapse
|
18
|
Krivitskaya V, Petrova E, Sorokin E, Tsareva T, Sverlova M, Komissarova K, Sominina A, Danilenko D. Characterization of a Panel of Monoclonal Antibodies Targeting the F-Protein of the Respiratory Syncytial Virus (RSV) for the Typing of Contemporary Circulating Strains. Trop Med Infect Dis 2023; 9:1. [PMID: 38276631 PMCID: PMC10819491 DOI: 10.3390/tropicalmed9010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of upper and lower respiratory tract infections in infants and young children. Virus-specific monoclonal antibodies (mAbs) can be used for diagnosis, prophylaxis, and research of RSV pathogenesis. A panel of 16 anti-RSV mAbs was obtained from mice immunized by RSV strain Long. Half of them had virus-neutralizing activity. According to Western blot all of these mAbs effectively bound native oligomeric (homodimeric and homotrimeric) forms of the RSV fusion (F) protein. Only five of the mAbs interacted with the monomeric form, and only one of these possessed neutralizing activity. None of these mAbs, nor the commercial humanized neutralizing mAb palivizumab, reacted with the denaturated F protein. Thus, interaction of all these mAbs with F protein had clear conformational dependence. Competitive ELISA and neutralization assays allowed the identification of nine antigenic target sites for the interaction of mAb with the F protein. Five partially overlapping sites may represent a complex spatial structure of one antigenic determinant, including one neutralizing and four non-neutralizing epitopes. Four sites (three neutralizing and one non-neutralizing) were found to be distinct. As a result of virus cultivation RSV-A, strain Long, in the presence of a large amount of one of the neutralizing mAbs, an escape mutant with a substitution, N240S, in the F protein, was obtained. Thus, it was shown for the first time that position 240 is critical for the protective effect of an anti-RSV antibody. To assess the ability of these mAbs to interact with modern RSV strains circulating in St. Petersburg (Russia) between 2014 and 2022, 73 RSV-A and 22 RSV-B isolates were analyzed. Six mAbs were directed to conserved epitopes of the F protein as they interacted most efficiently with both RSV subtypes in a fixed cell-ELISA and could be used for diagnostic assays detecting RSV.
Collapse
Affiliation(s)
- Vera Krivitskaya
- Smorodintsev Research Institute of Influenza, The Ministry of Health of the Russian Federation, WHO National Influenza Centre, St. Petersburg 197376, Russia; (E.P.); (E.S.); (T.T.); (M.S.); (K.K.); (A.S.); (D.D.)
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
20
|
Ruckwardt TJ. The road to approved vaccines for respiratory syncytial virus. NPJ Vaccines 2023; 8:138. [PMID: 37749081 PMCID: PMC10519952 DOI: 10.1038/s41541-023-00734-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
After decades of work, several interventions to prevent severe respiratory syncytial virus (RSV) disease in high-risk infant and older adult populations have finally been approved. There were many setbacks along the road to victory. In this review, I will discuss the impact of RSV on human health and how structure-based vaccine design set the stage for numerous RSV countermeasures to advance through late phase clinical evaluation. While there are still many RSV countermeasures in preclinical and early-stage clinical trials, this review will focus on products yielding long-awaited efficacy results. Finally, I will discuss some challenges and next steps needed to declare a global victory against RSV.
Collapse
Affiliation(s)
- Tracy J Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Respiratory syncytial virus (RSV) continues to be a major cause of severe lower respiratory tract infection in infants, young children, and older adults. In this review, changes in the epidemiology of RSV during the coronavirus disease 2019 (COVID-19) pandemic are highlighted together with the role which increased molecular surveillance efforts will have in future in assessing the efficacy of vaccines and therapeutics. RECENT FINDINGS The introduction of nonpharmaceutical intervention (NPIs) strategies during the COVID-19 pandemic between 2020 and 2022 resulted in worldwide disruption to the epidemiology of RSV infections, especially with respect to the timing and peak case rate of annual epidemics. Increased use of whole genome sequencing along with efforts to better standardize the nomenclature of RSV strains and discrimination of RSV genotypes will support increased monitoring of relevant antigenic sites in the viral glycoproteins. Several RSV vaccine candidates based on subunit, viral vectors, nucleic acid, or live attenuated virus strategies have shown efficacy in Phase 2 or 3 clinical trials with vaccines using RSVpreF protein currently the closest to approval and use in high-risk populations. Finally, the recent approval and future use of the extended half-life human monoclonal antibody Nirsevimab will also help to alleviate the morbidity and mortality burden caused by annual epidemics of RSV infections. SUMMARY The ongoing expansion and wider coordination of RSV molecular surveillance efforts via whole genome sequencing will be crucial for future monitoring of the efficacy of a new generation of vaccines and therapeutics.
Collapse
Affiliation(s)
- Martin Ludlow
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
22
|
Cox F, Saeland E, Thoma A, van den Hoogen W, Tettero L, Drijver J, Vaneman C, van Polanen Y, Ritschel T, Bastian AR, Callendret B, Zahn R, van der Fits L. RSV A2-Based Prefusion F Vaccine Candidates Induce RSV A and RSV B Cross Binding and Neutralizing Antibodies and Provide Protection against RSV A and RSV B Challenge in Preclinical Models. Vaccines (Basel) 2023; 11:vaccines11030672. [PMID: 36992257 DOI: 10.3390/vaccines11030672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
RSV is divided into two antigenic subtypes, RSV A and RSV B, which is largely based on the variation in the G protein, while the fusion protein F is more conserved and a target for antibody-mediated neutralization. Here we evaluate the breadth of the protective immune responses across RSV A and RSV B subtypes, induced by vaccines based on the RSV A-based fusion protein, stabilized in the prefusion conformation (preF) in preclinical models. Immunization of naïve cotton rats with preF subunit or preF encoded by a replication incompetent Adenoviral 26, induced antibodies capable of neutralizing recent RSV A and RSV B clinical isolates, as well as protective efficacy against a challenge with RSV A and RSV B strains. Similarly, induction of cross-neutralizing antibodies was observed after immunization with Ad26-encoded preF, preF protein or a mix of both (Ad26/preF protein) in RSV pre-exposed mice and African Green Monkeys. Transfer of serum of human subjects immunized with Ad26/preF protein into cotton rats provide protection against challenges with both RSV A and RSV B, with complete protection against both strains observed in the lower respiratory tract. In contrast, almost no protection against RSV A and B infection was observed after the transfer of a human serum pool isolated pre-vaccination. These results collectively show that the RSV A-based monovalent Ad26/preF protein vaccine induced neutralizing antibodies, as well as protection against both RSV A and RSV B subtypes in animals, including by passive transfer of human antibodies alone, suggesting that clinical efficacy against both subtypes can be achieved.
Collapse
Affiliation(s)
- Freek Cox
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Eirikur Saeland
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Anne Thoma
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Ward van den Hoogen
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Lisanne Tettero
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Joke Drijver
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Cornelis Vaneman
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Yolinda van Polanen
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Tina Ritschel
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | | | - Benoit Callendret
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| | - Leslie van der Fits
- Janssen Vaccines & Prevention B.V. Archimedesweg 4-6, 2333 CN Leiden, The Netherlands
| |
Collapse
|
23
|
Coppée R, Chenane HR, Bridier-Nahmias A, Tcherakian C, Catherinot E, Collin G, Lebourgeois S, Visseaux B, Descamps D, Vasse M, Farfour E. Temporal dynamics of RSV shedding and genetic diversity in adults during the COVID-19 pandemic in a French hospital, early 2021. Virus Res 2023; 323:198950. [PMID: 36181977 PMCID: PMC9519364 DOI: 10.1016/j.virusres.2022.198950] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/03/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is responsible of lower respiratory tract infections which may be severe in infants, elderly and immunocompromised adults. Europe and North-American countries have observed a massive reduction of RSV incidence during the 2020-2021 winter season. Using a systematic RSV detection coupled to SARS-CoV-2 for all adult patients admitted at the Foch hospital (Suresnes, France) between January and March 2021 (n = 11,324), only eight RSV infections in patients with prolonged RNA shedding were diagnosed. RSV whole-genome sequencing revealed that six and two patients were infected by RSV groups A and B, respectively. RSV carriage lasted from 7 to at least 30 days disregarding of RSV lineage. The most prolonged RSV shedding was observed in an asymptomatic patient. We detected novel patient-specific non-synonymous mutations in the G glycoprotein gene, including a double identical mutation in the repeated region for one patient. No additional mutation occurred in the RSV genome over the course of infection in the four patients tested for. In conclusion, our results suggest that the temporal shift in the RSV epidemic is not likely to be explained by the emergence of a high frequency, unreported variant. Moreover, prolonged RSV carriages in asymptomatic patients could play a role in virus spread.
Collapse
Affiliation(s)
- Romain Coppée
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France
| | | | | | | | | | - Gilles Collin
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France; Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, F-75018 Paris, France
| | - Samuel Lebourgeois
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France
| | - Benoit Visseaux
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France; Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, F-75018 Paris, France
| | - Diane Descamps
- Université Paris Cité and Sorbonne Paris Nord, Inserm, IAME, F-75018 Paris, France; Laboratoire de Virologie, Hôpital Bichat-Claude Bernard, AP-HP, F-75018 Paris, France
| | - Marc Vasse
- Service de Biologie Clinique, Hôpital Foch, F-92150 Suresnes, France
| | - Eric Farfour
- Service de Biologie Clinique, Hôpital Foch, F-92150 Suresnes, France
| |
Collapse
|
24
|
Ntemafack A, Singh RV, Ali S, Kuiate JR, Hassan QP. Antiviral potential of anthraquinones from Polygonaceae, Rubiaceae and Asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review. SOUTH AFRICAN JOURNAL OF BOTANY : OFFICIAL JOURNAL OF THE SOUTH AFRICAN ASSOCIATION OF BOTANISTS = SUID-AFRIKAANSE TYDSKRIF VIR PLANTKUNDE : AMPTELIKE TYDSKRIF VAN DIE SUID-AFRIKAANSE GENOOTSKAP VAN PLANTKUNDIGES 2022; 151:146-155. [PMID: 36193345 PMCID: PMC9519529 DOI: 10.1016/j.sajb.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/03/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Medicinal plants are being used as an alternative source of health management to cure various human ailments. The healing role is attributed to the hidden dynamic groups of various phytoconstituents, most of which have been recorded from plants and their derivatives. Nowadays, medicinal plants have gained more attention due to their pharmacological and industrial potential. Aromatic compounds are one of the dynamic groups of secondary metabolites (SM) naturally present in plants; and anthraquinones of this group are found to be attractive due to their high bioactivity and low toxicity. They have been reported to exhibit anticancer, antimicrobial, immune-suppressive, antioxidant, antipyretic, diuretic and anti-inflammatory activities. Anthraquinones have been also shown to exhibit potent antiviral effects against different species of viruses. Though, it has been reported that a medicinal plant with antiviral activity against one viral infection may be used to combat other types of viral infections. Therefore, in this review, we explored and highlighted the antiviral properties of anthraquinones of Polygonaceae, Rubiaceae and Asphodelaceae families. Anthraquinones from these plant families have been reported for their effects on human respiratory syncytial virus and influenza virus. They are hence presumed to have antiviral potential against SARS-CoV as well. Thus, anthraquinones are potential candidates that need to be screened thoroughly and developed as drugs to combat COVID-19. The information documented in this review could therefore serve as a starting point in developing novel drugs that may help to curb the SARS-COVID-19 pandemic.
Collapse
Affiliation(s)
- Augustin Ntemafack
- Department of Biochemistry, University of Dschang, Dschang, Cameroon
- Department of Biochemistry and Molecular Biology, Indiana University-Purdue University Indianapolis, Indiana, USA
| | - Rahul Vikram Singh
- Department of Dietetic and Nutrition Technology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Sabeena Ali
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| | | | - Qazi Parvaiz Hassan
- Molecular Biology and Plant Biotechnology Division, CSIR - Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, India
| |
Collapse
|
25
|
McGinley JP, Lin GL, Öner D, Golubchik T, O'Connor D, Snape MD, Gruselle O, Langedijk AC, Wildenbeest J, Openshaw P, Nair H, Aerssens J, Bont L, Martinón-Torres F, Drysdale SB, Pollard AJ. Clinical and Viral Factors Associated With Disease Severity and Subsequent Wheezing in Infants With Respiratory Syncytial Virus Infection. J Infect Dis 2022; 226:S45-S54. [PMID: 35902389 DOI: 10.1093/infdis/jiac163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in infants and young children worldwide. Here we evaluated host demographic and viral factors associated with RSV disease severity in 325 RSV-infected infants under 1 year of age from 3 European countries during 2017-2020. Younger infants had a higher clinical severity (ReSViNET) score and were more likely to require hospitalization, intensive care, respiratory support, and/or mechanical ventilation than older infants (<3 months vs 3 to <6 months and 3 to <6 months vs ≥6 months). Older age (≥6 months vs <3 months), higher viral load, and RSV-A were associated with a greater probability of fever. RSV-A and RSV-B caused similar disease severity and had similar viral dynamics. Infants with a more severe RSV infection, demonstrated by having a higher ReSViNET score, fever, and requiring hospitalization and intensive care, were more likely to have developed subsequent wheezing at 1 year of age. CLINICAL TRIALS REGISTRATION NCT03756766.
Collapse
Affiliation(s)
- Joseph P McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Gu Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Deniz Öner
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Tanya Golubchik
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | | | - Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Peter Openshaw
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Harish Nair
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Jeroen Aerssens
- Translational Biomarkers, Infectious Diseases Therapeutic Area, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Louis Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Simon B Drysdale
- Paediatric Infectious Diseases Research Group, Institute for Infection and Immunity, St George's, University of London, London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|
26
|
Esposito S, Abu Raya B, Baraldi E, Flanagan K, Martinon Torres F, Tsolia M, Zielen S. RSV Prevention in All Infants: Which Is the Most Preferable Strategy? Front Immunol 2022; 13:880368. [PMID: 35572550 PMCID: PMC9096079 DOI: 10.3389/fimmu.2022.880368] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) causes a spectrum of respiratory illnesses in infants and young children that may lead to hospitalizations and a substantial number of outpatient visits, which result in a huge economic and healthcare burden. Most hospitalizations happen in otherwise healthy infants, highlighting the need to protect all infants against RSV. Moreover, there is evidence on the association between early-life RSV respiratory illness and recurrent wheezing/asthma-like symptoms As such, RSV is considered a global health priority. However, despite this, the only prevention strategy currently available is palivizumab, a monoclonal antibody (mAb) indicated in a subset of preterm infants or those with comorbidities, hence leaving the majority of the infant population unprotected against this virus. Therefore, development of prevention strategies against RSV for all infants entering their first RSV season constitutes a large unmet medical need. The aim of this review is to explore different immunization approaches to protect all infants against RSV. Prevention strategies include maternal immunization, immunization of infants with vaccines, immunization of infants with licensed mAbs (palivizumab), and immunization of infants with long-acting mAbs (e.g., nirsevimab, MK-1654). Of these, palivizumab use is restricted to a small population of infants and does not offer a solution for all-infant protection, whereas vaccine development in infants has encountered various challenges, including the immaturity of the infant immune system, highlighting that future pediatric vaccines will most likely be used in older infants (>6 months of age) and children. Consequently, maternal immunization and immunization of infants with long-acting mAbs represent the two feasible strategies for protection of all infants against RSV. Here, we present considerations regarding these two strategies covering key areas which include mechanism of action, "consistency" of protection, RSV variability, duration of protection, flexibility and optimal timing of immunization, benefit for the mother, programmatic implementation, and acceptance of each strategy by key stakeholders. We conclude that, based on current data, immunization of infants with long-acting mAbs might represent the most effective approach for protecting all infants entering their first RSV season.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Parma, Italy
| | - Bahaa Abu Raya
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Eugenio Baraldi
- Neonatal Intensive Care Unit, Department of Woman’s and Child’s Health, Padova University Hospital, Padova, Italy
| | - Katie Flanagan
- School of Medicine, Faculty of Health Sciences, University of Tasmania, Launceston, TAS, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Tasmanian Vaccine Trial Centre, Clifford Craig Foundation, Launceston General Hospital, Launceston, TAS, Australia
| | - Federico Martinon Torres
- Genetics, Vaccines, Infections and Pediatrics Research group (GENVIP), Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria Tsolia
- Second Department of Pediatrics, National and Kapodistrian University of Athens, “A&P Kyriakou” Children’s Hospital, Athens, Greece
| | - Stefan Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic Fibrosis, Goethe-University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Achten NB, van Rossum AMC, Bacharier LB, Fitzpatrick AM, Hartert TV. Long-Term Respiratory Consequences of Early-Life Respiratory Viral Infections: A Pragmatic Approach to Fundamental Questions. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:664-670. [PMID: 34942383 DOI: 10.1016/j.jaip.2021.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Early-life viral infection can have profound effects on the developing lung and immune systems, both important in asthma development. For decades, research has aimed to establish whether there is a causal link between these viral infections as an exposure and asthma later in childhood. Establishing causality will remain important, but new insights regarding early-life viral infection as an exposure, the recognition of asthma as a heterogeneous outcome, and the shared genetic susceptibility to both suggest a refocus from answering the theoretical question of causality toward additional pragmatic approaches focusing on improving patient outcomes across the spectrum of respiratory disease. This Clinical Commentary reviews the evidence on the consequences of early-life viral infection and aims to look beyond the question of causality, suggesting a research agenda specifically aimed at what matters for human development, and for the quality of life of current and future patients with wheezing disorders.
Collapse
Affiliation(s)
- Niek B Achten
- Department of Pediatrics, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Annemarie M C van Rossum
- Department of Pediatrics, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Leonard B Bacharier
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Tina V Hartert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
28
|
Rios Guzman E, Hultquist JF. Clinical and biological consequences of respiratory syncytial virus genetic diversity. Ther Adv Infect Dis 2022; 9:20499361221128091. [PMID: 36225856 PMCID: PMC9549189 DOI: 10.1177/20499361221128091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common etiological agents of global acute respiratory tract infections with a disproportionate burden among infants, individuals over the age of 65, and immunocompromised populations. The two major subtypes of RSV (A and B) co-circulate with a predominance of either group during different epidemic seasons, with frequently emerging genotypes due to RSV's high genetic variability. Global surveillance systems have improved our understanding of seasonality, disease burden, and genomic evolution of RSV through genotyping by sequencing of attachment (G) glycoprotein. However, the integration of these systems into international infrastructures is in its infancy, resulting in a relatively low number (~2200) of publicly available RSV genomes. These limitations in surveillance hinder our ability to contextualize RSV evolution past current canonical attachment glycoprotein (G)-oriented understanding, thus resulting in gaps in understanding of how genetic diversity can play a role in clinical outcome, therapeutic efficacy, and the host immune response. Furthermore, utilizing emerging RSV genotype information from surveillance and testing the impact of viral evolution using molecular techniques allows us to establish causation between the clinical and biological consequences of arising genotypes, which subsequently aids in informed vaccine design and future vaccination strategy. In this review, we aim to discuss the findings from current molecular surveillance efforts and the gaps in knowledge surrounding the consequence of RSV genetic diversity on disease severity, therapeutic efficacy, and RSV-host interactions.
Collapse
Affiliation(s)
- Estefany Rios Guzman
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| | - Judd F. Hultquist
- Robert H. Lurie Medical Research Center,
Northwestern University, 9-141, 303 E. Superior St., Chicago, IL 60611,
USA
- Department of Medicine, Division of Infectious
Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL,
USA
- Center for Pathogen Genomics and Microbial
Evolution, Institute for Global Health, Northwestern University Feinberg
School of Medicine, Chicago, IL, USA
| |
Collapse
|
29
|
Bergeron HC, Tripp RA. Breakthrough therapy designation of nirsevimab for the prevention of lower respiratory tract illness caused by respiratory syncytial virus infections (RSV). Expert Opin Investig Drugs 2021; 31:23-29. [PMID: 34937485 DOI: 10.1080/13543784.2022.2020248] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is a leading cause of serious lower respiratory tract infection (LRTI) in infants and young children. Palivizumab is an RSV-specific prophylactic for use in high-risk infants but treatment requires monthly injections and only modestly reduces hospitalization. Thus, new immunoprophylactic candidates are under development. Nirsevimab (MEDI8897) is a monoclonal antibody with an extended half-life developed to protect infants for an entire RSV season with a single dose. AREAS COVERED This review summarizes clinical trial data on nirsevimab. The authors introduce RSV and surface viral proteins involved in infection, then discuss the development and achievements of nirsevimab in clinical trials concluding with expert opinion. Information was compiled from PubMed, clinicaltrials.gov, and press releases from AstraZeneca and Sanofi. EXPERT OPINION Nirsevimab (MEDI8897) is an RSV F protein monoclonal antibody and the next-generation RSV medicine having an extended half-life developed for the prevention of LRTI caused by RSV. Nirsevimab will supplant the current standard of care for RSV prevention. Importantly, nirsevimab requires a single dose to last the entire RSV season and may be given to term, preterm, and high-risk infants. However, even with nirsevimab approval there remains a need for an efficacious RSV vaccine and treatments.
Collapse
Affiliation(s)
- Harrison C Bergeron
- Department of Infectious Diseases College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ralph A Tripp
- Department of Infectious Diseases College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|