1
|
Kim M, López-Cano M, Zhang K, Wang Y, Gómez-Santacana X, Flores Á, Wu M, Li S, Zhang H, Wei Y, Li X, Good CH, Banks AR, Llebaria A, Hernando J, Sunwoo SH, Gu J, Huang Y, Ciruela F, Rogers JA. Wireless, battery-free, remote photoactivation of caged-morphine for photopharmacological pain modulation without side effects. Biosens Bioelectron 2025; 281:117440. [PMID: 40220492 DOI: 10.1016/j.bios.2025.117440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/26/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Chronic pain severely impairs physical, psychological, and cognitive functions. While opioid-based therapies can be effective, they are limited by tolerance, dependence, and adverse side effects, highlighting the need for safer alternatives. Recent advances in photopharmacology allow precise modulation of pain-related neuronal circuits, offering improved control and effectiveness. For delivery of light, fully implantable, wireless, battery-free optical systems in miniaturized forms offer attractive options relative to alternatives that use conventional bulk hardware and fiber optic tethers. This work presents a technology of this type, based on microscale light-emitting diodes (μ-ILEDs) and near-field communication (NFC) protocols, and optimized to activate photocaged morphine (pc-Mor) in targeted regions of the spinal cord. The unique flexible, lightweight designs ensure stable, minimally invasive operation in small animal model behavioral studies, with efficient power consumption and minimized thermal load on fragile tissues. Experimental results demonstrate effective pain suppression and reduced opioid-related side effects in an animal model of pain, thereby establishing this platform as a promising solution for chronic pain management.
Collapse
Affiliation(s)
- Minsung Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Neurolux Inc., Northfield, IL, 60093, USA
| | - Marc López-Cano
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907, Spain
| | - Kaiqing Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xavier Gómez-Santacana
- MCS - Medicinal Chemistry & Synthesis, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907, Spain
| | - Mingzheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Shupeng Li
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yuanting Wei
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xiuyuan Li
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cameron H Good
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Neurolux Inc., Northfield, IL, 60093, USA; Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Anthony R Banks
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Neurolux Inc., Northfield, IL, 60093, USA; Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Amadeu Llebaria
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès, 08193, Spain
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Jianyu Gu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, 08907, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Biomedical Research Institute, L'Hospitalet de Llobregat, 08907, Spain.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
2
|
Kontra B, Mucsi Z, Ilaš J, Dunkel P. The Quinoline Photoremovable Group (PPG) Platform-A Medicinal Chemist's Approach for Photocage Development and Applications. Med Res Rev 2025. [PMID: 40221844 DOI: 10.1002/med.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/16/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Photoremovable protecting groups (PPGs) offer a straightforward solution for the temporary inactivation of biologically active substrates and their subsequent controlled release by light irradiation. Their relatively easy design and mode of application have made them useful tools for studying dynamic biological processes in vitro and in vivo. Recently, there has been a growing body of data investigating their potential application in the development of drug delivery systems. Of the various PPG scaffolds in use, quinoline photocages have a history of about 20 years. The structure-property relationships of quinoline PPGs, as well as alternative multibranch designs based on quinoline monomers have been thoroughly studied both experimentally and theoretically. Therefore, quinoline PPGs serve as a representative study of PPG development, showing how the various applications of quinoline photocages followed the chemical optimization or how the applications drove the chemical design. Since the raison d'être of PPGs lies in their application for light-activated release of various substrates or performing light-activated structural changes in materials, it is crucial to understand how PPGs are selected and utilized by their end-users, who are often not chemists themselves. Therefore, we discuss whether the conclusions drawn from the selected quinoline PPG family could lead to more general insights for the field as whole. As PPG-related applications still rely heavily on a limited number of chemical scaffolds, it is worth considering, what could be the reasons for the slow uptake of novel chemical scaffolds.
Collapse
Affiliation(s)
- Bence Kontra
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Department of Biological Chemistry, BrainVision Center, Budapest, Hungary
| | - Zoltán Mucsi
- Department of Biological Chemistry, BrainVision Center, Budapest, Hungary
- Department of Chemistry, Femtonics Ltd., Budapest, Hungary
- Institute of Chemistry, University of Miskolc, Miskolc, Hungary
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Dunkel
- Institute of Organic Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
Ganzoni RLZ, Bournons SS, Carreira EM, De Bundel D, Smolders I. A Bright Future for Photopharmaceuticals Addressing Central Nervous System Disorders: State of the Art and Challenges Toward Clinical Translation. Med Res Rev 2025. [PMID: 40186449 DOI: 10.1002/med.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Photopharmacology is an innovative approach that uses light to activate drugs. This method offers the potential for highly localized and precise drug activation, making it particularly promising for the treatment of neurological disorders. Despite the enticing prospects of photopharmacology, its application to treat human central nervous system (CNS) diseases remains to be demonstrated. In this review, we provide an overview of prominent strategies for the design and activation of photopharmaceutical agents in the field of neuroscience. Photocaged and photoswitchable drugs and bioactive molecules are discussed, and an instructive list of examples is provided to highlight compound design strategies. Special emphasis is placed on photoactivatable compounds for the modulation of glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission for the treatment of neurological conditions, as well as various photoresponsive molecules with potential for improved pain management. Compounds holding promise for clinical translation are discussed in-depth and their potential for future applications is assessed. Neurophotopharmaceuticals have yet to achieve breakthrough in the clinic, as both light delivery and drug design have not reached full maturity. However, by describing the current state of the art and providing illustrative case studies, we offer a perspective on future opportunities in the field of neurophotopharmacology focused on addressing CNS disorders.
Collapse
Affiliation(s)
- Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Sofie S Bournons
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Nanbakhsh K, Van Gompel M, Ritasalo R, Gollhardt A, Horváth D, Tóth K, Meszéna D, Ulbert I, Serdijn W, Giagka V. An In Vivo Biostability Evaluation of ALD and Parylene-ALD Multilayers as Micro-Packaging Solutions for Small Single-Chip Implants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410141. [PMID: 39846830 PMCID: PMC12019904 DOI: 10.1002/smll.202410141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Miniaturization of next-generation active neural implants requires novel micro-packaging solutions that can maintain their long-term coating performance in the body. This work presents two thin-film coatings and evaluates their biostability and in vivo performance over a 7-month animal study. To evaluate the coatings on representative surfaces, two silicon microchips with different surface microtopography are used. Microchips are coated with either a ≈100 nm thick inorganic hafnium-based multilayer deposited via atomic layer deposition (ALD-ML), or a ≈6 µm thick hybrid organic-inorganic Parylene C and titanium-based ALD multilayer stack (ParC-ALD-ML). After 7 months of direct exposure to the body environment, the multilayer coatings are evaluated using optical and cross-sectional scanning electron microscopy. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is also used to evaluate the chemical stability and barrier performance of the layers after long-term exposure to body media. Results showed the excellent biostability of the 100 nm ALD-ML coating with no ionic penetration within the layer. For the ParC-ALD-ML, concurrent surface degradation and ion ingress are detected within the top ≈70 nm of the outer Parylene C layer. The results and evaluation techniques presented here can enable future material selection, packaging, and analysis, enhancing the functional stability of future chip-embedded neural implants.
Collapse
Affiliation(s)
- Kambiz Nanbakhsh
- Department of MicroelectronicsFaculty of Electrical EngineeringMathematics and Computer ScienceDelft University of TechnologyDelft2628 CNThe Netherlands
| | | | - Riina Ritasalo
- Applied Materials, FinlandMasalantie 365Masala02430Finland
| | - Astrid Gollhardt
- Department of Environmental & Reliability EngineeringFraunhofer Institute for Reliability and Microintegration IZM13355BerlinGermany
| | - Domonkos Horváth
- Research Centre for Natural SciencesInstitute of Cognitive Neuroscience and PsychologyHUN‐RENBudapest1117Hungary
- Faculty of Information Technology and BionicsPazmany Peter Catholic UniversityBudapest1083Hungary
| | - Kinga Tóth
- Research Centre for Natural SciencesInstitute of Cognitive Neuroscience and PsychologyHUN‐RENBudapest1117Hungary
| | - Domokos Meszéna
- Research Centre for Natural SciencesInstitute of Cognitive Neuroscience and PsychologyHUN‐RENBudapest1117Hungary
- Faculty of Information Technology and BionicsPazmany Peter Catholic UniversityBudapest1083Hungary
| | - István Ulbert
- Research Centre for Natural SciencesInstitute of Cognitive Neuroscience and PsychologyHUN‐RENBudapest1117Hungary
- Faculty of Information Technology and BionicsPazmany Peter Catholic UniversityBudapest1083Hungary
- Department of Neurosurgery and NeurointerventionFaculty of MedicineSemmelweis UniversityAmerikai út 57Budapest1145Hungary
| | - Wouter Serdijn
- Department of MicroelectronicsFaculty of Electrical EngineeringMathematics and Computer ScienceDelft University of TechnologyDelft2628 CNThe Netherlands
- Department of Neuroscience Erasmus Medical CenterRotterdam3015 GDThe Netherlands
| | - Vasiliki Giagka
- Department of MicroelectronicsFaculty of Electrical EngineeringMathematics and Computer ScienceDelft University of TechnologyDelft2628 CNThe Netherlands
- Department of System Integration and Interconnection TechnologiesFraunhofer Institute for Reliability and Microintegration IZM13355BerlinGermany
| |
Collapse
|
5
|
Kang I, Bilbily J, Kim CY, Shi C, Madasu MK, Jeong EY, Parker KE, Kwon DA, Jung B, Yang J, Lee J, Kabbaj ND, Lee W, Yoon J, Al‐Hasani R, Xiao J, McCall JG, Jeong J. Wireless Modular Implantable Neural Device with One-touch Magnetic Assembly for Versatile Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406576. [PMID: 39624974 PMCID: PMC11775568 DOI: 10.1002/advs.202406576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Indexed: 01/30/2025]
Abstract
Multimodal neural interfaces open new opportunities in brain research by enabling more sophisticated and systematic neural circuit dissection. Integrating complementary features across distinct functional domains, these multifunctional neural probes have greatly advanced the interrogation of complex neural circuitry. However, introducing multiple functionalities into a compact form factor for freely behaving animals presents substantial design hurdles that complicate the device or require more than one device. Moreover, fixed functionality poses challenges in meeting the dynamic needs of chronic neuroscience inquiry, such as replacing consumable parts like batteries or drugs. To address these limitations, the modular implantable neural device (MIND) is introduced with a one-touch magnetic assembly mechanism. Leveraging the seamless exchange of neural interface modules such as optical stimulation, drug delivery, and electrical stimulation, MIND ensures functional adaptability, reusability, and scalability. The versatile design of MIND will facilitate brain research by enabling simplified access to multiple functional modalities as needed.
Collapse
|
6
|
Chen S, Liu TL, Jia Y, Li J. Recent advances in bio-integrated electrochemical sensors for neuroengineering. FUNDAMENTAL RESEARCH 2025; 5:29-47. [PMID: 40166092 PMCID: PMC11955048 DOI: 10.1016/j.fmre.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 04/02/2025] Open
Abstract
Detecting and diagnosing neurological diseases in modern healthcare presents substantial challenges that directly impact patient outcomes. The complex nature of these conditions demands precise and quantitative monitoring of disease-associated biomarkers in a continuous, real-time manner. Current chemical sensing strategies exhibit restricted clinical effectiveness due to labor-intensive laboratory analysis prerequisites, dependence on clinician expertise, and prolonged and recurrent interventions. Bio-integrated electronics for chemical sensing is an emerging, multidisciplinary field enabled by rapid advances in electrical engineering, biosensing, materials science, analytical chemistry, and biomedical engineering. This review presents an overview of recent progress in bio-integrated electrochemical sensors, with an emphasis on their relevance to neuroengineering and neuromodulation. It traverses vital neurological biomarkers and explores bio-recognition elements, sensing strategies, transducer designs, and wireless signal transmission methods. The integration of in vivo biochemical sensors is showcased through applications. The review concludes by outlining future trends and advancements in in vivo electrochemical sensing, and highlighting ongoing research and technological innovation, which aims to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhen Jia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Mudugamuwa A, Roshan U, Hettiarachchi S, Cha H, Musharaf H, Kang X, Trinh QT, Xia HM, Nguyen N, Zhang J. Periodic Flows in Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404685. [PMID: 39246195 PMCID: PMC11636114 DOI: 10.1002/smll.202404685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/24/2024] [Indexed: 09/10/2024]
Abstract
Microfluidics, the science and technology of manipulating fluids in microscale channels, offers numerous advantages, such as low energy consumption, compact device size, precise control, fast reaction, and enhanced portability. These benefits have led to applications in biomedical assays, disease diagnostics, drug discovery, neuroscience, and so on. Fluid flow within microfluidic channels is typically in the laminar flow region, which is characterized by low Reynolds numbers but brings the challenge of efficient mixing of fluids. Periodic flows are time-dependent fluid flows, featuring repetitive patterns that can significantly improve fluid mixing and extend the effective length of microchannels for submicron and nanoparticle manipulation. Besides, periodic flow is crucial in organ-on-a-chip (OoC) for accurately modeling physiological processes, advancing disease understanding, drug development, and personalized medicine. Various techniques for generating periodic flows have been reported, including syringe pumps, peristalsis, and actuation based on electric, magnetic, acoustic, mechanical, pneumatic, and fluidic forces, yet comprehensive reviews on this topic remain limited. This paper aims to provide a comprehensive review of periodic flows in microfluidics, from fundamental mechanisms to generation techniques and applications. The challenges and future perspectives are also discussed to exploit the potential of periodic flows in microfluidics.
Collapse
Affiliation(s)
- Amith Mudugamuwa
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Uditha Roshan
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Samith Hettiarachchi
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Hafiz Musharaf
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Xiaoyue Kang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Quang Thang Trinh
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Huan Ming Xia
- School of Mechanical EngineeringNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Nam‐Trung Nguyen
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology CentreGriffith UniversityBrisbaneQLD4111Australia
- School of Engineering and Built EnvironmentGriffith UniversityBrisbaneQLD4111Australia
| |
Collapse
|
8
|
Kim MS, Almuslem AS, Babatain W, Bahabry RR, Das UK, El-Atab N, Ghoneim M, Hussain AM, Kutbee AT, Nassar J, Qaiser N, Rojas JP, Shaikh SF, Torres Sevilla GA, Hussain MM. Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406424. [PMID: 39390819 DOI: 10.1002/adma.202406424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Flexible electronics are integral in numerous domains such as wearables, healthcare, physiological monitoring, human-machine interface, and environmental sensing, owing to their inherent flexibility, stretchability, lightweight construction, and low profile. These systems seamlessly conform to curvilinear surfaces, including skin, organs, plants, robots, and marine species, facilitating optimal contact. This capability enables flexible electronic systems to enhance or even supplant the utilization of cumbersome instrumentation across a broad range of monitoring and actuation tasks. Consequently, significant progress has been realized in the development of flexible electronic systems. This study begins by examining the key components of standalone flexible electronic systems-sensors, front-end circuitry, data management, power management and actuators. The next section explores different integration strategies for flexible electronic systems as well as their recent advancements. Flexible hybrid electronics, which is currently the most widely used strategy, is first reviewed to assess their characteristics and applications. Subsequently, transformational electronics, which achieves compact and high-density system integration by leveraging heterogeneous integration of bare-die components, is highlighted as the next era of flexible electronic systems. Finally, the study concludes by suggesting future research directions and outlining critical considerations and challenges for developing and miniaturizing fully integrated standalone flexible electronic systems.
Collapse
Affiliation(s)
- Min Sung Kim
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Amani S Almuslem
- Department of Physics, College of Science, King Faisal University, Prince Faisal bin Fahd bin Abdulaziz Street, Al-Ahsa, 31982, Saudi Arabia
| | - Wedyan Babatain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rabab R Bahabry
- Department of Physical Sciences, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Uttam K Das
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nazek El-Atab
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mohamed Ghoneim
- Logic Technology Development Quality and Reliability, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Aftab M Hussain
- International Institute of Information Technology (IIIT) Hyderabad, Gachibowli, Hyderabad, 500 032, India
| | - Arwa T Kutbee
- Department of Physics, College of Science, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Joanna Nassar
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nadeem Qaiser
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jhonathan P Rojas
- Electrical Engineering Department & Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261, Saudi Arabia
| | | | - Galo A Torres Sevilla
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Muhammad M Hussain
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
9
|
Shin H, Nam MH, Lee SE, Yang SH, Yang E, Jung JT, Kim H, Woo J, Cho Y, Yoon Y, Cho IJ. Transcranial optogenetic brain modulator for precise bimodal neuromodulation in multiple brain regions. Nat Commun 2024; 15:10423. [PMID: 39613730 PMCID: PMC11607408 DOI: 10.1038/s41467-024-54759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
Transcranial brain stimulation is a promising technology for safe modulation of brain function without invasive procedures. Recent advances in transcranial optogenetic techniques with external light sources, using upconversion particles and highly sensitive opsins, have shown promise for precise neuromodulation with improved spatial resolution in deeper brain regions. However, these methods have not yet been used to selectively excite or inhibit specific neural populations in multiple brain regions. In this study, we created a wireless transcranial optogenetic brain modulator that combines highly sensitive opsins and upconversion particles and allows for precise bimodal neuromodulation of multiple brain regions without optical crosstalk. We demonstrate the feasibility of our approach in freely behaving mice. Furthermore, we demonstrate its usefulness in studies of complex behaviors and brain dysfunction by controlling extorting behavior in mice in food competition tests and alleviating the symptoms of Parkinson's disease. Our approach has potential applications in the study of neural circuits and development of treatments for various brain disorders.
Collapse
Affiliation(s)
- Hyogeun Shin
- School of Electronic and Electrical Engineering, College of IT Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Min-Ho Nam
- Center for Brain Function, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Soo Hyun Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Esther Yang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Taek Jung
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jiwan Woo
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yakdol Cho
- Research Animal Resources Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Youngsam Yoon
- Department of Electrical Engineering, Korea Military Academy, Seoul, Republic of Korea
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea.
- Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea.
- Department of Convergence Medicine, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Gurke J, Carnicer-Lombarte A, Naegele TE, Hansen AK, Malliaras GG. In vivo photopharmacological inhibition of hippocampal activity via multimodal probes - perspective and opening steps on experimental and computational challenges. J Mater Chem B 2024; 12:9894-9904. [PMID: 39189156 PMCID: PMC11348833 DOI: 10.1039/d4tb01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Neurological conditions such as epilepsy can have a significant impact on people's lives. Here, we discuss a new perspective for the study/treatment of these conditions using photopharmacology. A multimodal, intracranial implant that incorporates fluidic channels for localised drug delivery, electrodes for recording and stimulation, and a light source for photoswitching is used for in vivo administration and deactivation of a photoresponsive AMPA antagonist. We review current advancements in the relevant disciplines and show experimentally that the inhibition of seizure-like events induced in the hippocampus by electrical stimulation can be altered upon switching the drug with light. We discuss the interconnection of the drug's photopharmacological properties with the design of the device by modelling light penetration into the rat brain with Monte Carlo simulations. This work delivers a new perspective, including initial experimental and computational efforts on in vivo photopharmacology to understand and eventually treat neurological conditions.
Collapse
Affiliation(s)
- Johannes Gurke
- University of Potsdam, Institute of Chemistry, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
- Fraunhofer Institute of Applied Polymer Research (IAP), Geiselbergstraße 69, 14476 Potsdam, Germany
| | | | - Tobias E Naegele
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| | - Anders K Hansen
- Technical University of Denmark, DTU Fotonik, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - George G Malliaras
- University of Cambridge, Electrical Engineering Division, 9 JJ Thomson Ave, Cambridge CB3 0FA, UK
| |
Collapse
|
11
|
Mariello M, Eş I, Proctor CM. Soft and Flexible Bioelectronic Micro-Systems for Electronically Controlled Drug Delivery. Adv Healthc Mater 2024; 13:e2302969. [PMID: 37924224 DOI: 10.1002/adhm.202302969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Indexed: 11/06/2023]
Abstract
The concept of targeted and controlled drug delivery, which directs treatment to precise anatomical sites, offers benefits such as fewer side effects, reduced toxicity, optimized dosages, and quicker responses. However, challenges remain to engineer dependable systems and materials that can modulate host tissue interactions and overcome biological barriers. To stay aligned with advancements in healthcare and precision medicine, novel approaches and materials are imperative to improve effectiveness, biocompatibility, and tissue compliance. Electronically controlled drug delivery (ECDD) has recently emerged as a promising approach to calibrated drug delivery with spatial and temporal precision. This article covers recent breakthroughs in soft, flexible, and adaptable bioelectronic micro-systems designed for ECDD. It overviews the most widely reported operational modes, materials engineering strategies, electronic interfaces, and characterization techniques associated with ECDD systems. Further, it delves into the pivotal applications of ECDD in wearable, ingestible, and implantable medical devices. Finally, the discourse extends to future prospects and challenges for ECDD.
Collapse
Affiliation(s)
- Massimo Mariello
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
12
|
Li L, Zhang B, Zhao W, Sheng D, Yin L, Sheng X, Yao D. Multimodal Technologies for Closed-Loop Neural Modulation and Sensing. Adv Healthc Mater 2024; 13:e2303289. [PMID: 38640468 DOI: 10.1002/adhm.202303289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2024] [Indexed: 04/21/2024]
Abstract
Existing methods for studying neural circuits and treating neurological disorders are typically based on physical and chemical cues to manipulate and record neural activities. These approaches often involve predefined, rigid, and unchangeable signal patterns, which cannot be adjusted in real time according to the patient's condition or neural activities. With the continuous development of neural interfaces, conducting in vivo research on adaptive and modifiable treatments for neurological diseases and neural circuits is now possible. In this review, current and potential integration of various modalities to achieve precise, closed-loop modulation, and sensing in neural systems are summarized. Advanced materials, devices, or systems that generate or detect electrical, magnetic, optical, acoustic, or chemical signals are highlighted and utilized to interact with neural cells, tissues, and networks for closed-loop interrogation. Further, the significance of developing closed-loop techniques for diagnostics and treatment of neurological disorders such as epilepsy, depression, rehabilitation of spinal cord injury patients, and exploration of brain neural circuit functionality is elaborated.
Collapse
Affiliation(s)
- Lizhu Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bozhen Zhang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Wenxin Zhao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - David Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
13
|
Park D, Jeong H, Choi J, Han J, Piao H, Kim J, Park S, Song M, Kim D, Sung J, Cheong E, Choi H. Enhancing Flexible Neural Probe Performance via Platinum Deposition: Impedance Stability under Various Conditions and In Vivo Neural Signal Monitoring. MICROMACHINES 2024; 15:1058. [PMID: 39203708 PMCID: PMC11356038 DOI: 10.3390/mi15081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024]
Abstract
Monitoring neural activity in the central nervous system often utilizes silicon-based microelectromechanical system (MEMS) probes. Despite their effectiveness in monitoring, these probes have a fragility issue, limiting their application across various fields. This study introduces flexible printed circuit board (FPCB) neural probes characterized by robust mechanical and electrical properties. The probes demonstrate low impedance after platinum coating, making them suitable for multiunit recordings in awake animals. This capability allows for the simultaneous monitoring of a large population of neurons in the brain, including cluster data. Additionally, these probes exhibit no fractures, mechanical failures, or electrical issues during repeated-bending tests, both during handling and monitoring. Despite the possibility of using this neural probe for signal measurement in awake animals, simply applying a platinum coating may encounter difficulties in chronic tests and other applications. Furthermore, this suggests that FPCB probes can be advanced by any method and serve as an appropriate type of tailorable neural probes for monitoring neural systems in awake animals.
Collapse
Affiliation(s)
- Daerl Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Hyeonyeong Jeong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Jungsik Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Juyeon Han
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Honglin Piao
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Seonghoon Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Mingu Song
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Dowoo Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
| | - Jaesuk Sung
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea;
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Heonjin Choi
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea; (D.P.); (J.C.); (J.H.); (H.P.); (J.K.); (S.P.); (M.S.); (D.K.)
- Nformare Inc., Seodamun-gu, Seoul 03722, Republic of Korea;
| |
Collapse
|
14
|
Efimov AI, Hibberd TJ, Wang Y, Wu M, Zhang K, Ting K, Madhvapathy S, Lee MK, Kim J, Kang J, Riahi M, Zhang H, Travis L, Govier EJ, Yang L, Kelly N, Huang Y, Vázquez-Guardado A, Spencer NJ, Rogers JA. Remote optogenetic control of the enteric nervous system and brain-gut axis in freely-behaving mice enabled by a wireless, battery-free optoelectronic device. Biosens Bioelectron 2024; 258:116298. [PMID: 38701537 DOI: 10.1016/j.bios.2024.116298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/05/2024]
Abstract
Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.
Collapse
Affiliation(s)
- Andrew I Efimov
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Timothy J Hibberd
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mingzheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Kaiqing Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, Liaoning, China
| | - Kaila Ting
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Surabhi Madhvapathy
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Min-Kyu Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Center for Bionics of Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jiheon Kang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Mohammad Riahi
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Emily J Govier
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia
| | - Lianye Yang
- Department of Biomedical Engineering, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Nigel Kelly
- Department of Biomedical Engineering, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Abraham Vázquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA; Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA.
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA; Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA; Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
15
|
Piantadosi SC, Lee MK, Wu M, Huynh H, Avila R, Pizzano C, Zamorano CA, Wu Y, Xavier R, Stanslaski M, Kang J, Thai S, Kim Y, Zhang J, Huang Y, Kozorovitskiy Y, Good CH, Banks AR, Rogers JA, Bruchas MR. An integrated microfluidic and fluorescence platform for probing in vivo neuropharmacology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594203. [PMID: 38798493 PMCID: PMC11118345 DOI: 10.1101/2024.05.14.594203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge. Here, we present a dual microfluidic-photometry platform that enables simultaneous intracranial drug delivery with neural dynamics monitoring in the rodent brain. The integrated platform combines a wireless, battery-free, miniaturized fluidic microsystem with optical probes, allowing for spatially and temporally specific drug delivery while recording activity-dependent fluorescence using genetically encoded calcium indicators (GECIs), neurotransmitter sensors GRAB NE and GRAB DA , and neuropeptide sensors. We demonstrate the performance this platform for investigating neuropharmacological mechanisms in vivo and characterize its efficacy in probing precise mechanistic actions of neuroactive compounds across several rapidly evolving neuroscience domains.
Collapse
|
16
|
Huang S, Liu X, Lin S, Glynn C, Felix K, Sahasrabudhe A, Maley C, Xu J, Chen W, Hong E, Crosby AJ, Wang Q, Rao S. Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics. Nat Commun 2024; 15:3525. [PMID: 38664445 PMCID: PMC11045824 DOI: 10.1038/s41467-024-47988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.
Collapse
Affiliation(s)
- Sizhe Huang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Xinyue Liu
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Shaoting Lin
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher Glynn
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Kayla Felix
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Atharva Sahasrabudhe
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Collin Maley
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Jingyi Xu
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Eunji Hong
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA
| | - Qianbin Wang
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Siyuan Rao
- Department of Biomedical Engineering, Binghamton University, State University of New York, Binghamton, NY, USA.
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
17
|
Kwon YW, Ahn DB, Park YG, Kim E, Lee DH, Kim SW, Lee KH, Kim WY, Hong YM, Koh CS, Jung HH, Chang JW, Lee SY, Park JU. Power-integrated, wireless neural recording systems on the cranium using a direct printing method for deep-brain analysis. SCIENCE ADVANCES 2024; 10:eadn3784. [PMID: 38569040 PMCID: PMC10990281 DOI: 10.1126/sciadv.adn3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium. A quasi-solid-state Zn-ion microbattery was 3D-printed as a built-in power source geometrically synchronized to the shape of a mouse skull. Soft deep-brain neural probes, interconnections, and auxiliary electronics were also printed using liquid metals on the cranium with high resolutions. In vivo studies using mice demonstrated the reliability and biocompatibility of this wireless neural recording system, enabling the monitoring of neural activities across extensive brain regions without notable heat generation. This all-printed neural interface system revolutionizes brain research, providing bio-conformable, customizable configurations for improved data quality and naturalistic experimentation.
Collapse
Affiliation(s)
- Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - David B. Ahn
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwon-Hyung Lee
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | - Won-Yeong Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03772, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03772, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
18
|
Zhong T, Yi H, Gou J, Li J, Liu M, Gao X, Chen S, Guan H, Liang S, He Q, Lin R, Long Z, Wang Y, Shi C, Zhan Y, Zhang Y, Xing L, Zhong J, Xue X. A wireless battery-free eye modulation patch for high myopia therapy. Nat Commun 2024; 15:1766. [PMID: 38409083 PMCID: PMC10897479 DOI: 10.1038/s41467-024-46049-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
The proper axial length of the eye is crucial for achieving emmetropia. In this study, we present a wireless battery-free eye modulation patch designed to correct high myopia and prevent relapse. The patch consists of piezoelectric transducers, an electrochemical micro-actuator, a drug microneedle array, μ-LEDs, a flexible circuit, and biocompatible encapsulation. The system can be wirelessly powered and controlled using external ultrasound. The electrochemical micro-actuator plays a key role in precisely shortening the axial length by driving the posterior sclera inward. This ensures accurate scene imaging on the retina for myopia eye. The drug microneedle array delivers riboflavin to the posterior sclera, and μ-LEDs' blue light induces collagen cross-linking, reinforcing sclera strength. In vivo experiments demonstrate that the patch successfully reduces the rabbit eye's axial length by ~1217 μm and increases sclera strength by 387%. The system operates effectively within the body without the need for batteries. Here, we show that the patch offers a promising avenue for clinically treating high myopia.
Collapse
Affiliation(s)
- Tianyan Zhong
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Hangjin Yi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiacheng Gou
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Liu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing Gao
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Sizhu Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hongye Guan
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Shan Liang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qianxiong He
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Lin
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Zhihe Long
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Yue Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Chuang Shi
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lili Xing
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jie Zhong
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xinyu Xue
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
19
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
20
|
Kim TY, Hong SH, Jeong SH, Bae H, Cheong S, Choi H, Hahn SK. Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303401. [PMID: 37499253 DOI: 10.1002/adma.202303401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hanseo Bae
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
21
|
Alieva M, Wezenaar AKL, Wehrens EJ, Rios AC. Bridging live-cell imaging and next-generation cancer treatment. Nat Rev Cancer 2023; 23:731-745. [PMID: 37704740 DOI: 10.1038/s41568-023-00610-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/15/2023]
Abstract
By providing spatial, molecular and morphological data over time, live-cell imaging can provide a deeper understanding of the cellular and signalling events that determine cancer response to treatment. Understanding this dynamic response has the potential to enhance clinical outcome by identifying biomarkers or actionable targets to improve therapeutic efficacy. Here, we review recent applications of live-cell imaging for uncovering both tumour heterogeneity in treatment response and the mode of action of cancer-targeting drugs. Given the increasing uses of T cell therapies, we discuss the unique opportunity of time-lapse imaging for capturing the interactivity and motility of immunotherapies. Although traditionally limited in the number of molecular features captured, novel developments in multidimensional imaging and multi-omics data integration offer strategies to connect single-cell dynamics to molecular phenotypes. We review the effect of these recent technological advances on our understanding of the cellular dynamics of tumour targeting and discuss their implication for next-generation precision medicine.
Collapse
Affiliation(s)
- Maria Alieva
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Instituto de Investigaciones Biomedicas Sols-Morreale (IIBM), CSIC-UAM, Madrid, Spain
| | - Amber K L Wezenaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ellen J Wehrens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| | - Anne C Rios
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Xu S, Momin M, Ahmed S, Hossain A, Veeramuthu L, Pandiyan A, Kuo CC, Zhou T. Illuminating the Brain: Advances and Perspectives in Optoelectronics for Neural Activity Monitoring and Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303267. [PMID: 37726261 DOI: 10.1002/adma.202303267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/30/2023] [Indexed: 09/21/2023]
Abstract
Optogenetic modulation of brain neural activity that combines optical and electrical modes in a unitary neural system has recently gained robust momentum. Controlling illumination spatial coverage, designing light-activated modulators, and developing wireless light delivery and data transmission are crucial for maximizing the use of optical neuromodulation. To this end, biocompatible electrodes with enhanced optoelectrical performance, device integration for multiplexed addressing, wireless transmission, and multimodal operation in soft systems have been developed. This review provides an outlook for uniformly illuminating large brain areas while spatiotemporally imaging the neural responses upon optoelectrical stimulation with little artifacts. Representative concepts and important breakthroughs, such as head-mounted illumination, multiple implanted optical fibers, and micro-light-delivery devices, are discussed. Examples of techniques that incorporate electrophysiological monitoring and optoelectrical stimulation are presented. Challenges and perspectives are posed for further research efforts toward high-density optoelectrical neural interface modulation, with the potential for nonpharmacological neurological disease treatments and wireless optoelectrical stimulation.
Collapse
Affiliation(s)
- Shumao Xu
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Marzia Momin
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Salahuddin Ahmed
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Arafat Hossain
- Department of Electrical Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Archana Pandiyan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei, 10608, Republic of China
| | - Tao Zhou
- Department of Engineering Science and Mechanics, Center for Neural Engineering, The Pennsylvania State University, Pennsylvania, 16802, USA
| |
Collapse
|
23
|
Shang X, Ling W, Chen Y, Li C, Huang X. Construction of a Flexible Optogenetic Device for Multisite and Multiregional Optical Stimulation Through Flexible µ-LED Displays on the Cerebral Cortex. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302241. [PMID: 37260144 DOI: 10.1002/smll.202302241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Precisely delivering light to multiple locations in biological tissue is crucial for advancing multiregional optogenetics in neuroscience research. However, conventional implantable devices typically have rigid geometries and limited light sources, allowing only single or dual probe placement with fixed spacing. Here, a fully flexible optogenetic device with multiple thin-film microscale light-emitting diode (µ-LED) displays scattering from a central controller is presented. Each display is heterogeneously integrated with thin-film 5 × 10 µ-LEDs and five optical fibers 125 µm in diameter to achieve cellular-scale spatial resolution. Meanwhile, the device boasts a compact, flexible circuit capable of multichannel configuration and wireless transmission, with an overall weight of 1.31 g, enabling wireless, real-time neuromodulation of freely moving rats. Characterization results and finite element analysis have demonstrated excellent optical properties and mechanical stability, while cytotoxicity tests further ensure the biocompatibility of the device for implantable applications. Behavior studies under optogenetic modulation indicate great promise for wirelessly modulating neural functions in freely moving animals. The device with multisite and multiregional optogenetic modulation capability offers a comprehensive platform to advance both fundamental neuroscience studies and potential applications in brain-computer interfaces.
Collapse
Affiliation(s)
- Xue Shang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Wei Ling
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Research Center for Augmented Intelligence, Research Institute of Artificial Intelligence, Zhejiang Laboratory, Hangzhou, 311100, China
| | - Ying Chen
- Institute of Flexible Electronic Technology of Tsinghua, Jiaxing, 314006, China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314000, China
| | - Chenxi Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou, 310018, China
| |
Collapse
|
24
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
25
|
Feng B, Sun T, Wang W, Xiao Y, Huo J, Deng Z, Bian G, Wu Y, Zou G, Wang W, Ren T, Liu L. Venation-Mimicking, Ultrastretchable, Room-Temperature-Attachable Metal Tapes for Integrated Electronic Skins. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208568. [PMID: 36482821 DOI: 10.1002/adma.202208568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Future electronic skin systems require stretchable conductors and low-temperature integration of external components, which remains challenging for traditional metal films. Herein, a bioinspired design concept is reported to endow metal films with 200% stretchability as well as room-temperature integration capability with diverse components. It is revealed that by controllable implantation of defects, distinctive venation-mimicking cracking modes can be induced in strained metal films, leading to profound stretchability regulation. An intriguing exponential-to-linear transition of the film electromechanical performance is observed, which is elucidated by a unified model covering the essence of all modes. Combined with room-temperature integration capability, an integrated electronic skin is constructed with metal films serving as stretchable electrodes, diverse sensors, and "tapes" to attach subcomponents, showing prospects in helping disabled people. This one-step, defect implantation strategy is applicable to common metals without special substrate treatments, which enables fascinating ultrastretchable metal film conductors with low-temperature integration capability to spark more sophisticated flexible electronic systems.
Collapse
Affiliation(s)
- Bin Feng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianming Sun
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi Province, 030024, China
| | - Wengan Wang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yu Xiao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinpeng Huo
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhongyang Deng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Gongbo Bian
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi Province, 030024, China
| | - Yuxi Wu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guisheng Zou
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenxian Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi Province, 030024, China
| | - Tianling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Liu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|