1
|
Duan X, Liu W, Xiao Y, Rao M, Ji L, Wan X, Han S, Lin Z, Liu H, Chen P, Qiao K, Zheng M, Shen J, Zhou Y, Asakawa T, Xiao M, Lu H. Exploration of the feasibility of clinical application of phage treatment for multidrug-resistant Serratia marcescens-induced pulmonary infection. Emerg Microbes Infect 2025; 14:2451048. [PMID: 39764739 PMCID: PMC11740298 DOI: 10.1080/22221751.2025.2451048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/22/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025]
Abstract
Serratia marcescens (S. marcescens) commonly induces refractory infection due to its multidrug-resistant nature. To date, there have been no reports on the application of phage treatment for S. marcescens infection. This study was conducted to explore the feasibility of phage application in treating refractory S. marcescens infection by collaborating with a 59-year-old male patient with a pulmonary infection of multidrug-resistant S. marcescens. Our experiments included three domains: i) selection of the appropriate phage, ii) verification of the efficacy and safety of the selected phage, iii) confirmation of phage-bacteria interactions. Our results showed that phage Spe5P4 is appropriate for S. marcescens infection. Treatment with phage Spe5P4 showed good efficacy, manifested as amelioration of symptoms, hydrothorax examinations, and chest computed tomography findings. Phage treatment did not worsen hepatic and renal function, immunity-related indices, or indices of routine blood examination. It did not induce or deteriorate drug resistance of the involved antibiotics. Importantly, no adverse events were reported during the treatment or follow-up periods. Thus, phage treatment showed satisfactory safety. Finally, we found that phage treatment did not increase the bacterial load, cytotoxicity, virulence, or phage resistance of S. marcescens, indicating satisfactory phage-bacteria interactions between Spe5P4 and S. marcescens, which are useful for the future application of phage Spe5P4 against S. marcescens. This work provides evidence and a working basis for further application of phage Spe5P4 in treating refractory S. marcescens infections. We also provided a methodological basis for investigating clinical application of phage treatment against multidrug-resistant bacterial infections in the future.
Collapse
Affiliation(s)
- Xiangke Duan
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Wenfeng Liu
- BGI Research, Shenzhen, People’s Republic of China
| | - Yanyu Xiao
- Department of Clinical Laboratory, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Man Rao
- Department of Infection and Immunology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Liyin Ji
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaofu Wan
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Shuhong Han
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- Department of Infection and Immunology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Zixun Lin
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- School of Medicine, Southern University of Science and Technology, Shenzhen, People’s Republic of China
| | - Haichen Liu
- BGI Research, Shenzhen, People’s Republic of China
| | - Peifen Chen
- Department of Respiratory Medicine, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Kun Qiao
- Department of Thoracic Surgery, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Mingbin Zheng
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Jiayin Shen
- Department of Science and Education, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Yang Zhou
- Department of Infection and Immunology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Tetsuya Asakawa
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| | - Minfeng Xiao
- BGI Research, Shenzhen, People’s Republic of China
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
- Institute of Neurology, National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Li X, Shao Q, Li L, Xie L, Ruan Z, Fang Q. Cryo-EM Reveals Structural Diversity in Prolate-headed Mycobacteriophage Mycofy1. J Mol Biol 2025; 437:169126. [PMID: 40187685 DOI: 10.1016/j.jmb.2025.169126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Mycobacteriophages show promise in treating antibiotic-resistant mycobacterial infections. Here, we isolated Mycofy1, a mycobacteriophage, using M. smegmatis as a host. Cryo-EM analysis revealed that Mycofy1 possesses a prolate head and a long non-contractile tail. We determined structures of its head, head-to-tail interface, terminator, and tail tube to resolutions of ∼3.5 Å. Unexpectedly, we identified two distinct types of prolate head structures, exhibiting a 36° relative rotation in the top cap region. Additionally, the head-to-tail interface demonstrated flexibility. Our structures provide high-resolution cryo-EM data of a mycobacteriophage with a prolate head, as well as detailed structural information of the head-to-tail interface and head-proximal tail region in this phage group. These findings advance our understanding of assembly mechanisms in tailed bacteriophages.
Collapse
Affiliation(s)
- Xiangyun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Qianqian Shao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Lin Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Linlin Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Zhiyang Ruan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
3
|
Freeman KG, Mondal S, Macale LS, Podgorski J, White SJ, Silva BH, Ortiz V, Huet A, Perez RJ, Narsico JT, Ho MC, Jacobs-Sera D, Lowary TL, Conway JF, Park D, Hatfull GF. Structure and infection dynamics of mycobacteriophage Bxb1. Cell 2025; 188:2925-2942.e17. [PMID: 40239650 PMCID: PMC12124961 DOI: 10.1016/j.cell.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/27/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Mycobacteriophage Bxb1 is a well-characterized virus of Mycobacterium smegmatis with double-stranded DNA and a long, flexible tail. Mycobacteriophages show considerable potential as therapies for Mycobacterium infections, but little is known about the structural details of these phages or how they bind to and traverse the complex Mycobacterium cell wall. Here, we report the complete structure and atomic model of phage Bxb1, including the arrangement of immunodominant domains of both the capsid and tail tube subunits, as well as the assembly of the protein subunits in the tail-tip complex. The structure contains protein assemblies with 3-, 5-, 6-, and 12-fold symmetries, which interact to satisfy several symmetry mismatches. Cryoelectron tomography of phage particles bound to M. smegmatis reveals the structural transitions that occur for free phage particles to bind to the cell surface and navigate through the cell wall to enable DNA transfer into the cytoplasm.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sudipta Mondal
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Lourriel S Macale
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Jennifer Podgorski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Simon J White
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Benjamin H Silva
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Valery Ortiz
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA
| | - Alexis Huet
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ronelito J Perez
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Joemark T Narsico
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donghyun Park
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Rubino I, Guerrero-Bustamante CA, Harrison M, Co S, Tetreau I, Ordoubadi M, Larsen SE, Coler RN, Vehring R, Hatfull GF, Sauvageau D. Comparative study on the virulence of mycobacteriophages. J Virol 2025:e0192024. [PMID: 40396760 DOI: 10.1128/jvi.01920-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/24/2025] [Indexed: 05/22/2025] Open
Abstract
The global tuberculosis (TB) epidemic affected 10 million people and caused 1.3 million deaths in 2022 alone. Multidrug-resistant TB is successfully treated in less than 60% of cases by long, expensive, and aggressive treatments. Mycobacteriophages, viruses that can infect bacteria such as Mycobacterium tuberculosis-the species responsible for TB-have the potential to redefine TB prevention and treatments. However, the development of phage-based products necessitates the assessment of numerous parameters, including virulence and adsorption, to ensure their performance and quality. In this work, we characterized the virulence of three different mycobacteriophages (Fionnbharth, Muddy, and D29), alone and as cocktails, against a TB model host (Mycobacterium smegmatis) under planktonic and early-stage biofilm growth conditions. Phage D29 and cocktails containing D29 had the highest virulence under all conditions. Interestingly, phages Fionnbharth and Muddy and their combination showed higher virulence against early-stage biofilm than against the planktonic phenotype. Adsorption assays indicated that all three phages had lower adsorption efficiencies on the early-stage biofilm phenotype than on the planktonic one, suggesting a reduced availability of receptors in the former. Given that, despite these lower adsorption efficiencies, the virulence of the phages and phage cocktails was either unchanged or higher against the early-stage biofilm, this phenotype must display properties that are favorable to other steps of the infection process. These results inform us on the dynamics of mycobacteriophage infections, both alone and in cocktail formulations, under different host growth conditions, serving as a basis for the development of phage products targeting mycobacteria biofilms. IMPORTANCE This study provides a systematic investigation of the virulence of three mycobacteriophages, Fionnbharth, Muddy, and D29, and their combinations as cocktails against Mycobacterium smegmatis. We also included considerations on the hydrodynamic conditions (shaking and not shaking) and host phenotype (planktonic and early-onset biofilm cultures) during the infection process and adsorption of the phage to the host. We showed that virulence was strongly affected by phenotype and that higher virulence shown against the early-onset biofilm phenotype was not linked to faster adsorption to the host. We also showed that phage D29 and cocktails containing this phage had the highest virulence. These results are important as they provide a framework for a better evaluation and development of phage-based treatment against mycobacterial infections.
Collapse
Affiliation(s)
- Ilaria Rubino
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Melissa Harrison
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sheila Co
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Tetreau
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sasha E Larsen
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
| | - Rhea N Coler
- Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Yoo JH. Antimicrobial Resistance - The 'Real' Pandemic We Are Unaware Of, Yet Nearby. J Korean Med Sci 2025; 40:e161. [PMID: 40390585 PMCID: PMC12089690 DOI: 10.3346/jkms.2025.40.e161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Accepted: 04/30/2025] [Indexed: 05/21/2025] Open
Abstract
Antimicrobial resistance (AMR) represents a persistent and escalating public health crisis, often overlooked despite its severe global impact. Unlike acute infectious diseases, AMR progresses silently but relentlessly, posing long-term threats to health systems worldwide. This review examines the historical evolution and current epidemiology of multidrug-resistant organisms (MDROs), emphasizing the global and Korean burden of MDROs. While the development of new antibiotics remains limited, alternative therapies such as bacteriophage treatment have re-emerged as potential solutions. However, challenges in access to novel agents persist, particularly in Korea, due to regulatory, economic, and market-related barriers. To counter AMR, comprehensive strategies are essential. These include infection control, antibiotic stewardship programs (ASPs), and the development and proper allocation of new drugs. The One Health approach must integrate human, animal, and environmental health perspectives. Notably, infectious disease specialists play a central role in this fight: leading ASPs, shaping policy, engaging in public education, supporting research, and coordinating multidisciplinary collaboration. The AMR pandemic is unlikely to subside without systemic reform, sustained investment, and international cooperation. Urgent efforts must be made to address this hidden but growing threat. Recognizing AMR as a true pandemic is the first step toward containing its spread and securing the efficacy of antibiotics for future generations.
Collapse
Affiliation(s)
- Jin-Hong Yoo
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
6
|
Nayak T, Kakkar A, Jaiswal LK, Kandwal G, Singh AK, Temple L, Gupta A. Characterization of a novel virulent mycobacteriophage Kashi-SSH1 (KSSH1) depicting genus-specific broad-spectrum anti-mycobacterial activity. Life Sci 2025; 369:123546. [PMID: 40058575 DOI: 10.1016/j.lfs.2025.123546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
AIM Tuberculosis (TB) is one of the leading infectious disease causing mortality in the world and the rise of drug resistance; multi-drug resistance (MDR) and extensive-drug resistance (XDR) has added to extra complicacy of the disease. In this scenario, phage therapy has emerged as a potential treatment option against drug-sensitive/-resistant strains. MATERIALS AND METHODS The mycobacteriophage Kashi-SSH1 (KSSH1) was isolated from soil sample and was genomically, phenotypically, and functionally characterized. It includes genome assembly/annotation, transmission electron microscopy, multiplicity of infection (MOI), one-step growth curve, temperature/pH stability, confocal microscopy, host range determination and host growth reduction assays. KEY FINDINGS KSSH1 is a novel polyvalent virulent mycobacteriophage from the Myoviridae family, classified under cluster C1 with a 155,659 bp genome carrying key lysis genes-Holliday junction resolvase, Holin, Lysin A, and Lysin B, has an optimal MOI of 0.01, a 60-min latent period, and a burst size of 200 phages/bacterial cell. It remains stable up to 55 °C and within pH 7-10, exhibiting broad-spectrum activity against Mycobacterium species, like M. fortuitum (opportunistic pathogen), M. tuberculosis H37Ra (attenuated pathogen), and M. smegmatis, but not non-mycobacterial hosts. KSSH1 exhibits comparable growth inhibition of M. smegmatis like the antibiotics isoniazid and rifampicin as compared to the control, in liquid cultures for over 50 h without regrowth. SIGNIFICANCE KSSH1 exhibits strong lytic activity against various Mycobacterium species, lacks lysogeny-associated genes like integrases/transcriptional repressors, antibiotic resistance and virulence genes and remains stable from 4 °C to 37 °C and pH 8-10 ensuring safety/stability making it an ideal candidate for therapeutic use.
Collapse
Affiliation(s)
- Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anand Kumar Singh
- Indian Institute of Science Education and Research, Tirupati, Jangalapalli-Srinivasapuram, Yerpedu Mandal, Tirupati 517619, Andhra Pradesh, India
| | - Louise Temple
- School of Integrated Sciences, James Madison University, Harrisonburg, VA 22807, United States
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
7
|
Nick JA, Martiniano SL, Lovell VK, Vestal B, Poch K, Caceres SM, Rysavy NM, de Moura VC, Gilick JJ, Malcolm KC, Pacheco J, Amin AG, Chatterjee D, Daley CL, Kasperbauer S, Gross JE, Armantrout E, Cohen KA, Keck A, Vandalfsen JM, Magaret AS, Midamba N, Chapdu C, Gao A, Hill JE, Freeman KG, Cristinziano M, Guerrero C, Jacobs-Sera D, Lauer MJ, Viland M, Hatfull GF. Trial design of bacteriophage therapy for nontuberculous mycobacteria pulmonary disease in cystic fibrosis: The POSTSTAMP study. J Cyst Fibros 2025:S1569-1993(25)00765-9. [PMID: 40222858 DOI: 10.1016/j.jcf.2025.03.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Bacteriophages (phages) are viruses that selectively infect bacteria and have been utilized to treat Mycobacterium abscessus (Mab) with varying success. The POSTSTAMP study is an ongoing, multi-site phage therapy protocol for treatment-refractory pulmonary Mab disease in people with cystic fibrosis (pwCF). Participants (n = 10) are prospectively assessed while utilizing FDA investigational new drug (IND) approval for compassionate use. Participants are >6 years old, able to produce sputum, have been treated with guideline-based antibiotic therapy (GBT) for >12 months without culture conversion, and are currently receiving GBT with at least 3 and ≥ 80 % positive Mab cultures in the prior year. At enrollment, an isolate is assessed for the availability of lytic phage(s). Open-label phage therapy consists of 1 or 2 phages administered intravenously twice daily for 52 weeks. Participants without a phage match will be followed on GBT as a comparison group. Follow-up visits will occur monthly, with one follow-up visit at completion and intermittent visits for a year after phage therapy. Efficacy will be assessed by culture, standard clinical measures and a patient-reported quality-of-life instrument. Frequency of Mab detection 12 months prior to treatment will be compared with the 12-month period beginning 6 months after treatment initiation. Individual-level tests of difference in percent positive cultures within subjects will be used to identify "responders". Collectively and including all persons, a mixed-effect model will be used to test for a difference in frequency of Mab detection following treatment or without treatment. The trial will also test for markers of treatment failure and pathogen adaptation in participants who did not achieve microbiological response, and will monitor for safety and tolerance.
Collapse
Affiliation(s)
- Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Stacey L Martiniano
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Valerie K Lovell
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA.
| | - Brian Vestal
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206, USA
| | - Katie Poch
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Silvia M Caceres
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Noel M Rysavy
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | - Jennifer J Gilick
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica Pacheco
- Investigational Drug Services Pharmacy, National Jewish Health, Denver, CO 80206, USA
| | - Anita G Amin
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, 1682 Campus Delivery, Fort Collins, CO 80523, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Shannon Kasperbauer
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jane E Gross
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA; Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - Emily Armantrout
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Keira A Cohen
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Allison Keck
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jill M Vandalfsen
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Amalia S Magaret
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Nikita Midamba
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Claire Chapdu
- Cystic Fibrosis Foundation Therapeutics Development Network Coordinating Center, Seattle Children's Research Institute, Seattle, WA, USA
| | - Antao Gao
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z4, CA, USA
| | - Jane E Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver BC V6T 1Z4, CA, USA
| | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Carlos Guerrero
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Maggie Viland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
8
|
Liebenberg D, Sungu NL, Machowski EE, Ealand CS, Kana BD. Complete genome sequences of mycobacteriophages JayJay and Rinkes. Microbiol Resour Announc 2025; 14:e0119924. [PMID: 39812621 PMCID: PMC11812305 DOI: 10.1128/mra.01199-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
The complete genome sequences were determined for two mycobacteriophages isolated from Mycobacterium smegmatis mc2155. JayJay, a myoviral bacteriophage from cluster C1, encodes 234 putative genes, 32 tRNAs, and 1 tmRNA. Rinkes, a siphoviral bacteriophage from cluster B9, harbors a smaller genome encoding 93 putative genes.
Collapse
Affiliation(s)
- Dale Liebenberg
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Nday L. Sungu
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Edith E. Machowski
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Christopher S. Ealand
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D. Kana
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Service, Johannesburg, South Africa
| |
Collapse
|
9
|
Rueda Prada L, Gorasevic M, Gavrancic T, Rajani AJ, Sluzevich JC, Nair-Collins S, Durvasula RV. A Report of Two Uncommon Cases of Mycobacterium chelonae with Localized and Disseminated Skin and Soft Tissue Infection. Infect Dis Rep 2025; 17:13. [PMID: 39997465 PMCID: PMC11855368 DOI: 10.3390/idr17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Mycobacterium chelonae is a ubiquitous, rapidly growing, nontuberculous mycobacteria that primarily affects immunocompromised patients. The most common presentation is an atypical, chronic skin and soft tissue infection. Due to its high resistance rate, early diagnosis based on clinical suspicion, risk factor assessment, and exposure history is crucial for initiating appropriate multi-drug treatment. Methods: We report two cases of M. chelonae skin and soft tissue infections, one presenting with localized disease and the other with disseminated involvement. One case had a specific exposure to fish-related activities, a risk factor more commonly associated with Mycobacterium marinum infections rather than M. chelonae. Results: One of the cases involved osteomyelitis and tenosynovitis which are rare presentations of M. chelonae infection. While the limbs are the most commonly affected sites in disseminated M. chelonae infections, involvement of the lower extremities, as seen in one of our cases, is rarely reported. Treatment posed challenges due to antibiotic resistance and patient tolerance. However, in both cases where follow up was possible, prolonged multi-drug therapy led to complete resolution of the lesions. Conclusions: These cases highlight the importance of considering M. chelonae in chronic skin and soft tissue infections, especially in patient with relevant exposures or immunosupression. Uncommon presentations require a high index of suspicion. Given the challenges of treatment resistance and patient tolerance, prolonged multi-drug therapy remains essential for successful outcomes.
Collapse
Affiliation(s)
- Libardo Rueda Prada
- Division of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Tatjana Gavrancic
- Division of Hospital Internal Medicine, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | - Ravi V. Durvasula
- Division of Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
10
|
Smytheman T, Pecor T, Miller DE, Ferede D, Kaur S, Harband MH, Abdelaal HFM, Guerrero-Bustamante CA, Freeman KG, Harrington WE, Frenkel LM, Hatfull GF, Coler RN, Larsen SE. Evaluation of host immune responses to Mycobacteriophage Fionnbharth by route of delivery. Virol J 2025; 22:14. [PMID: 39833928 PMCID: PMC11748884 DOI: 10.1186/s12985-024-02552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025] Open
Abstract
For much of the last decade, tuberculosis (TB) was the leading cause of mortality due to an infectious pathogen (Mycobacterium tuberculosis, M.tb). Approximately 1.3 million deaths in 2023 worldwide were attributed to TB disease. Focused intervention strategies to block transmission would significantly reduce the global health burden of TB. Mycobacteriophages (phages) are a sorely underutilized biologic therapy for the pathogen M.tb, and here we aimed to address outstanding questions about their utility for clinical applications. We aimed to determine the impact of repeated mucosal or intravenous (IV) delivery of representative anti-M.tb phage FionnbharthΔ45Δ47 (Fionnbharth) in a preclinical mouse model. In addition, we specifically sought to understand which route induced anti-phage antibodies, which may reduce the long-term impact of phage therapy. C57BL/6 mice were dosed weekly for 6 weeks by either route and serum and bronchoalveolar lavage fluid (BALf) were evaluated for anti-phage humoral responses by ELISA. We found that aerosol delivery disperses phage across all lung lobes where M.tb is also found after experimental infection by the same route. Repeated aerosol delivery was well tolerated and did not induce robust neutralizing humoral immunity. In contrast, Mice receiving IV phage developed increasing magnitude and neutralizing total IgG and IgA responses over time. To determine whether pre-treatment environmental exposure to Fionnbharth-like phages could induce antibody responses that are potentially neutralizing, ~ 500 human plasma samples from normal donors were evaluated by ELISA. We observed that 5% of samples had antibodies to Fionnbharth (with end point titers > 10- 3 dilution), although none were neutralizing. Furthermore, we found that highly-purified phage preparations did not activate mouse or human derived toll like receptor (TLR) 4 or TLR9 in HEKblue reporter assays. These data together support using Fionnbharth in anti-M.tb therapy phage cocktail strategies and that aerosol delivery should be prioritized for further efficacy testing.
Collapse
Affiliation(s)
- Thomas Smytheman
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Tiffany Pecor
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Dana E Miller
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Debora Ferede
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Suhavi Kaur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Matthew H Harband
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Hazem F M Abdelaal
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whitney E Harrington
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Lisa M Frenkel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rhea N Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
| | - Sasha E Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| |
Collapse
|
11
|
Zaychikova M, Malakhova M, Bespiatykh D, Kornienko M, Klimina K, Strokach A, Gorodnichev R, German A, Fursov M, Bagrov D, Vnukova A, Gracheva A, Kazyulina A, Shleeva M, Shitikov E. Vic9 mycobacteriophage: the first subcluster B2 phage isolated in Russia. Front Microbiol 2025; 15:1513081. [PMID: 39877753 PMCID: PMC11772480 DOI: 10.3389/fmicb.2024.1513081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/12/2024] [Indexed: 01/31/2025] Open
Abstract
Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains. In this study, we report the isolation and characterization of a new mycobacteriophage, Vic9, using Mycobacterium smegmatis mc (2)155 as the host strain. Vic9 has been classified within the B2 subcluster of the B cluster. Morphological analysis revealed that Vic9 has a structure typical of siphophages from this subcluster and forms characteristic plaques. The phage adsorbs onto host strain cells within 30 min, and according to one-step growth experiments, its latent period lasts about 90 min, followed by a growth period of 150 min, with an average yield of approximately 68 phage particles per infected cell. In host range experiments, Vic9 efficiently lysed the host strain and also exhibited the ability to lyse M. tuberculosis H37Rv, albeit with a low efficiency of plating (EOP ≈ 2 × 10-5), a typical feature of B2 phages. No lysis was observed in other tested mycobacterial species. The genome of Vic9 comprises 67,543 bp of double-stranded DNA and encodes 89 open reading frames. Our analysis revealed unique features in Vic9, despite its close relationship to other B2 subcluster phages, highlighting its distinct characteristics even among closely related phages. Particularly noteworthy was the discovery of a distinct 435 bp sequence within the gene cluster responsible for queuosine biosynthesis, as well as a recombination event within the structural cassette region (Vic_0033-Vic_0035) among members of the B1, B2, and B3 subclusters. These genetic features are of interest for further research, as they may reveal new mechanisms of phage-bacteria interactions and their potential for developing novel phage therapy methods.
Collapse
Affiliation(s)
- Marina Zaychikova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Maja Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Maria Kornienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Ksenia Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Aleksandra Strokach
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Roman Gorodnichev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| | - Arina German
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Mikhail Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Dmitry Bagrov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Vnukova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Gracheva
- Federal State Budgetary Institution “National Medical Research Center of Phtisiopulmonology and Infectious Diseases” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia Kazyulina
- Federal State Budgetary Institution “National Medical Research Center of Phtisiopulmonology and Infectious Diseases” of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Margarita Shleeva
- Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency Medicine, Moscow, Russia
| |
Collapse
|
12
|
Washizaki A, Sakiyama A, Ando H. Phage-specific antibodies: are they a hurdle for the success of phage therapy? Essays Biochem 2024; 68:633-644. [PMID: 39254211 PMCID: PMC11652166 DOI: 10.1042/ebc20240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Phage therapy has attracted attention again owing to the increasing number of drug-resistant bacteria. Although the efficacy of phage therapy has been reported, numerous studies have indicated that the generation of phage-specific antibodies resulting from phage administration might have an impact on clinical outcomes. Phage-specific antibodies promote phage uptake by macrophages and contribute to their rapid clearance from the body. In addition, phage-specific neutralizing antibodies bind to the phages and diminish their antibacterial activity. Thus, phage-specific antibody production and its role in phage therapy have been analyzed both in vitro and in vivo. Strategies for prolonging the blood circulation time of phages have also been investigated. However, despite these efforts, the results of clinical trials are still inconsistent, and a consensus on whether phage-specific antibodies influence clinical outcomes has not yet been reached. In this review, we summarize the phage-specific antibody production during phage therapy. In addition, we introduce recently performed clinical trials and discuss whether phage-specific antibodies affect clinical outcomes and what we can do to further improve phage therapy regimens.
Collapse
Affiliation(s)
- Ayaka Washizaki
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Arata Sakiyama
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
| | - Hiroki Ando
- Laboratory of Phage Biologics, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Institute for Advanced Study, Gifu University, 1-1 Yanagido, Gifu City, Gifu 501-1194, Japan
- Venture Unit Engineered Phage Therapy, Discovery Accelerator, Astellas Pharma Inc., Tsukuba City, Ibaraki 305-8585, Japan
| |
Collapse
|
13
|
Pye HV, Krishnamurthi R, Cook R, Adriaenssens EM. Phage diversity in One Health. Essays Biochem 2024; 68:607-619. [PMID: 39475220 PMCID: PMC12055037 DOI: 10.1042/ebc20240012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 12/18/2024]
Abstract
One Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity. Our review shows that 98% of phages applied in One Health belong to the class Caudoviricetes, compared to 85% of sequenced phages belonging to this class. Only three RNA phages from the realm Riboviria have been used in environmental biocontrol and human therapy to date. This emphasises the lack in diversity of phages used commercially and for phage therapy, which may be due to biases in the methods used to both isolate phages and select them for applications. The future of phages as biocontrol agents and therapeutics will depend on the ability to isolate genetically novel dsDNA phages, as well as in improving efforts to isolate ssDNA and RNA phages, as their potential is currently undervalued. Phages have the potential to reduce the burden of antimicrobial resistance, however, we are underutilising the vast diversity of phages present in nature. More research into phage genomics and alternative culture methods is required to fully understand the complex relationships between phages, their hosts, and other organisms in the environment to achieve optimal health for all.
Collapse
Affiliation(s)
- Hannah V Pye
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Revathy Krishnamurthi
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Ryan Cook
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| | - Evelien M Adriaenssens
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
- Centre for Microbial Interactions, Norwich Research Park, Norwich, NR4 7UG, UK
| |
Collapse
|
14
|
Cristinziano M, Shashkina E, Chen L, Xiao J, Miller MB, Doligalski C, Coakley R, Lobo LJ, Footer B, Bartelt L, Abad L, Russell DA, Garlena R, Lauer MJ, Viland M, Kaganovsky A, Mowry E, Jacobs-Sera D, van Duin D, Kreiswirth BN, Hatfull GF, Friedland A. Use of epigenetically modified bacteriophage and dual beta-lactams to treat a Mycobacterium abscessus sternal wound infection. Nat Commun 2024; 15:10360. [PMID: 39609405 PMCID: PMC11604996 DOI: 10.1038/s41467-024-54666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Nontuberculous mycobacterium (NTM) infections are challenging to manage and are frequently non-responsive to aggressive but poorly-tolerated antibiotic therapies. Immunosuppressed lung transplant patients are susceptible to NTM infections and poor patient outcomes are common. Bacteriophages present an alternative treatment option and are associated with favorable clinical outcomes. Similarly, dual beta-lactam combinations show promise in vitro, but clinical use is sparse. We report here a patient with an uncontrolled Mycobacterium abscessus infection following a bilateral lung transplant and failed antibiotic therapy. Both smooth and rough colony morphotype strains were initially present, but treatment with two phages that kill the rough strain - including epigenetic-modification to overcome restriction - resulted in isolation of only the smooth strain. The rough and smooth strains have similar antibiotic susceptibilities suggesting that the phages specifically eliminated the rough strain. Dual beta-lactam therapy with meropenem and ceftazidime-avibactam provided further clinical improvement, and the phages act synergistically with meropenem in vitro.
Collapse
Affiliation(s)
- Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elena Shashkina
- Center for Discovery and Innovation, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Liang Chen
- Center for Discovery and Innovation, Nutley, NJ, USA
- Hackensack Meridian School of Medicine, Nutley, NJ, USA
| | - Jaime Xiao
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Melissa B Miller
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Christina Doligalski
- University of North Carolina School of Medicine, Chapel Hill, NC, USA
- University of North Carolina School of Pharmacy, Chapel Hill, NC, USA
| | - Raymond Coakley
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Leonard Jason Lobo
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Brent Footer
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Luther Bartelt
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maggie Viland
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ari Kaganovsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Mowry
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA
| | - Barry N Kreiswirth
- Center for Discovery and Innovation, Nutley, NJ, USA.
- Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Anne Friedland
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
15
|
Tsoumbris PR, Vincent RM, Jaschke PR. Designing a simple and efficient phage biocontainment system using the amber suppressor initiator tRNA. Arch Virol 2024; 169:248. [PMID: 39557717 DOI: 10.1007/s00705-024-06170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 11/20/2024]
Abstract
Multidrug-resistant infections are becoming increasingly prevalent worldwide. One of the fastest-emerging alternative and adjuvant therapies being proposed is phage therapy. Naturally isolated phages are used in the vast majority of phage therapy treatments today. Engineered phages are being developed to enhance the effectiveness of phage therapy, but concerns over their potential escape remain a salient issue. To address this problem, we designed a biocontained phage system based on conditional replication using amber stop codon suppression. This system can be easily installed on any natural phage with a known genome sequence. To test the system, we individually mutated the start codons of three essential capsid genes in phage φX174 to the amber stop codon (UAG). These phages were able to efficiently infect host cells expressing the amber initiator tRNA, which suppresses the amber stop codon and initiates translation at TAG stop codons. The amber phage mutants were also able to successfully infect host cells and reduce their population on solid agar and liquid culture but could not produce infectious particles in the absence of the amber initiator tRNA or complementing capsid gene. We did not detect any growth-inhibiting effects on E. coli strains known to lack a receptor for φX174 and we showed that engineered phages have a limited propensity for reversion. The approach outlined here may be useful to control engineered phage replication in both the lab and clinic.
Collapse
Affiliation(s)
- Pamela R Tsoumbris
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Russel M Vincent
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Paul R Jaschke
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia.
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia.
| |
Collapse
|
16
|
Liping Z, Sheng Y, Yinhang W, Yifei S, Jiaqun H, Xiaojian Y, Shuwen H, Jing Z. Comprehensive retrospect and future perspective on bacteriophage and cancer. Virol J 2024; 21:278. [PMID: 39501333 PMCID: PMC11539450 DOI: 10.1186/s12985-024-02553-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Researchers gradually focus on the relationship between phage and cancer. OBJECTIVE To summarize the research hotspots and trends in the field of bacteriophage and cancer. METHODS The downloaded articles were searched from the Web of Science Core Collection database from January 2008 to June 2023. Bibliometric analysis was carried out through CiteSpace, including the analysis of cooperative networks (country/region, institution, and author), co-citations of references, and key words.Visual analysis of three topics, including gut phage, phage and bacteria, and phage and tumor, was conducted. RESULTS Overall, the United States and China have the most phage-related research. In terms of gut phage, the future research directions are "gut microbiome", "database" and "microbiota". The bursting citations explored the phage-dominated viral genome to discover its diversity and individual specificity and investigated associations among bacteriome, metabolome, and virome. In terms of phage and bacteria, "lipopolysaccharide" and "microbiota" are future research directions. Future research hotspots should mainly concentrate on the further exploration and application of phage properties. As for phages and tumors, the future research directions should be "colorectal cancer", "protein" and "phage therapy". Future directions are likely to focus on the research on phages in cancer mechanisms, cancer diagnosis, and cancer treatment combined with genetic engineering techniques. CONCLUSION Phage therapy would become a hot spot and research direction of tumor and phage research, and the relationship between phage and tumor, especially colorectal cancer (CRC), is expected to be further explored.
Collapse
Affiliation(s)
- Zhong Liping
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Sheng
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Wu Yinhang
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Song Yifei
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Huang Jiaqun
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Yu Xiaojian
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China
| | - Han Shuwen
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
- ASIR (Institute - Association of intelligent systems and robotics), 14B rue Henri Sainte Claire Deville, 92500, Rueil-Malmaison, France.
| | - Zhuang Jing
- Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang Province, China.
- Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, Zhejiang Province, China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, Huzhou, 313000, Zhejiang Province, China.
| |
Collapse
|
17
|
Rubino I, Guerrero-Bustamante CA, Harrison M, Co S, Tetreau I, Ordoubadi M, Larsen SE, Coler RN, Vehring R, Hatfull GF, Sauvageau D. Comparative study on the virulence of mycobacteriophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619922. [PMID: 39554140 PMCID: PMC11565895 DOI: 10.1101/2024.10.23.619922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The global tuberculosis (TB) epidemic affected 10 million people and caused 1.3 million deaths in 2022 alone. Multidrug-resistant TB is successfully treated in less than 60% of cases by long, expensive and aggressive treatments. Mycobacteriophages, viruses that can infect bacteria such as Mycobacterium tuberculosis-the species responsible for TB, have the potential to redefine TB prevention and treatments. However, the development of phage-based products necessitates the assessment of numerous parameters, including virulence and adsorption, to ensure their performance and quality. In this work, we characterized the virulence of three different mycobacteriophages (Fionnbharth, Muddy and D29), alone and as cocktails, against a TB model host (Mycobacterium smegmatis) under planktonic and early-stage biofilm growth conditions. Phage D29 and cocktails containing D29 had the highest virulence under all conditions. Interestingly, phages Fionnbharth and Muddy and their combination showed higher virulence against early-stage biofilm than against the planktonic phenotype. Adsorption assays indicated that all three phages had lower adsorption efficiencies on the early-stage biofilm phenotype than on the planktonic one, suggesting a reduced availability of receptors in the former. Given that, despite these lower adsorption efficiencies, the virulence of the phages and phage cocktails was either unchanged or higher against the early-stage biofilm, this phenotype must display properties that are favorable to other steps of the infection process. These results inform us on the dynamics of mycobacteriophage infections, alone and in cocktail formulations, under different host growth conditions, and serve as a basis for the development of phage products targeting mycobacteria biofilms.
Collapse
Affiliation(s)
- Ilaria Rubino
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
- Département de Génie Chimique et de Génie Biotechnologique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Melissa Harrison
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sheila Co
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Isobel Tetreau
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Mani Ordoubadi
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington School of Medicine, Department of Pediatrics, Seattle, WA, USA
- University of Washington, Department of Global Health, Seattle, WA, USA
| | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania, USA
| | - Dominic Sauvageau
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Gangakhedkar R, Jain V. Elucidating the molecular properties and anti-mycobacterial activity of cysteine peptidase domain of D29 mycobacteriophage endolysin. J Virol 2024; 98:e0132824. [PMID: 39287392 PMCID: PMC11494882 DOI: 10.1128/jvi.01328-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Emergence of antibiotic resistance in pathogenic Mycobacterium tuberculosis (Mtb) has elevated tuberculosis to a serious global threat, necessitating alternate solutions for its eradication. D29 mycobacteriophage can infect and kill several mycobacterial species including Mtb. It encodes an endolysin LysA to hydrolyze host bacteria peptidoglycan for progeny release. We previously showed that out of the two catalytically active domains of LysA [N-terminal domain (NTD) and lysozyme-like domain], NTD, when ectopically expressed in Mycobacterium smegmatis (Msm), is able to kill the bacterium nearly as efficiently as full-length LysA. Here, we dissected the functioning of NTD to develop it as a phage-derived small molecule anti-mycobacterial therapeutic. We performed a large-scale site-directed mutagenesis of the conserved residues in NTD and examined its structure, stability, and function using molecular dynamic simulations coupled with biophysical and biochemical experiments. Our data show that NTD functions as a putative cysteine peptidase with a catalytic triad composed of Cys41, His112, and Glu137, acting as nucleophile, base, and acid, respectively, and showing characteristics similar to the NlpC/P60 family of cysteine peptidases. Additionally, our peptidoglycan hydrolysis assays suggested that NTD hydrolyzes only mycobacterial peptidoglycan and does not act on Gram-positive and Gram-negative bacterial peptidoglycans. More importantly, the combined activity of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills Msm in vitro and exhibits disruption of pre-formed mycobacterial biofilm. We additionally show that NTD treatment increases the permeability of antibiotics in Msm, which reduces the minimum inhibitory concentration of the antibiotics. Collectively, we present NTD as a promising phage-derived therapeutic against mycobacteria.IMPORTANCEMycobacteriophages are the viruses that use mycobacteria as host for their progeny production and, in the process, kill them. Mycobacteriophages are, therefore, considered as promising alternatives to antibiotics for killing pathogenic Mycobacterium tuberculosis. The endolysin LysA produced by mycobacteriophage D29 plays an important role in host cell lysis and virion release. Our work presented here highlights the functioning of LysA's N-terminal catalytic domain (NTD) in order to develop it as phage-derived small molecule therapeutics. We show that combined treatment of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills M. smegmatis, shows synergism by reducing the minimum inhibitory concentration of these antibiotics, and exhibits disruption of pre-formed mature biofilm. These outcomes and our detailed biochemical and biophysical dissection of the protein further pave the way toward engineering and development of NTD as a promising therapeutic against mycobacterial infections such as tuberculosis.
Collapse
Affiliation(s)
- Rutuja Gangakhedkar
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
19
|
Kukla R, Nouzovska K, Ryskova L, Rozsivalova P, Pavlik I, Bostik P. Successful treatment of Keratitis caused by Mycobacterium chelonae and an overview of previous cases in Europe. Ann Clin Microbiol Antimicrob 2024; 23:92. [PMID: 39385246 PMCID: PMC11465828 DOI: 10.1186/s12941-024-00752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
INTRODUCTION AND PURPOSE Mycobacterium (M.) chelonae is responsible for a half of relatively rare nontuberculous mycobacteria (NTM) keratitis. We report a case of M. chelonae keratitis in a woman following sclerocorneal suture extraction after cataract surgery. RESULTS A 70-year-old woman presented with a red eye and corneal infiltration of her left eye six weeks following sclerocorneal suture extraction after an elective cataract surgery in another institute. She complained of a sharp, cutting pain and photophobia. Since initial corneal scrapes and conjunctival swabs proved no pathogen using culture and PCR methods, non-specific antibiotics and antifungal agents were administered. As keratitis was complicated by an inflammation in the anterior chamber and vitreous, samples of the vitreous fluid were sent for microbiologic examination. DNA of Epstein-Barr virus (EBV) was repeatedly detected. Since the intrastromal abscess had formed, corneal re-scrapings were performed and M. chelonae was detected using culture, MALDI-TOF MS and PCR methods. Therapy was changed to a combination of oral and topical clarithromycin, intravitreal, topical and intracameral amikacin, and oral and topical moxifloxacin. The successful therapy led to stabilization. The optical penetrating keratoplasty was performed and no signs of the infection recurrence were found. CONCLUSIONS The diagnosis of nontuberculous mycobacterial keratitis is difficult and often delayed. An aggressive and prolonged antimicrobial therapy should include systemic and topical antibiotics. Surgical intervention in the form of corneal transplantation may be required in the active and nonresponsive infection. In the presented case this was necessary for visual rehabilitation due to scarring.
Collapse
Affiliation(s)
- Rudolf Kukla
- Institute of Clinical Microbiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Institute of Clinical Microbiology, University Hospital, Sokolska 581, Hradec Kralove, 50005, Czech Republic
| | - Katerina Nouzovska
- Department of Ophthalmology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Department of Ophthalmology, University Hospital, Sokolska 581, Hradec Kralove, 50005, Czech Republic
| | - Lenka Ryskova
- Institute of Clinical Microbiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Institute of Clinical Microbiology, University Hospital, Sokolska 581, Hradec Kralove, 50005, Czech Republic
| | - Petra Rozsivalova
- Department of Social and Clinical Pharmacy, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- Hospital Pharmacy, University Hospital, Sokolska 581, Hradec Kralove, 50005, Czech Republic
| | - Ivo Pavlik
- Faculty of Regional Development and International Studies, Mendel University in Brno, tr. Generala Piky 7, Brno, 61300, Czech Republic
| | - Pavel Bostik
- Institute of Clinical Microbiology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
- Institute of Clinical Microbiology, University Hospital, Sokolska 581, Hradec Kralove, 50005, Czech Republic.
| |
Collapse
|
20
|
Bonacorsi A, Ferretti C, Di Luca M, Rindi L. Mycobacteriophages and Their Applications. Antibiotics (Basel) 2024; 13:926. [PMID: 39452193 PMCID: PMC11504140 DOI: 10.3390/antibiotics13100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Mycobacterial infections caused by tuberculous and non-tuberculous strains pose significant treatment challenges, especially among immunocompromised patients. Conventional antibiotic therapies often fail due to bacterial resistance, highlighting the need for alternative therapeutic strategies. Mycobacteriophages are emerging as promising candidates for the treatment of mycobacteria. This review comprehensively explores phage isolation, characterization, and clinical applications. Despite the need for more extensive in vitro and in vivo studies, existing evidence shows their efficacy against both sensitive and antibiotic-resistant mycobacterial strains, even under disease-mimicking conditions, particularly when used in cocktails to minimize resistance development. Mycobacteriophages can be engineered and evolved to overcome limitations associated with lysogeny and narrow host range. Furthermore, they exhibit activity in ex vivo and in vivo infection models, successfully targeting mycobacteria residing within macrophages. Delivery methods such as bacterial and liposomal vectors facilitate their entry into human cells. Considering the potential for phage-treatment-induced bacterial resistance, as described in this review, the combination of mycobacteriophages with antibiotics shows efficacy in countering mycobacterial growth, both in the laboratory setting and in animal models. Interestingly, phage-encoded products can potentiate the activity of relevant antibiotics. Finally, the application of phages in different compassionate cases is reported. The positive outcomes indicate that phage therapy represents a promising solution for the treatment of antibiotic-resistant mycobacteria.
Collapse
Affiliation(s)
| | - Caterina Ferretti
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.F.); (L.R.)
| | | | - Laura Rindi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy; (C.F.); (L.R.)
| |
Collapse
|
21
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
22
|
Freeman KG, Lauer MJ, Jiang D, Roscher J, Sandler S, Mercado N, Fryberger R, Kovalski J, Lutz AR, Hughes LE, VanDemark AP, Hatfull GF. Characterization of mycobacteriophage Adephagia cytotoxic proteins. G3 (BETHESDA, MD.) 2024; 14:jkae166. [PMID: 39031590 PMCID: PMC11373665 DOI: 10.1093/g3journal/jkae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 07/22/2024]
Abstract
Mycobacterium phage Adephagia is a cluster K phage that infects Mycobacterium smegmatis and some strains of Mycobacterium pathogens. Adephagia has a siphoviral virion morphology and is temperate. Its genome is 59,646 bp long and codes for one tRNA gene and 94 predicted protein-coding genes; most genes not associated with virion structure and assembly are functionally ill-defined. Here, we determined the Adephagia gene expression patterns in lytic and lysogenic growth and used structural predictions to assign additional gene functions. We characterized 66 nonstructural genes for their toxic phenotypes when expressed in M. smegmatis, and we show that 25 of these (38%) are either toxic or strongly inhibit growth, resulting in either reduced viability or small colony sizes. Some of these genes are predicted to be involved in DNA metabolism or regulation, but others are of unknown function. We also characterize the HicAB-like toxin-antitoxin (TA) system encoded by Adephagia (gp91 and gp90, respectively) and show that the gp90 antitoxin is lysogenically expressed, abrogates gp91 toxicity, and is required for normal lytic and lysogenic growth.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Danny Jiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer Roscher
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sterling Sandler
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Nicholas Mercado
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Robert Fryberger
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julia Kovalski
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Abigail R Lutz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Lee E Hughes
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
23
|
Jeyasankar S, Kalapala YC, Sharma PR, Agarwal R. Antibacterial efficacy of mycobacteriophages against virulent Mycobacterium tuberculosis. BMC Microbiol 2024; 24:320. [PMID: 39227770 PMCID: PMC11373169 DOI: 10.1186/s12866-024-03474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Tuberculosis (TB) remains a major global health concern, with drug-resistant strains posing a significant challenge to effective treatment. Bacteriophage (phage) therapy has emerged as a potential alternative to combat antibiotic resistance. In this study, we investigated the efficacy of widely used mycobacteriophages (D29, TM4, DS6A) against Mycobacterium tuberculosis (M. tuberculosis) under pathophysiological conditions associated with TB, such as low pH and hypoxia. We found that even at low multiplicity of infection (MOI), mycobacteriophages effectively infected M. tuberculosis, got rapidly amplified, and lysed M. tuberculosis, demonstrating their potential as therapeutic agents. Furthermore, we observed a novel phage tolerance mechanism with bacteria forming aggregates after several days of phage treatment. These aggregates were enriched with biofilm components and metabolically active bacteria. However, no phage tolerance was observed upon treatment with the three-phage mixture, highlighting the dynamic interplay between phages and bacteria and emphasizing the importance of phage cocktails. We also observed that phages were effective in lysing bacteria even under low pH and low oxygen concentrations as well as antibiotic-resistant bacteria. Our results provide key insights into phage infection of slow-growing bacteria and suggest that mycobacteriophages can effectively eliminate M. tuberculosis in complex pathophysiological environments like hypoxia and acidic pH. These results can aid in developing targeted phage-based therapies to combat antibiotic-resistant mycobacterial infections.
Collapse
Affiliation(s)
| | | | - Pallavi Raj Sharma
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
24
|
Heller DM, Sivanathan V, Asai DJ, Hatfull GF. SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education. Annu Rev Virol 2024; 11:1-20. [PMID: 38684129 DOI: 10.1146/annurev-virology-113023-110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of Mycobacterium infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.
Collapse
Affiliation(s)
- Danielle M Heller
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Viknesh Sivanathan
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David J Asai
- Center for the Advancement of Science Leadership and Culture, Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| |
Collapse
|
25
|
Fernández‐García L, Kirigo J, Huelgas‐Méndez D, Benedik MJ, Tomás M, García‐Contreras R, Wood TK. Phages produce persisters. Microb Biotechnol 2024; 17:e14543. [PMID: 39096350 PMCID: PMC11297538 DOI: 10.1111/1751-7915.14543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024] Open
Abstract
Arguably, the greatest threat to bacteria is phages. It is often assumed that those bacteria that escape phage infection have mutated or utilized phage-defence systems; however, another possibility is that a subpopulation forms the dormant persister state in a manner similar to that demonstrated for bacterial cells undergoing nutritive, oxidative, and antibiotic stress. Persister cells do not undergo mutation and survive lethal conditions by ceasing growth transiently. Slower growth and dormancy play a key physiological role as they allow host phage defence systems more time to clear the phage infection. Here, we investigated how bacteria survive lytic phage infection by isolating surviving cells from the plaques of T2, T4, and lambda (cI mutant) virulent phages and sequencing their genomes. We found that bacteria in plaques can escape phage attack both by mutation (i.e. become resistant) and without mutation (i.e. become persistent). Specifically, whereas T4-resistant and lambda-resistant bacteria with over a 100,000-fold less sensitivity were isolated from plaques with obvious genetic mutations (e.g. causing mucoidy), cells were also found after T2 infection that undergo no significant mutation, retain wild-type phage sensitivity, and survive lethal doses of antibiotics. Corroborating this, adding T2 phage to persister cells resulted in 137,000-fold more survival compared to that of addition to exponentially growing cells. Furthermore, our results seem general in that phage treatments with Klebsiella pneumonia and Pseudomonas aeruginosa also generated persister cells. Hence, along with resistant strains, bacteria also form persister cells during phage infection.
Collapse
Affiliation(s)
- Laura Fernández‐García
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC)University of A Coruña (UDC)A CoruñaSpain
| | - Joy Kirigo
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Daniel Huelgas‐Méndez
- Department of Microbiology and Parasitology, Faculty of MedicineNational Autonomous University of MexicoMexico CityMexico
| | | | - María Tomás
- Microbiology Translational and Multidisciplinary (MicroTM)‐Research Institute Biomedical A Coruña (INIBIC) and Microbiology Department of Hospital A Coruña (CHUAC)University of A Coruña (UDC)A CoruñaSpain
| | - Rodolfo García‐Contreras
- Department of Microbiology and Parasitology, Faculty of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Thomas K. Wood
- Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
26
|
Li X, Ding W, Li Z, Yan Y, Tong Y, Xu J, Li M. vB_CacS-HV1 as a Novel Pahexavirus Bacteriophage with Lytic and Anti-Biofilm Potential against Cutibacterium acnes. Microorganisms 2024; 12:1566. [PMID: 39203407 PMCID: PMC11356600 DOI: 10.3390/microorganisms12081566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024] Open
Abstract
Acne vulgaris is a prevalent chronic inflammatory skin disease, most common in adolescence and often persisting into adulthood, leading to severe physical and psychological impacts. The primary etiological factor is Cutibacterium acnes infection. The overuse of antibiotics for acne treatment over recent decades has led to the emergence of antibiotic-resistant Cutibacterium acnes strains. In this study, we isolated and characterized a novel bacteriophage, vB_CacS-HV1, from saliva samples. The average nucleotide identity analysis indicated that vB_CacS-HV1 is a new species within the Pahexavirus genus, enhancing our understanding of this underexplored group. vB_CacS-HV1 demonstrates favorable stability, lacks potentially harmful genetic elements (virulence factors, antibiotic resistance genes, transposons, and integrases), and exhibits potent lytic and anti-biofilm activities against Cutibacterium acnes at low concentrations. These advantages highlight vB_CacS-HV1's potential as a promising antibacterial agent that could possibly be complementary to antibiotics or other treatments for acne therapy.
Collapse
Affiliation(s)
- Xu Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102401, China; (X.L.); (W.D.); (Z.L.); (Y.Y.)
| | - Wenyan Ding
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102401, China; (X.L.); (W.D.); (Z.L.); (Y.Y.)
| | - Zicheng Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102401, China; (X.L.); (W.D.); (Z.L.); (Y.Y.)
| | - Yi Yan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102401, China; (X.L.); (W.D.); (Z.L.); (Y.Y.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Jialiang Xu
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 102401, China; (X.L.); (W.D.); (Z.L.); (Y.Y.)
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China;
| |
Collapse
|
27
|
Ulrich L, Steiner LX, Giez C, Lachnit T. Optimizing bacteriophage treatment of resistant Pseudomonas. mSphere 2024; 9:e0070723. [PMID: 38934592 PMCID: PMC11288017 DOI: 10.1128/msphere.00707-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/15/2024] [Indexed: 06/28/2024] Open
Abstract
Phage therapy is increasing in relevance as an alternative treatment to combat antibiotic resistant bacteria. Phage cocktails are the state-of-the-art method of administering phages in clinical settings, preferred over monophage treatment because of their ability to eliminate multiple bacterial strains and reduce resistance formation. In our study, we compare monophage applications and phage cocktails to our chosen method of phage sequential treatments. To do so, we isolated four novel bacteriophages capable of infecting Pseudomonas alcaligenes T3, a close relative of P. aeruginosa, and characterized them using sequencing and transmission electron microscopy. While investigating monophage treatments, we observed that different phage concentrations had a strong impact on the timing and amount of resistance formation. When using phage cocktails, we observed that P. alcaligenes were capable of forming resistance in the same timespan it took them to become resistant to single phages. We isolated mutants resistant to each single phage as well as mutants exposed to phage cocktails, resulting in bacteria resistant to all four phages at once. Sequencing these mutants showed that different treatments yielded unique single nucleotide polymorphism mutation patterns. In order to combat resistance formation, we added phages one by one in intervals of 24 h, thus managing to delay resistance development and keeping bacterial growth significantly lower compared to phage cocktails.IMPORTANCEWHO declared antimicrobial resistance a top threat to global health; while antibiotics have stood at the forefront in the fight against bacterial infection, the increasing number of multidrug-resistant bacteria highlights a need to branch out in order to address the threat of antimicrobial resistance. Bacteriophages, viruses solely infecting bacteria, could present a solution due to their abundance, versatility, and adaptability. For this study, we isolated new phages infecting a fast-mutating Pseudomonas alcaligenes strain capable of forming resistance within 30 h. By using a sequential treatment approach of adding one phage after another, we were able to curb bacterial growth significantly more compared to state-of-the-art phage cocktails.
Collapse
Affiliation(s)
- Laura Ulrich
- Zoological Institute, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Leon X. Steiner
- RD3 Marine Ecology, RU Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Christoph Giez
- Zoological Institute, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts Universität zu Kiel, Kiel, Germany
| |
Collapse
|
28
|
Kakkar A, Kandwal G, Nayak T, Jaiswal LK, Srivastava A, Gupta A. Engineered bacteriophages: A panacea against pathogenic and drug resistant bacteria. Heliyon 2024; 10:e34333. [PMID: 39100447 PMCID: PMC11295868 DOI: 10.1016/j.heliyon.2024.e34333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Antimicrobial resistance (AMR) is a major global concern; antibiotics and other regular treatment methods have failed to overcome the increasing number of infectious diseases. Bacteriophages (phages) are viruses that specifically target/kill bacterial hosts without affecting other human microbiome. Phage therapy provides optimism in the current global healthcare scenario with a long history of its applications in humans that has now reached various clinical trials. Phages in clinical trials have specific requirements of being exclusively lytic, free from toxic genes with an enhanced host range that adds an advantage to this requisite. This review explains in detail the various phage engineering methods and their potential applications in therapy. To make phages more efficient, engineering has been attempted using techniques like conventional homologous recombination, Bacteriophage Recombineering of Electroporated DNA (BRED), clustered regularly interspaced short palindromic repeats (CRISPR)-Cas, CRISPY-BRED/Bacteriophage Recombineering with Infectious Particles (BRIP), chemically accelerated viral evolution (CAVE), and phage genome rebooting. Phages are administered in cocktail form in combination with antibiotics, vaccines, and purified proteins, such as endolysins. Thus, phage therapy is proving to be a better alternative for treating life-threatening infections, with more specificity and fewer detrimental consequences.
Collapse
Affiliation(s)
- Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Amit Srivastava
- University of Jyväskylä, Nanoscience Centre, Department of Biological and Environmental Science, 40014, Jyväskylä, Finland
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
29
|
Dartois V, Bonfield TL, Boyce JP, Daley CL, Dick T, Gonzalez-Juarrero M, Gupta S, Kramnik I, Lamichhane G, Laughon BE, Lorè NI, Malcolm KC, Olivier KN, Tuggle KL, Jackson M. Preclinical murine models for the testing of antimicrobials against Mycobacterium abscessus pulmonary infections: Current practices and recommendations. Tuberculosis (Edinb) 2024; 147:102503. [PMID: 38729070 PMCID: PMC11168888 DOI: 10.1016/j.tube.2024.102503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 05/12/2024]
Abstract
Mycobacterium abscessus, a rapidly growing nontuberculous mycobacterium, is increasingly recognized as an important pathogen of the human lung, disproportionally affecting people with cystic fibrosis (CF) and other susceptible individuals with non-CF bronchiectasis and compromised immune functions. M. abscessus infections are extremely difficult to treat due to intrinsic resistance to many antibiotics, including most anti-tuberculous drugs. Current standard-of-care chemotherapy is long, includes multiple oral and parenteral repurposed drugs, and is associated with significant toxicity. The development of more effective oral antibiotics to treat M. abscessus infections has thus emerged as a high priority. While murine models have proven instrumental in predicting the efficacy of therapeutic treatments for M. tuberculosis infections, the preclinical evaluation of drugs against M. abscessus infections has proven more challenging due to the difficulty of establishing a progressive, sustained, pulmonary infection with this pathogen in mice. To address this issue, a series of three workshops were hosted in 2023 by the Cystic Fibrosis Foundation (CFF) and the National Institute of Allergy and Infectious Diseases (NIAID) to review the current murine models of M. abscessus infections, discuss current challenges and identify priorities toward establishing validated and globally harmonized preclinical models. This paper summarizes the key points from these workshops. The hope is that the recommendations that emerged from this exercise will facilitate the implementation of informative murine models of therapeutic efficacy testing across laboratories, improve reproducibility from lab-to-lab and accelerate preclinical-to-clinical translation.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Tracey L Bonfield
- Genetics and Genome Sciences and National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jim P Boyce
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles L Daley
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas Dick
- Center for Discovery and Innovation & Department of Medical Sciences, Hackensack Meridian School of Medicine, Hackensack Meridian Health, Nutley, NJ, USA; Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA
| | - Shashank Gupta
- Laboratory of Chronic Airway Infection, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, USA; Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Igor Kramnik
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA, 02215, USA; Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Gyanu Lamichhane
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Barbara E Laughon
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicola I Lorè
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA; Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kenneth N Olivier
- Department of Medicine, Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, USA; Marsico Lung Institute, Chapel Hill, 27599-7248, NC, USA
| | | | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523-1682, USA.
| |
Collapse
|
30
|
Wu H, Li W, Zeng C, Li J, Wu H. Complete genome of a novel mycobacteriophage WXIN isolated in Wuhan, China. BMC Genom Data 2024; 25:62. [PMID: 38890591 PMCID: PMC11186097 DOI: 10.1186/s12863-024-01244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES The rising of antibiotic resistance has sparked a renewed interest in mycobacteriophage as alternative therapeutic strategies against mycobacterial infections. So far, the vast majority of mycobacteriophages have been isolated using the model species Mycobacterium smegmatis, implying an overwhelming majority of mycobacteriophages in the environment remain uncultured, unclassified, and their specific hosts and infection strategies are still unknown. This study was undertaken to isolate and characterize novel mycobacteriophages targeting Mycobacterium septicum. DATA DESCRIPTION Here a novel mycobacteriophage WXIN against M. septicum was isolated from soil samples in Wuhan, China. Whole genome analysis indicates that the phage genome consists of 115,158 bp with a GC content of 61.9%. Of the 260 putative open reading frames, 46 may be associated with phage packaging, structure, lysis, lysogeny, genome modification/replication, and other functional roles. The limited genome-wide similarity, along with phylogenetic trees constructed based on viral proteome and orthologous genes show that phage WXIN represents a novel cluster distantly related to cluster J mycobacteriophages (genus Omegavirus). Overall, these results provide novel insights into the genomic properties of mycobacteriophages, highlighting the great genetic diversity of mycobacteriophages in relation to their hosts.
Collapse
Affiliation(s)
- Haoming Wu
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Wenxin Li
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Chi Zeng
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jiaxin Li
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huan Wu
- Department of Laboratory Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430019, China
| |
Collapse
|
31
|
Yang F, Labani-Motlagh A, Bohorquez JA, Moreira JD, Ansari D, Patel S, Spagnolo F, Florence J, Vankayalapati A, Sakai T, Sato O, Ikebe M, Vankayalapati R, Dennehy JJ, Samten B, Yi G. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun Biol 2024; 7:294. [PMID: 38461214 PMCID: PMC10924958 DOI: 10.1038/s42003-024-06006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/02/2024] [Indexed: 03/11/2024] Open
Abstract
The continuing emergence of new strains of antibiotic-resistant bacteria has renewed interest in phage therapy; however, there has been limited progress in applying phage therapy to multi-drug resistant Mycobacterium tuberculosis (Mtb) infections. In this study, we show that bacteriophage strains D29 and DS6A can efficiently lyse Mtb H37Rv in 7H10 agar plates. However, only phage DS6A efficiently kills H37Rv in liquid culture and in Mtb-infected human primary macrophages. We further show in subsequent experiments that, after the humanized mice were infected with aerosolized H37Rv, then treated with DS6A intravenously, the DS6A treated mice showed increased body weight and improved pulmonary function relative to control mice. Furthermore, DS6A reduces Mtb load in mouse organs with greater efficacy in the spleen. These results demonstrate the feasibility of developing phage therapy as an effective therapeutic against Mtb infection.
Collapse
Affiliation(s)
- Fan Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Alireza Labani-Motlagh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Center for Discovery and Innovation, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Jose Alejandro Bohorquez
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Josimar Dornelas Moreira
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Sahil Patel
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Fabrizio Spagnolo
- Life Sciences Department, Long Island University Post, Brookville, NY, USA
| | - Jon Florence
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Abhinav Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Tsuyoshi Sakai
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Osamu Sato
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Mitsuo Ikebe
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Ramakrishna Vankayalapati
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, Flushing, NY, USA.
- The Graduate Center of The City University of New York, New York, NY, USA.
| | - Buka Samten
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX, USA.
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX, USA.
| |
Collapse
|
32
|
Cao Yao JC, Garcia Cehic D, Quer J, Méndez JN, Gorrín AD, Hevia LG, Fernández MTT. Complete Genome Sequences of Four Mycobacteriophages Involved in Directed Evolution against Undisputed Mycobacterium abscessus Clinical Strains. Microorganisms 2024; 12:374. [PMID: 38399778 PMCID: PMC10893344 DOI: 10.3390/microorganisms12020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Phage therapy is still in its infancy, but it is increasingly promising as a future alternative for treating antibiotic-resistant bacteria. To investigate the effect of phages on Mycobacterium abscessus complex (MABC), we isolated 113 environmental phages, grown them to high titres, and assayed them on MABC clinical strains through the spot test. Of all the phages, only 16 showed killing activity. Their activity was so temperate to MABC that they could not generate any plaque-forming units (PFUs). The Appelmans method of directed evolution was carried out to evolve these 16 phages into more lytic ones. After only 11 of 30 rounds of evolution, every single clinical strain in our collection, including those that were unsusceptible up to this point, could be lysed by at least one phage. The evolved phages were able to form PFUs on the clinical strains tested. Still, they are temperate at best and require further training. The genomes of one random parental phage and three random evolved phages from Round 13 were sequenced, revealing a diversity of clusters and genes of a variety of evolutionary origins, mostly of unknown function. These complete annotated genomes will be key for future molecular characterisations.
Collapse
Affiliation(s)
- Juan Carlos Cao Yao
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain (A.D.G.); (L.G.H.)
| | - Damir Garcia Cehic
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Hospital Universitari Vall d’Hebron, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.G.C.); (J.Q.)
| | - Josep Quer
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Hospital Universitari Vall d’Hebron, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.G.C.); (J.Q.)
- CIBER de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesús Navas Méndez
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain (A.D.G.); (L.G.H.)
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Alexis Dorta Gorrín
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain (A.D.G.); (L.G.H.)
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Lorena García Hevia
- Department of Molecular Biology and Biomedicine, University of Cantabria, 39011 Santander, Spain (A.D.G.); (L.G.H.)
- Instituto de Investigación Valdecilla (IDIVAL), 39011 Santander, Spain
| | - María Teresa Tórtola Fernández
- Mycobacteria Unit, Clinical Laboratories, Microbiology Service, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
33
|
Schmalstig AA, Wiggins A, Badillo D, Wetzel KS, Hatfull GF, Braunstein M. Bacteriophage infection and killing of intracellular Mycobacterium abscessus. mBio 2024; 15:e0292423. [PMID: 38059609 PMCID: PMC10790704 DOI: 10.1128/mbio.02924-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE As we rapidly approach a post-antibiotic era, bacteriophage (phage) therapy may offer a solution for treating drug-resistant bacteria. Mycobacterium abscessus is an emerging, multidrug-resistant pathogen that causes disease in people with cystic fibrosis, chronic obstructive pulmonary disease, and other underlying lung diseases. M. abscessus can survive inside host cells, a niche that can limit access to antibiotics. As current treatment options for M. abscessus infections often fail, there is an urgent need for alternative therapies. Phage therapy is being used to treat M. abscessus infections as an option of last resort. However, little is known about the ability of phages to kill bacteria in the host environment and specifically in an intracellular environment. Here, we demonstrate the ability of phages to enter mammalian cells and to infect and kill intracellular M. abscessus. These findings support the use of phages to treat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Alan A. Schmalstig
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Andrew Wiggins
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Debbie Badillo
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Katherine S. Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Miriam Braunstein
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
34
|
Fernández-García L, Song S, Kirigo J, Battisti ME, Petersen ME, Tomás M, Wood TK. Toxin/antitoxin systems induce persistence and work in concert with restriction/modification systems to inhibit phage. Microbiol Spectr 2024; 12:e0338823. [PMID: 38054715 PMCID: PMC10783111 DOI: 10.1128/spectrum.03388-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE To date, there are no reports of phage infection-inducing persistence. Therefore, our results are important since we show for the first time that a phage-defense system, the MqsRAC toxin/antitoxin system, allows the host to survive infection by forming persister cells, rather than inducing cell suicide. Moreover, we demonstrate that the MqsRAC system works in concert with restriction/modification systems. These results imply that if phage therapy is to be successful, anti-persister compounds need to be administered along with phages.
Collapse
Affiliation(s)
- Laura Fernández-García
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Sooyeon Song
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Animal Science, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
- Agricultural Convergence Technology, Jeonbuk National University, Jeonju-Si, Jellabuk-Do, South Korea
| | - Joy Kirigo
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Michael E. Battisti
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Maiken E. Petersen
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - María Tomás
- Microbiology Department of Hospital A Coruña (CHUAC), Microbiology Translational and Multidisciplinary (MicroTM)-Research Institute Biomedical A Coruña (INIBIC) and University of A Coruña (UDC), A Coruña, Spain
| | - Thomas K. Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
35
|
Adhikrao PA, Motiram GM, Kumar G. Tackling Nontuberculous Mycobacteria by Repurposable Drugs and Potential Leads from Natural Products. Curr Top Med Chem 2024; 24:1291-1326. [PMID: 38288807 DOI: 10.2174/0115680266276938240108060247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 07/25/2024]
Abstract
Nontuberculous Mycobacteria (NTM) refer to bacteria other than all Mycobacterium species that do not cause tuberculosis or leprosy, excluding the species of the Mycobacterium tuberculosis complex, M. leprae and M. lepromatosis. NTM are ubiquitous and present in soils and natural waters. NTM can survive in a wide range of environmental conditions. The direct inoculum of the NTM from water or other materials is most likely a source of infections. NTMs are responsible for several illnesses, including pulmonary alveolar proteinosis, cystic fibrosis, bronchiectasis, chronic obstructive pneumoconiosis, and pulmonary disease. Recent reports suggest that NTM species have become insensitive to sterilizing agents, antiseptics, and disinfectants. The efficacy of existing anti-NTM regimens is diminishing and has been compromised due to drug resistance. New and recurring cases of multidrug-resistant NTM strains are increasing. Thus, there is an urgent need for ant-NTM regimens with novel modes of action. This review sheds light on the mode of antimicrobial resistance in the NTM species. Then, we discussed the repurposable drugs (antibiotics) that have shown new indications (activity against NTM strains) that could be developed for treating NTM infections. Also, we have summarised recently identified natural leads acting against NTM, which have the potential for treating NTM-associated infections.
Collapse
Affiliation(s)
- Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gudle Mayuri Motiram
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| |
Collapse
|
36
|
Howell AA, Versoza CJ, Pfeifer SP. Computational host range prediction-The good, the bad, and the ugly. Virus Evol 2023; 10:vead083. [PMID: 38361822 PMCID: PMC10868548 DOI: 10.1093/ve/vead083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
The rapid emergence and spread of antimicrobial resistance across the globe have prompted the usage of bacteriophages (i.e. viruses that infect bacteria) in a variety of applications ranging from agriculture to biotechnology and medicine. In order to effectively guide the application of bacteriophages in these multifaceted areas, information about their host ranges-that is the bacterial strains or species that a bacteriophage can successfully infect and kill-is essential. Utilizing sixteen broad-spectrum (polyvalent) bacteriophages with experimentally validated host ranges, we here benchmark the performance of eleven recently developed computational host range prediction tools that provide a promising and highly scalable supplement to traditional, but laborious, experimental procedures. We show that machine- and deep-learning approaches offer the highest levels of accuracy and precision-however, their predominant predictions at the species- or genus-level render them ill-suited for applications outside of an ecosystems metagenomics framework. In contrast, only moderate sensitivity (<80 per cent) could be reached at the strain-level, albeit at low levels of precision (<40 per cent). Taken together, these limitations demonstrate that there remains room for improvement in the active scientific field of in silico host prediction to combat the challenge of guiding experimental designs to identify the most promising bacteriophage candidates for any given application.
Collapse
Affiliation(s)
| | - Cyril J Versoza
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Susanne P Pfeifer
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
37
|
Simpson EA, MacLeod CS, Stacey HJ, Nagy J, Jones JD. The Safety and Efficacy of Phage Therapy for Infections in Cardiac and Peripheral Vascular Surgery: A Systematic Review. Antibiotics (Basel) 2023; 12:1684. [PMID: 38136718 PMCID: PMC10740750 DOI: 10.3390/antibiotics12121684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
New approaches to managing infections in cardiac and peripheral vascular surgery are required to reduce costs to patients and healthcare providers. Bacteriophage (phage) therapy is a promising antimicrobial approach that has been recommended for consideration in antibiotic refractory cases. We systematically reviewed the clinical evidence for phage therapy in vascular surgery to support the unlicensed use of phage therapy and inform future research. Three electronic databases were searched for articles that reported primary data about human phage therapy for infections in cardiac or peripheral vascular surgery. Fourteen reports were eligible for inclusion, representing 40 patients, among which an estimated 70.3% of patients (n = 26/37) achieved clinical resolution. A further 10.8% (n = 4/37) of patients showed improvement and 18.9% (n = 7/37) showed no improvement. Six of the twelve reports that commented on the safety of phage therapy did not report adverse effects. No adverse effects documented in the remaining six reports were directly linked to phages but reflected the presence of manufacturing contaminants or release of bacterial debris following bacterial lysis. The reports identified by this review suggest that appropriately purified phages represent a safe and efficacious treatment option for infections in cardiac and peripheral vascular surgery.
Collapse
Affiliation(s)
- Emily A Simpson
- Medical Microbiology, Ninewells Hospital, NHS Tayside, Dundee DD2 1SG, UK
| | - Caitlin S MacLeod
- Department of Vascular Surgery, Ninewells Hospital, NHS Tayside, Dundee DD2 1SG, UK
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital, Dundee DD2 1SG, UK
| | - Helen J Stacey
- Public Health, Kings Cross Hospital, Clepington Road, NHS Tayside, Dundee DD3 8EA, UK
| | - John Nagy
- Department of Vascular Surgery, Ninewells Hospital, NHS Tayside, Dundee DD2 1SG, UK
| | - Joshua D Jones
- Medical Microbiology, Ninewells Hospital, NHS Tayside, Dundee DD2 1SG, UK
- Infection Medicine, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
38
|
Abad L, Gauthier CH, Florian I, Jacobs-Sera D, Hatfull GF. The heterogenous and diverse population of prophages in Mycobacterium genomes. mSystems 2023; 8:e0044623. [PMID: 37791767 PMCID: PMC10654092 DOI: 10.1128/msystems.00446-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2023] [Indexed: 10/05/2023] Open
Abstract
IMPORTANCE Mycobacterium species include several human pathogens and mycobacteriophages show potential for therapeutic use to control Mycobacterium infections. However, phage infection profiles vary greatly among Mycobacterium abscessus clinical isolates and phage therapies must be personalized for individual patients. Mycobacterium phage susceptibility is likely determined primarily by accessory parts of bacterial genomes, and we have identified the prophage and phage-related genomic regions across sequenced Mycobacterium strains. The prophages are numerous and diverse, especially in M. abscessus genomes, and provide a potentially rich reservoir of new viruses that can be propagated lytically and used to expand the repertoire of therapeutically useful phages.
Collapse
Affiliation(s)
- Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christian H. Gauthier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Isabella Florian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
39
|
Ruest MK, Supina BSI, Dennis JJ. Bacteriophage steering of Burkholderia cenocepacia toward reduced virulence and increased antibiotic sensitivity. J Bacteriol 2023; 205:e0019623. [PMID: 37791751 PMCID: PMC10601696 DOI: 10.1128/jb.00196-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/06/2023] [Indexed: 10/05/2023] Open
Abstract
Antibiotic resistance in bacteria is a growing global concern and has spurred increasing efforts to find alternative therapeutics, such as the use of bacterial viruses, or bacteriophages. One promising approach is to use phages that not only kill pathogenic bacteria but also select phage-resistant survivors that are newly sensitized to traditional antibiotics, in a process called "phage steering." Members of the bacterial genus Burkholderia, which includes various human pathogens, are highly resistant to most antimicrobial agents, including serum immune components, antimicrobial peptides, and polymixin-class antibiotics. However, the application of phages in combination with certain antibiotics can produce synergistic effects that more effectively kill pathogenic bacteria. Herein, we demonstrate that Burkholderia cenocepacia serum resistance is due to intact lipopolysaccharide (LPS) and membranes, and phage-induced resistance altering LPS structure can enhance bacterial sensitivity not only to immune components in serum but also to membrane-associated antibiotics such as colistin. IMPORTANCE Bacteria frequently encounter selection pressure from both antibiotics and lytic phages, but little is known about the interactions between antibiotics and phages. This study provides new insights into the evolutionary trade-offs between phage resistance and antibiotic sensitivity. The creation of phage resistance through changes in membrane structure or lipopolysaccharide composition can simultaneously be a major cause of antibiotic sensitivity. Our results provide evidence of synergistic therapeutic efficacy in phage-antibiotic interactions and have implications for the future clinical use of phage steering in phage therapy applications.
Collapse
Affiliation(s)
- Marta K. Ruest
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jonathan J. Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
40
|
Champagne-Jorgensen K, Luong T, Darby T, Roach DR. Immunogenicity of bacteriophages. Trends Microbiol 2023; 31:1058-1071. [PMID: 37198061 DOI: 10.1016/j.tim.2023.04.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/19/2023]
Abstract
Hundreds of trillions of diverse bacteriophages (phages) peacefully thrive within and on the human body. However, whether and how phages influence their mammalian hosts is poorly understood. In this review, we explore current knowledge and present growing evidence that direct interactions between phages and mammalian cells often induce host inflammatory and antiviral immune responses. We show evidence that, like viruses of the eukaryotic host, phages are actively internalized by host cells and activate conserved viral detection receptors. This interaction often generates proinflammatory cytokine secretion and recruitment of adaptive immune programs. However, significant variability exists in phage-immune interactions, suggesting an important role for structural phage characteristics. The factors leading to the differential immunogenicity of phages remain largely unknown but are highly influenced by their human and bacterial hosts.
Collapse
Affiliation(s)
- Kevin Champagne-Jorgensen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Tiffany Luong
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Taylor Darby
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA
| | - Dwayne R Roach
- Department of Biology, San Diego State University, San Diego, CA 92182, USA; Viral Information Institute, San Diego State University, San Diego, CA 92182, USA.
| |
Collapse
|
41
|
Wielscher M, Pfisterer K, Samardzic D, Balsini P, Bangert C, Jäger K, Buchberger M, Selitsch B, Pjevac P, Willinger B, Weninger W. The phageome in normal and inflamed human skin. SCIENCE ADVANCES 2023; 9:eadg4015. [PMID: 37774017 PMCID: PMC10541010 DOI: 10.1126/sciadv.adg4015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/29/2023] [Indexed: 10/01/2023]
Abstract
Dysbiosis of skin microbiota drives the progression of atopic dermatitis (AD). The contribution of bacteriophages to bacterial community compositions in normal and inflamed skin is unknown. Using shotgun metagenomics from skin swabs of healthy individuals and patients with AD, we found 13,586 potential viral contiguous DNA sequences, which could be combined into 164 putative viral genomes including 133 putative phages. The Shannon diversity index for the viral metagenome-assembled genomes (vMAGs) did not correlate with AD. In total, we identified 28 vMAGs that differed significantly between normal and AD skin. Quantitative polymerase chain reaction validation of three complete vMAGs revealed their independence from host bacterium abundance. Our data indicate that normal and inflamed skin harbor distinct phageomes and suggest a causative relationship between changing viral and bacterial communities as a driver of skin pathology.
Collapse
Affiliation(s)
- M. Wielscher
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - K. Pfisterer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - D. Samardzic
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - P. Balsini
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - C. Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - K. Jäger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - M. Buchberger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - B. Selitsch
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - P. Pjevac
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - B. Willinger
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - W. Weninger
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
42
|
Wang XY, Jia QN, Li J. Treatment of non-tuberculosis mycobacteria skin infections. Front Pharmacol 2023; 14:1242156. [PMID: 37731736 PMCID: PMC10508292 DOI: 10.3389/fphar.2023.1242156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Non-tuberculosis mycobacteria (NTM) skin infections have become increasingly prevalent in recent years, presenting a unique challenge in clinical management. This review explored the complexities of NTM infections localized to the superficial tissues and provided valuable insights into the optimal therapeutic strategies. The antibiotic selection should base on NTM species and their susceptibility profiles. It is recommended to adopt a comprehensive approach that considers the unique characteristics of superficial tissues to improve treatment effectiveness and reduce the incidence of adverse reactions, infection recurrence, and treatment failure. Infection control measures, patient education, and close monitoring should complement the treatment strategies to achieve favorable outcomes in managing NTM skin infections. Further efforts are warranted to elucidate factors and mechanisms contributing to treatment resistance and relapse. Future research should focus on exploring novel treatment options, innovative drug development/delivery platforms, and precise methodologies for determining therapeutic duration. Longitudinal studies are also needed to assess the long-term safety profiles of the integrated approaches.
Collapse
Affiliation(s)
| | | | - Jun Li
- Department of Dermatology and Venereology, Peking Union Medical College Hospital (Dongdan Campus), Beijing, China
| |
Collapse
|
43
|
Wetzel KS, Illouz M, Abad L, Aull HG, Russell DA, Garlena RA, Cristinziano M, Malmsheimer S, Chalut C, Hatfull GF, Kremer L. Therapeutically useful mycobacteriophages BPs and Muddy require trehalose polyphleates. Nat Microbiol 2023; 8:1717-1731. [PMID: 37644325 PMCID: PMC10465359 DOI: 10.1038/s41564-023-01451-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/17/2023] [Indexed: 08/31/2023]
Abstract
Mycobacteriophages show promise as therapeutic agents for non-tuberculous mycobacterium infections. However, little is known about phage recognition of Mycobacterium cell surfaces or mechanisms of phage resistance. We show here that trehalose polyphleates (TPPs)-high-molecular-weight, surface-exposed glycolipids found in some mycobacterial species-are required for infection of Mycobacterium abscessus and Mycobacterium smegmatis by clinically useful phages BPs and Muddy. TPP loss leads to defects in adsorption and infection and confers resistance. Transposon mutagenesis shows that TPP disruption is the primary mechanism for phage resistance. Spontaneous phage resistance occurs through TPP loss by mutation, and some M. abscessus clinical isolates are naturally phage-insensitive due to TPP synthesis gene mutations. Both BPs and Muddy become TPP-independent through single amino acid substitutions in their tail spike proteins, and M. abscessus mutants resistant to TPP-independent phages reveal additional resistance mechanisms. Clinical use of BPs and Muddy TPP-independent mutants should preempt phage resistance caused by TPP loss.
Collapse
Affiliation(s)
- Katherine S Wetzel
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Morgane Illouz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haley G Aull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rebecca A Garlena
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madison Cristinziano
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silke Malmsheimer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Christian Chalut
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France.
- INSERM, IRIM, Montpellier, France.
| |
Collapse
|
44
|
Vera-Mansilla J, Silva-Valenzuela CA, Sánchez P, Molina-Quiroz RC. Bacteriophages potentiate the effect of antibiotics by eradication of persister cells and killing of biofilm-forming cells. Res Microbiol 2023; 174:104083. [PMID: 37257734 DOI: 10.1016/j.resmic.2023.104083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
Persister cells and biofilms are associated with chronic urinary infections which are more critical when generated by multi-drug resistant bacteria. In this context, joint administration of phages and antibiotics has been proposed as an alternative approach, since it may decrease the probability to generate resistant mutants to both agents. In this work, we exposed cultures of uropathogenic Escherichia coli conjunctly to antibiotics and phages. We determined that MLP2 combined with antibiotics eradicates persister cells. Similarly, MLP1 and MLP3 impact viability of biofilm-forming cells when administered with ampicillin. Our findings suggest a feasible prophylactic and therapeutic use of these non-transducing phages.
Collapse
Affiliation(s)
| | | | | | - Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, Massachusetts, USA.
| |
Collapse
|
45
|
Guo X, Zhang J, Wang Y, Zhou F, Li Q, Teng T. Phenotypic Characterization and Comparative Genomic Analyses of Mycobacteriophage WIVsmall as A New Member Assigned to F1 Subcluster. Curr Issues Mol Biol 2023; 45:6432-6448. [PMID: 37623225 PMCID: PMC10453261 DOI: 10.3390/cimb45080406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
In this study, we conducted the morphological observation, biological and genomic characterization, evolutionary analysis, comparative genomics description, and proteome identification of a recently isolated mycobacteriophage, WIVsmall. Morphologically, WIVsmall is classified as a member of the Siphoviridae family, characterized by a flexible tail, measuring approximately 212 nm in length. The double-stranded phage genome DNA of WIVsmall spans 53,359 base pairs, and exhibits a G + C content of 61.01%. The genome of WIVsmall comprises 103 protein-coding genes, while no tRNA genes were detected. The genome annotation unveiled the presence of functional gene clusters responsible for mycobacteriophage assembly and maturation, replication, cell lysis, and functional protein synthesis. Based on the analysis of the phylogenetic tree, the genome of WIVsmall was classified as belonging to subgroup F1. A comparative genomics analysis indicated that the WIVsmall genome exhibited the highest similarity to the phage SG4, with a percentage of 64%. The single-step growth curve analysis of WIVsmall revealed a latent period of 120 min, and an outbreak period of 200 min.
Collapse
Affiliation(s)
- Xinge Guo
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Jing Zhang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Yuhan Wang
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Fang Zhou
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Qiming Li
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Tieshan Teng
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
46
|
Nicholas-Haizelden K, Murphy B, Hoptroff M, Horsburgh MJ. Bioprospecting the Skin Microbiome: Advances in Therapeutics and Personal Care Products. Microorganisms 2023; 11:1899. [PMID: 37630459 PMCID: PMC10456854 DOI: 10.3390/microorganisms11081899] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Bioprospecting is the discovery and exploration of biological diversity found within organisms, genetic elements or produced compounds with prospective commercial or therapeutic applications. The human skin is an ecological niche which harbours a rich and compositional diversity microbiome stemming from the multifactorial interactions between the host and microbiota facilitated by exploitable effector compounds. Advances in the understanding of microbial colonisation mechanisms alongside species and strain interactions have revealed a novel chemical and biological understanding which displays applicative potential. Studies elucidating the organismal interfaces and concomitant understanding of the central processes of skin biology have begun to unravel a potential wealth of molecules which can exploited for their proposed functions. A variety of skin-microbiome-derived compounds display prospective therapeutic applications, ranging from antioncogenic agents relevant in skin cancer therapy to treatment strategies for antimicrobial-resistant bacterial and fungal infections. Considerable opportunities have emerged for the translation to personal care products, such as topical agents to mitigate various skin conditions such as acne and eczema. Adjacent compound developments have focused on cosmetic applications such as reducing skin ageing and its associated changes to skin properties and the microbiome. The skin microbiome contains a wealth of prospective compounds with therapeutic and commercial applications; however, considerable work is required for the translation of in vitro findings to relevant in vivo models to ensure translatability.
Collapse
Affiliation(s)
- Keir Nicholas-Haizelden
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| | - Barry Murphy
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Michael Hoptroff
- Unilever Research & Development, Port Sunlight, Wirral CH63 3JW, UK; (B.M.); (M.H.)
| | - Malcolm J. Horsburgh
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK;
| |
Collapse
|
47
|
Nayak T, Kakkar A, Singh RK, Jaiswal LK, Singh AK, Temple L, Gupta A. Isolation and characterization of a novel mycobacteriophage Kashi-VT1 infecting Mycobacterium species. Front Cell Infect Microbiol 2023; 13:1173894. [PMID: 37545854 PMCID: PMC10400892 DOI: 10.3389/fcimb.2023.1173894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/19/2023] [Indexed: 08/08/2023] Open
Abstract
Mycobacteriophages are viruses that infect members of genus Mycobacterium. Because of the rise in antibiotic resistance in mycobacterial diseases such as tuberculosis, mycobacteriophages have received renewed attention as alternative therapeutic agents. Mycobacteriophages are highly diverse, and, on the basis of their genome sequences, they are grouped into 30 clusters and 10 singletons. In this article, we have described the isolation and characterization of a novel mycobacteriophage Kashi-VT1 (KVT1) infecting Mycobacterium >smegmatis mc2 155 (M. smegmatis) and Mycobacterium fortuitum isolated from Varanasi, India. KVT1 is a cluster K1 temperate phage that belongs to Siphoviridae family as visualized in transmission electron microscopy. The phage genome is 61,010 base pairs with 66.5% Guanine/Cytosine (GC) content, encoding 101 putative open reading frames. The KVT1 genome encodes an immunity repressor, a tyrosine integrase, and an excise protein, which are the characteristics of temperate phages. It also contains genes encoding holin, lysin A, and lysin B involved in host cell lysis. The one-step growth curve demonstrated that KVT1 has a latency time of 90 min and an average burst size of 101 phage particles per infected cell. It can withstand a temperature of up to 45°C and has a maximum viability between pH 8 and 9. Some mycobacteriophages from cluster K are known to infect the pathogenic Mycobacterium tuberculosis (M. tuberculosis); hence, KVT1 holds potential for the phage therapy against tuberculosis, and it can also be engineered to convert into an exclusively lytic phage.
Collapse
Affiliation(s)
- Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anand Kumar Singh
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Louise Temple
- School of Integrated Sciences, James Madison University, Harrisonburg, VA, United States
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
48
|
Freeman KG, Robotham AC, Parks OB, Abad L, Jacobs-Sera D, Lauer MJ, Podgorski JM, Zhang Y, Williams JV, White SJ, Kelly JF, Hatfull GF, Pope WH. Virion glycosylation influences mycobacteriophage immune recognition. Cell Host Microbe 2023; 31:1216-1231.e6. [PMID: 37329881 PMCID: PMC10527164 DOI: 10.1016/j.chom.2023.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/19/2023]
Abstract
Glycosylation of eukaryotic virus particles is common and influences their uptake, trafficking, and immune recognition. In contrast, glycosylation of bacteriophage particles has not been reported; phage virions typically do not enter the cytoplasm upon infection, and they do not generally inhabit eukaryotic systems. We show here that several genomically distinct phages of Mycobacteria are modified with glycans attached to the C terminus of capsid and tail tube protein subunits. These O-linked glycans influence antibody production and recognition, shielding viral particles from antibody binding and reducing production of neutralizing antibodies. Glycosylation is mediated by phage-encoded glycosyltransferases, and genomic analysis suggests that they are relatively common among mycobacteriophages. Putative glycosyltransferases are also encoded by some Gordonia and Streptomyces phages, but there is little evidence of glycosylation among the broader phage population. The immune response to glycosylated phage virions in mice suggests that glycosylation may be an advantageous property for phage therapy of Mycobacterium infections.
Collapse
Affiliation(s)
- Krista G Freeman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anna C Robotham
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Olivia B Parks
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pediatrics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Lawrence Abad
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Deborah Jacobs-Sera
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Lauer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer M Podgorski
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - Yu Zhang
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pediatrics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - John V Williams
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pediatrics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Simon J White
- Biology/Physics Building, Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, USA
| | - John F Kelly
- Human Health Therapeutics, National Research Council of Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada
| | - Graham F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Welkin H Pope
- Science Department, Chatham University, Pittsburgh, PA 15232, USA
| |
Collapse
|
49
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
50
|
Hurst-Hess K, Walz A, Yang Y, McGuirk H, Gonzalez-Juarrero M, Hatfull GF, Ghosh P, Ojha AK. Intrapulmonary Treatment with Mycobacteriophage LysB Rapidly Reduces Mycobacterium abscessus Burden. Antimicrob Agents Chemother 2023; 67:e0016223. [PMID: 37154689 PMCID: PMC10269076 DOI: 10.1128/aac.00162-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/17/2023] [Indexed: 05/10/2023] Open
Abstract
Intrinsic and acquired antibiotic resistance in Mycobacterium abscessus presents challenges in infection control, and new therapeutic strategies are needed. Bacteriophage therapy shows promise, but variabilities in M. abscessus phage susceptibility limits its broader utility. We show here that a mycobacteriophage-encoded lysin B (LysB) efficiently and rapidly kills both smooth- and rough-colony morphotype M. abscessus strains and reduces the pulmonary bacterial load in mice. LysB aerosolization presents a plausible treatment for pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Kelley Hurst-Hess
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Amanda Walz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Yong Yang
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helen McGuirk
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mercedes Gonzalez-Juarrero
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pallavi Ghosh
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Anil K. Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|