1
|
Zhu T, Shen D, Cai X, Jin Y, Tu H, Wang S, Pan Q. The causal relationship between gut microbiota and preterm birth: a two-sample Mendelian randomization study. J Matern Fetal Neonatal Med 2025; 38:2432528. [PMID: 39721770 DOI: 10.1080/14767058.2024.2432528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Preterm birth, a significant global health concern, has been associated with alterations in the gut microbiota. However, the causal nature of this relationship remains uncertain due to the limitations inherent in observational studies. PURPOSE To investigate the potential causal relationship between gut microbiota imbalances and preterm birth. METHODS We conducted a two-sample Mendelian randomization (MR) study using genome-wide association study (GWAS) data from the MiBioGen consortium focusing on microbiota and preterm birth. Single nucleotide polymorphisms (SNPs) associated with the microbiota were selected as instrumental variables. The inverse variance weighting (IVW) method was used to estimate causality. We confirmed pleiotropy and identified and excluded outlier SNPs using MR-PRESSO and MR-Egger regression. Cochran's Q test was applied to assess heterogeneity among SNPs, and a leave-one-out analysis was performed to evaluate the influence of individual SNPs on overall estimates. RESULTS Our findings provide evidence for a causal link between specific components of the gut microbiota and preterm birth, with the identification of relevant metabolites. CONCLUSION This study highlights the causal role of gut microbiota imbalances in preterm birth, offering novel insights into the development of preterm birth and potential targets for prevention strategies.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dandan Shen
- Department of Laboratory Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Cai
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanling Jin
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haixia Tu
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shouxing Wang
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianglong Pan
- Department of Clinical Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
He M, Zhang H, Luo Z, Duan X, Zhao F, Su P, Zeng Z, Zhou L, Chen C, Qiu J. Causal link between gut microbiota and obsessive-compulsive disorder: A two-sample Mendelian randomization analysis. J Affect Disord 2025; 379:852-860. [PMID: 40056996 DOI: 10.1016/j.jad.2025.02.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Previous studies have indicated a potential link between the gut microbiota and obsessive-compulsive disorder (OCD). However, the exact causal relationship remains uncertain. In this study, we employed a two-sample Mendelian randomization (MR) analysis to evaluate the causal connection between gut microbiota and OCD. METHODS We collected Genome-Wide Association Study (GWAS) summary data on gut microbiota (n = 18, 340) and OCD (n = 199, 169), using single nucleotide polymorphisms (SNPs) as the instrumental variable. SNPs with an F-statistic of <10 were deemed weak instrumental variables and subsequently excluded. The MR analysis was conducted using five methods: inverse variance weighting (IVW), MR Egger, weighted median, weighted mode, and simple mode. Heterogeneity and pleiotropy were assessed using Cochran's Q-test and MR Egger intercept test, while sensitivity analysis was performed using a leave-one-out approach. RESULTS The IVW analysis revealed that at the phylum level, Proteobacteria (OR = 0.545, 95%CI: 0.347-0.855, P = 0.008) served as a protective factor for OCD, whereas at the order level, Bacillales (OR = 1.327, 95%CI: 1.032-1.707, P = 0.027) was identified as a risk factor. At the family level, Ruminococcaceae (OR = 0.570, 95%CI: 0.354-0.918, P = 0.021) also acted as a protective factor. At the genus level, Bilophila (OR = 0.623, 95%CI: 0.425-0.911, P = 0.015) was a protective factor, while Eubacterium ruminantium group (OR = 1.347, 95%CI: 1.012-1.794, P = 0.041) and Lachnospiraceae UCG001 (OR = 1.384, 95%CI: 1.003-1.910, P = 0.048) were identified risk factors. Reverse MR analysis showed no significant causal relationship between OCD and the gut microbiota, with no significant heterogeneity or horizontal pleiotropy observed. CONCLUSION Our analysis suggested that specific gut microbiota might have a causal relationship with OCD, revealing potential intervention strategies for the prevention and treatment of this disorder.
Collapse
Affiliation(s)
- Mingjie He
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zheng Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Feng Zhao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Peng Su
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lixiao Zhou
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
3
|
Yang M, Qin X, Liu X. The effect of mitochondrial-associated endoplasmic reticulum membranes (MAMs) modulation: New insights into therapeutic targets for depression. Neurosci Biobehav Rev 2025; 172:106087. [PMID: 40031998 DOI: 10.1016/j.neubiorev.2025.106087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/07/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Depression is a prevalent mental disorder with high morbidity and mortality and its pathogenesis remains exactly unclarified. However, mitochondria and endoplasmic reticulum (ER) are two highly dynamic organelles that perform an indispensable role in the development of depression. Mitochondrial dysfunction and ER stress are recognized as vital pathological hallmarks in depression. The changes of intracellular activities such as mitochondrial dynamics, mitophagy, energy metabolism and ER stress are closely correlated with the progression of depression. Moreover, organelles interactions are conducive to homeostasis and cellular functions, and mitochondrial-associated endoplasmic reticulum membranes (MAMs) serve as signaling hubs of the two organelles and the coupling of the pathological progression. The main roles of MAMs are involved in metabolism, signal transduction, lipid transport, and maintenance of its structure and function. At present, accumulating studies elucidated that MAMs have gradually become a novel therapeutic target in treatment of depression. In the review, we focus on influence of mitochondria dysfunction and ER stress on depression. Furthermore, we discuss the underlying role of MAMs in depression and highlight natural products targeting MAMs as potential antidepressants to treat depression.
Collapse
Affiliation(s)
- Maohui Yang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| | - Xiaojie Liu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, No. 92, Wucheng Rd. Xiaodian Dist., Taiyuan, Shanxi 030006, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
4
|
Chen P, Lin Y, Li X, Li J, Liu P, Zhang X, Ma X, Zhu Y, Zhang Z, Yang P, Zhang C. Lactiplantibacillus plantarum fermentation enhances the antidepressant effects of Hemerocallis citrina Baroni in chronic restraint stress mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119897. [PMID: 40311719 DOI: 10.1016/j.jep.2025.119897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/27/2025] [Accepted: 04/27/2025] [Indexed: 05/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hemerocallis citrina Baroni (H. citrina), referred to as 'Forgetting Sadness Grass,' is a traditional Chinese medicine (TCM) known for its antidepressant effects. Fermentation is an ancient processing method for traditional Chinese medicine. Whether fermentation affects the antidepressant effect of H. citrina is unknown. AIM In this study, we aim to evaluate the effect of fermented and unfermented H. citrina on chronic restraint stress-induced depression and the underlying mechanism. MATERIALS AND METHODS H. citrina was co-fermented with Lactiplantibacillus plantarum strains LZU-J-TSL-6 and LZU-J-LZ1-1 to produce fermented H. citrina (FH). Both H. citrina and FH were evaluated for effects on depression and anxiety in chronic restraint stress (CRS) mice. RESULTS Fermentation increased flavonoids and phenols while reducing terpenoids. Both H and FH exhibited antidepressant effects, with FH showing superior efficacy in alleviating depressive symptoms. Specifically, FH effectively alleviated weight loss, behavioral abnormalities, and hippocampal pathological damage caused by CRS, while significantly reducing serum levels of cortisol and inflammatory factors, and increasing hippocampal serotonin (5-HT) level. Moreover, FH can restore CRS-induced gut microbiota dysbiosis by promoting the colonization of beneficial microbes, such as Lactobacillus, and inhibiting the growth of harmful microbes, like Bacteroides_H. Importantly, we discovered that the antidepressant effects of FH are closely associated with substances such as L-theanine and myo-inositol, as well as with the metabolic pathways of alanine, aspartic acid, and glutamic acid. CONCLUSION Our findings suggest that fermentation alters the composition of active ingredients in H. citrina and enhance its role in depression. It highlights the potential therapeutic application of FH well for treating depression.
Collapse
Affiliation(s)
- Pengru Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; School of Pharmacy, Gansu University of Traditional Chinese, Lanzhou 730000, China
| | - Yang Lin
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiaofeng Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Junxiang Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiangyun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiaohu Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Yonghong Zhu
- Gansu Pharmaceutical Group Science and Technology Research Institute, Lanzhou 730000, China
| | - Zhiming Zhang
- Gansu Provincial Hospital of Traditional Chinese Medicine Gansu, Lanzhou 730000, China
| | - Pingrong Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Gansu Institute for Drug Control, Lanzhou 730000.
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
5
|
Lee SH, Han C, Shin C. IUPHAR Review: Microbiota-Gut-Brain Axis and its role in Neuropsychiatric Disorders. Pharmacol Res 2025; 216:107749. [PMID: 40306604 DOI: 10.1016/j.phrs.2025.107749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
The human gut microbiome, composed of a vast array of microorganisms that have co-evolved with humans, is crucial for the development and function of brain systems. Research has consistently shown bidirectional communication between the gut and the brain through neuronal, endocrine, and immunological, and chemical pathways. Recent neuroscience studies have linked changes in the microbiome and microbial metabolites to various neuropsychiatric disorders such as autism, depression, anxiety, schizophrenia, eating disorders, and neurocognitive disorders. Novel metagenome-wide association studies have confirmed these microbiome variations in large samples and expanded our understanding of the interactions between human genes and the gut microbiome. The causal relationship between gut microbiota and neuropsychiatric disorders is being elucidated through the establishment of large cohort studies incorporating microbiome data and advanced statistical techniques. Ongoing animal and human studies focused on the microbiota-gut-brain axis are promising for developing new prevention and treatment strategies for neuropsychiatric conditions. The scope of these studies has broadened from microbiome-modulating therapies including prebiotics, probiotics, synbiotics and postbiotics to more extensive approaches such as fecal microbiota transplantation. Recent systematic reviews and meta-analyses have strengthened the evidence base for these innovative treatments. Despite extensive research over the past decade, many intriguing aspects still need to be elucidated regarding the role and therapeutic interventions of the microbiota-gut-brain axis in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Changsu Han
- Department of Psychiatry, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Cheolmin Shin
- Department of Psychiatry, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Fatoba A, Simpson C. Exploring the potential causal association of gut microbiota on panic and conduct disorder: A two-sample Mendelian randomization approach. J Affect Disord 2025:S0165-0327(25)00718-9. [PMID: 40294825 DOI: 10.1016/j.jad.2025.04.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Gut microbiota has been causally linked with different psychiatric disorders. However, its potential causal association with panic and conduct disorder remains unexplored. Here we used Mendelian randomization to unravel causal association of specific bacterial taxa with these disorders. METHODS We retrieved genomewide association studies' summary-level dataset for gut microbiota (n = 18,340), panic disorder (n = 451,325), and conduct disorder (n = 216,179) from the MiBioGen and FinnGen consortium for two-sample Mendelian randomization (MR) analysis. We used the inverse-variance weighted (IVW) approach to estimate causal effects complemented by other MR methods. Sensitivity analyses were also carried out to assess the validity of our results. RESULTS We detected 15 bacterial taxa with suggestive causal associations. The genera Coprobacter (OR = 1.20, 95%CI = 1.04-1.38; P = 0.011; PFDR = 0.37), Senegalimassilia (OR = 1.32, 95%CI = 1.05-1.65; P = 0.015; PFDR = 0.37) and family Rikenellaceae (OR = 1.17, 95%CI = 1.00-1.38; P = 0.046; PFDR = 0.37) increased the risk of panic disorder while genus Coprococcus (OR = 2.39, 95%CI = 1.16-4.92; P = 0.0179; PFDR = 0.97) and class Coriobacteriia (OR = 2.20, 95%CI = 1.01-4.77; P = 0.045; PFDR = 0.36) increased the risk of conduct disorder. The other 10 bacterial taxa function as a protective factor as they potentially reduce the risk of the two psychiatric disorders. There was also the absence of horizontal pleiotropy and heterogeneity. LIMITATION The result of this study may not be generalizable across non-European ancestral populations. CONCLUSION Our study provides a bedrock for future clinical prevention and treatment of these disorders.
Collapse
Affiliation(s)
- Abiodun Fatoba
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA
| | - Claire Simpson
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38103, USA.
| |
Collapse
|
7
|
Shen CL, Hassan T, Presto P, Payberah D, Devega R, Wakefield S, Dunn DM, Neugebauer V. Novel insights into dietary bioactive compounds and major depressive disorders: evidence from animal studies and future perspectives. J Nutr 2025:S0022-3166(25)00190-7. [PMID: 40274236 DOI: 10.1016/j.tjnut.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Clinical depression, including major depressive disorder (MDD), is a chronic mental illness characterized by persistent sadness and indifference. Depression is associated with neuroinflammation, oxidative stress, and neuronal apoptosis in the brain, resulting in microglial overactivation, decreased neuronal and glial proliferation, monoamine depletion, structural abnormalities, and aberrant biochemical activity via the hypothalamic-pituitary-adrenal axis. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of MDD progression. Here, in this narrative review, we reported the effects of commonly consumed bioactive compounds (curcumin, saffron, garlic, resveratrol, omega-3 fatty acids, ginger, blueberry, tea, and creatine) on MDD and MDD-related neuroinflammation and oxidative stress. The evidence reviewed here is almost exclusively from animal studies and strongly suggest that these commonly consumed bioactive compounds have anti-MDD effects as shown in anti-depression-like behaviors, such as increased immobility, sucrose preference, and social interaction. Based on the literature/studies reviewed, the proposed molecular mechanisms include (i) the reduction of neuroinflammation activation and oxidative stress, (ii) the enhancement of anti-inflammatory and anti-oxidant properties, (iii) the reduction of monoamine oxidase-A production, and (iv) the elevation of brain-derived neurotropic factor and neurogenesis. In the future, dietary bioactive compounds on clinical randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in individuals with MDD.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Taha Hassan
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Peyton Presto
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Daniel Payberah
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Rodan Devega
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Sarah Wakefield
- Department of Psychiatry, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Dale M Dunn
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430.
| |
Collapse
|
8
|
Fan G, Su N, He Y, Yuan C, Zhao C, Hu X, Fu Y, Zhang N. Carbonate Buffer Mixture Alleviates Subacute Rumen Acidosis Induced by Long-Term High-Concentrate Feeding in Dairy Goats by Regulating Rumen Microbiota. Microorganisms 2025; 13:945. [PMID: 40284781 PMCID: PMC12029291 DOI: 10.3390/microorganisms13040945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
This study aimed to elucidate the therapeutic mechanisms of carbonate buffer mixture (CBM) in mitigating subacute rumen acidosis (SARA) by examining its effects on rumen pH, systemic inflammation, and rumen microbiota in a dairy goat model. Using a controlled experimental design, SARA was induced through 8-week high-concentrate diet feeding (70% concentrate, 30% forage), followed by 2-day CBM treatment. Comprehensive analyses included rumen pH monitoring, serum inflammatory marker quantification (IL-1β, TNF-α) by ELISA, rumen barrier integrity assessment through tight junction proteins (TJs) ZO-1, Occludin, and Claudin-3 by western blot analysis, and 16S rRNA sequencing of rumen microbiota. The results demonstrated that CBM administration rapidly elevated depressed rumen pH within 6 h post-treatment while concurrently reducing circulating LPS levels. The analysis of rumen 16S rRNA showed that CBM significantly increased the rumen microbial diversity and abundance of SARA dairy goats. Butyric acid generation groups such as Rikenellaceae_RC9_gut_group, NK4A214_group, and Prevotellaceae UCG-001 were selectively enriched, and corresponding functional predictions showed that the butyric acid synthesis pathway (PICRUSt2) was enhanced. These findings suggest that CBM has a multidimensional therapeutic effect by simultaneously correcting rumen acidosis, alleviating systemic inflammation, and restoring microbial balance through pH-dependent and pH-independent mechanisms, providing a scientifically validated nutritional strategy for SARA management in intensive ruminant production systems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China; (G.F.); (N.S.); (Y.H.); (C.Y.); (C.Z.); (X.H.)
| | | |
Collapse
|
9
|
Koike K, Murotomi K, Hamajima M, Tourlousse DM, Hisatomi A, Sakamoto M, Sekiguchi Y. Complete genome sequences of Sellimonas intestinalis JCM 30749 T, Sellimonas caecigallum JCM 35759 T, and Sellimonas catena JCM 35622 T and JCM 35623. Microbiol Resour Announc 2025; 14:e0128224. [PMID: 39998194 PMCID: PMC11984160 DOI: 10.1128/mra.01282-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
We obtained complete genome sequences of Sellimonas intestinalis JCM 30749T, "Sellimonas caecigallum" JCM 35759T, Sellimonas catena JCM 35622T, and Sellimonas catena JCM 35623. All four genomes consist of a single circular chromosome, with lengths of 2,758,996 to 3,825,976 base pairs and G + C contents of 45.12% to 45.59%.
Collapse
Affiliation(s)
- Kazuyoshi Koike
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mayu Hamajima
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Dieter M. Tourlousse
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Atsushi Hisatomi
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Mitsuo Sakamoto
- Microbe Division/Japan Collection of Microorganisms, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yuji Sekiguchi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Cheng Y, Zhu Z, Yang Z, Liu X, Qian X, Zhu J, Hu X, Jiang P, Cui T, Wang Y, Ding W, Lei W, Gao J, Zhang J, Li Y, Shao L, Ling Z, Hu W. Alterations in fecal microbiota composition and cytokine expression profiles in adolescents with depression: a case-control study. Sci Rep 2025; 15:12177. [PMID: 40204825 PMCID: PMC11982373 DOI: 10.1038/s41598-025-97369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
Emerging evidence has highlighted that altered gut microbiota are associated with the onset and progression of depression via regulating the gut-brain axis. However, existing research has predominantly focused on children and adults, frequently neglecting adolescent depression. Given the rising prevalence and substantial impact of adolescent depression on functional impairment and suicidality, it is essential to focus more on this age group. In this study, we examined the fecal microbiota and inflammatory profiles of 99 depressed adolescents and 106 age-matched healthy controls using Illumina NovaSeq sequencing and multiplex immunoassays, respectively. Our findings revealed lower bacterial α-diversity and richness, alongside altered β-diversity in adolescents with depression. Gut dysbiosis associated with adolescent depression was characterized by increased pro-inflammatory genera such as Streptococcus and decreased anti-inflammatory genera like Faecalibacterium. These differential genera may serve as potential non-invasive biomarkers for adolescent depression, either individually or in combination. We also observed disruptions in the inferred microbiota functions in adolescent depression-associated microbiota, particularly in glycolysis and gluconeogenesis. Additionally, depressed adolescents exhibited systemic immune dysfunction, with elevated levels of pro-inflammatory cytokines and chemokines, which showed significant correlations with the differential genera. Our study bridges the gap between children and adults by providing new insights into the fecal microbiota characteristics and their links to immune system disruptions in depressed adolescents, which offer new targets for the diagnosis and treatment of depression in this age group.
Collapse
Affiliation(s)
- Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zhangcheng Zhu
- Department of Preventive Medicine, School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhi Yang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xiulian Qian
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Juntao Zhu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Xinzhu Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Peijie Jiang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Tingting Cui
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Yuwei Wang
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China
| | - Wenwen Ding
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Wenhui Lei
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, Shandong, China
| | - Jie Gao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Yating Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310015, Zhejiang, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| | - Weiming Hu
- Department of Psychiatry, Quzhou Third Hospital, Quzhou, 324003, Zhejiang, China.
| |
Collapse
|
11
|
Novau-Ferré N, Papandreou C, Rojo-Marticella M, Canals-Sans J, Bulló M. Gut microbiome differences in children with Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder and effects of probiotic supplementation: A randomized controlled trial. RESEARCH IN DEVELOPMENTAL DISABILITIES 2025; 161:105003. [PMID: 40184961 DOI: 10.1016/j.ridd.2025.105003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 03/13/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Emerging evidence suggests a significant role of gut microbiota on neurodevelopmental disorders, including Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD). AIMS Our study aimed to compare gut microbiota composition between these disorders and evaluate the effect of probiotic supplementation. METHODS We conducted a 12-week randomized, double-blind, placebo-controlled trial with 80 children aged 5-14 years (39 with ADHD, 41 with ASD). Baseline and post-intervention fecal samples were analyzed using 16S rRNA gene sequencing to identify changes in gut microbiota composition. RESULTS We identified 22 taxa differentiating ADHD and ASD (AUC = 0.939), characterised by increased presence of Clostridia, Ruminococcaceae, and Lachnospiraceae in ADHD, and Bacteroides, Bacilli and Actinobacteria in ASD. These differences remained after accounting for potential confounders. ASD children receiving probiotics had significant increases in Chao 1, Fisher's alpha, and Shannon indices whereas no significant differences in α and β-diversity were found in ADHD. In ADHD, bacteria with potential adverse effects were under-represented. In ASD, the abundance of Eggerthellaceae, and other taxa associated with gastrointestinal problems and anxiety was decreased. CONCLUSION Variations in gut microbiota may influence responses in ADHD and ASD. Probiotic supplementation favorably altered gut microbiota composition, offering insights for future therapeutic strategies targeting the microbiome in neurodevelopmental disorders. WHAT THIS PAPER ADDS Recent research underscores the role of gut microbiota in ADHD and ASD, indicating that diet can significantly influence microbiota composition and potentially manage these neurodevelopmental disorders. This study reveals distinct differences in gut microbiota composition between children with ADHD and ASD and demonstrates that probiotic supplementation can modulate specific microbial genera in each disorder. These findings pave the way for the development of innovative microbiome-targeted therapies, offering a new avenue for the treatment of neurodevelopmental disorders. Understanding this relationship is crucial for designing future interventions.
Collapse
Affiliation(s)
- Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain; Department of Nutrition and Dietetics Sciences, School of Health Sciences, Hellenic Mediterranean University (HMU), 72300 Siteia, Greece
| | - Meritxell Rojo-Marticella
- Nutrition and Mental Health Research Group (NutriSam), Department of Psychology, Rovira i Virgili University, 43007 Tarragona, Spain; Research Center for Behavior Assessment (CRAMC), Rovira i Virgili University, 43007 Tarragona, Spain
| | - Josefa Canals-Sans
- Nutrition and Mental Health Research Group (NutriSam), Department of Psychology, Rovira i Virgili University, 43007 Tarragona, Spain; Research Center for Behavior Assessment (CRAMC), Rovira i Virgili University, 43007 Tarragona, Spain.
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group (NuMeH). Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain; Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain; Center of Environmental, Food and Toxicological Technology - TecnATox, Rovira i Virgili University, 43201 Reus, Spain; CIBER Physiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain.
| |
Collapse
|
12
|
Mu X, Feng L, Wang Q, Li H, Zhou H, Yi W, Sun Y. Decreased gut microbiome-derived indole-3-propionic acid mediates the exacerbation of myocardial ischemia/reperfusion injury following depression via the brain-gut-heart axis. Redox Biol 2025; 81:103580. [PMID: 40058066 PMCID: PMC11930714 DOI: 10.1016/j.redox.2025.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/11/2025] [Accepted: 02/19/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the increasing recognition of the interplay between depression and cardiovascular disease (CVD), the precise mechanisms by which depression contributes to the pathogenesis of cardiovascular disease remain inadequately understood. The involvement of gut microbiota and their metabolites to health and disease susceptibility has been gaining increasing attention. In this study, it was found that depression exacerbated cardiac injury, impaired cardiac function (EF%: P < 0.01; FS%: P < 0.05), hindered long-term survival (P < 0.01), and intensified adverse cardiac remodeling (WGA: P < 0.01; MASSON: P < 0.0001) after myocardial ischemia/reperfusion (MI/R) in mice. Then we found that mice receiving microbiota transplants from chronic social defeat stress (CSDS) mice exhibited worse cardiac function (EF%: P < 0.01; FS%: P < 0.01) than those receiving microbiota transplants from non-CSDS mice after MI/R injury. Moreover, impaired tryptophan metabolism due to alterations in gut microbiota composition and structure was observed in the CSDS mice. Mechanistically, we analyzed the metabolomics of fecal and serum samples from CSDS mice and identified indole-3-propionic acid (IPA) as a protective agent for cardiomyocytes against ferroptosis after MI/R via NRF2/System xc-/GPX4 axis, played a role in mediating the detrimental influence of depression on MI/R. Our findings provide new insights into the role of the gut microbiota and IPA in depression and CVD, forming the basis of intervention strategies aimed at mitigating the deterioration of cardiac function following MI/R in patients experiencing depression.
Collapse
Affiliation(s)
- Xingdou Mu
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Lele Feng
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Qiang Wang
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Hong Li
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Haitao Zhou
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China
| | - Wei Yi
- Department of Cardiovascular Surgery, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| | - Yang Sun
- Department of Geriatric, XiJing Hospital, Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
13
|
Xu B, Zhang L, Li J, Xie Z, Li Y, Si H. Selenium Broussonetia papyrifera polysaccharide alleviated cyclophosphamide-induced immune suppression, growth inhibition, intestinal damage, and gut microbiota disorder in yellow-feather broilers. Poult Sci 2025; 104:104907. [PMID: 40031381 PMCID: PMC11919418 DOI: 10.1016/j.psj.2025.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 02/16/2025] [Indexed: 03/05/2025] Open
Abstract
This study aims to investigate the effects of selenium Broussonetia papyrifera polysaccharide (Se-BPP) on growth performance, immune regulation, intestinal barrier function, and gut microbiota in cyclophosphamide (CTX)-induced immunosuppressed chicks. A total of 120 one-day-old male yellow-feathered broilers were randomly divided into five groups: normal control group (NC), model control group (MC), low-dose Se-BPP group (Se-L), high-dose Se-BPP group (Se-H), and Astragalus polysaccharide (APS) group The Se-L and Se-H groups were supplemented with 0.1 % or 0.2 % Se-BPP, respectively, while the APS group was supplemented with 0.2 % APS. On days 22, 24, and 26, the NC group received intramuscular injections of 80 mg/kg saline, while the other groups received the same dose of CTX to induce immunosuppression in the chicks. The results showed that CTX caused growth retardation, immunosuppression, intestinal damage, and alterations in gut microbiota structure. Supplementation with Se-BPP improved average daily gain and reduced feed-to-gain ratio, promoting growth in immunosuppressed chicks. Se-BPP increased the immune organ index and serum content of IgG, IgM, IgA, SOD, GSH-Px, CAT, IL-2, IL-4, IL-6, IL-10, and INF-γ, thus alleviating the immunosuppression and oxidative stress caused by CTX. Additionally, Se-BPP enhanced the mRNA expression levels of ZO-1, Claudin 1, and MUC2 and increased villus height in the jejunum, effectively mitigating intestinal damage induced by CTX. Although the effect of Se-BPP on alpha diversity of the gut microbiota was not significant, it increased the abundance of beneficial bacteria such as Ruminococcus and Lactobacillus. In brief, this study demonstrated that adding Se-BPP to the diet could improve immunosuppression, intestinal damage, and microbiota disturbances in yellow-feather broiler chickens challenged with CTX, enhancing their production performance.
Collapse
Affiliation(s)
- Baichang Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jiang Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Zonggu Xie
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yehong Li
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi grass station, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
14
|
Tan X, Wu J, Zhang H, Li Y, Huang Y, Zheng P, Xie P. Biogeography of intestinal mucus-associated microbiome: Depletion of genus Pseudomonas is associated with depressive-like behaviors in female cynomolgus macaques. J Adv Res 2025; 70:393-404. [PMID: 38735389 PMCID: PMC11976423 DOI: 10.1016/j.jare.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
INTRODUCTION Depression is a debilitating and poorly understood mental disorder. There is an urgency to explore new potential biological mechanisms of depression and the gut microbiota is a promising research area. OBJECTIVES Our study was aim to understand regional heterogeneity and potential molecular mechanisms underlying depression induced by dysbiosis of mucus-associated microbiota. METHODS Here, we only selected female macaques because they are more likely to form a natural social hierarchy in a harem-like environment. Because high-ranking macaques rarely displayed depressive-like behaviors, we selected seven monkeys from high-ranking individuals as control group (HC) and the same number of low-ranking ones as depressive-like group (DL), which displayed significant depressive-like behaviors. Then, we collected mucus from the duodenum, jejunum, ileum, cecum and colon of DL and HC monkeys for shotgun metagenomic sequencing, to profile the biogeography of mucus-associated microbiota along duodenum to colon. RESULTS Compared with HC, DL macaques displayed noticeable depressive-like behaviors such as longer duration of huddle and sit alone behaviors (negative emotion behaviors), and fewer duration of locomotion, amicable and ingestion activities (positive emotion behaviors). Moreover, the alpha diversity index (Chao) could predict aforementioned depressive-like behaviors along duodenum to colon. Further, we identified that genus Pseudomonas was consistently decreased in DL group throughout the entire intestinal tract except for the jejunum. Specifically, there were 10, 18 and 28 decreased Pseudomonas spp. identified in ileum, cecum and colon, respectively. Moreover, a bacterial module mainly composed of Pseudomonas spp. was positively associated with three positive emotion behaviors. Functionally, Pseudomonaswas mainly involved in microbiota derived lipid metabolisms such as PPAR signaling pathway, cholesterol metabolism, and fat digestion and absorption. CONCLUSION Different regions of intestinal mucus-associated microbiota revealed that depletion of genus Pseudomonas is associated with depressive-like behaviors in female macaques, which might induce depressive phenotypes through regulating lipid metabolism.
Collapse
Affiliation(s)
- Xunmin Tan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Yifan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Yu Huang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Disease, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; The Jin Feng Laboratory, Chongqing, China.
| |
Collapse
|
15
|
Vitetta L, Bambling M, Strodl E. Persister Intestinal Bacteria, Epigenetics and Major Depression. FRONT BIOSCI-LANDMRK 2025; 30:26837. [PMID: 40302324 DOI: 10.31083/fbl26837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 05/02/2025]
Abstract
The microbiota-gut-brain axis has been proposed as a potential modulator of mood disorders such as major depression. Complex bidirectional biochemical activities in this axis have been posited to participate in adverse mood disorders. Environmental and genetic factors have dominated recent discussions on depression. The prescription of antibiotics, antidepressants, adverse negative DNA methylation reactions and a dysbiotic gut microbiome have been cited as causal for the development and progression of depression. While research continues to investigate the microbiome-gut-brain axis, this review will explore the state of persistence of gut bacteria that underpins bacterial dormancy, possibly due to adverse environmental conditions and/or pharmaceutical prescriptions. Bacterial dormancy persistence in the intestinal microbial cohort could affect the role of bacterial epigenomes and DNA methylations. DNA methylations are highly motif driven exerting significant control on bacterial phenotypes that can disrupt bacterial metabolism and neurotransmitter formation in the gut, outcomes that can support adverse mood dispositions.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2005, Australia
| | - Matthew Bambling
- Faculty of Medicine and Health, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Esben Strodl
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4058, Australia
| |
Collapse
|
16
|
Lutz M, Arancibia M, Moran-Kneer J, Manterola M. Ultraprocessed Foods and Neuropsychiatric Outcomes: Putative Mechanisms. Nutrients 2025; 17:1215. [PMID: 40218973 PMCID: PMC11990412 DOI: 10.3390/nu17071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
A body of evidence indicates an association between ultraprocessed foods (UPFs) and health outcomes. Most of it has been obtained through preclinical studies, although a number of observational studies substantiate how a high intake of these products increases the risk of neuropsychiatric disorders, and an increasing amount of dietary intervention studies confirm these findings. The aim of this narrative review is to describe some of the putative mechanisms involved in the deleterious effects of a high intake of UPFs on neuropsychiatric outcomes. A myriad of unhealthy actions may be associated with the consumption of UPFs, and some mechanisms are being discussed. They include UPFs' high caloric density; their high sugar, sodium, and additives content and low amounts of fiber; and a high palatability that induces overconsumption, acting as obesogens. Moreover, thermal treatment of these foods generates oxidative products such as glycotoxins, lipotoxins, and acrolein, all of which affect the brain. The chemical products act, directly or indirectly, on the gut microbiome and affect the gut-brain axis, causing neuroinflammation, oxidative stress, and neurodegeneration. UPFs also exert various epigenetic effects that affect mental health and might explain the intergenerational inheritance of neuropsychiatric disorders. A diet containing a high proportion of these foods has a low nutritional density, including bioactive protective agents such as antioxidant and anti-inflammatory compounds that promote eubiosis. The evidence shows that UPFs intake affects neuropsychiatric outcomes such as neurodegeneration, cognitive decline, dementia, and mood disorders and reinforces the need to promote a healthy dietary pattern throughout all life stages, thus interfering with the current commercial determinants of health.
Collapse
Affiliation(s)
- Mariane Lutz
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Marcelo Arancibia
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- School of Medicine, Faculty of Medicine, Universidad de Valparaíso, Viña del Mar 2520000, Chile
| | - Javier Moran-Kneer
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- School of Psychology, Faculty of Social Sciences, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Marcia Manterola
- Center for Translational Studies in Stress and Mental Health (C-ESTRES), Universidad de Valparaíso, Valparaíso 2360102, Chile; (M.A.); (J.M.-K.); (M.M.)
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
17
|
Dong J, Al-Issa M, Feeney JS, Shelp GV, Poole EM, Cho CE. Prenatal Intake of High Multivitamins or Folic Acid With or Without Choline Contributes to Gut Microbiota-Associated Dysregulation of Serotonin in Offspring. Mol Nutr Food Res 2025:e70044. [PMID: 40123263 DOI: 10.1002/mnfr.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/23/2025] [Accepted: 03/11/2025] [Indexed: 03/25/2025]
Abstract
The gut microbiota is amenable to early nutrition including micronutrients but intake above and below the recommendations commonly occur with unknown consequences. Serotonin (5-hydroxytryptamine [5-HT]) is a monoamine found centrally and peripherally with diverse functions such as food intake regulation via the hypothalamic 5-HT receptor 2C (5-HTR2C). This study determined the impact of prenatal micronutrients on the gut microbiota and serotonergic system in offspring. Pregnant Wistar rats were fed either recommended vitamins (RV), high vitamins (HV), high folic acid with recommended choline (HFRC), or high folic acid with no choline (HFNC). Offspring were fed a high-fat diet for 12 weeks postweaning. HV, HFRC, and HFNC males and females had lower hypothalamic 5-HTR2C protein expression compared to RV. Brain 5-HT concentrations were lower but colon 5-HT concentrations were higher in HV and HFNC males and females and HFRC males compared to RV. Refeeding response after 5-HTR2C agonist was negatively correlated with hypothalamic 5-HTR2C protein expression in males and with brain 5-HT concentrations in females. Random forest revealed top bacterial taxa, which Lactococcus, Ruminococcus, Bacteroides, and Oscillospira showed significant correlations with refeeding response and concentrations of brain and colon 5-HT. In conclusion, excess or imbalanced prenatal consumption of micronutrients leads to gut microbiota-associated disturbances in the serotonergic system in offspring.
Collapse
Affiliation(s)
- Jianzhang Dong
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mali Al-Issa
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Jenny S Feeney
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Gia V Shelp
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth M Poole
- Department of Family Relations and Applied Nutrition, University of Guelph, Guelph, Ontario, Canada
| | - Clara E Cho
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
18
|
Naspolini NF, Natividade AP, Asmus CIF, Moreira JC, Dominguez-Bello MG, Meyer A. Early-life gut microbiome is associated with behavioral disorders in the Rio birth cohort. Sci Rep 2025; 15:8674. [PMID: 40082490 PMCID: PMC11906608 DOI: 10.1038/s41598-024-81774-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/28/2024] [Indexed: 03/16/2025] Open
Abstract
Emerging evidence has been linking changes in the early-life gut microbiome and neurodevelopmental outcomes. The founder bacteria that first colonize the infant's gut determine the microbial succession that signals host tissues and impact development including the brain. Here we investigated the association between the meconium microbiome and neurobehavior. To this end, we surveyed the 16S rRNA gene on meconium samples and assessed behavioral outcomes at six-months of age by the Denver Developmental Screening Test II (DDST-II). Among the four behavioral domains investigated, the personal-social domain was associated with significant differences in meconium bacterial beta diversity (unweighted UniFrac; R2 0.078, p = 0.021) and reduced alpha diversity (β = -2.290, 95% CI = -4.212; CI = -0.368), after adjustment for gestational antibiotics, preterm delivery, and delivery mode. Besides, this altered neurobehavior (failing to meet the milestone) was associated with overrepresented Ruminococcaceae, Christensenellaceae, and Eubacterium, Treponema, Senegalimassilia, Ruminiclostridium, Roseburia, Romboutsia, Prevotella, and Veillonella seminalis. Predicted functional genes showed reduced abundance in association with altered neurobehavior (all q < 0.15). Fine and gross motor skills presented no associations with the microbiome. This pilot study shows associations between the first gut microbiome and behavioral outcomes that deserve further studies in different neonate populations.
Collapse
Affiliation(s)
- Nathalia Ferrazzo Naspolini
- Oswaldo Cruz Foundation, National School of Public Health Sergio Arouca, Rio de Janeiro, Brazil.
- School of Arts, Sciences and Humanity, University of São Paulo, São Paulo, 03828-000, Brazil.
| | - Ana Paula Natividade
- Oswaldo Cruz Foundation, National School of Public Health Sergio Arouca, Rio de Janeiro, Brazil
| | | | - Josino Costa Moreira
- Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Gloria Dominguez-Bello
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
- Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, M5G 1M1, Canada
| | - Armando Meyer
- Public Health Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Wei P, Gao S, Han G. Evidence for Genetic Causal Association Between the Gut Microbiome, Derived Metabolites, and Age-Related Macular Degeneration: A Mediation Mendelian Randomization Analysis. Biomedicines 2025; 13:639. [PMID: 40149615 PMCID: PMC11940807 DOI: 10.3390/biomedicines13030639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Despite substantial research, the causal relationships between gut microbiota (GM) and age-related macular degeneration (AMD) remain unclear. We aimed to explore these causal associations using Mendelian randomization (MR) and elucidate the potential mechanisms mediated by blood metabolites. Methods: We utilized the 211 GM dataset (n = 18,340) provided by the MiBioGen consortium. AMD outcome data were sourced from the MRC Integrated Epidemiology Unit (IEU) OpenGWAS Project. We performed bidirectional MR, two mediation analyses, and two-step MR to assess the causal links between GM and different stages of AMD (early, dry, and wet). Results: Our findings indicate that the Bacteroidales S24.7 group and genus Dorea are associated with an increased risk of early AMD, while Ruminococcaceae UCG011 and Parasutterella are linked to a higher risk of dry AMD. Conversely, Lachnospiraceae UCG004 and Anaerotruncus are protective against dry AMD. In the case of wet AMD, Intestinimonas and Sellimonas increase risk, whereas Anaerotruncus and Rikenellaceae RC9 reduce it. Additionally, various blood metabolites were implicated: valine, arabinose, creatine, lysine, alanine, and apolipoprotein A1 were associated with early AMD; glutamine and hyodeoxycholate-with a reduced risk of dry AMD; and androsterone sulfate, epiandrosterone sulfate, and lipopolysaccharide-with a reduced risk of wet AMD. Notably, the association between family Oxalobacteraceae and early AMD was mediated by valine, accounting for 19.1% of the association. Conclusions: This study establishes causal links between specific gut microbiota and AMD, mediated by blood metabolites, thereby enhancing our understanding of the gut-retina axis in AMD pathophysiology.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; (P.W.); (S.G.)
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300071, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| | - Shan Gao
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; (P.W.); (S.G.)
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin 300020, China; (P.W.); (S.G.)
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin 300071, China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin 300020, China
| |
Collapse
|
20
|
Faggiani LD, de França P, Seabra SG, Sabino EC, Qi L, Cardoso MA. Effect of ultra-processed food consumption on the gut microbiota in the first year of life: Findings from the MINA-Brazil birth cohort study. Clin Nutr 2025; 46:181-190. [PMID: 39954456 DOI: 10.1016/j.clnu.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/17/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND AND AIMS The first years of life are fundamental for the establishment of the gut microbiota, with diet being one of the main early exposures. During this period, the beneficial effect of breastfeeding on modulating the gut microbiota is well known; however, there are important gaps in the literature on the effects of ultra-processed food (UPF) consumption, particularly in longitudinal and large sample designs. Through a prospective birth cohort study, we investigated the effects of UPF consumption on the gut microbiota of children during the first year of life. METHODS This study included children from the MINA-Brazil birth cohort with gut microbiota data (16S rRNA) available at the 1-year follow-up (n = 728). Data on breastfeeding practices were collected after childbirth and during follow-up visits. Complementary feeding was measured using a semi-structured questionnaire, referring to the day before the interview at the 1-year follow-up. A combined variable was generated according to breastfeeding practices and UPF consumption and was used as an independent variable in the adjusted median regression models, with alpha diversity parameters as the dependent variable. Beta diversity was analyzed using PERMANOVA according to Bray-Curtis dissimilarity and Distance-based Redundancy Analysis (db-RDA) adjusted for covariates. Relative abundance was analyzed using ANCOM-BC (corrected by FDR) and MaAsLin2 adjusted for covariates. RESULTS Weaned children who consumed UPF showed a significant increase in alpha diversity for all parameters in the median regression models (Observed ASVs: p = 0.005; Shannon index: p = 0.036; Chao index: p = 0.026; Simpson index: p = 0.012) and in beta diversity (PERMANOVA: p = 0.006; db-RDA: p < 0.001) compared to breastfed children who did not consume UPF. Breastfed children who did not consume UPF had a higher relative abundance of Bifidobacterium than weaned children who consumed UPF (both p < 0.001 for ANCOM-BC and MaAsLin2) and a lower relative abundance of Firmicutes (p < 0.001 for MaAsLin2), Blautia (both p < 0.001 for ANCOM-BC and MaAsLin2), Sellimonas (p = 0.008 for ANCOM-BC) and Finegoldia (p = 0.045 for MaAsLin2) than weaned children who consumed UPF. CONCLUSION These findings suggest that UPF consumption may negatively impact the diversity and abundance of the gut microbiota, with a more pronounced effect in children who have already been weaned.
Collapse
Affiliation(s)
- Lucas D Faggiani
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Paula de França
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Sofia G Seabra
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Ester C Sabino
- Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Marly A Cardoso
- Departamento de Nutrição, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil; Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal.
| |
Collapse
|
21
|
Logan AC, Mishra P, Prescott SL. The Legalome: Microbiology, Omics and Criminal Justice. Microb Biotechnol 2025; 18:e70129. [PMID: 40072296 PMCID: PMC11898878 DOI: 10.1111/1751-7915.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Advances in neuromicrobiology and related omics technologies have reinforced the idea that unseen microbes play critical roles in human cognition and behaviour. Included in this research is evidence indicating that gut microbes, through direct and indirect pathways, can influence aggression, anger, irritability and antisocial behaviour. Moreover, gut microbes can manufacture chemicals that are known to compromise cognition. For example, recent court decisions in the United States and Europe acknowledge that gut microbes can produce high levels of ethanol, without consumption of alcohol by the defendants. The dismissal of driving while intoxicated charges in these cases-so-called auto-brewery syndrome-highlights the way in which microbiome knowledge will enhance the precision, objectivity and fairness of our legal systems. Here in this opinion essay, we introduce the concept of the 'legalome'-the application of microbiome and omics science to forensic psychiatry and criminal law. We argue that the rapid pace of microbial discoveries, including those that challenge ideas of free will and moral responsibility, will necessitate a reconsideration of traditional legal doctrines and justifications of retributive punishment. The implications extend beyond the courtroom, challenging us to reconsider how environmental factors-from diet to socioeconomic conditions-might shape preventative and rehabilitative efforts through their effects on the microbiome.
Collapse
Affiliation(s)
| | - Pragya Mishra
- University of Allahabad (A Central University)PrayagrajIndia
| | - Susan L. Prescott
- Nova Institute for HealthBaltimoreMarylandUSA
- University of Western AustraliaPerthWestern AustraliaAustralia
- University of MarylandBaltimoreMarylandUSA
| |
Collapse
|
22
|
Zhou X, Ganz AB, Rayner A, Cheng TY, Oba H, Rolnik B, Lancaster S, Lu X, Li Y, Johnson JS, Hoyd R, Spakowicz DJ, Slavich GM, Snyder MP. Dynamic human gut microbiome and immune shifts during an immersive psychosocial intervention program. Brain Behav Immun 2025; 125:428-443. [PMID: 39701328 PMCID: PMC11903166 DOI: 10.1016/j.bbi.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/24/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Although depression is a leading cause of disability worldwide, the pathophysiological mechanisms underlying this disorder-particularly those involving the gut microbiome-are poorly understood. METHOD To investigate, we conducted a community-based observational study to explore complex associations between changes in the gut microbiome, cytokine levels, and depression symptoms in 51 participants (Mage = 49.56, SD = 13.31) receiving an immersive psychosocial intervention. A total of 142 multi-omics samples were collected from participants before, during, and three months after the nine-day inquiry-based stress reduction program. RESULTS Results revealed that depression was associated with both an increased presence of putatively pathogenic bacteria and reduced microbial beta-diversity. Following the intervention, we observed reductions in neuroinflammatory cytokines and improvements in several mental health indicators. Interestingly, participants with a Prevotella-dominant microbiome showed milder symptoms when depressed, along with a more resilient microbiome and more favorable inflammatory cytokine profile, including reduced levels of CXCL-1. CONCLUSIONS These findings reveal a potentially protective link between the Prevotella-dominant microbiome and depression, as evidenced by a reduced pro-inflammatory environment and fewer depressive symptoms. These insights, coupled with observed improvements in neuroinflammatory markers and mental health from the intervention, may highlight potential avenues for microbiome-targeted therapies for managing depression.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA
| | - Ariel B Ganz
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Andre Rayner
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Tess Yan Cheng
- Department of Genetics, Stanford University School of Medicine, CA, USA; Department of Microbiology, College of Arts and Sciences, University of Washington, WA, USA
| | - Haley Oba
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Benjamin Rolnik
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA
| | - Samuel Lancaster
- Department of Genetics, Stanford University School of Medicine, CA, USA
| | - Xinrui Lu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Yizhou Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rebecca Hoyd
- The Ohio State University Comprehensive Cancer Center, OH, USA
| | | | - George M Slavich
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, CA, USA; Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, CA, USA; Stanford Healthcare Innovation Lab, Stanford University, CA, USA.
| |
Collapse
|
23
|
Nikdasti A, Khodadadi ES, Ferdosi F, Dadgostar E, Yahyazadeh S, Heidari P, Ehtiati S, Vakili O, Khatami SH. Nutritional Strategies in Major Depression Disorder: From Ketogenic Diet to Modulation of the Microbiota-Gut-Brain Axis. Mol Neurobiol 2025; 62:2973-2994. [PMID: 39192045 DOI: 10.1007/s12035-024-04446-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Major depressive disorder (MDD) is a leading cause of disability worldwide. While traditional pharmacological treatments are effective for many cases, a significant proportion of patients do not achieve full remission or experience side effects. Nutritional interventions hold promise as an alternative or adjunctive approach, especially for treatment-resistant depression. This review examines the potential role of nutrition in managing MDD through addressing biological deficits and modulating pathways relevant to its pathophysiology. Specifically, it explores the ketogenic diet and gut microbiome modulation through various methods, including probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation. Numerous studies link dietary inadequacies to increased MDD risk and deficiencies in nutrients like omega-3 s, vitamins D and B, magnesium, and zinc. These deficiencies impact neurotransmitters, inflammation, and other biological factors in MDD. The gut-brain axis also regulates mood, stress response, and immunity, and disruptions are implicated in MDD. While medications aid acute symptoms, nutritional strategies may improve long-term outcomes by preventing relapse and promoting sustained remission. This comprehensive review aims to provide insights into nutrition's multifaceted relationship with MDD and its potential for developing more effective integrated treatment approaches.
Collapse
Affiliation(s)
- Ali Nikdasti
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Elaheh Sadat Khodadadi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Felora Ferdosi
- Department of Radiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ehsan Dadgostar
- Behavioral Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parasta Heidari
- School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sajad Ehtiati
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Zhang L, Lai Y, Yan L, Fang J, Wang K. The joint and interactive effects of the non-high-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (NHHR) and body mass index on the risk of depression, as well as the mediating role of NHHR: results from NHANES 2005-2023. Lipids Health Dis 2025; 24:77. [PMID: 40022090 PMCID: PMC11869543 DOI: 10.1186/s12944-025-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Various research in the past has indicated that the NHHR, which represents the ratio of non-high-density lipoprotein cholesterol (non-HDL-C) to high-density lipoprotein cholesterol (HDL-C), and body mass index (BMI) each act independently as contributors to depression risk. Nonetheless, studies exploring the combination of NHHR with BMI in relation to depression are limited. Consequently, the central aim of this study is investigating the joint and interactive effects of NHHR and BMI on depression risk, as well as the mediating role of NHHR. METHODS Encompassing participants aged 20 years or over, this research incorporated a total of 39,704 individuals from the National Health and Nutrition Examination Survey (NHANES), which covered the period of 2005 to 2023. To analyze the impact of NHHR and its combination with BMI on depression, our analytical approach included multivariate logistic regression, restricted cubic spline modeling, interaction testing and subgroup analyses. Additionally, we studied the joint effects of NHHR and BMI. Finally, we applied a four-way decomposition analysis method to examine the interactions and mediating effects within the aforementioned relationships. RESULTS Among all participants in this study, the prevalence of depressive disorder (Patient Health Questionnaire-9 score ≥ 10) was 9.2%. Both the NHHR and BMI were associated with depression, which remained significant even after full adjustment for covariates [NHHR, OR (95% CI): 1.07 (1.04-1.09); BMI, OR (95% CI): 1.02 (1.02-1.03)]. Compared with the reference group, the OR (95% CI) for the highest groups of NHHR, BMI, and their product term NHHR-BMI were 1.41 (1.24-1.61), 1.35 (1.18-1.54), and 1.59 (1.37-1.84), respectively. Participants with NHHR in the fourth quartile and BMI exceeding 30 kg/m², had higher depression risk compared to other participants with NHHR in the first quartile and BMI below 25 kg/m² [OR (95% CI): 1.64 (1.34-2.00)]. Results of the four-way decomposition analyses indicated that NHHR played a mediating role in the association between BMI and depression, with the mediating effect accounting for 17.6%. Similarly, NHHR also mediated 11.0% of the mediating effect between BMI and PHQ-9 score. However, no interaction between NHHR and BMI related to depression was found in the general population. After stratifying by gender, it was found that the mediated interaction between NHHR and BMI had a statistically significant effect on depression and PHQ-9 score in males. CONCLUSIONS Depression risk is linked to both NHHR and BMI, and NHHR has a significant mediating impact on the association between BMI and depression. Notably, there is a non-negligible mediated interaction effect between BMI and NHHR in male participants. Compared to considering NHHR or BMI individually, participants had a higher risk of depression when the combined terms of the two were in the higher quartiles. These findings suggest that the combined assessment of these two indicators may help deepen the understanding and evaluation of depression, enhance the accuracy of risk stratification, and is worthy of further research.
Collapse
Affiliation(s)
- Lingling Zhang
- Department of Clinical Laboratory, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Yi Lai
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Long Yan
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Jiaping Fang
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China
| | - Kai Wang
- Department of Emergency, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, 311200, Zhejiang, China.
| |
Collapse
|
25
|
Xu Q, Xiang Q, Tan Z, Yang Q. Global research trends in the intestinal microflora and depression: bibliometrics and visual analysis. Front Cell Infect Microbiol 2025; 15:1507667. [PMID: 40070374 PMCID: PMC11893873 DOI: 10.3389/fcimb.2025.1507667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Background In recent years, the relationship between gut microbiota and human health has garnered significant attention. Notably, the potential connection between gut microbiota and mental health issues, such as depression and anxiety, has emerged as a new focal point for research. While some studies suggest a possible link between these factors, the field remains in its early stages of development, and there are notable methodological and sample size limitations. Purpose This study aims to systematically summarize the knowledge systems, research hotspots, and development trends related to intestinal microflora within the context of depression research. Methods This study conducted a search for publications related to intestinal microflora and depression in the Web of Science Core Collection (WOSCC) prior to August 6, 2024. The selected literature was subsequently analyzed using VOSviewer (v.1.6.20), SCImago Graphica (v.1.0.39), and CiteSpace (v.6.3.1). Results The study encompassed a total of 1,046 publications, demonstrating a consistent increase in annual publication volume. The primary research countries identified are China and the United States, with notable contributions from institutions such as the University of California and University College Cork, among others. Keywords analysis highlighted high-frequency terms including "gut microbiota," "depression," and "anxiety," and revealed 10 keyword clusters along with 20 strongest citation bursts keywords. The focus of research has shifted from compositional analysis of gut microbiota to its role in the pathogenesis of depression. Conclusions Research on gut microbiota and depression is growing, but there is still a need for greater collaboration between authors and institutions across regions, more ongoing interaction and communication to further explore the mechanisms of action of gut microbiota, to develop microbiota-based interventions, and to facilitate translation of research findings into clinical practice.
Collapse
Affiliation(s)
- Qian Xu
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingwei Xiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Zihu Tan
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Qiong Yang
- School of Clinical Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
26
|
Almheiri RT, Hajjar B, Alkhaaldi SMI, Rabeh N, Aljoudi S, Abd-Elrahman KS, Hamdan H. Beyond weight loss: exploring the neurological ramifications of altered gut microbiota post-bariatric surgery. J Transl Med 2025; 23:223. [PMID: 39994634 PMCID: PMC11852891 DOI: 10.1186/s12967-025-06201-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
This review discusses findings related to neurological disorders, gut microbiota, and bariatric surgery, focusing on neurotransmitters, neuroendocrine, the pathophysiology of bacteria contributing to disorders, and possible therapeutic interventions. Research on neurotransmitters suggests that their levels are heavily influenced by gut microbiota, which may link them to neurological disorders such as Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Depression, and Autism spectrum disorder. The pathophysiology of bacteria that reach and influence the central nervous system has been documented. Trends in microbiota are often observed in specific neurological disorders, with a prominence of pro-inflammatory bacteria and a reduction in anti-inflammatory types. Furthermore, bariatric surgery has been shown to alter microbiota profiles similar to those observed in neurological disorders. Therapeutic interventions, including fecal microbiota transplants and probiotics, have shown potential to alleviate neurological symptoms. We suggest a framework for future studies that integrates knowledge from diverse research areas, employs rigorous methodologies, and includes long-trial clinical control groups.
Collapse
Affiliation(s)
- Rashed T Almheiri
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Baraa Hajjar
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Nadia Rabeh
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Sara Aljoudi
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Medical Sciences, College of Medicine and Health Science, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Hamdan Hamdan
- Department of Biological Sciences, College of Medicine and Health Sciences, Khalifa University, 127788, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Group (HEIG), Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
27
|
Shiro Y, Arai YC, Nakaso Y, Sakurai H, Inoue M, Owari K, Sato J, Ikemoto T, Ushida T. Differences in Gut Microbiota Composition Depending on the Site of Pain in Patients with Chronic Pain. J Pain Res 2025; 18:769-782. [PMID: 39991525 PMCID: PMC11846523 DOI: 10.2147/jpr.s494984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Background There are many factors associated with chronic pain, including changes in the nervous and musculoskeletal systems and so on. Recently, it has become clear that the gut microbiota (GM) influences these factors, and there are many reports of GM dysbiosis in patients with chronic pain. However, the relationship between pain and GM remains unclear. Our previous study reported that defecation status, which reflects GM composition, was associated with pain intensity and that this relationship was different for each pain site. Our study investigated the association between pain site and the GM composition of feces in chronic pain patients. Methods The subjects were 136 patients with chronic pain and 125 healthy controls. Patients were classified into four groups, whole body (WB) pain, lower back and lower extremity (LL) pain, headache, and upper back and upper extremity pain, based on the site of pain, and we investigated differences in GM taxonomy groups compared with healthy subject. Results Chronic pain patients had a lower alpha diversity (effect size=0.16, p=0.02). But each pain site group did not differ in alpha diversity. WB pain patients showed higher Eggerthellaceae (LDA=3.09, p<0.01) and lower Halomonas (LDA =-2.72, p<0.01). LL pain patients had increased Fusobacterium and Sellimonas (LDA=4.09,3.03 p<0.01, 0.01) but reduced Halomonas (LDA=-2.59, p<0.01), and other key taxa. Conclusion WB and LL patients may have GM compositions different from healthy controls, but larger studies are needed to confirm this.
Collapse
Affiliation(s)
- Yukiko Shiro
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
- Department of Physical Therapy, Faculty of Rehabilitation Sciences, Nagoya Gakuin University, Aichi, Japan
| | - Young-Chang Arai
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Yuichiro Nakaso
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Hiroki Sakurai
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
- Faculty of Health and Medical Sciences, Tokoha University, Shizuoka, Japan
| | - Masayuki Inoue
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Keiko Owari
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Jun Sato
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| | - Tatsunori Ikemoto
- Department of Orthopedics, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Takahiro Ushida
- Department of Pain Medicine, Aichi Medical University, Aichi, Japan
| |
Collapse
|
28
|
Clerici L, Bottari D, Bottari B. Gut Microbiome, Diet and Depression: Literature Review of Microbiological, Nutritional and Neuroscientific Aspects. Curr Nutr Rep 2025; 14:30. [PMID: 39928205 PMCID: PMC11811453 DOI: 10.1007/s13668-025-00619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE OF REVIEW This review explores the intricate relationships among the gut microbiota, dietary patterns, and mental health, focusing specifically on depression. It synthesizes insights from microbiological, nutritional, and neuroscientific perspectives to understand how the gut-brain axis influences mood and cognitive function. RECENT FINDINGS Recent studies underscore the central role of gut microbiota in modulating neurological and psychological health via the gut-brain axis. Key findings highlight the importance of dietary components, including probiotics, prebiotics, and psychobiotics, in restoring microbial balance and enhancing mood regulation. Different dietary patterns exhibit a profound impact on gut microbiota composition, suggesting their potential as complementary strategies for mental health support. Furthermore, mechanisms like tryptophan metabolism, the HPA axis, and microbial metabolites such as SCFAs are implicated in linking diet and microbiota to depression. Clinical trials show promising effects of probiotics in alleviating depressive symptoms. This review illuminates the potential of diet-based interventions targeting the gut microbiota to mitigate depression and improve mental health. While the interplay between microbial diversity, diet, and brain function offers promising therapeutic avenues, further clinical research is needed to validate these findings and establish robust, individualized treatment strategies.
Collapse
Affiliation(s)
- Laura Clerici
- Department of Food and Drug, University of Parma, Parma, Italy
| | | | | |
Collapse
|
29
|
Zhao J, Tian H, Kong X, Dang D, Liu K, Su C, Lian H, Gao T, Fu T, Zhang L, Li W, Zhang W. Microbiomic and Metabolomic Insights into the Mechanisms of Alfalfa Polysaccharides and Seaweed Polysaccharides in Alleviating Diarrhea in Pre-Weaning Holstein Calves. Animals (Basel) 2025; 15:485. [PMID: 40002967 PMCID: PMC11851682 DOI: 10.3390/ani15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal calves' diarrhea, which can be severe enough to cause death, has a significant impact on the global cattle industry. In this study, alfalfa polysaccharides and seaweed polysaccharides were found to significantly improve the diarrhea condition in neonatal calves. To explore the underlying mechanisms, further microbiomic and metabolomic analyses were conducted. This study investigated the impact of alfalfa polysaccharides and seaweed polysaccharides on growth performance, serum metabolites, gut microbiota, and metabolomics in neonatal Holstein calves. A total of 24 newborn calves were randomly assigned to three groups, with 8 calves per treatment group. The control (CON) group was fed a basal diet, the alfalfa polysaccharide (AP) group received a basal diet supplemented with alfalfa polysaccharides (4 g/calf/day), and the seaweed polysaccharide group (SP) received a basal diet supplemented with seaweed polysaccharides (4 g/calf/day). These polysaccharides were plant extracts. Compared to the CON group, the results indicated that SP significantly enhanced the body weight, height, chest circumference, and average daily gain of Holstein calves (p < 0.05), while also reducing the diarrhea rate and improving manure scoring (p < 0.05). Compared to the CON, AP also reduced the diarrhea rate (p < 0.05). In terms of serum biochemistry, supplementation with AP and SP increased serum alkaline phosphatase (ALP) and insulin-like growth factor 1 (IGF-1) levels compared to the CON group (p < 0.05). Both AP and SP elevated serum catalase (CAT) and Total Antioxidant Capacity (T-AOC) levels, indicating enhanced antioxidant status (p < 0.05). Regarding immune responses, supplementation with AP and SP significantly increased serum complement component 3 (C3) and immunoglobulin M (IgM) levels, while significantly reducing pro-inflammatory cytokines interleukin-18 (IL-18), tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) compared to the CON group (p < 0.05). Microbiota analysis revealed that AP modulated the abundance of Firmicutes, while SP influenced the abundance of Prevotella and Succiniclasticum. AP and SP differentially influenced intestinal metabolites compared to the CON group, leading to enrichment in pathways related to immunity, antibacterial, and anti-inflammatory functions. These pathways included the biosynthesis of alkaloids from ornithine, lysine, and nicotinic acid, glucocorticoid and mineralocorticoid receptor canothersis/antagonists, secondary metabolite biosynthesis, and alkaloid biosynthesis from histidine and purine, thus alleviating intestinal inflammation. Therefore, by supplementing with AP and SP, the diarrhea rate in calves was reduced, and the immune function of Holstein calves was enhanced, while simultaneously promoting a higher relative abundance of beneficial gut bacteria and suppressing the relative abundance of pathogenic bacteria. Additionally, gut pathways associated with immune response and inflammation were modulated by AP and SP. This study provided valuable insights and theoretical underpinnings for the use of AP and SP in preventing diarrhea in neonatal calves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wenqing Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| | - Wei Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| |
Collapse
|
30
|
Jiang H, Miao X, Thairu MW, Beebe M, Grupe DW, Davidson RJ, Handelsman J, Sankaran K. Multimedia: multimodal mediation analysis of microbiome data. Microbiol Spectr 2025; 13:e0113124. [PMID: 39688588 PMCID: PMC11792470 DOI: 10.1128/spectrum.01131-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
Mediation analysis has emerged as a versatile tool for answering mechanistic questions in microbiome research because it provides a statistical framework for attributing treatment effects to alternative causal pathways. Using a series of linked regressions, this analysis quantifies how complementary data relate to one another and respond to treatments. Despite these advances, existing software's rigid assumptions often result in users viewing mediation analysis as a black box. We designed the multimedia R package to make advanced mediation analysis techniques accessible, ensuring that statistical components are interpretable and adaptable. The package provides a uniform interface to direct and indirect effect estimation, synthetic null hypothesis testing, bootstrap confidence interval construction, and sensitivity analysis, enabling experimentation with various mediator and outcome models while maintaining a simple overall workflow. The software includes modules for regularized linear, compositional, random forest, hierarchical, and hurdle modeling, making it well-suited to microbiome data. We illustrate the package through two case studies. The first re-analyzes a study of the microbiome and metabolome of Inflammatory Bowel Disease patients, uncovering potential mechanistic interactions between the microbiome and disease-associated metabolites, not found in the original study. The second analyzes new data about the influence of mindfulness practice on the microbiome. The mediation analysis highlights shifts in taxa previously associated with depression that cannot be explained indirectly by diet or sleep behaviors alone. A gallery of examples and further documentation can be found at https://go.wisc.edu/830110. IMPORTANCE Microbiome studies routinely gather complementary data to capture different aspects of a microbiome's response to a change, such as the introduction of a therapeutic. Mediation analysis clarifies the extent to which responses occur sequentially via mediators, thereby supporting causal, rather than purely descriptive, interpretation. Multimedia is a modular R package with close ties to the wider microbiome software ecosystem that makes statistically rigorous, flexible mediation analysis easily accessible, setting the stage for precise and causally informed microbiome engineering.
Collapse
Affiliation(s)
- Hanying Jiang
- Statistics Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Xinran Miao
- Statistics Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Margaret W. Thairu
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Mara Beebe
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Dan W. Grupe
- Center for Healthy Minds, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Richard J. Davidson
- Center for Healthy Minds, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Psychology Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Psychiatry Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Jo Handelsman
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Plant Pathology Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Kris Sankaran
- Statistics Department, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin Institute for Discovery, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Munshi S, Alarbi AM, Zheng H, Kuplicki R, Burrows K, Figueroa-Hall LK, Victor TA, Aupperle RL, Khalsa SS, Paulus MP, Teague TK, Savitz J. Increased expression of ER stress, inflammasome activation, and mitochondrial biogenesis-related genes in peripheral blood mononuclear cells in major depressive disorder. Mol Psychiatry 2025; 30:574-586. [PMID: 39174649 DOI: 10.1038/s41380-024-02695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
A subset of major depressive disorder (MDD) is characterized by immune system dysfunction, but the intracellular origin of these immune changes remains unclear. Here we tested the hypothesis that abnormalities in endoplasmic reticulum (ER) stress, inflammasome activity and mitochondrial biogenesis contribute to the development of systemic inflammation in MDD. RT-qPCR was used to measure mRNA expression of key organellar genes from peripheral blood mononuclear cells (PBMCs) isolated from 186 MDD and 67 healthy control (HC) subjects. The comparative CT (2-ΔΔCT) method was applied to quantify mRNA expression using GAPDH as the reference gene. After controlling for age, sex, BMI, and medication status using linear regression models, expression of the inflammasome (NLRC4 and NLRP3) and the ER stress (XBP1u, XBP1s, and ATF4) genes was found to be significantly increased in the MDD versus the HC group. Sensitivity analyses excluding covariates yielded similar results. After excluding outliers, expression of the inflammasome genes was no longer statistically significant but expression of the ER stress genes (XBP1u, XBP1s, and ATF4) remained significant and the mitochondrial biogenesis gene, MFN2, was significantly increased in the MDD group. NLRC4 and MFN2 were positively correlated with serum C-reactive protein concentrations, while ASC trended significant. The altered expression of inflammasome activation, ER stress, and mitochondrial biogenesis pathway components suggest that dysfunction of these organelles may play a role in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Soumyabrata Munshi
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| | - Ahlam M Alarbi
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
| | - Haixia Zheng
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Kaiping Burrows
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Leandra K Figueroa-Hall
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Teresa A Victor
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, 300 UCLA Medical Plaza, Los Angeles, CA, 90095, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| | - T Kent Teague
- Integrative Immunology Center, Department of Surgery and Department of Psychiatry, University of Oklahoma - School of Community Medicine, 4502 E. 41st St., Tulsa, OK, 74135, USA
- Department of Biochemistry and Microbiology, Center for Health Sciences, Oklahoma State University, 1111 W. 17th St., Tulsa, OK, 74107, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, 6655 S. Yale Ave., Tulsa, OK, 74136, USA
- Oxley College of Health and Natural Sciences, The University of Tulsa, Tulsa, OK, 74199, USA
| |
Collapse
|
32
|
Atanasova K, Knödler LL, Reindl W, Ebert MP, Thomann AK. Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases. Semin Immunopathol 2025; 47:12. [PMID: 39870972 PMCID: PMC11772462 DOI: 10.1007/s00281-025-01036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 01/29/2025]
Abstract
The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood. The aim of this narrative review is to highlight contemporary empirical findings supporting a pivotal role of the gut microbiome in the pathophysiology of highly prevalent neuropsychiatric symptoms in inflammatory bowel diseases such as fatigue, depression, and anxiety. Finally, we focus on microbiome modulation as potential treatment option for comorbid neuropsychiatric symptoms in immune-mediated diseases and especially in inflammatory bowel diseases. High-quality clinical trials are required to clarify how microbiome modulation through dietary interventions or probiotic, prebiotic or synbiotic treatment can be used clinically to improve mental health and thus quality of life of patients with inflammatory bowel diseases.
Collapse
Affiliation(s)
- Konstantina Atanasova
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Department of Psychosomatic Medicine, Medical Faculty Mannheim, Central Institute for Mental Health Mannheim, Heidelberg University, Mannheim, Germany.
| | - Laura-Louise Knödler
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Wolfgang Reindl
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Philip Ebert
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Kerstin Thomann
- Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
33
|
Gamboa J, Le GH, Wong S, Alteza EAI, Zachos KA, Teopiz KM, McIntyre RS. Impact of antidepressants on the composition of the gut microbiome: A systematic review and meta-analysis of in vivo studies. J Affect Disord 2025; 369:819-833. [PMID: 39424151 DOI: 10.1016/j.jad.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND There is a growing body of evidence suggesting that antidepressant drugs (ADs) alter the gut microbiome of persons with depressive disorders. Herein, we aim to investigate the gut microbial profile of AD-treated animal models of depression (MoD) and persons with major depressive disorder (MDD). METHODS We conducted a systematic review and meta-analysis investigating the gut microbiome community-level diversity and relative abundance of microbial taxa in AD-treated animal MoD and persons with MDD. RESULTS 24 human studies (898 participants) and 48 animal studies (849 subjects) were identified. Nonsignificant differences in gut microbial richness were observed between AD-treated and nonmedicated animals and humans. Beta diversity analysis in animals shows that AD intake is linked to a distinct gut microbial profile, a result not observed in humans. Consistent depletion of the genera Faecalibacterium and Parasutterella, along with enrichment of Bifidobacterium, was observed in AD-treated persons with MDD. In AD-treated animals, AD intake was associated with depletion of Flavobacterium and Adlercreutzia, and enrichment of Parabacteroides. LIMITATIONS The studies in our review were heterogeneous in their participant population, dietary intake, type of ADs used, length and dosing of AD treatment, and frequency and time of fecal sample collection. CONCLUSION ADs are associated with some changes to the gut microbiome. Future studies should evaluate the gut microbiome profiles between depressive disorder diagnoses that may reveal potential differences and predictors of AD response, as well as new combinatorial therapeutics with agents (e.g., specific-strain probiotic adjunctive treatment) that can ameliorate micro-composition gut dysbiosis.
Collapse
Affiliation(s)
- Jann Gamboa
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Gia Han Le
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Sabrina Wong
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada
| | | | - Kassandra A Zachos
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Roger S McIntyre
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorder and Psychopharmacology Unit, University Health Network, Toronto, Canada.
| |
Collapse
|
34
|
Dilmore AH, Kuplicki R, McDonald D, Kumar M, Estaki M, Youngblut N, Tyakht A, Ackermann G, Blach C, MahmoudianDehkordi S, Dunlop BW, Bhattacharyya S, Guinjoan S, Mandaviya P, Ley RE, Kaddaruh-Dauok R, Paulus MP, Knight R. Medication use is associated with distinct microbial features in anxiety and depression. Mol Psychiatry 2025:10.1038/s41380-024-02857-2. [PMID: 39794490 DOI: 10.1038/s41380-024-02857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. Though the effect sizes were larger in females than males, similar trends emerged for both sexes. These findings encourage future research on the gut microbiota's role in NPD and its interactions with pharmacological treatments.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Megha Kumar
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Mehrbod Estaki
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Alexander Tyakht
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Gail Ackermann
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| | | | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, USA
| | | | - Pooja Mandaviya
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Rima Kaddaruh-Dauok
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science & Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
35
|
Su W, Chen H, Hu D, Ye B, Zhang W, Zhang G, Si X, Zhou X. The Causal Role of Esophageal Cancer and Gut Microbiota: A Bidirectional Mendelian Randomization Study. J Evid Based Integr Med 2025; 30:2515690X251324793. [PMID: 40012260 DOI: 10.1177/2515690x251324793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
AIMS Gut microbiota are reported to be associated with the incidence and prognosis of Esophageal cancer (EC) but their genetic association is unclear. We carried out a bidirectional MR analysis to assess the causal relationship between EC and gut microbiota from fecal samples. METHODS The microbiome genome-wide association studies (GWAS) data of 18,340 individuals provided by MiBioGen consortium and the EC GWAS data (740 esophageal cancers cases and 372 016 controls) provided by UK Biobank were respectively utilized as exposure and/or outcome data. Reliable single nucleotide polymorphisms (SNPs) were obtained after rigorous screening. A bidirectional Mendelian randomization (MR) analysis was conducted using the inverse-variance weighted (IVW) method. The sensitivity analyses including the MR-Egger method, weighted median, weighed mode and leave-one-out method were performed to examine the stability, heterogeneity and pleiotropy of the results. RESULTS Forward MR analysis revealed the increase in abundance of the microbial trait by each standard deviation was associated with a higher risk of EC (Coprobacter (OR = 1.001,95%CI = 1.000-1.002, P = .0281, FDR = 0.0424); Ruminococcus1(OR = 1.001,95%CI = 1.000-1.002, P = .0318, FDR = 0.0424); Senegalimassilia (OR = 1.002,95%CI = 1.000-1.003, P = .0062, FDR = 0.0372); Veillonella (OR = 1.001,95%CI = 1.000-1.002, P = .0182, FDR = 0.0372)) or a lower risk of EC (Eubacterium oxidoreducens (OR = 0.999, 95%CI = 0.998-1.000, P = .0379, FDR = 00 433); Lachnospira (OR = 0.998,95%CI = 0.996-1.000, P = .0186, FDR = 0.0372); Romboutsia (OR = 0.999,95%CI = 0.998-1.000, P = .0482, FDR = 0.0482); Turicibacter (OR = 0.999,95%CI = 0.998-1.000, P = .0133, FDR = 0.0372)). Reverse MR analysis showed that genetic liability to EC was also causally linked toincreased susceptibility of changes in the gut microbiome (genera Eggerthella (Beta = 37.63,95%CI = 4.76-70.50, P = .0248, FDR = 0.0331); Coprococcus 2 (Beta = 23.90,95%CI = 1.65-46.15, P = .0353, FDR = 0.0353); Christensenellaceae R.7 (Beta = 22.75,95%CI = 4.22-41.28, P = .0161, FDR = 0.0322); Intestinimonas (Beta = -33.24,95%CI = -54.90-11.58, P = .0026, FDR = 0.0104)). CONCLUSIONS Our findings supported a bidirectionally causal relationship between gut microbiota and EC, implying the potential role of gut microbiota in preventing the occurrence and development of EC.
Collapse
Affiliation(s)
- Wei Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Die Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bixing Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinmin Si
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Feng J, Cen Q, Cui Y, Hu X, Li M, Wang L, Wei J, Sun N, Wang J, Zhang A. Lactobacillus rhamnosus: An emerging probiotic with therapeutic potential for depression. Pharmacol Res 2025; 211:107541. [PMID: 39653301 DOI: 10.1016/j.phrs.2024.107541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Depression, a complex psychological disorder, involves multiple biological pathways in its pathogenesis. In recent years, the gut-brain axis theory has provided novel insights into the pathogenesis of depression, particularly the crucial role of the gut microbiota in mood regulation. While there remains no universal consensus on the most efficacious strains for depression treatment, Lactobacillus rhamnosus has risen to prominence within the realm of probiotics for its potential to positively modulate depressive symptoms. This review preliminarily explores the clinical significance of Lactobacillus rhamnosus in the treatment of depression and summarizes the potential mechanisms by which Lactobacillus rhamnosus treats depression, including its regulation of gut microbiota, alterations in gene expression, improvement of intestinal barrier function, maintenance of neurotransmitter balance, suppression of inflammatory responses, modulation of the immune system, coping with oxidative stress, and optimization of metabolic processes. Future research needs to further explore these mechanisms and combine them with clinical research results to optimize treatment plans and provide more effective treatment options for patients with depression.
Collapse
Affiliation(s)
- Jing Feng
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiuyu Cen
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanru Cui
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomin Hu
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Min Li
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Linjie Wang
- Department of Rehabilitation Medicine, General Hospital of Western Theater Command, Chengdu, China
| | - Juanfang Wei
- College of Physical Education and Health, Geely University of China, Chengdu, China
| | - Nianyi Sun
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Junyu Wang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Anren Zhang
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Scheible K, Beblavy R, Sohn MB, Qui X, Gill AL, Narvaez-Miranda J, Brunner J, Miller RK, Barrett ES, O'Connor TG, Gill SR. Affective symptoms in pregnancy are associated with the vaginal microbiome. J Affect Disord 2025; 368:410-419. [PMID: 39293607 PMCID: PMC11560476 DOI: 10.1016/j.jad.2024.09.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Composition of the vaginal microbiome in pregnancy is associated with adverse maternal, obstetric, and child health outcomes. Therefore, identifying sources of individual differences in the vaginal microbiome is of considerable clinical and public health interest. The current study tested the hypothesis that vaginal microbiome composition during pregnancy is associated with an individual's experience of affective symptoms and stress exposure. METHODS Data were based on a prospective longitudinal study of a medically healthy community sample of 275 mother-infant pairs. Affective symptoms and stress exposure and select measures of associated biomarkers (diurnal salivary cortisol, serum measures of sex hormones) were collected at each trimester; self-report, clinical, and medical records were used to collect detailed data on socio-demographic factors and health behavior, including diet and sleep. Vaginal microbiome samples were collected in the third trimester (34-40 weeks) and characterized by 16S rRNA sequencing. Identified taxa were clustered into three community clusters (CC1-3) based on dissimilarity of vaginal microbiota composition. RESULTS Results indicate that depressive symptoms during pregnancy were reliably associated with individual taxa and CC3 in the third trimester. Prediction of functional potential from 16S taxonomy revealed a differential abundance of metabolic pathways in CC1-3 and individual taxa, including biosynthetic pathways for serotonin and dopamine. We did not find robust evidence linking symptom- and stress-related biomarkers and CCs. CONCLUSIONS Our results provide further evidence of how prenatal psychological distress during pregnancy alters the maternal-fetal microbiome ecosystem that may be important for understanding maternal and child health outcomes.
Collapse
Affiliation(s)
- Kristin Scheible
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Robert Beblavy
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Michael B Sohn
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Xing Qui
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Ann L Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Janiret Narvaez-Miranda
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily S Barrett
- Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Department of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA; Wynne Center for Family Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
38
|
Patel RA, Panche AN, Harke SN. Gut microbiome-gut brain axis-depression: interconnection. World J Biol Psychiatry 2025; 26:1-36. [PMID: 39713871 DOI: 10.1080/15622975.2024.2436854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
OBJECTIVES The relationship between the gut microbiome and mental health, particularly depression, has gained significant attention. This review explores the connection between microbial metabolites, dysbiosis, and depression. The gut microbiome, comprising diverse microorganisms, maintains physiological balance and influences health through the gut-brain axis, a communication pathway between the gut and the central nervous system. METHODS Dysbiosis, an imbalance in the gut microbiome, disrupts this axis and worsens depressive symptoms. Factors like diet, antibiotics, and lifestyle can cause this imbalance, leading to changes in microbial composition, metabolism, and immune responses. This imbalance can induce inflammation, disrupt neurotransmitter regulation, and affect hormonal and epigenetic processes, all linked to depression. RESULTS Microbial metabolites, such as short-chain fatty acids and neurotransmitters, are key to gut-brain communication, influencing immune regulation and mood. The altered production of these metabolites is associated with depression. While progress has been made in understanding the gut-brain axis, more research is needed to clarify causative relationships and develop new treatments. The emerging field of psychobiotics and microbiome-targeted therapies shows promise for innovative depression treatments by harnessing the gut microbiome's potential. CONCLUSIONS Epigenetic mechanisms, including DNA methylation and histone modifications, are crucial in how the gut microbiota impacts mental health. Understanding these mechanisms offers new prospects for preventing and treating depression through the gut-brain axis.
Collapse
Affiliation(s)
- Ruhina Afroz Patel
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Archana N Panche
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| | - Sanjay N Harke
- Institute of Biosciences and Technology, MGM University, Aurangabad, India
| |
Collapse
|
39
|
Yao M, Qu Y, Zheng Y, Guo H. The effect of exercise on depression and gut microbiota: Possible mechanisms. Brain Res Bull 2025; 220:111130. [PMID: 39557221 DOI: 10.1016/j.brainresbull.2024.111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Exercise can effectively prevent and treat depression and anxiety, with gut microbiota playing a crucial role in this process. Studies have shown that exercise can influence the diversity and composition of gut microbiota, which in turn affects depression through immune, endocrine, and neural pathways in the gut-brain axis. The effectiveness of exercise varies based on its type, intensity, and duration, largely due to the different changes in gut microbiota. This article summarizes the possible mechanisms by which exercise affects gut microbiota and how gut microbiota influences depression. Additionally, we reviewed literature on the effects of exercise on depression at different intensities, types, and durations to provide a reference for future exercise-based therapies for depression.
Collapse
Affiliation(s)
- Mingchen Yao
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yaqi Qu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yalin Zheng
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Hao Guo
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China.
| |
Collapse
|
40
|
Jia M, Fan Y, Ma Q, Yang D, Wang Y, He X, Zhao B, Zhan X, Qi Z, Ren Y, Dong Z, Zhu F, Wang W, Gao Y, Ma X. Gut microbiota dysbiosis promotes cognitive impairment via bile acid metabolism in major depressive disorder. Transl Psychiatry 2024; 14:503. [PMID: 39719433 DOI: 10.1038/s41398-024-03211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024] Open
Abstract
Evidence suggests that complex interactions among the gut microbiome, metabolic abnormalities, and brain have important etiological and therapeutic implications in major depressive disorder (MDD). However, the influence of microbiome-gut-brain cross-talk on cognitive impairment in MDD remains poorly characterized. We performed serum metabolomic profiling on 104 patients with MDD and 77 healthy controls (HCs), and also performed fecal metagenomic sequencing on a subset of these individuals, including 79 MDD patients and 60 HCs. The findings were validated in a separate cohort that included 40 patients with MDD and 40 HCs using serum-targeted metabolomics. Abnormal bile acid metabolism was observed in patients with MDD, which is related to cognitive dysfunction. The following gut microbiota corresponded to changes in bile acid metabolism and enzyme activities involved in the bile acid metabolic pathway, including Lachnospiraceae (Blautia_massiliensis, Anaerostipes_hadrus, Dorea_formicigenerans, and Fusicatenibacter_saccharivorans), Ruminococcaceae (Ruminococcus_bromii, Flavonifractor_plautii, and Ruthenibacterium_lactatiformans), and Escherichia_coli. Furthermore, a combinatorial marker classifier that robustly differentiated patients with MDD from HCs was identified. In conclusion, this study provides insights into the gut-brain interactions in the cognitive phenotype of MDD, indicating a potential therapeutic strategy for MDD-associated cognitive impairment by targeting the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Min Jia
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ding Yang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yunpeng Wang
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan He
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xianyan Zhan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhiyang Qi
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yifan Ren
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziqing Dong
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Shaanxi Belt and Road Joint Laboratory of Precision Medicine in Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Med-X Institute, Center for Immunological and Metabolic Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
41
|
Gruenbaum BF, Merchant KS, Zlotnik A, Boyko M. Gut Microbiome Modulation of Glutamate Dynamics: Implications for Brain Health and Neurotoxicity. Nutrients 2024; 16:4405. [PMID: 39771027 PMCID: PMC11677762 DOI: 10.3390/nu16244405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/05/2025] Open
Abstract
The gut-brain axis plays an integral role in maintaining overall health, with growing evidence suggesting its impact on the development of various neuropsychiatric disorders, including depression. This review explores the complex relationship between gut microbiota and glutamate (Glu) regulation, highlighting its effect on brain health, particularly in the context of depression following certain neurological insults. We discuss how microbial populations can either facilitate or limit Glu uptake, influencing its bioavailability and predisposing to neuroinflammation and neurotoxicity. Additionally, we examine the role of gut metabolites and their influence on the blood-brain barrier and neurotransmitter systems involved in mood regulation. The therapeutic potential of microbiome-targeted interventions, such as fecal microbiota transplantation, is also highlighted. While much research has explored the role of Glu in major depressive disorders and other neurological diseases, the contribution of gut microbiota in post-neurological depression remains underexplored. Future research should focus on explaining the mechanisms linking the gut microbiota to neuropsychiatric outcomes, particularly in conditions such as post-stroke depression, post-traumatic brain-injury depression, and epilepsy-associated depression. Systematic reviews and human clinical studies are needed to establish causal relationships and assess the efficacy of microbiome-targeted therapies in improving the neuropsychiatric sequalae after neurological insults.
Collapse
Affiliation(s)
- Benjamin F. Gruenbaum
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Kiran S. Merchant
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Alexander Zlotnik
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| | - Matthew Boyko
- Department of Anesthesiology and Critical Care, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel; (A.Z.); (M.B.)
| |
Collapse
|
42
|
Ahmad S, Wu T, Arnold M, Hankemeier T, Ghanbari M, Roshchupkin G, Uitterlinden AG, Neitzel J, Kraaij R, Van Duijn CM, Arfan Ikram M, Kaddurah-Daouk R, Kastenmüller G. The blood metabolome of cognitive function and brain health in middle-aged adults - influences of genes, gut microbiome, and exposome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.16.24317793. [PMID: 39763567 PMCID: PMC11702749 DOI: 10.1101/2024.12.16.24317793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Increasing evidence suggests the involvement of metabolic alterations in neurological disorders, including Alzheimer's disease (AD), and highlights the significance of the peripheral metabolome, influenced by genetic factors and modifiable environmental exposures, for brain health. In this study, we examined 1,387 metabolites in plasma samples from 1,082 dementia-free middle-aged participants of the population-based Rotterdam Study. We assessed the relation of metabolites with general cognition (G-factor) and magnetic resonance imaging (MRI) markers using linear regression and estimated the variance of these metabolites explained by genes, gut microbiome, lifestyle factors, common clinical comorbidities, and medication using gradient boosting decision tree analysis. Twenty-one metabolites and one metabolite were significantly associated with total brain volume and total white matter lesions, respectively. Fourteen metabolites showed significant associations with G-factor, with ergothioneine exhibiting the largest effect (adjusted mean difference = 0.122, P = 4.65×10-7). Associations for nine of the 14 metabolites were replicated in an independent, older cohort. The metabolite signature of incident AD in the replication cohort resembled that of cognition in the discovery cohort, emphasizing the potential relevance of the identified metabolites to disease pathogenesis. Lifestyle, clinical variables, and medication were most important in determining these metabolites' blood levels, with lifestyle, explaining up to 28.6% of the variance. Smoking was associated with ten metabolites linked to G-factor, while diabetes and antidiabetic medication were associated with 13 metabolites linked to MRI markers, including N-lactoyltyrosine. Antacid medication strongly affected ergothioneine levels. Mediation analysis revealed that lower ergothioneine levels may partially mediate negative effects of antacids on cognition (31.5%). Gut microbial factors were more important for the blood levels of metabolites that were more strongly associated with cognition and incident AD in the older replication cohort (beta-cryptoxanthin, imidazole propionate), suggesting they may be involved later in the disease process. The detailed results on how multiple modifiable factors affect blood levels of cognition- and brain imaging-related metabolites in dementia-free participants may help identify new AD prevention strategies.
Collapse
Affiliation(s)
- Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Tong Wu
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthias Arnold
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Thomas Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Gennady Roshchupkin
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Julia Neitzel
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Cornelia M. Van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
- Nuffield Department of Population Health, Oxford University, Oxford, UK
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | |
Collapse
|
43
|
Lakhawat SS, Mech P, Kumar A, Malik N, Kumar V, Sharma V, Bhatti JS, Jaswal S, Kumar S, Sharma PK. Intricate mechanism of anxiety disorder, recognizing the potential role of gut microbiota and therapeutic interventions. Metab Brain Dis 2024; 40:64. [PMID: 39671133 DOI: 10.1007/s11011-024-01453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/29/2024] [Indexed: 12/14/2024]
Abstract
Anxiety is a widespread psychological disorder affecting both humans and animals. It is a typical stress reaction; however, its longer persistence can cause severe health disorders affecting the day-to-day life activities of individuals. An intriguing facet of the anxiety-related disorder can be addressed better by investigating the role of neurotransmitters in regulating emotions, provoking anxiety, analyzing the cross-talks between neurotransmitters, and, most importantly, identifying the biomarkers of the anxiety. Recent years have witnessed the potential role of the gut microbiota in human health and disorders, including anxiety. Animal models are commonly used to study anxiety disorder as they offer a simpler and more controlled environment than humans. Ultimately, developing new strategies for diagnosing and treating anxiety is of paramount interest to medical scientists. Altogether, this review article shall highlight the intricate mechanisms of anxiety while emphasizing the emerging role of gut microbiota in regulating metabolic pathways through various interaction networks in the host. In addition, the review will foster information about the therapeutic interventions of the anxiety and related disorder.
Collapse
Affiliation(s)
- Sudarshan Singh Lakhawat
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Priyanka Mech
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Akhilesh Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Vikram Kumar
- Amity Institute of Pharmacy, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, India
| | - Vinay Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Jasvinder Singh Bhatti
- Department of Environmental Sciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| | - Sunil Jaswal
- Department of Human Genetics and Molecular Medicine Central University Punjab, Bathinda, 151401, India
| | - Sunil Kumar
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University Rajasthan, SP-1, Kant Kalwar, RIICO Industrial Area, NH-11C, Jaipur, Rajasthan, 303002, India.
| |
Collapse
|
44
|
Yuan X, Chai J, Xu W, Zhao Y. Exploring the Potential of Probiotics and Prebiotics in Major Depression: From Molecular Function to Clinical Therapy. Probiotics Antimicrob Proteins 2024; 16:2181-2217. [PMID: 39078446 DOI: 10.1007/s12602-024-10326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/31/2024]
Abstract
Major depressive disorder (MDD) represents a complex and challenging mental health condition with multifaceted etiology. Recent research exploring the gut-brain axis has shed light on the potential influence of gut microbiota on mental health, offering novel avenues for therapeutic intervention. This paper reviews current evidence on the role of prebiotics and probiotics in the context of MDD treatment. Clinical studies assessing the effects of prebiotic and probiotic interventions have demonstrated promising results, showcasing improvements in depression symptoms and metabolic parameters in certain populations. Notably, prebiotics and probiotics have shown the capacity to modulate inflammatory markers, cortisol levels, and neurotransmitter pathways linked to MDD. However, existing research presents varied outcomes, underscoring the need for further investigation into specific microbial strains, dosage optimization, and long-term effects. Future research should aim at refining personalized interventions, elucidating mechanisms of action, and establishing standardized protocols to integrate these interventions into clinical practice. While prebiotics and probiotics offer potential adjunctive therapies for MDD, continued interdisciplinary efforts are vital to harnessing their full therapeutic potential and reshaping the landscape of depression treatment paradigms.
Collapse
Affiliation(s)
- Xin Yuan
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Jianbo Chai
- Heilongjiang Mental Hospital, Harbin, 150036, China
| | - Wenqiang Xu
- Harbin Jiarun Hospital, Harbin, 150040, China
| | - Yonghou Zhao
- Heilongjiang Mental Hospital, Harbin, 150036, China.
| |
Collapse
|
45
|
Wang I, Buffington SA, Salas R. Microbiota-Gut-Brain Axis in Psychiatry: Focus on Depressive Disorders. CURR EPIDEMIOL REP 2024; 11:222-232. [PMID: 40130013 PMCID: PMC11932714 DOI: 10.1007/s40471-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 03/26/2025]
Abstract
Purpose of Review Gut microbiota contribute to several physiological processes in the host. The composition of the gut microbiome is associated with different neurological and neurodevelopmental diseases. In psychiatric disease, stress may be a major factor leading to gut microbiota alterations. Depressive disorders are the most prevalent mental health issues worldwide and patients often report gastrointestinal symptoms. Accordingly, evidence of gut microbial alterations in depressive disorders has been growing. Here we review current literature revealing links between the gut microbiome and brain function in the context of depression. Recent Findings The gut-brain axis could impact the behavioral manifestation of depression and the underlying neuropathology via multiple routes: the HPA axis, immune function, the enteric nervous system, and the vagus nerve. Furthermore, we explore possible therapeutic interventions including fecal microbiota transplant or probiotic supplementation in alleviating depressive symptoms. Summary Understanding the mechanisms by which bidirectional communication along the gut-brain axis can be dysregulated in patients with depression could lead to the development of personalized, microbiome-targeted therapies for the treatment of this disorder.
Collapse
Affiliation(s)
- I–Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research On Inflammatory Diseases, Michael E DeBakey VA Medical, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| |
Collapse
|
46
|
Chen Z, Chen R, Ma X, Wu W, Huang Q, Ye W, Wu C, Yao B, Xu J, Qian L. A Multi-Enzyme Complex That Mitigates Hepatotoxicity, Improves Egg Production and Quality, and Enhances Gut and Liver Health in Laying Hens Exposed to Trace Aflatoxin B 1. Toxins (Basel) 2024; 16:517. [PMID: 39728775 PMCID: PMC11728630 DOI: 10.3390/toxins16120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Aflatoxin B1 is a prevalent secondary hazardous metabolite generated by fungus present in feed ingredients and the surrounding environment: enzymes are currently being recognized as an efficient and promising approach to reducing the associated risks. The objective of this study was to assess the effects of varying doses of enzyme complexes on several parameters in laying hens that were exposed to aflatoxin. During an 8-week experiment, a total of 288 Yukou Jingfen No.6 laying hens were placed into four groups. These groups included a group treated with toxins (CON group) and groups supplemented with compound enzyme complexes at doses of 250 g/t (E1 group), 500 g/t (E2 group), and 1000 g/t (E3 group). The E2 and E3 groups exhibited a statistically significant 2.6% increase in egg production rate compared to the CON group (p < 0.05). In addition, the E2 group showed significant improvements in both the feed-to-egg ratio and egg weight (p < 0.05). In addition, the E2 and E3 groups showed improved hutch unit and egg white height compared to the control group (p < 0.05). The E2 and E3 groups showed a substantial rise in liver health indicators, namely serum alanine transaminase (ALT) and alkaline phosphatase (ALP) activity. On the other hand, malondialdehyde (MDA) was lowered, and total superoxide dismutase (T-SOD) and total antioxidant capacity (T-AOC) were raised. These findings were statistically significant (p < 0.05). The E2 and E3 groups showed notable enhancements in intestinal morphology, as evidenced by a rise in villus height and a decrease in crypt depth in all segments of the intestine (p < 0.05). Furthermore, analysis of 16S rRNA sequencing revealed that these participants had a higher prevalence and variety of microorganisms in their gut microbiota. More precisely, there was a significant rise in the abundance of Bacteroidota and a decline in Firmicutes at the level of the phylum. In general, the inclusion of the enzyme complex had advantageous impacts on performance, egg quality, intestinal morphology, intestinal barrier function, and intestinal flora in laying hens. Our results indicate that toxin-degrading enzymes, when used as feed additives, play a significant role in mitigating AFB1 contamination in diets and improving the production performance of laying hens.
Collapse
Affiliation(s)
- Zhuo Chen
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Rui Chen
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Wenzi Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Qixin Huang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| | - Wenxin Ye
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Chulong Wu
- Hainan Institute of Zhejiang University, Sanya 572025, China; (R.C.); (W.W.); (W.Y.); (C.W.)
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China;
| | - Jianhong Xu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lichun Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Z.C.); (X.M.); (Q.H.)
| |
Collapse
|
47
|
Won S, Kim EJ, Park SE, Lee MH, Pak J, Kim K, Son HS, Kim JH, Kwak S. Exploring the Characteristics of Gut Microbiota Associated with Depression via the Depression Assessment Scales. J Microbiol Biotechnol 2024; 35:e2408042. [PMID: 39617715 PMCID: PMC11813341 DOI: 10.4014/jmb.2408.08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 01/07/2025]
Abstract
Depression is a prevalent mental disorder with an increasing economic burden, and its pathogenesis remains poorly understood. Given the emerging evidence linking the gut microbiota to mental health, a better understanding of microbial profiles associated with depression is necessary. Here, we explore the association between gut microbiota and depression by utilizing 16S rRNA amplicon sequencing and depression assessment scales, including the Hamilton Depression Rating Scale (HDRS) and the Beck Depression Inventory (BDI). The study cohort consisted of 46 subjects, who were categorized into depression and normal groups based on medical diagnoses and depression scale scores. Our analyses revealed that HDRS-based classification better identified distinct gut microbiota structures associated with depression than medical diagnoses alone. Notably, lower beta diversity was observed in individuals with depression, indicating a more homogeneous gut microbial community. By employing both HDRS and BDI scores simultaneously, we identified specific taxa, such as Bilophila and Alistipes, which are linked to depressive symptoms. These findings highlight the potential of using depression assessment scales in conjunction with gut microbiota data to advance our understanding of depression and inform future treatment strategies.
Collapse
Affiliation(s)
- Seok Won
- Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Eun-Ju Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seong-Eun Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Juhan Pak
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kyeongok Kim
- Department of Neuropsychiatry, College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Hong-Seok Son
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Hong Kim
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
| | - Suryang Kwak
- Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
48
|
Sun X, Shukla M, Wang W, Li S. Unlocking gut-liver-brain axis communication metabolites: energy metabolism, immunity and barriers. NPJ Biofilms Microbiomes 2024; 10:136. [PMID: 39587086 PMCID: PMC11589602 DOI: 10.1038/s41522-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
The interaction between the gut-microbiota-derived metabolites and brain has long been recognized in both health and disease. The liver, as the primary metabolic organ for nutrients in animals or humans, plays an indispensable role in signal transduction. Therefore, in recent years, Researcher have proposed the Gut-Liver-Brain Axis (GLBA) as a supplement to the Gut-Brain Axis. The GLBA plays a crucial role in numerous physiological and pathological mechanisms through a complex interplay of signaling pathways. However, gaps remain in our knowledge regarding the developmental and functional influences of the GLBA communication pathway. The gut microbial metabolites serve as communication agents between these three distant organs, functioning prominently within the GLBA. In this review, we provide a comprehensive overview of the current understanding of the GLBA, focusing on signaling molecules role in animal and human health and disease. In this review paper elucidate its mechanisms of communication, explore its implications for immune, and energy metabolism in animal and human, and highlight future research directions. Understanding the intricate communication pathways of the GLBA holds promise for creating innovative treatment approaches for a wide range of immune and metabolic conditions.
Collapse
Affiliation(s)
- Xiaoge Sun
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA
| | - Wei Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| |
Collapse
|
49
|
O’Hare MA, Swart PC, Malan-Müller S, van den Heuvel LL, Bröcker E, Seedat S, Hemmings SM. The saNeuroGut Initiative: Investigating the Gut Microbiome and Symptoms of Anxiety, Depression, and Posttraumatic Stress. Neuroimmunomodulation 2024; 32:1-15. [PMID: 39561720 PMCID: PMC11844704 DOI: 10.1159/000542696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024] Open
Abstract
INTRODUCTION Common mental disorders, such as anxiety disorders, depression, and posttraumatic stress disorder (PTSD), present a substantial health and economic burden. The gut microbiome has been associated with these psychiatric disorders via the microbiome-gut-brain axis. However, previous studies have focused on the associations between the gut microbiome and common mental disorders in European, North American, and Asian populations. As part of the saNeuroGut Initiative, we assessed associations between gut microbial composition and self-reported symptoms of anxiety, depression, and posttraumatic stress (PTS) among South African adults. METHODS Participants completed validated, online self-report questionnaires to evaluate symptoms of state anxiety, trait anxiety, depression, and PTSD. Eighty-six stool-derived microbial DNA samples underwent sequencing of the V4 region of the 16S rRNA gene to characterise gut bacterial taxa in the sample. RESULTS No significant associations were observed between symptom severity scores and alpha (Shannon and Simpson indices) and beta (Aitchison distances) diversity metrics. Linear regression models revealed that the abundances of Catenibacterium, Collinsella, and Holdemanella were significantly positively associated with the severity of PTS symptoms. CONCLUSION Catenibacterium, Collinsella, and Holdemanella have each previously been associated with various psychiatric disorders, with Catenibacterium having been positively associated with symptoms of PTSD in another South African cohort. This study sheds light on the relationship between the human gut microbiome and symptoms of anxiety, depression, and PTS in a South African adult sample.
Collapse
Affiliation(s)
- Michaela A. O’Hare
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
- Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Patricia C. Swart
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense of Madrid (UCM), Research Institute of Hospital 12 de Octubre (Imas12), Instituto Universitario de Investigación Neuroquímica (IUIN-UCM), Madrid, Spain
- Biomedical Research Network Centre in Mental Health, Institute of Health Carlos III (CIBERSAM, ISCIII), Madrid, Spain
| | - Leigh L. van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Erine Bröcker
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| | - Sian M.J. Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Cape Town, South Africa
| |
Collapse
|
50
|
Jansen GJ, Schouten GP, Wiersma M. Advancements in analytical methods for studying the human gut microbiome. J Biol Methods 2024; 12:e99010038. [PMID: 40200949 PMCID: PMC11973056 DOI: 10.14440/jbm.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 10/10/2024] [Indexed: 04/10/2025] Open
Abstract
Background The human gut microbiome, a complex ecosystem of microorganisms, plays a crucial role in maintaining human health. Perturbations in its composition are linked to a wide range of health conditions. Analytical techniques Researchers employ various techniques to study the gut microbiome, each having its own strengths and limitations. Polymerase chain reaction (PCR) is highly sensitive but dependent on the quality of DNA extraction. Next-generation sequencing (NGS) is powerful but can be costly and requires extensive data analysis. Furthermore, the accuracy of NGS results also depends heavily on the quality of the DNA extraction process. Culture methods, while useful, are biased and time-consuming. Fluorescence in situ hybridization (FISH) excels in visualizing specific microbial populations and is the only method capable of providing in situ information. However, until recently, FISH was heavily reliant on human interpretation of digital photomicrographs, limiting its application in high-throughput strategies. Additionally, the sensitivity of FISH is restricted by the number of cells visualized. Conclusion Understanding the strengths and weaknesses of these methods is essential for drawing robust conclusions in microbiome research.
Collapse
Affiliation(s)
| | | | - Marit Wiersma
- NL-Lab, Biotrack, Leeuwarden, Friesland, 8912 AP Netherlands
| |
Collapse
|