1
|
Cao C, Wu ZY, Liao W, Wei LJ, Liang HY, Yang X, Luo RZ, Liu LL. Clinicopathological characterization of Switch/Sucrose-non-fermentable (Swi/Snf) complex (ARID1A, SMARCA2, SMARCA4)-deficient endocervical adenocarcinoma. Cancer Cell Int 2025; 25:170. [PMID: 40301885 PMCID: PMC12042307 DOI: 10.1186/s12935-025-03794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/17/2025] [Indexed: 05/01/2025] Open
Abstract
BACKGROUND Subunits of the Switch/Sucrose-non-fermentable (Swi/Snf) complex, such as ARID1A, SMARCA4, SMARCA2, etc., have been implicated in the development of gynecologic cancers. However, their prevalence and clinical implications in endocervical adenocarcinoma (ECA) remain unclear. This study aimed to evaluate the expression of Swi/Snf complex subunits in ECA and characterize the clinicopathological and immune microenvironment features of Swi/Snf-deficient ECA. METHODS We evaluated 604 ECA using representative tissue microarrays, collected clinicopathologic data, reviewed histological features, and performed immunohistochemical staining for several Swi/Snf complex subunits, mismatch repair (MMR), immune cell markers, and immune checkpoint ligands proteins. RESULTS Among the 604 cases examined, five Swi/Snf subunit expression patterns were identified, including intact expression, deficient expression, 'checkerboard' expression, reduced expression, and heterogeneous expression. Deficiencies of ARID1A (3.97%, 24/604), SMARCA2 (2.32%,14/604), and SMARCA4 (1.49%, 9/604) were observed. Defining Swi/Snf deficiency as loss of any subunit, the overall deficiency rate was 5.96% (36/604). Swi/Snf-deficient ECA tended to advanced FIGO stage (III-IV, P = 0.041), larger tumor size (P < 0.001), deeper stromal invasion (≥ 1/3, P = 0.046), and higher lymph node metastasis rate (P = 0.037). Morphologically, Swi/Snf-deficient ECA displayed frequent poor differentiation (P = 0.001), medullary features (P < 0.001), high nuclear grade (P < 0.001), necrosis (P = 0.001), stromal tumor-infiltrating lymphocytes (sTILs, P < 0.001), peritumoral lymphocyte aggregation (P = 0.001), and tertiary lymphoid structures (TLS, P < 0.001). Immune subset analysis revealed significantly elevated densities of CD3⁺ T cells, CD8⁺ T cells, CD38⁺ plasma cells, CD56⁺ NK cells, CD68⁺ macrophages, and PD-1⁺ T cells in Swi/Snf-deficient ECA (P < 0.05). Swi/Snf-deficient ECA demonstrated higher PD-L1 combined positive score (CPS) positivity (P < 0.001), and was more frequently associated with mismatch repair deficiency (MMRD, P < 0.001). Survival analysis indicated shorter overall survival (median: 53 vs. 64.5 months, P = 0.0307) and disease-free survival (median: 52 vs. 60.5 months, P = 0.0228) in Swi/Snf-deficient ECA patients. CONCLUSIONS Swi/Snf complex deficiency is rare but significantly associated with NHPVA, aggressive pathological features, immunologically activated phenotypes, and MMRD. Swi/Snf status evaluation may inform novel therapeutic strategies for ECA patients.
Collapse
Affiliation(s)
- Chao Cao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, Guangdong, 510060, P.R. China
| | - Zi-Yun Wu
- Department of Urology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, P.R. China
| | - Wei Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Intensive Care Unit, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
| | - Li-Jun Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, Guangdong, 510060, P.R. China
| | - Hao-Yu Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, Guangdong, 510060, P.R. China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, Guangdong, 510060, P.R. China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, Guangdong, 510060, P.R. China.
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, 651# Dong Feng Road East, Guangzhou, Guangdong, 510060, P.R. China.
| |
Collapse
|
2
|
Hao F, Zhang Y, Hou J, Zhao B. Chromatin remodeling and cancer: the critical influence of the SWI/SNF complex. Epigenetics Chromatin 2025; 18:22. [PMID: 40269969 PMCID: PMC12016160 DOI: 10.1186/s13072-025-00590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/15/2025] [Indexed: 04/25/2025] Open
Abstract
The SWI/SNF complex was first identified in yeast and named after studies of mutants critical for the mating-type switch (SWI) and sucrose non-fermenting (SNF) pathways.The SWI/SNF complex plays a pivotal role in regulating gene expression by altering chromatin structure to promote or suppress the expression of specific genes, maintain stem cell pluripotency, and participate in various biological processes. Mutations in the SWI/SNF complex are highly prevalent in various human cancers, significantly impacting tumor suppressive or oncogenic functions and influencing tumor initiation and progression. This review focuses on the mechanisms by which ARID1A/ARID1B, PBRM1, SMARCB1, and SMARCA2/SMARCA4 contribute to cancer, the immunoregulatory roles of the SWI/SNF complex, its involvement in DNA repair pathways, synthetic lethality, and applications in precision oncology.
Collapse
Affiliation(s)
- Fengxiang Hao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Ying Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Bin Zhao
- Shanxi Medical University, Taiyuan, Shanxi Province, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
3
|
Luo T, Hu J, Cheng B, Chen P, Fu J, Zhong H, Han J, Huang H. Predicting Survival in Patients with Neuroendocrine Prostate Cancer: A SEER-Based Comprehensive Study. World J Mens Health 2025; 43:415-427. [PMID: 39344107 PMCID: PMC11937360 DOI: 10.5534/wjmh.240061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 10/01/2024] Open
Abstract
PURPOSE Neuroendocrine prostate cancer (NEPC) represents a particularly aggressive subtype of prostate cancer with a challenging prognosis. The purpose of this investigation is to craft and confirm the reliability of nomograms that can accurately forecast the 1-, 3-, and 5-year overall survival (OS) and cancer-specific survival (CSS) rates for individuals afflicted with NEPC. MATERIALS AND METHODS Data pertaining to patients diagnosed with NEPC within the timeframe of 2010 to 2020 was meticulously gathered and examined from the Surveillance, Epidemiology, and End Results Program (SEER). To predict OS and CSS, we devised and authenticated two distinct nomograms, utilizing predictive variables pinpointed through both univariate and multivariate Cox regression analyses. RESULTS The study encompassed 393 of NEPC patients, who were systematically divided into training and validation cohorts at a 2:1 ratio. Key prognostic factors were isolated, verified, and integrated into the respective nomograms for OS and CSS. The performance metrics, denoted by C-indices, stood at 0.730, 0.735 for the training set, and 0.784, 0.756 for the validation set. The precision and clinical relevance of the nomograms were further corroborated by the analysis of receiver operating characteristic curves, calibration plots, and decision curve analyses. CONCLUSIONS The constructed nomograms have demonstrated impressive efficacy in forecasting the 1-, 3-, and 5-year OS and rates for patients with NEPC. Implementing these predictive tools in clinical settings is anticipated to considerably enhance the care and treatment planning for individuals diagnosed with this aggressive form of prostate cancer, thus providing tailored and more precise prognostic assessments.
Collapse
Affiliation(s)
- Tianlong Luo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jintao Hu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peixian Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhan Fu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haitao Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinli Han
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangdong, China.
| |
Collapse
|
4
|
Hartley A, Galbraith LCA, Shaw R, Tibbo A, Veeratterapillay R, Wilson L, Heer R, Blyth K, Leung H, Ahmad I. Loss of ARID1A accelerates prostate tumourigenesis with a proliferative collagen-poor phenotype through co-operation with AP1 subunit cFos. Br J Cancer 2025; 132:502-512. [PMID: 39885328 PMCID: PMC11920240 DOI: 10.1038/s41416-025-02944-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Prostate cancer (PC) is the commonest male visceral cancer, and second leading cause of cancer mortality in men in the Western world. METHODS Using a forward-mutagenesis Sleeping Beauty (SB) transposon-based screen in a Probasin Cre-Recombinase (Pb-Cre) Pten-deficient mouse model of PC, we identified Arid1a loss as a driver in the development of metastatic disease. RESULTS The insertion of transposon in the Arid1a gene resulted in a 60% reduction of Arid1a expression, and reduced tumour free survival (SB:Ptenfl/fl Arid1aINT median 226 days vs SB:Ptenfl/fl Arid1aWT 293 days, p = 0.02),with elevated rates of metastasis (SB:Ptenfl/fl Arid1aINT 75% lung metastasis rate vs 17% SB:Ptenfl/fl Arid1aWT, p < 0.001). We further generated a Pb-Cre Pten- and Arid1a-deficient mouse model, in which loss of Arid1a demonstrated a profound acceleration in tumorigenesis in Ptenfl/fl mice compared to Pten loss alone (Pb-Cre Ptenfl/flArid1a+/+ median survival of 267 days vs Pb-Cre Ptenfl/fl Arid1afl/fl 103 days, p < 0.0001). CONCLUSION Our data revealed homozygous Arid1a loss is required to dramatically accelerate prostate tumourigenesis. Analysis of RNA and ChIP -Sequencing data suggests Arid1a loss enhanced the function of AP-1 subunit cFos. In clinical PC cohort, ARID1A and cFos levels stratified an aggressive subset of PC with a poor survival outcome with a median of only 30 months.
Collapse
Affiliation(s)
- Andrew Hartley
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Laura C A Galbraith
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Robin Shaw
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Amy Tibbo
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | | | - Laura Wilson
- Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Rakesh Heer
- Paul O'Gorman Building, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK
| | - Karen Blyth
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Leung
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
| | - Imran Ahmad
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
5
|
ZHU L, ZHANG X. [ARID1B Gene Deletion Promotes the Proliferation, Migration and Invasion
of NSCLC Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:165-175. [PMID: 40210476 PMCID: PMC11986678 DOI: 10.3779/j.issn.1009-3419.2025.101.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Abnormalities of the switch/sucrose nonfermentable (SWI/SNF) chromatin-remodeling complex are closely related to various cancers, and ARID1B (AT-rich interaction domain 1B) is one of the core subunits of the SWI/SNF complex. Mutations or copy number deletions of the ARID1B gene are associated with impaired DNA damage response and altered chromatin accessibility. However, whether ARID1B deficiency affects the proliferation, migration and invasion abilities of non-small cell lung cancer (NSCLC) cells and its molecular mechanisms remain poorly understood. This study aims to reveal the regulatory role of ARID1B gene deletion on the malignant phenotype of NSCLC cells and its molecular mechanism. METHODS Online databases were used to analyze the relationship between ARID1B and the prognosis of patients with lung cancer, and the expression levels of ARID1B in lung cancer tissues. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat) technology was employed to construct stable ARID1B gene knockout (KO) cell lines. The plate colony formation assay was used to detect cell proliferation, and the Transwell cell migration and invasion assays were used to detect changes in cell migration ability. RNA-Seq was utilized for the expression and enrichment analysis of differentially expressed genes. Western blot (WB) was used to verify the knockout effect of the ARID1B gene and to detect the expression changes of epithelial-mesenchymal transition (EMT) markers and mitogen-activated protein kinases (MAPK) signaling pathway-related proteins. Nude mouse tumor models were constructed and the tumorigenic abilities of control and ARID1B-deficient cells were compared. RESULTS Patients with low ARID1B expression have poor overall survival. ARID1B is differentially expressed in lung cancer and normal tissues, and its expression level being lower in cancer cells. ARID1B-deficient cells had significantly enhanced in vitro proliferation, migration and invasion abilities. In animal experiments, the tumor formation speed of ARID1B gene deficient cells was significantly accelerated. Enrichment analysis of RNA-Seq results revealed that the differentially expressed genes were mainly enriched in MAPK, phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) and other signaling pathways. WB experiments demonstrated that the expressions of E-cadherin, N-cadherin and Vimentin changed in ARID1B gene deficient cells, and the expressions of MAPK and p-MAPK was increased. CONCLUSIONS The A549-ARID1B KO and PC9-ARID1B KO cell lines were successfully established. The ARID1B-deficient cell lines demonstrated high migration, invasion and proliferation potential at both in vitro and in vivo biological behavior levels and at the transcriptome sequencing level. The changes in the expression of EMT markers and the activation of the MAPK signaling pathway suggest possible metastasis mechanisms of ARID1B-deficient NSCLC.
Collapse
|
6
|
Elizondo-Benedetto S, Sastriques-Dunlop S, Detering L, Arif B, Heo GS, Sultan D, Luehmann H, Zhang X, Gao X, Bredemeyer A, Zaghloul MS, Harrison K, Thies D, McDonald L, Combadière C, Lin CY, Kang Y, Zheng J, Ippolito J, Laforest R, Lavine K, Gropler RJ, English SJ, Zayed MA, Liu Y. Chemokine Receptor 2 Is a Theranostic Biomarker for Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2025:S2452-302X(25)00067-1. [PMID: 40272356 DOI: 10.1016/j.jacbts.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 04/25/2025]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative vascular disease with a high mortality upon rupture. There is no diagnosis to predict the rupture nor effective medical therapies to prevent rupture. Here we demonstrate that the C-C chemokine receptor type 2 (CCR2) is a theranostic biomarker for AAA. In rat AAA models, we determined the potential of a CCR2-targeted positron emission tomography radiotracer [64Cu]Cu-DOTA-ECL1i predicting AAA rupture. Using a CCR2 inhibitor, we observed the effective prevention of rupture in AAA rat models. In humans, CCR2 positron emission tomography showed intense radiotracer uptake along the AAA wall in patients while little signal was observed in healthy volunteers.
Collapse
Affiliation(s)
- Santiago Elizondo-Benedetto
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sergio Sastriques-Dunlop
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lisa Detering
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Batool Arif
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Deborah Sultan
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xiaohui Zhang
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xuefeng Gao
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Bredemeyer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed S Zaghloul
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kitty Harrison
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Dakkota Thies
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laura McDonald
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Christophe Combadière
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yeona Kang
- Department of Mathematics, Howard University, Washington, DC, USA
| | - Jie Zheng
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph Ippolito
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sean J English
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mohamed A Zayed
- Section of Vascular Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA; Division of Molecular Cell Biology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Biomedical Engineering; Washington University School of Medicine, St. Louis, Missouri, USA; Veterans Affairs St. Louis Health Care System, St. Louis, Missouri, USA; Division of Surgical Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
7
|
Trecarten S, Liss MA, Hamilton-Reeves J, DiGiovanni J. Obesity, dietary interventions and microbiome alterations in the development and progression of prostate cancer. Front Immunol 2025; 15:1448116. [PMID: 39840030 PMCID: PMC11747771 DOI: 10.3389/fimmu.2024.1448116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/06/2024] [Indexed: 01/23/2025] Open
Abstract
Purpose of review The role of the microbiome in prostate cancer is an emerging subject of research interest. Certain lifestyle factors, such as obesity and diet, can also impact the microbiome, which has been implicated in many diseases, such as heart disease and diabetes. However, this link has yet to be explored in detail in the context of prostate cancer. The purpose of this review is to explore the cross-talk between obesity, dietary interventions, and microbiome alterations in the development and progression of prostate cancer. Recent findings Many possible mechanisms exist linking obesity and dietary interventions to microbiome alterations and prostate cancer. The gut microbiome produces metabolites that could play a role in prostate cancer oncogenesis, including short-chain fatty acids, cholesterol derivatives, and folic acid. The microbiome also plays a pivotal role in the prostate tumor microenvironment (TME), contributing to inflammation, local tissue hypoxia, and epithelial-mesenchymal transition. A bidirectional relationship exists between obesity and the microbiome, and certain diets can enact changes to the microbiome, its associated metabolites, and prostate cancer outcomes. Summary Cross-talk exists between obesity, dietary interventions, and the role of the microbiome in the development and progression of prostate cancer. To further our understanding, future human studies in prostate cancer should investigate microbiome changes and incorporate an assessment of microbiome-derived metabolites and cellular/immune changes in the TME.
Collapse
Affiliation(s)
- Shaun Trecarten
- Department of Urology, The University of Texas Health Sciences Center San Antonio, San Antonio, TX, United States
| | - Michael A. Liss
- Department of Urology, University of San Diego, San Diego, CA, United States
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, United States
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin and Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
8
|
Brea L, Yu J. Tumor-intrinsic regulators of the immune-cold microenvironment of prostate cancer. Trends Endocrinol Metab 2025:S1043-2760(24)00325-4. [PMID: 39753502 DOI: 10.1016/j.tem.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025]
Abstract
Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status. It will be essential to target the cancer cells themselves in order to change the tumor microenvironment to harness existing and developing immunotherapies that had great success in other tumors.
Collapse
Affiliation(s)
- Lourdes Brea
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Division of Hematology/Oncology, Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Jindan Yu
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Wu H, Chen S, Li X, Li Y, Shi H, Qing Y, Shi B, Tang Y, Yan Z, Hao Y, Wang D, Liu W. RNA modifications in cancer. MedComm (Beijing) 2025; 6:e70042. [PMID: 39802639 PMCID: PMC11718328 DOI: 10.1002/mco2.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025] Open
Abstract
RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial-mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications' potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.
Collapse
Affiliation(s)
- Han Wu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Shi Chen
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Xiang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yuyang Li
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - He Shi
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Yiwen Qing
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| | - Bohe Shi
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yifei Tang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Zhuoyi Yan
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Yang Hao
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Dongxu Wang
- Laboratory Animal CenterCollege of Animal ScienceJilin University, ChangchunJilin provinceChina
| | - Weiwei Liu
- Department of Oral and Maxillofacial SurgeryHospital of StomatologyJilin University, ChangchunJilin provinceChina
- Jilin Provincial Key Laboratory of Tooth Development and Bone RemodelingHospital of StomatologyJilin University, ChangchunJilin provincleChina
| |
Collapse
|
10
|
Jin C, Zhang F, Luo H, Li B, Jiang X, Pirozzi CJ, Liang C, Zhang M. The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation. Cell Commun Signal 2024; 22:584. [PMID: 39633456 PMCID: PMC11619290 DOI: 10.1186/s12964-024-01943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration. METHODS A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential. RESULTS Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro. CONCLUSION These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.
Collapse
Affiliation(s)
- Chen Jin
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Fei Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Hailang Luo
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Boyang Li
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xue Jiang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | | | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Institute of Urology, Anhui Medical University, Hefei, Anhui, 230022, P. R. China.
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
11
|
Pei S, Deng X, Yang R, Wang H, Shi JH, Wang X, Huang J, Tian Y, Wang R, Zhang S, Hou H, Xu J, Zhu Q, Huang H, Ye J, Wang CY, Lu W, Luo Q, Ni ZY, Zheng M, Xiao Y. Age-related decline in CD8 + tissue resident memory T cells compromises antitumor immunity. NATURE AGING 2024; 4:1828-1844. [PMID: 39592880 DOI: 10.1038/s43587-024-00746-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 10/14/2024] [Indexed: 11/28/2024]
Abstract
Aging compromises antitumor immunity, but the underlying mechanisms remain elusive. Here, we report that aging impairs the generation of CD8+ tissue resident memory T (TRM) cells in nonlymphoid tissues in mice, thus compromising the antitumor activity of aged CD8+ T cells, which we also observed in human lung adenocarcinoma. We further identified that the apoptosis regulator BFAR was highly enriched in aged CD8+ T cells, in which BFAR suppressed cytokine-induced JAK2 signaling by activating JAK2 deubiquitination, thereby limiting downstream STAT1-mediated TRM reprogramming. Targeting BFAR either through Bfar knockout or treatment with our developed BFAR inhibitor, iBFAR2, rescued the antitumor activity of aged CD8+ T cells by restoring TRM generation in the tumor microenvironment, thus efficiently inhibiting tumor growth in aged CD8+ T cell transfer and anti-programmed cell death protein 1 (PD-1)-resistant mouse tumor models. Together, our findings establish BFAR-induced TRM restriction as a key mechanism causing aged CD8+ T cell dysfunction and highlight the translational potential of iBFAR2 in restoring antitumor activity in aged individuals or patients resistant to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Siyu Pei
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiuyu Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ruirui Yang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Wang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Hong Shi
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, China
| | - Xueqing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jia Huang
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Tian
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongjing Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Sulin Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Hui Hou
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jing Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingcheng Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jialing Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Cong-Yi Wang
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qingquan Luo
- Department of Thoracic Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhi-Yu Ni
- Central Laboratory, Hebei Collaborative Innovation Center of Tumor Microecological Metabolism Regulation, Affiliated Hospital of Hebei University, Baoding, China.
- Affiliated Hospital of Hebei Engineering University, Handan, China.
- Clinical Medical College, Hebei University of Engineering, Handan, China.
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Ma F, Ren M, Li Z, Tang Y, Sun X, Wang Y, Cao N, Zhu X, Xu Y, Wang R, Shen Y, Zhao R, Li Z, Ashrafizadeh M, Sethi G, Wang F, Zhao A. ARID1A is a coactivator of STAT5 that contributes to CD8 + T cell dysfunction and anti-PD-1 resistance in gastric cancer. Pharmacol Res 2024; 210:107499. [PMID: 39549895 DOI: 10.1016/j.phrs.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
ARID1A deletion mutation contributes to improved treatment of several malignancies with immune checkpoint inhibitors (ICIs). However, its role in modulating of tumor immune microenvironment (TIME) of gastric cancer (GC) remains unclear. Here, we report an increase of CD8+ T cells infiltration in GC patients with ARID1A-mutation (MUT), which enhances sensitivity to ICIs. Kaplan-Meier survival analysis showed that ARID1A-mutation patients with gastrointestinal malignancies benefit from immunotherapy. Transcriptome analysis implicated that ARID1A regulates STAT5 downstream targets to inhibit T-cell mediated toxicity. Integrated dual luciferase assay and ChIP-qPCR analyses indicated that ARID1A coordinated with STAT5 to facilitate the transcription of the immunosuppressive factors TGF-β1 and NOX4. ARID1A recruited canonical BAF complex (cBAF) subunits, including SMARCB1 and SMARCD1, to sustain DNA accessibility. Downregulation of ARID1A reduced chromatin remodeling into configurations which make GC more sensitive to ICIs. In addition, targeting STAT5 effectively improved anti-PD-1 efficiency in ARID1A-wild type (WT) GC patients. Taken together, ARID1A is a coactivator of STAT5, function as a chromatin organizer in GC ICIs resistance, and targeting STAT5 is an effective strategy to improve the efficiency of ICIs in GC.
Collapse
Affiliation(s)
- Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingming Ren
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhongqiu Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China
| | - Yujing Tang
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Xiaoyu Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Rui Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Furong Wang
- Department of Pathology, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516002, China.
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
13
|
Shen S, Wu S, Wang Y, Xiao L, Sun X, Sun W, Zhao Y, Li R, Zhang J, Wang Z, Zhou S, Huang S, Chang Y, Shu Y, Chen C, Lu Z, Cai W, Qiu W. Temporal dynamics of neutrophil functions in multiple sclerosis. Neurobiol Dis 2024; 203:106744. [PMID: 39603278 DOI: 10.1016/j.nbd.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/29/2024] Open
Abstract
Early neuroinflammatory injury plays a crucial role in initiating and progressing multiple sclerosis (MS). Neutrophils are forerunners to neural lesions in MS, yet the temporal alterations of their functions in MS remains unclear. This study demonstrated a positive correlation between circulatory neutrophil counts and disease activity and severity in treatment-naïve MS patients. In experimental autoimmune encephalomyelitis (EAE), we documented the recruitment of neutrophils to spinal cord during the preclinical phase, with these cells contributing to the disruption of the blood-spinal cord barrier (BSCB) during the onset of the disease. Furthermore, during the peak phase, infiltrated neutrophils promoted demyelination through formation of neutrophil extracellular traps (NETs), cytokine secretion and antigen presentation. Notably, the inhibition of neutrophil infiltration using a CXCR2 inhibitor effectively mitigated white matter damage and physical disability, underscoring their potential as therapeutic targets. In conclusion, neutrophils represent promising candidates for both disease treatment and prognosis evaluation in MS. By elucidating their temporal roles and mechanisms of action, we can potentially harness their modulation to improve patient outcomes and disease management.
Collapse
Affiliation(s)
- Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shilin Wu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yuge Wang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Li Xiao
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Xiaobo Sun
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Wenxuan Sun
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Yipeng Zhao
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Rui Li
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Jiaqi Zhang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, Guangdong 510000, China
| | - Shaoli Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Shixiong Huang
- Department of Neurology, Hainan Provincial People's Hospital, Haikou, Hainan 570100, China
| | - Yanyu Chang
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China; Department of Neurology, The First People's Hospital of Kashi, Kashi, Xinjiang 844000, China
| | - Yaqing Shu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Chen Chen
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China.
| | - Wei Qiu
- Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, China; Department of Neurology, The First People's Hospital of Kashi, Kashi, Xinjiang 844000, China.
| |
Collapse
|
14
|
Hashemi M, Rezaei M, Rezaeiaghdam H, Jamali B, Koohpar ZK, Tanha M, Bizhanpour A, Asadi S, Jafari AM, Khosroshahi EM, Eslami M, Salimimoghadam S, Nabavi N, Rashidi M, Fattah E, Taheriazam A, Entezari M. Highlighting function of Wnt signalling in urological cancers: Molecular interactions, therapeutic strategies, and (nano)strategies. Transl Oncol 2024; 50:102145. [PMID: 39357465 PMCID: PMC11474201 DOI: 10.1016/j.tranon.2024.102145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024] Open
Abstract
Cancer is a complex, multistep process characterized by abnormal cell growth and metastasis as well as the capacity of the tumor cells in therapy resistance development. The urological system is particularly susceptible to a group of malignancies known as urological cancers, where an accumulation of genetic alterations drives carcinogenesis. In various human cancers, Wnt singalling is dysregulated; following nuclear transfer of β-catenin, it promotes tumor progression and affects genes expression. Elevated levels of Wnt have been documented in urological cancers, where its overexpression enhances growth and metastasis. Additionally, increased Wnt singalling contributes to chemoresistance in urological cancers, leading to reduced sensitivity to chemotherapy agents like cisplatin, doxorubicin, and paclitaxel. Wnt upregulation can change radiotherapy response of urological cancers. The regulation of Wnt involves various molecular pathways, including Akt, miRNAs, lncRNAs, and circRNAs, all of which play roles in carcinogenesis. Targeting and silencing Wnt or its associated pathways can mitigate tumorigenesis in urological cancers. Anti-cancer compounds such as curcumin and thymoquinone have shown efficacy in suppressing tumorigenesis through the downregulation of Wnt singalling. Notably, nanoparticles have proven effective in treating urological cancers, with several studies in prostate cancer (PCa) using nanoparticles to downregulate Wnt and suppress tumor growth. Future research should focus on developing small molecules that inhibit Wnt singalling to further suppress tumorigenesis and advance the treatment of urological cancers. Moreover, Wnt can be used as reliable biomarker for the diagnosis and prognosis of urological cancers.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Hadi Rezaeiaghdam
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, Iran
| | - Zeinab Khazaei Koohpar
- Department Of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahsa Tanha
- Department Of Biological Sciences, University Of Alabama, Tuscaloosa, Al, United States
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maedeh Eslami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8V 1P7, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Wei J, Zhou S, Chen G, Chen T, Wang Y, Zou J, Zhou F, Liu J, Gong Q. GFPT2: A novel biomarker in mesothelioma for diagnosis and prognosis and its molecular mechanism in malignant progression. Br J Cancer 2024; 131:1529-1542. [PMID: 39317702 PMCID: PMC11519369 DOI: 10.1038/s41416-024-02830-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Mesothelioma (MESO) is an insidious malignancy with a complex diagnosis and a poor prognosis. Our study unveils Glutamine-Fructose-6-Phosphate Transaminase 2 (GFPT2) as a valuable diagnostic and prognostic marker for MESO, exploring its role in MESO pathogenesis. METHODS We utilised tissue samples and clinicopathologic data to evaluate the diagnostic and prognostic significance of GFPT2 as a biomarker for MESO. The role of GFPT2 in the malignant progression of MESO was investigated through in vitro and in vivo experiments. The activation of NF-κB-p65 through O-GlcNAcylation at Ser75 was elucidated using experiments like HPLC-QTRAP-MS/MS and mass spectrometry analysis. RESULTS The study demonstrates that GFPT2 exhibits a sensitivity of 92.60% in diagnosing MESO. Overexpression of it has been linked to an unfavourable prognosis. Through rigorous verification, we have confirmed that elevated GFPT2 levels drive malignant proliferation, invasiveness, and metastasis in MESO. At the molecular level, GFPT2 augments p65 O-GlcNAcylation, orchestrating its nuclear translocation and activating the NF-κB signalling pathway. CONCLUSIONS Our insights suggest GFPT2's potential as a distinctive biomarker for MESO diagnosis and prognosis, and as an innovative therapeutic target, offering a new horizon for identification and treatment strategies in MESO management.
Collapse
Affiliation(s)
- Jia Wei
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Suiqing Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Chen
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Zhou
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Jiali Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Qixing Gong
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Tabibian M, Moghaddam FS, Motevaseli E, Ghafouri-Fard S. Targeting mRNA-coding genes in prostate cancer using CRISPR/Cas9 technology with a special focus on androgen receptor signaling. Cell Commun Signal 2024; 22:504. [PMID: 39420406 PMCID: PMC11484332 DOI: 10.1186/s12964-024-01833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Prostate cancer is among prevalent cancers in men. Numerous strategies have been proposed to intervene with the important prostate cancer-related signaling pathways. Among the most promising strategies is CRISPR/Cas9 strategy. This strategy has been used to modify expression of a number of genes in prostate cancer cells. AIMS This review summarizes the most recent progresses in the application of CRISPR/Cas9 strategy in modification of prostate cancer-related phenotypes with an especial focus on pathways related to androgen receptor signaling. CONCLUSION CRISPR/Cas9 technology has successfully targeted several genes in the prostate cancer cells. Moreover, the efficiency of this technique in reducing tumor burden has been tested in animal models of prostate cancer. Most of targeted genes have been related with the androgen receptor signaling. Targeted modulation of these genes have affected growth of castration-resistant prostate cancer. PI3K/AKT/mTOR signaling and immune response-related genes have been other targets that have been successfully modulated by CRISPR/Cas9 technology in prostate cancer. Based on the rapid translation of this technology into the clinical application, it is anticipated that novel treatments based on this technique change the outcome of this malignancy in future.
Collapse
Affiliation(s)
- Mobina Tabibian
- Department of Cellular and Molecular Biology, Faculty of Life Sciences and Biotechnologies, Shahid Beheshti University, Tehran, Iran
| | | | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Chen L, Xu YX, Wang YS, Ren YY, Dong XM, Wu P, Xie T, Zhang Q, Zhou JL. Prostate cancer microenvironment: multidimensional regulation of immune cells, vascular system, stromal cells, and microbiota. Mol Cancer 2024; 23:229. [PMID: 39395984 PMCID: PMC11470719 DOI: 10.1186/s12943-024-02137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most prevalent malignancies in males worldwide. Increasing research attention has focused on the PCa microenvironment, which plays a crucial role in tumor progression and therapy resistance. This review aims to provide a comprehensive overview of the key components of the PCa microenvironment, including immune cells, vascular systems, stromal cells, and microbiota, and explore their implications for diagnosis and treatment. METHODS Keywords such as "prostate cancer", "tumor microenvironment", "immune cells", "vascular system", "stromal cells", and "microbiota" were used for literature retrieval through online databases including PubMed and Web of Science. Studies related to the PCa microenvironment were selected, with a particular focus on those discussing the roles of immune cells, vascular systems, stromal cells, and microbiota in the development, progression, and treatment of PCa. The selection criteria prioritized peer-reviewed articles published in the last five years, aiming to summarize and analyze the latest research advancements and clinical relevance regarding the PCa microenvironment. RESULTS The PCa microenvironment is highly complex and dynamic, with immune cells contributing to immunosuppressive conditions, stromal cells promoting tumor growth, and microbiota potentially affecting androgen metabolism. Vascular systems support angiogenesis, which fosters tumor expansion. Understanding these components offers insight into the mechanisms driving PCa progression and opens avenues for novel therapeutic strategies targeting the tumor microenvironment. CONCLUSIONS A deeper understanding of the PCa microenvironment is crucial for advancing diagnostic techniques and developing precision therapies. This review highlights the potential of targeting the microenvironment to improve patient outcomes, emphasizing its significance in the broader context of PCa research and treatment innovation.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yuan-Shuo Wang
- School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xue-Man Dong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Pu Wu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Qi Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang, 310014, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
18
|
Okada M, Yamasaki S, Nakazato H, Hirahara Y, Ishibashi T, Kawamura M, Shimizu K, Fujii SI. ARID1A-Deficient Tumors Acquire Immunogenic Neoantigens during the Development of Resistance to Targeted Therapy. Cancer Res 2024; 84:2792-2805. [PMID: 39228255 DOI: 10.1158/0008-5472.can-23-2846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/23/2024] [Accepted: 06/17/2024] [Indexed: 09/05/2024]
Abstract
Neoantigen-based immunotherapy is an attractive potential treatment for previously intractable tumors. To effectively broaden the application of this approach, stringent biomarkers are crucial to identify responsive patients. ARID1A, a frequently mutated subunit of SWI/SNF chromatin remodeling complex, has been reported to determine tumor immunogenicity in some cohorts; however, mutations and deletions of ARID1A are not always linked to clinical responses to immunotherapy. In this study, we investigated immunotherapeutic responses based on ARID1A status in targeted therapy-resistant cancers. Mouse and human BRAFV600E melanomas with or without ARID1A expression were transformed into resistant to vemurafenib, an FDA-approved specific BRAFV600E inhibitor. Anti-PD-1 antibody treatment enhanced antitumor immune responses in vemurafenib-resistant ARID1A-deficient tumors but not in ARID1A-intact tumors or vemurafenib-sensitive ARID1A-deficient tumors. Neoantigens derived from accumulated somatic mutations during vemurafenib resistance were highly expressed in ARID1A-deficient tumors and promoted tumor immunogenicity. Furthermore, the newly generated neoantigens could be utilized as immunotherapeutic targets by vaccines. Finally, targeted therapy resistance-specific neoantigen in experimental human melanoma cells lacking ARID1A were validated to elicit T-cell receptor responses. Collectively, the classification of ARID1A-mutated tumors based on vemurafenib resistance as an additional indicator of immunotherapy response will enable a more accurate prediction to guide cancer treatment. Furthermore, the neoantigens that emerge with therapy resistance can be promising therapeutic targets for refractory tumors. Significance: Chemotherapy resistance promotes the acquisition of immunogenic neoantigens in ARID1A-deficient tumors that confer sensitivity to immune checkpoint blockade and can be utilized for developing antitumor vaccines, providing strategies to improve immunotherapy efficacy.
Collapse
Affiliation(s)
- Masahiro Okada
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Yamasaki
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Nakazato
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuhya Hirahara
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takuya Ishibashi
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masami Kawamura
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kanako Shimizu
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- RIKEN Program for Drug Discovery and Medical Technology Platforms, RIKEN, Yokohama, Japan
| |
Collapse
|
19
|
Wang Z, Tang P, Xiao H, Peng S, Chen J, Wang Y, Xu J, Yan Q, Zhang J, Deng J, Ma Q, Zhu H, Luo W, Zhang D, Wang L, Qin J, Lan W, Jiang J, Liu Q. Histone demethylase PHF8 promotes prostate cancer metastasis via the E2F1-SNAI1 axis. J Pathol 2024; 264:68-79. [PMID: 39022843 DOI: 10.1002/path.6325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/21/2024] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Metastasis is the primary culprit behind cancer-related fatalities in multiple cancer types, including prostate cancer. Despite great advances, the precise mechanisms underlying prostate cancer metastasis are far from complete. By using a transgenic mouse prostate cancer model (TRAMP) with and without Phf8 knockout, we have identified a crucial role of PHF8 in prostate cancer metastasis. By complexing with E2F1, PHF8 transcriptionally upregulates SNAI1 in a demethylation-dependent manner. The upregulated SNAI1 subsequently enhances epithelial-to-mesenchymal transition (EMT) and metastasis. Given the role of the abnormally activated PHF8/E2F1-SNAI1 axis in prostate cancer metastasis and poor prognosis, the levels of PHF8 or the activity of this axis could serve as biomarkers for prostate cancer metastasis. Moreover, targeting this axis could become a potential therapeutic strategy for prostate cancer treatment. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Haiyang Xiao
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jian Chen
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qian Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Junying Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, PR China
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jie Deng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiang Ma
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Hailin Zhu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Weiming Luo
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
20
|
Wang J, Guo T, Zhang X, Guo J, Meng X, Yan S, Wang Y, Xiao Y, Xu W, Wei X, Ding K, Zhang J, Mi Y, Wu S, Chen J, Huang Y, Ren S, Hou J. Comprehensive investigation in oncogenic functions and immunological roles of NCBP2 and its validation in prostate cancer. Transl Oncol 2024; 47:102049. [PMID: 38964031 PMCID: PMC11283080 DOI: 10.1016/j.tranon.2024.102049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/06/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Nuclear cap-binding protein 2 (NCBP2), as the component of the cap-binding complex, participates in a number of biological processes, including pre-mRNA splicing, transcript export, translation regulation and other gene expression steps. However, the role of NCBP2 on the tumor cells and immune microenvironment remains unclear. To systematically analyze and validate functions of NCBP2, we performed a pan-cancer analysis using multiple approaches. METHODS The data in this study were derived from sequencing, mutation, and methylation data in the TCGA cohort, normal sample sequencing data in the GTEx project, and cell line expression profile data in the CCLE database. RESULTS Survival analyses including the Cox proportional-hazards model and log-rank test revealed the poor prognostic role of NCBP2 in multiple tumors. We further validated the oncogenic ability of NCBP2 in prostate cancer cell lines, organoids and tumor-bearing mice. A negative correlation was observed between NCBP2 expression and immune score by the ESTIMATE algorithm. Simultaneously, the NCBP2-induced immunosuppressive microenvironment might be related to the decline in CD8+T cells and the increase in regulatory T cells and neutrophils, examined by flow cytometry experiments for NCBP2 overexpressed tumor-bearing mice. CONCLUSION This research offered strong proof supporting NCBP2 as the prognostic marker and the therapeutic target in the future.
Collapse
Affiliation(s)
- Jian Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Urology, Shanghai Changzheng Hospital, Shanghai, China; Department of Urology, Shanghai Changhai Hospital, Shanghai, China; Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Tao Guo
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaomin Zhang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Jiacheng Guo
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiangyu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing China
| | - Shi Yan
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Ye Wang
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuanyuan Mi
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Sheng Wu
- Department of Urology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jie Chen
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China.
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
21
|
Jin C, Liao S, Lu G, Geng BD, Ye Z, Xu J, Ge G, Yang D. Cellular senescence in metastatic prostate cancer: A therapeutic opportunity or challenge (Review). Mol Med Rep 2024; 30:162. [PMID: 38994760 PMCID: PMC11258599 DOI: 10.3892/mmr.2024.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
The treatment of patients with metastatic prostate cancer (PCa) is considered to be a long‑standing challenge. Conventional treatments for metastatic PCa, such as radical prostatectomy, radiotherapy and androgen receptor‑targeted therapy, induce senescence of PCa cells to a certain extent. While senescent cells can impede tumor growth through the restriction of cell proliferation and increasing immune clearance, the senescent microenvironment may concurrently stimulate the secretion of a senescence‑associated secretory phenotype and diminish immune cell function, which promotes PCa recurrence and metastasis. Resistance to established therapies is the primary obstacle in treating metastatic PCa as it can lead to progression towards an incurable state of disease. Therefore, understanding the molecular mechanisms that underly the progression of PCa is crucial for the development of novel therapeutic approaches. The present study reviews the phenomenon of treatment‑induced senescence in PCa, the dual role of senescence in PCa treatments and the mechanisms through which senescence promotes PCa metastasis. Furthermore, the present review discusses potential therapeutic strategies to target the aforementioned processes with the aim of providing insights into the evolving therapeutic landscape for the treatment of metastatic PCa.
Collapse
Affiliation(s)
- Cen Jin
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
- Medical Imaging School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Sijian Liao
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guoliang Lu
- Department of Pediatrics, Anshun People's Hospital, Anshun, Guizhou 561000, P.R. China
| | - Bill D. Geng
- School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Zi Ye
- Clinical Medicine School, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Jianwei Xu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Guo Ge
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| | - Dan Yang
- Department of Surgery, Clinical Medical College, Guizhou Medical University, Guiyang, Guizhou 561113, P.R. China
| |
Collapse
|
22
|
Chen J, Chen Q, Wang Z, Yan X, Wang Y, Zhang Y, Zhang J, Xu J, Ma Q, Zhong P, Zhang D, Liu Q, Lan W, Jiang J. Establishing a model predicting Gleason grade group upgrading in prostate cancer. Transl Androl Urol 2024; 13:1378-1387. [PMID: 39280670 PMCID: PMC11399042 DOI: 10.21037/tau-24-155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/01/2024] [Indexed: 09/18/2024] Open
Abstract
Background Gleason grade group (GG) upgrading is associated with increased biochemical recurrence (BCR), local progression, and decreased cancer-specific survival (CSS) in prostate cancer (PCa). However, descriptions of the risk factors of GG upgrading are scarce. The objective of this study was to identify risk factors and establish a model to predict GG upgrading. Methods There were 361 patients with PCa who underwent radical prostatectomy between May 2011 and February 2022 enrolled. Univariate and multivariate logistic regression analyses were identified and nomogram further narrowed down the contributing factors in GG upgrading. The correction curve and decision curve were used to assess the model. Results In the overall cohort, 141 patients had GG upgrading. But the subgroup cohort (GG ≤2) showed that 68 patients had GG upgrading. Multivariate logistic regression analysis showed that in the overall cohort, total prostate-specific antigen (tPSA) ≥10 ng/mL, systemic immune-inflammation index (SII) >379.50, neutrophil-lymphocyte ratio (NLR) >2.13, the GG of biopsy ≥3, the number of positive cores >3 were independent risk factors in GG upgrading. In the cohort of biopsy GG ≤2, multivariate logistic regression showed that the tPSA ≥10 ng/mL, SII >379.50 and the number of positive cores >3 were independent risk factors in GG upgrading. A novel model predicting GG upgrading was established based on these three parameters. The area under the curve (AUC) of the prediction model was 0.759. The C-index of the nomogram was 0.768. The calibration curves of the model showed good predictive performance. Clinical decision curves indicated clinical benefit in the interval of 20% to 90% of threshold probability and good clinical utility. Conclusions Combined levels of tPSA, SII and the positive biopsy cores distinguish patients with high-risk GG upgrading in the group of biopsy GG ≤2 and are helpful in the decision of treatment plans.
Collapse
Affiliation(s)
- Jian Chen
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiming Chen
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Ze Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Xuzhi Yan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Yapeng Wang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Zhang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiang Ma
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Peng Zhong
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Li D, Shao F, Yu Q, Wu R, Tuo Z, Wang J, Ye L, Guo Y, Yoo KH, Ke M, Okoli UA, Premkamon C, Yang Y, Wei W, Heavey S, Cho WC, Feng D. The complex interplay of tumor-infiltrating cells in driving therapeutic resistance pathways. Cell Commun Signal 2024; 22:405. [PMID: 39160622 PMCID: PMC11331645 DOI: 10.1186/s12964-024-01776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024] Open
Abstract
Drug resistance remains a significant challenge in cancer treatment. Recently, the interactions among various cell types within the tumor microenvironment (TME) have deepened our understanding of the mechanisms behind treatment resistance. Therefore, this review aims to synthesize current research focusing on infiltrating cells and drug resistance suggesting that targeting the TME could be a viable strategy to combat this issue. Numerous factors, including inflammation, metabolism, senescence, hypoxia, and angiogenesis, contribute to drug resistance could be a viable strategy to combat this issue. Overexpression of STAT3 is commonly associated with drug-resistant cancer cells or stromal cells. Current research often generalizes the impact of stromal cells on resistance, lacking specificity and statistical robustness. Thus, future research should take notice of this issue and aim to provide high-quality evidence. Despite the existing limitations, targeting the TME to overcome therapy resistance hold promising and valuable potential.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315211, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhouting Tuo
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, Republic of Korea
| | - Mang Ke
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, 317000, China
- Department of Urology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Uzoamaka Adaobi Okoli
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
- Basic and Translational Cancer Research Group, Department of Pharmacology and Therapeutics, College of Medicine, University of Nigeria, Eastern part of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chaipanichkul Premkamon
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK
| | - Yubo Yang
- Department of Urology, Three Gorges Hospital, Chongqing University, Wanzhou, Chongqing, 404000, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Susan Heavey
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Birmingham, Hong Kong SAR, China.
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
24
|
Chen HJ, Yu MM, Huang JC, Lan FY, Liao HH, Xu ZH, Yu YJ, Huang YC, Chen F. SLC4A4 is a novel driver of enzalutamide resistance in prostate cancer. Cancer Lett 2024; 597:217070. [PMID: 38880227 DOI: 10.1016/j.canlet.2024.217070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The androgen receptor signaling inhibitor (ARSI) enzalutamide (Enz) has shown critical efficacy in the treatment of advanced prostate cancer (PCa). However, the development of drug resistance is a significant factor contributing to mortality in PCa patients. We aimed to explore the key mechanisms of Enz-resistance. Through analysis of GEO databases, we identified SLC4A4 as a novel driver in Enz resistance. Long-term Enz treatment leads to the up-regulation of SLC4A4, which in turn mediates P53 lactylation via the NF-κB/STAT3/SLC4A4 axis, ultimately leading to the development of Enz resistance and progression of PCa. SLC4A4 knockdown overcomes Enz resistance both in vitro and in vivo. Hence, our results suggest that targeting SLC4A4 could be a promising therapeutic strategy for Enz resistance. STATEMENT OF SIGNIFICANCE: SLC4A4 is a novel driver of enzalutamide resistance.
Collapse
Affiliation(s)
- Hao-Jie Chen
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China; Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Ming-Ming Yu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jia-Cheng Huang
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Fu-Ying Lan
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Hai-Hong Liao
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Zi-Han Xu
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Yong-Jiang Yu
- Department of Urology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Yi-Chen Huang
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| | - Fang Chen
- Department of Urology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China.
| |
Collapse
|
25
|
Trejo-Villegas OA, Heijink IH, Ávila-Moreno F. Preclinical evidence in the assembly of mammalian SWI/SNF complexes: Epigenetic insights and clinical perspectives in human lung disease therapy. Mol Ther 2024; 32:2470-2488. [PMID: 38910326 PMCID: PMC11405180 DOI: 10.1016/j.ymthe.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024] Open
Abstract
The SWI/SNF complex, also known as the BRG1/BRM-associated factor (BAF) complex, represents a critical regulator of chromatin remodeling mechanisms in mammals. It is alternatively referred to as mSWI/SNF and has been suggested to be imbalanced in human disease compared with human health. Three types of BAF assemblies associated with it have been described, including (1) canonical BAF (cBAF), (2) polybromo-associated BAF (PBAF), and (3) non-canonical BAF (ncBAF) complexes. Each of these BAF assemblies plays a role, either functional or dysfunctional, in governing gene expression patterns, cellular processes, epigenetic mechanisms, and biological processes. Recent evidence increasingly links the dysregulation of mSWI/SNF complexes to various human non-malignant lung chronic disorders and lung malignant diseases. This review aims to provide a comprehensive general state-of-the-art and a profound examination of the current understanding of mSWI/SNF assembly processes, as well as the structural and functional organization of mSWI/SNF complexes and their subunits. In addition, it explores their intricate functional connections with potentially dysregulated transcription factors, placing particular emphasis on molecular and cellular pathogenic processes in lung diseases. These processes are reflected in human epigenome aberrations that impact clinical and therapeutic levels, suggesting novel perspectives on the diagnosis and molecular therapies for human respiratory diseases.
Collapse
Affiliation(s)
- Octavio A Trejo-Villegas
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios #1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Estado de México, México
| | - Irene H Heijink
- Departments of Pathology & Medical Biology and Pulmonology, GRIAC Research Institute, University Medical Center Groningen, University of Groningen, 9713 Groningen, the Netherlands
| | - Federico Ávila-Moreno
- Lung Diseases and Functional Epigenomics Laboratory (LUDIFE), Biomedicine Research Unit (UBIMED), Facultad de Estudios Superiores-Iztacala (FES-Iztacala), Universidad Nacional Autónoma de México (UNAM), Avenida de los Barrios #1, Colonia Los Reyes Iztacala, Tlalnepantla de Baz, 54090, Estado de México, México; Research Unit, Instituto Nacional de Enfermedades Respiratorias (INER), Ismael Cosío Villegas, 14080, Ciudad de México, México; Research Tower, Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), 14080, Ciudad de México, México.
| |
Collapse
|
26
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
27
|
Yu S, Zhang R, Xie Z, Xiong Z, Peng S, Li B, Zhuang R, Wu J, Huang H. Sorafenib Encapsulated Poly(ester amide) Nanoparticles for Efficient and Biosafe Prostate Cancer Therapy. ACS Biomater Sci Eng 2024; 10:4336-4346. [PMID: 38850557 DOI: 10.1021/acsbiomaterials.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Prostate cancer (PCa) with a high incidence worldwide is a serious threat to men's health. Despite the continuous development of treatment strategies for PCa in recent years, the long-term prognosis of patients is still poor. Hence, the discovery and development of novel, secure, and efficient therapeutic approaches hold significant clinical significance. Although sorafenib (SOR) displays potential as a therapeutic option for PCa, its clinical efficacy is hindered by drug resistance, limited water solubility, and rapid metabolism. Therefore, we proposed to prepare nanoparticles (named SOR@8P4 NPs) utilizing the phenylalanine-based poly(ester amide) polymer (8P4) as the drug carrier to enhance the solubility and drug stability of SOR and improve the therapeutic targeting and bioavailability. SOR@8P4 NPs had high stability and showed acid-responsive drug release at the acidic tumor microenvironment. Additionally, SOR@8P4 NPs demonstrated more remarkable anticancer, antimetastatic, and antiproliferative abilities in vitro, compared with those of free drugs. SOR@8P4 NPs showed high tumor targeting and significantly inhibited tumor growth in vivo. In summary, the drug delivery system of SOR@8P4 NPs provides new ideas for the clinical treatment of PCa.
Collapse
Affiliation(s)
- Shunli Yu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruhe Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhaoxiang Xie
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhi Xiong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shirong Peng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bingheng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ruilin Zhuang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
28
|
Chen P, Huang Z, Wu X. Association between lymphocyte-to-monocyte ratio and prostate cancer in men: A population-based study. Medicine (Baltimore) 2024; 103:e38826. [PMID: 38968486 PMCID: PMC11224892 DOI: 10.1097/md.0000000000038826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/13/2024] [Indexed: 07/07/2024] Open
Abstract
Using the novel inflammatory biomarker lymphocyte-to-monocyte ratio (LMR), this work aimed to look into any potential connections between LMR and prostate cancer (PCa). A cross-sectional research investigation was conducted on 7706 male participants involved in the National Health and Nutrition Examination Survey from 2001 to 2010. Multivariate logistic regression modeling investigated the relationship between LMR levels and PCa risk. Furthermore, threshold analysis, subgroup analysis, interaction testing, and smoothed curve fitting were carried out. A significant negative correlation was seen between LMR and PCa risk (OR = 0.79, 95% CI: 0.65-0.97, P = .0002), even after controlling for potential confounding factors. A significant nonlinear negative correlation with a threshold effect and a breakpoint of 4.86 was found by smooth curve fitting between LMR and PCa. Subgroup analysis revealed a significant interaction (P for interaction = 0.0448) between the negative correlation between PCa and LMR about hypertension. Moreover, additional stratified smoothed curve fitting demonstrated a statistically significant inverse relationship between PCa risk and LMR. According to our findings, there is a substantial inverse relationship between PCa risk and LMR level. The inflammatory response-related index is quick, easy to use, and offers some clinical references. However, more extensive prospective investigations are required to confirm the involvement of LMR levels in PCa.
Collapse
Affiliation(s)
- Pingzhou Chen
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| | - Zhijie Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiang Wu
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
29
|
Hushmandi K, Saadat SH, Raei M, Daneshi S, Aref AR, Nabavi N, Taheriazam A, Hashemi M. Implications of c-Myc in the pathogenesis and treatment efficacy of urological cancers. Pathol Res Pract 2024; 259:155381. [PMID: 38833803 DOI: 10.1016/j.prp.2024.155381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Urological cancers, including prostate, bladder, and renal cancers, are significant causes of death and negatively impact the quality of life for patients. The development and progression of these cancers are linked to the dysregulation of molecular pathways. c-Myc, recognized as an oncogene, exhibits abnormal levels in various types of tumors, and current evidence supports the therapeutic targeting of c-Myc in cancer treatment. This review aims to elucidate the role of c-Myc in driving the progression of urological cancers. c-Myc functions to enhance tumorigenesis and has been documented to increase growth and metastasis in prostate, bladder, and renal cancers. Furthermore, the dysregulation of c-Myc can result in a diminished response to therapy in these cancers. Non-coding RNAs, β-catenin, and XIAP are among the regulators of c-Myc in urological cancers. Targeting and suppressing c-Myc therapeutically for the treatment of these cancers has been explored. Additionally, the expression level of c-Myc may serve as a prognostic factor in clinical settings.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran; Department of Epidemiology and Biostatistics, School of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health,School of Health,Jiroft University Of Medical Sciences, Jiroft, Iran
| | - Amir Reza Aref
- Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA; Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
30
|
Pang L, Zhou F, Liu Y, Ali H, Khan F, Heimberger AB, Chen P. Epigenetic regulation of tumor immunity. J Clin Invest 2024; 134:e178540. [PMID: 39133578 PMCID: PMC11178542 DOI: 10.1172/jci178540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024] Open
Abstract
Although cancer has long been considered a genetic disease, increasing evidence shows that epigenetic aberrations play a crucial role in affecting tumor biology and therapeutic response. The dysregulated epigenome in cancer cells reprograms the immune landscape within the tumor microenvironment, thereby hindering antitumor immunity, promoting tumor progression, and inducing immunotherapy resistance. Targeting epigenetically mediated tumor-immune crosstalk is an emerging strategy to inhibit tumor progression and circumvent the limitations of current immunotherapies, including immune checkpoint inhibitors. In this Review, we discuss the mechanisms by which epigenetic aberrations regulate tumor-immune interactions and how epigenetically targeted therapies inhibit tumor progression and synergize with immunotherapy.
Collapse
|
31
|
Han J, Wang Q, Li S, Yang J, Qiu Z, Fu W. Comprehensive analysis of basement membrane-related gene based on single-cell and bulk RNA sequencing data to predict prognosis and evaluate immune characteristics in colorectal cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:3367-3380. [PMID: 38445432 DOI: 10.1002/tox.24211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 03/07/2024]
Abstract
AIMS Basement membrane-related genes (BMs) participate in regulating cell polarity, invasion, metastasis, and survival across different tumor types. Nevertheless, the specific functions of BMs in colorectal cancer (CRC) remain uncertain. METHODS To investigate the clinical relevance of BMs in CRC, we retrieved both gene expression and clinical data from The Cancer Genome Atlas (TCGA) datasets for subsequent analysis. The Kaplan-Meier (K-M) survival curve was employed to evaluate prognosis in high- and low-risk groups. Furthermore, additional analyses, including nomogram construction, functional enrichment, examination of the tumor immune microenvironment, prediction of small-molecule drugs, and more, were conducted to delve into the significance of BM-related signatures in CRC. Single-cell data from seven CRC patients were obtained from the TISCH2 database, and expression validation and cell source exploration of BM-related signatures were performed. Lastly, the expression and function of TIMP1, a key gene in BMs that may play a role in the progression of CRC, was validated in vitro through a series of basic experiments. RESULTS We constructed a seven BMs-based model to categorize CRC patients into high-risk and low-risk groups. K-M survival analysis indicated a poorer prognosis for high-risk CRC patients. Cox regression analysis further identified the risk score as an independent prognostic factor for CRC patients. The nomogram model exhibited superior discrimination and calibration abilities of CRC patients. Based on the results from GO/KEGG and GSEA, genes in the high-risk subgroup were implicated in immune-related pathways and exhibited a positive correlation with immune checkpoints. In single-cell data, we found that TIMP1 is highly expressed in many cells, especially in malignant tumor cells. We also observed up-regulation of TIMP1 in CRC cell lines, promoting cancer invasion and migration in vitro. CONCLUSIONS Our study has discovered a novel prognostic index derived from BM-related genes in CRC patients. Specifically, the new model enables patient stratification, improving the selection of individuals likely to benefit from immunotherapy.
Collapse
Affiliation(s)
- Jing Han
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of General Surgery, Shuyang Hospital of TCM, Shuyang, Jiangsu Province, China
| | - Qipeng Wang
- Department of General Surgery, Shuyang Hospital of TCM, Shuyang, Jiangsu Province, China
| | - Shangshang Li
- Department of General Surgery, Shuyang Hospital of TCM, Shuyang, Jiangsu Province, China
| | - Jie Yang
- Department of General Surgery, Shuyang Hospital of TCM, Shuyang, Jiangsu Province, China
| | - Zhengcai Qiu
- Department of General Surgery, Shuyang Hospital of TCM, Shuyang, Jiangsu Province, China
| | - Wei Fu
- Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of General Surgery, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
32
|
Chen H, Dong K, Ding J, Xia J, Qu F, Lan F, Liao H, Qian Y, Huang J, Xu Z, Gu Z, Shi B, Yu M, Cui X, Yu Y. CRISPR genome-wide screening identifies PAK1 as a critical driver of ARSI cross-resistance in prostate cancer progression. Cancer Lett 2024; 587:216725. [PMID: 38364963 DOI: 10.1016/j.canlet.2024.216725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Next-generation androgen receptor signaling inhibitors (ARSIs), such as enzalutamide (Enza) and darolutamide (Daro), are initially effective for the treatment of advanced prostate cancer (PCa) and castration-resistant prostate cancer (CRPC). However, patients often relapse and develop cross-resistance, which consequently makes drug resistance an inevitable cause of CRPC-related mortality. By conducting a comprehensive analysis of GEO datasets, CRISPR genome-wide screening results, ATAC-seq data, and RNA-seq data, we systemically identified PAK1 as a significant contributor to ARSI cross-resistance due to the activation of the PAK1/RELA/hnRNPA1/AR-V7 axis. Inhibition of PAK1 followed by suppression of NF-κB pathways and AR-V7 expression effectively overcomes ARSI cross-resistance. Our findings indicate that PAK1 represents a promising therapeutic target gene for the treatment of ARSI cross-resistant PCa patients in the clinic. STATEMENT OF SIGNIFICANCE: PAK1 drives ARSI cross-resistance in prostate cancer progression.
Collapse
Affiliation(s)
- Haojie Chen
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Keqin Dong
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China; Department of Urology, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430064, China
| | - Jie Ding
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jia Xia
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fajun Qu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Fuying Lan
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Haihong Liao
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yuhang Qian
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Jiacheng Huang
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zihan Xu
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Zhengqin Gu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Bowen Shi
- Department of Urology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Mingming Yu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Xingang Cui
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Yongjiang Yu
- Department of Urology, School of Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
33
|
Fang B, Lu Y, Li X, Wei Y, Ye D, Wei G, Zhu Y. Targeting the tumor microenvironment, a new therapeutic approach for prostate cancer. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00825-z. [PMID: 38565910 DOI: 10.1038/s41391-024-00825-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND A growing number of studies have shown that in addition to adaptive immune cells such as CD8 + T cells and CD4 + T cells, various other cellular components within prostate cancer (PCa) tumor microenvironment (TME), mainly tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs) and myeloid-derived suppressor cells (MDSCs), have been increasingly recognized as important modulators of tumor progression and promising therapeutic targets. OBJECTIVE In this review, we aim to delineate the mechanisms by which TAMs, CAFs and MDSCs interact with PCa cells in the TME, summarize the therapeutic advancements targeting these cells and discuss potential new therapeutic avenues. METHODS We searched PubMed for relevant studies published through December 10 2023 on TAMs, CAFs and MDSCs in PCa. RESULTS TAMs, CAFs and MDSCs play a critical role in the tumorigenesis, progression, and metastasis of PCa. Moreover, they substantially mediate therapeutic resistance against conventional treatments including anti-androgen therapy, chemotherapy, and immunotherapy. Therapeutic interventions targeting these cellular components have demonstrated promising effects in preclinical models and several clinical trials for PCa, when administrated alone, or combined with other anti-cancer therapies. However, the lack of reliable biomarkers for patient selection and incomplete understanding of the mechanisms underlying the interactions between these cellular components and PCa cells hinder their clinical translation and utility. CONCLUSION New therapeutic strategies targeting TAMs, CAFs, and MDSCs in PCa hold promising prospects. Future research endeavors should focus on a more comprehensive exploration of the specific mechanisms by which these cells contribute to PCa, aiming to identify additional drug targets and conduct more clinical trials to validate the safety and efficacy of these treatment strategies.
Collapse
Affiliation(s)
- Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Gonghong Wei
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
34
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Xiao M, Cui X, Xu C, Xin L, Zhao J, Yang S, Hong B, Tan Y, Zhang J, Li X, Li J, Kang C, Fang C. Deep-targeted gene sequencing reveals ARID1A mutation as an important driver of glioblastoma. CNS Neurosci Ther 2024; 30:e14698. [PMID: 38600891 PMCID: PMC11007544 DOI: 10.1111/cns.14698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
AIMS To investigate the key factors influencing glioma progression and the emergence of treatment resistance by examining the intrinsic connection between mutations in DNA damage and repair-related genes and the development of chemoresistance in gliomas. METHODS We conducted a comprehensive analysis of deep-targeted gene sequencing data from 228 glioma samples. This involved identifying differentially mutated genes across various glioma grades, assessing their functions, and employing I-TASSER for homology modeling. We elucidated the functional changes induced by high-frequency site mutations in these genes and investigated their impact on glioma progression. RESULTS The analysis of sequencing mutation results of deep targeted genes in integration revealed that ARID1A gene mutation occurs frequently in glioblastoma and alteration of ARID1A could affect the tolerance of glioma cells to temozolomide treatment. The deletion of proline at position 16 in the ARID1A protein affected the stability of binding of the SWI/SNF core subunit BRG1, which in turn affected the stability of the SWI/SNF complex and led to altered histone modifications in the CDKN1A promoter region, thereby affecting the biological activity of glioma cells, as inferred from modeling and protein interaction analysis. CONCLUSION The ARID1A gene is a critical predictive biomarker for glioma. Mutations at the ARID1A locus alter the stability of the SWI/SNF complex, leading to changes in transcriptional regulation in glioma cells. This contributes to an increased malignant phenotype of GBM and plays a pivotal role in mediating chemoresistance.
Collapse
Affiliation(s)
- Menglin Xiao
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Xiaoteng Cui
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Can Xu
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Lei Xin
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| | - Jixing Zhao
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Shixue Yang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Biao Hong
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Yanli Tan
- Department of PathologyAffiliated Hospital of Hebei UniversityBaodingChina
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Zhang
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Xiang Li
- Department of PathologyHebei University School of Basic Medical SciencesBaodingChina
| | - Jie Li
- Department of ProteomicsTianjin Enterprise Key Laboratory of Clinical Multi‐omicsTianjinChina
| | - Chunsheng Kang
- Laboratory of Neuro‐oncologyTianjin Neurological Institute, Tianjin Medical University General HospitalTianjinChina
| | - Chuan Fang
- Department of NeurosurgeryAffiliated Hospital of Hebei UniversityBaodingChina
- Hebei Key Laboratory of Precise Diagnosis and Treatment of GliomaBaodingChina
| |
Collapse
|
36
|
Han PZ, Ye WD, Yu PC, Tan LC, Shi X, Chen XF, He C, Hu JQ, Wei WJ, Lu ZW, Qu N, Wang Y, Ji QH, Ji DM, Wang YL. A distinct tumor microenvironment makes anaplastic thyroid cancer more lethal but immunotherapy sensitive than papillary thyroid cancer. JCI Insight 2024; 9:e173712. [PMID: 38478516 PMCID: PMC11141884 DOI: 10.1172/jci.insight.173712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/06/2024] [Indexed: 04/23/2024] Open
Abstract
Both anaplastic thyroid cancer (ATC) and papillary thyroid cancer (PTC) originate from thyroid follicular epithelial cells, but ATC has a significantly worse prognosis and shows resistance to conventional therapies. However, clinical trials found that immunotherapy works better in ATC than late-stage PTC. Here, we used single-cell RNA sequencing (scRNA-Seq) to generate a single-cell atlas of thyroid cancer. Differences in ATC and PTC tumor microenvironment components (including malignant cells, stromal cells, and immune cells) leading to the polarized prognoses were identified. Intriguingly, we found that CXCL13+ T lymphocytes were enriched in ATC samples and might promote the development of early tertiary lymphoid structure (TLS). Last, murine experiments and scRNA-Seq analysis of a treated patient's tumor demonstrated that famitinib plus anti-PD-1 antibody could advance TLS in thyroid cancer. We displayed the cellular landscape of ATC and PTC, finding that CXCL13+ T cells and early TLS might make ATC more sensitive to immunotherapy.
Collapse
Affiliation(s)
- Pei-Zhen Han
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei-Dong Ye
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng-Cheng Yu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Li-Cheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xu-Feng Chen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong He
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jia-Qian Hu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Qu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dong-Mei Ji
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yu-Long Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
38
|
Hao X, Ren C, Zhou H, Li M, Zhang H, Liu X. Association between circulating immune cells and the risk of prostate cancer: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1358416. [PMID: 38405157 PMCID: PMC10884280 DOI: 10.3389/fendo.2024.1358416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/27/2024] Open
Abstract
Background There is still limited research on the association between immune cells and the risk of prostate cancer. Further investigations are warranted to comprehend the intricate associations at play. Methods We used a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the causal relationship between immune cell phenotypes and prostate cancer. The summary data for immune cell phenotypes was derived from a study cohort, including 3,757 individuals from Sardinia with data on 731 immune cell phenotypes. The summary data for prostate cancer were obtained from the UK Biobank database. Sensitivity analyses were conducted, and the combination of MR-Egger and MR-Presso was used to assess horizontal pleiotropy. Cochran's Q test was employed to evaluate heterogeneity, and the results were subjected to FDR correction. Results Our study identified two immune cell phenotypes significantly associated with the risk of prostate cancer, namely CD25 on naive-mature B cells (OR = 0.998, 95% CI, 0.997-0.999, P = 2.33E-05, FDR = 0.017) and HLA DR on CD14- CD16- cells (OR = 1.001, 95% CI, 1.000-1.002, P = 8.01E-05, FDR = 0.03). When adjusting FDR to 0.2, we additionally found six immune cell phenotypes influencing the incidence of prostate cancer. These include FSC-A on B cells (OR = 1.002, 95% CI, 1.001-1.002, P = 7.77E-04, FDR = 0.133), HLA DR on plasmacytoid dendritic cells (OR = 1.001, 95% CI, 1.000-1.001, P = 0.001, FDR = 0.133), CD14+ CD16- monocyte % monocytes (OR = 1.002, 95% CI, 1.001-1.003, P = 0.001, FDR = 0.133), and HVEM on effector memory CD4+ T cells (OR = 1.001, 95% CI, 1.000-1.002, P = 0.002, FDR = 0.169), which are positively correlated with the risk of prostate cancer. Conversely, CD25 on IgD+ B cells (OR = 0.998, 95% CI, 0.997-0.999, P = 0.002, FDR = 0.169) and Monocytic Myeloid-Derived Suppressor Cells AC (OR = 0.999, 95% CI, 0.999-1.000, P = 0.002, FDR = 0.17) are negatively correlated with the risk of prostate cancer. Conclusion This study has revealed causal relationships between immune cell phenotypes and prostate cancer, supplying novel insights that might aid in identifying potential therapeutic targets of prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
39
|
Huang R, Wu D, Zhang K, Hu G, Liu Y, Jiang Y, Wang C, Zheng Y. ARID1A loss induces P4HB to activate fibroblasts to support lung cancer cell growth, invasion, and chemoresistance. Cancer Sci 2024; 115:439-451. [PMID: 38100120 PMCID: PMC10859615 DOI: 10.1111/cas.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 02/13/2024] Open
Abstract
Loss of AT-interacting domain-rich protein 1A (ARID1A) frequently occurs in human malignancies including lung cancer. The biological consequence of ARID1A mutation in lung cancer is not fully understood. This study was designed to determine the effect of ARID1A-depleted lung cancer cells on fibroblast activation. Conditioned media was collected from ARID1A-depleted lung cancer cells and employed to treat lung fibroblasts. The proliferation and migration of lung fibroblasts were investigated. The secretory genes were profiled in lung cancer cells upon ARID1A knockdown. Antibody-based neutralization was utilized to confirm their role in mediating the cross-talk between lung cancer cells and fibroblasts. NOD-SCID-IL2RgammaC-null (NSG) mice received tumor tissues from patients with ARID1A-mutated lung cancer to establish patient-derived xenograft (PDX) models. Notably, ARID1A-depleted lung cancer cells promoted the proliferation and migration of lung fibroblasts. Mechanistically, ARID1A depletion augmented the expression and secretion of prolyl 4-hydroxylase beta (P4HB) in lung cancer cells, which induced the activation of lung fibroblasts through the β-catenin signaling pathway. P4HB-activated lung fibroblasts promoted the proliferation, invasion, and chemoresistance in lung cancer cells. Neutralizing P4HB hampered the tumor growth and increased cisplatin cytotoxic efficacy in two PDX models. Serum P4HB levels were higher in ARID1A-mutated lung cancer patients than in healthy controls. Moreover, increased serum levels of P4HB were significantly associated with lung cancer metastasis. Together, our work indicates a pivotal role for P4HB in orchestrating the cross-talk between ARID1A-mutated cancer cells and cancer-associated fibroblasts during lung cancer progression. P4HB may represent a promising target for improving lung cancer treatment.
Collapse
Affiliation(s)
- Risheng Huang
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Danni Wu
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Kangliang Zhang
- Department of Central LabThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Guanqiong Hu
- Department of NursingThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yu Liu
- Department of Thoracic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yi Jiang
- Department of PathologyThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Chichao Wang
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| | - Yuanliang Zheng
- Department of Thoracic SurgeryThe Dingli Clinical College of Wenzhou Medical University, Wenzhou Central HospitalWenzhouChina
| |
Collapse
|
40
|
Zheng Y, Zhang L, Zhang K, Wu S, Wang C, Huang R, Liao H. PLAU promotes growth and attenuates cisplatin chemosensitivity in ARID1A-depleted non-small cell lung cancer through interaction with TM4SF1. Biol Direct 2024; 19:7. [PMID: 38229120 PMCID: PMC10792809 DOI: 10.1186/s13062-024-00452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Loss of ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, contributes to malignant progression in multiple cancers including non-small cell lung cancer (NSCLC). In the search for key genes mediating the aggressive phenotype caused by ARID1A loss, we analyzed 3 Gene Expression Omnibus (GEO) datasets that contain RNA sequencing data from ARID1A-depleted cancer cells. PLAU was identified as a common gene that was induced in different cancer cells upon ARID1A depletion. Overexpression of PLAU positively modulated NSCLC cell growth, colony formation, cisplatin resistance, and survival under serum deprivation. Moreover, enforced expression of PLAU enhanced tumorigenesis of NSCLC cells in nude mice. Mechanistically, PLAU interacted with TM4SF1 to promote the activation of Akt signaling. TM4SF1-overexpressing NSCLC cells resembled those with PLAU overepxression. Knockdown of TM4SF1 inhibited the growth and survival and increased cisplatin sensitivity in NSCLC cells. The interaction between PLAU and TM4SF1 led to the activation of Akt signaling that endowed ARID1A-depleted NSCLC cells with aggressive properties. In addition, treatment with anti-TM4SF1 neutralizing antibody reduced the growth, cisplatin resistance, and tumorigenesis of ARID1A-depleted NSCLC cells. Taken together, PLAU serves as a target gene of ARID1A and promotes NSCLC growth, survival, and cisplatin resistance by stabilizing TM4SF1. Targeting TM4SF1 may be a promising therapeutic strategy for ARID1A-mutated NSCLC.
Collapse
Affiliation(s)
- Yuanliang Zheng
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Lixiang Zhang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Kangliang Zhang
- Department of Central Lab, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Shenghao Wu
- Department of Hematology and Chemotherapy, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Chichao Wang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China
| | - Risheng Huang
- Department of Thoracic Surgery, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| | - Hongli Liao
- Department of Pathology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou Central Hospital, The Second Affiliated Hospital of Shanghai University, Wenzhou, China.
| |
Collapse
|
41
|
Kang D, Hwang HJ, Baek Y, Sung JY, Kim K, Park HJ, Ko YG, Kim YN, Lee JS. TRIM22 induces cellular senescence by targeting PHLPP2 in hepatocellular carcinoma. Cell Death Dis 2024; 15:26. [PMID: 38199981 PMCID: PMC10781680 DOI: 10.1038/s41419-024-06427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
The ubiquitin-proteasome system is a vital protein degradation system that is involved in various cellular processes, such as cell cycle progression, apoptosis, and differentiation. Dysregulation of this system has been implicated in numerous diseases, including cancer, vascular disease, and neurodegenerative disorders. Induction of cellular senescence in hepatocellular carcinoma (HCC) is a potential anticancer strategy, but the precise role of the ubiquitin-proteasome system in cellular senescence remains unclear. In this study, we show that the E3 ubiquitin ligase, TRIM22, plays a critical role in the cellular senescence of HCC cells. TRIM22 expression is transcriptionally upregulated by p53 in HCC cells experiencing ionizing radiation (IR)-induced senescence. Overexpression of TRIM22 triggers cellular senescence by targeting the AKT phosphatase, PHLPP2. Mechanistically, the SPRY domain of TRIM22 directly associates with the C-terminal domain of PHLPP2, which contains phosphorylation sites that are subject to IKKβ-mediated phosphorylation. The TRIM22-mediated PHLPP2 degradation leads to activation of AKT-p53-p21 signaling, ultimately resulting in cellular senescence. In both human HCC databases and patient specimens, the levels of TRIM22 and PHLPP2 show inverse correlations at the mRNA and protein levels. Collectively, our findings reveal that TRIM22 regulates cancer cell senescence by modulating the proteasomal degradation of PHLPP2 in HCC cells, suggesting that TRIM22 could potentially serve as a therapeutic target for treating cancer.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Hyun Jung Hwang
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Jee Young Sung
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - KyeongJin Kim
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
| | - Heon Joo Park
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea
- Department of Microbiology, College of Medicine, Inha University, Incheon, 22212, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Yong-Nyun Kim
- Metastasis Branch, Division of Cancer Biology, National Cancer Center, Goyang, 10408, Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, 22212, Korea.
- Program in Biomedical Science & Engineering, Inha University, Incheon, 22212, Korea.
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon, 22212, Korea.
| |
Collapse
|
42
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
43
|
Li Y, Liu Y, Yang K, Jin L, Yang J, Huang S, Liu Y, Hu B, Liu R, Liu W, Liu A, Zheng Q, Zhang Y. Impact of ARID1A and TP53 mutations in pediatric refractory or relapsed mature B-Cell lymphoma treated with CAR-T cell therapy. Cancer Cell Int 2023; 23:281. [PMID: 37981695 PMCID: PMC10657579 DOI: 10.1186/s12935-023-03122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has been used to treat pediatric refractory or relapsed mature B-cell non-Hodgkin lymphoma (r/r MB-NHL) with significantly improved outcomes, but a proportion of patients display no response or experience relapse after treatment. To investigate whether tumor-intrinsic somatic genetic alterations have an impact on CAR-T cell treatment, the genetic features and treatment outcomes of 89 children with MB-NHL were analyzed. METHODS 89 pediatric patients treated at multiple clinical centers of the China Net Childhood Lymphoma (CNCL) were included in this study. Targeted next-generation sequencing for a panel of lymphoma-related genes was performed on tumor samples. Survival rates and relapse by genetic features and clinical factors were analyzed. Survival curves were calculated using a log-rank (Mantel-Cox) test. The Wilcox sum-rank test and Fisher's exact test were applied to test for group differences. RESULTS A total of 89 driver genes with somatic mutations were identified. The most frequently mutated genes were TP53 (66%), ID3 (55%), and ARID1A (31%). The incidence of ARID1A mutation and co-mutation of TP53 and ARID1A was high in patients with r/r MB-NHL (P = 0.006; P = 0.018, respectively). CAR-T cell treatment significantly improved survival in r/r MB-NHL patients (P = 0.00081), but patients with ARID1A or ARID1A and TP53 co-mutation had poor survival compared to those without such mutations. CONCLUSION These results indicate that children with MB-NHL harboring ARID1A or TP53 and ARID1A co-mutation are insensitive to initial conventional chemotherapy and subsequent CAR-T cell treatment. Examination of ARID1A and TP53 mutation status at baseline might have prognostic value, and risk-adapted or more effective therapies should be considered for patients with these high-risk genetic alterations.
Collapse
Affiliation(s)
- Yang Li
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yang Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Keyan Yang
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Ling Jin
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Shuang Huang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ying Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Bo Hu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Rong Liu
- Department of Hematology/Oncology, Capital institute of pediatric, Beijing, China
| | - Wei Liu
- Department of Hematology/Oncology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ansheng Liu
- Department of Hematology/Oncology, Xian Children's Hospital, Xi'An, China
| | - Qinlong Zheng
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Yonghong Zhang
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China.
| |
Collapse
|
44
|
Cheng B, Li L, Wu Y, Luo T, Tang C, Wang Q, Zhou Q, Wu J, Lai Y, Zhu D, Du T, Huang H. The key cellular senescence related molecule RRM2 regulates prostate cancer progression and resistance to docetaxel treatment. Cell Biosci 2023; 13:211. [PMID: 37968699 PMCID: PMC10648385 DOI: 10.1186/s13578-023-01157-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/28/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Prostate cancer is a leading cause of cancer-related deaths among men worldwide. Docetaxel chemotherapy has proven effective in improving overall survival in patients with castration-resistant prostate cancer (CRPC), but drug resistance remains a considerable clinical challenge. METHODS We explored the role of Ribonucleotide reductase subunit M2 (RRM2), a gene associated with senescence, in the sensitivity of prostate cancer to docetaxel. We evaluated the RRM2 expression, docetaxel resistance, and ANXA1 expression in prostate cancer cell lines and tumour xenografts models. In addition, We assessed the impact of RRM2 knockdown, ANXA1 over-expression, and PI3K/AKT pathway inhibition on the sensitivity of prostate cancer cells to docetaxel. Furthermore, we assessed the sensitivity of prostate cancer cells to the combination treatment of COH29 and docetaxel. RESULTS Our results demonstrated a positive association between RRM2 expression and docetaxel resistance in prostate cancer cell lines and tumor xenograft models. Knockdown of RRM2 increased the sensitivity of prostate cancer cells to docetaxel, suggesting its role in mediating resistance. Furthermore, we observed that RRM2 stabilizes the expression of ANXA1, which in turn activates the PI3K/AKT pathway and contributes to docetaxel resistance. Importantly, we found that the combination treatment of COH29 and docetaxel resulted in a synergistic effect, further augmenting the sensitivity of prostate cancer cells to docetaxel. CONCLUSION Our findings suggest that RRM2 regulates docetaxel resistance in prostate cancer by stabilizing ANXA1-mediated activation of the PI3K/AKT pathway. Targeting RRM2 or ANXA1 may offer a promising therapeutic strategy to overcome docetaxel resistance in prostate cancer.
Collapse
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lingfeng Li
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yongxin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tianlong Luo
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Tang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiong Wang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 511430, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jilin Wu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yiming Lai
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dingjun Zhu
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Tao Du
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Hai Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
45
|
Elizondo-Benedetto S, Sastriques-Dunlop S, Detering L, Arif B, Heo GS, Sultan D, Luehmann H, Zhang X, Gao X, Harrison K, Thies D, McDonald L, Combadière C, Lin CY, Kang Y, Zheng J, Ippolito J, Laforest R, Gropler RJ, English SJ, Zayed MA, Liu Y. Chemokine Receptor 2 Is A Theranostic Biomarker for Abdominal Aortic Aneurysms. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.06.23298031. [PMID: 37986880 PMCID: PMC10659515 DOI: 10.1101/2023.11.06.23298031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a degenerative vascular disease impacting aging populations with a high mortality upon rupture. There are no effective medical therapies to prevent AAA expansion and rupture. We previously demonstrated the role of the monocyte chemoattractant protein-1 (MCP-1) / C-C chemokine receptor type 2 (CCR2) axis in rodent AAA pathogenesis via positron emission tomography/computed tomography (PET/CT) using CCR2 targeted radiotracer 64 Cu-DOTA-ECL1i. We have since translated this radiotracer into patients with AAA. CCR2 PET showed intense radiotracer uptake along the AAA wall in patients while little signal was observed in healthy volunteers. AAA tissues collected from individuals scanned with 64 Cu-DOTA-ECL1i and underwent open-repair later demonstrated more abundant CCR2+ cells compared to non-diseased aortas. We then used a CCR2 inhibitor (CCR2i) as targeted therapy in our established male and female rat AAA rupture models. We observed that CCR2i completely prevented AAA rupture in male rats and significantly decreased rupture rate in female AAA rats. PET/CT revealed substantial reduction of 64 Cu-DOTA-ECL1i uptake following CCR2i treatment in both rat models. Characterization of AAA tissues demonstrated decreased expression of CCR2+ cells and improved histopathological features. Taken together, our results indicate the potential of CCR2 as a theranostic biomarker for AAA management.
Collapse
|
46
|
GAO L, XIE Z, LIN S, LV Z, ZHOU W, CHEN J, ZHU L, ZHANG L, ZENG P, HUANG X, YAN W, CHEN Y, LU D, ZHANG S, GUO W, LI P, ZHANG X. [SWI/SNF Complex Gene Mutations Promote the Liver Metastasis
of Non-small Cell Lung Cancer Cells in NSI Mice]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:753-764. [PMID: 37989338 PMCID: PMC10663775 DOI: 10.3779/j.issn.1009-3419.2023.102.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The switch/sucrose nonfermentable chromatin-remodeling (SWI/SNF) complex is a pivotal chromatin remodeling complex, and the genomic alterations (GAs) of the SWI/SNF complex are observed in several cancer types, correlating with multiple biological features of tumor cells. However, their role in liver metastasis of non-small cell lung cancer (NSCLC) remains unclear. Our study aims to investigate the role and potential mechanisms underlying NSCLC liver metastasis induced by the GAs of SWI/SNF complex. METHODS The GAs of SWI/SNF complex in NSCLC cell lines (H1299, H23 and H460) were identified by whole-exome sequencing (WES). ARID1A knockout H1299 cell was constructed with the CRISPR/Cas9 technology. The mouse model of liver metastasis from NSCLC was established to simulate lung cancer liver metastasis and observe the metastasis rate under different gene mutation conditions. RNA sequencing and Western blot were conducted for differential gene expression analysis. Immunohistochemistry (IHC) analysis was used to assess protein expression levels of SWI/SNF-regulated target molecules in mouse liver metastases. RESULTS WES analysis revealed intracellular gene mutations. The animal experiments demonstrated a correlation between the GAs of SWI/SNF complex and a higher liver metastasis rate in immunodeficient mice. Transcriptome sequencing and Western blot analysis showed upregulated expression of ALDH1A1 and APOBEC3B in SWI/SNF-mut cells, particularly in ARID1A-deficient H460 and H1299 sgARID1A cells. IHC staining of mouse liver metastases further demonstrated elevated expression of ALDH1A1 in the H460 and H1299 sgARID1A group. CONCLUSIONS This study underscores the critical role of the GAs of SWI/SNF complex, such as ARID1A and SMARCA4, in promoting liver metastasis of lung cancer cells. The GAs of SWI/SNF complex may promote liver-specific metastasis by upregulating ALDH1A1 and APOBEC3B expression, providing novel insights into the molecular mechanisms underlying lung cancer liver metastasis.
Collapse
|
47
|
Liao L, Xu H, Zhao Y, Zheng X. Metabolic interventions combined with CTLA-4 and PD-1/PD-L1 blockade for the treatment of tumors: mechanisms and strategies. Front Med 2023; 17:805-822. [PMID: 37897562 DOI: 10.1007/s11684-023-1025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/16/2023] [Indexed: 10/30/2023]
Abstract
Immunotherapies based on immune checkpoint blockade (ICB) have significantly improved patient outcomes and offered new approaches to cancer therapy over the past decade. To date, immune checkpoint inhibitors (ICIs) of CTLA-4 and PD-1/PD-L1 represent the main class of immunotherapy. Blockade of CTLA-4 and PD-1/PD-L1 has shown remarkable efficacy in several specific types of cancers, however, a large subset of refractory patients presents poor responsiveness to ICB therapy; and the underlying mechanism remains elusive. Recently, numerous studies have revealed that metabolic reprogramming of tumor cells restrains immune responses by remodeling the tumor microenvironment (TME) with various products of metabolism, and combination therapies involving metabolic inhibitors and ICIs provide new approaches to cancer therapy. Nevertheless, a systematic summary is lacking regarding the manner by which different targetable metabolic pathways regulate immune checkpoints to overcome ICI resistance. Here, we demonstrate the generalized mechanism of targeting cancer metabolism at three crucial immune checkpoints (CTLA-4, PD-1, and PD-L1) to influence ICB therapy and propose potential combined immunotherapeutic strategies co-targeting tumor metabolic pathways and immune checkpoints.
Collapse
Affiliation(s)
- Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yuhan Zhao
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
48
|
Chen X, Li B, Wang Y, Jin J, Yang Y, Huang L, Yang M, Zhang J, Wang B, Shao Z, Ni T, Huang S, Hu X, Tao Z. Low level of ARID1A contributes to adaptive immune resistance and sensitizes triple-negative breast cancer to immune checkpoint inhibitors. Cancer Commun (Lond) 2023; 43:1003-1026. [PMID: 37434394 PMCID: PMC10508140 DOI: 10.1002/cac2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) shed new light on triple-negative breast cancer (TNBC), but only a minority of patients demonstrate response. Therefore, adaptive immune resistance (AIR) needs to be further defined to guide the development of ICI regimens. METHODS Databases, including The Cancer Genome Atlas, Gene Ontology Resource, University of California Santa Cruz Genome Browser, and Pubmed, were used to screen epigenetic modulators, regulators for CD8+ T cells, and transcriptional regulators of programmed cell death-ligand 1 (PD-L1). Human peripheral blood mononuclear cell (Hu-PBMC) reconstruction mice were adopted for xenograft transplantation. Tumor specimens from a TNBC cohort and the clinical trial CTR20191353 were retrospectively analyzed. RNA-sequencing, Western blotting, qPCR and immunohistochemistry were used to assess gene expression. Coculture assays were performed to evaluate the regulation of TNBC cells on T cells. Chromatin immunoprecipitation and transposase-accessible chromatin sequencing were used to determine chromatin-binding and accessibility. RESULTS The epigenetic modulator AT-rich interaction domain 1A (ARID1A) gene demonstrated the highest expression association with AIR relative to other epigenetic modulators in TNBC patients. Low ARID1A expression in TNBC, causing an immunosuppressive microenvironment, promoted AIR and inhibited CD8+ T cell infiltration and activity through upregulating PD-L1. However, ARID1A did not directly regulate PD-L1 expression. We found that ARID1A directly bound the promoter of nucleophosmin 1 (NPM1) and that low ARID1A expression increased NPM1 chromatin accessibility as well as gene expression, further activating PD-L1 transcription. In Hu-PBMC mice, atezolizumab demonstrated the potential to reverse ARID1A deficiency-induced AIR in TNBC by reducing tumor malignancy and activating anti-tumor immunity. In CTR20191353, ARID1A-low patients derived more benefit from pucotenlimab compared to ARID1A-high patients. CONCLUSIONS In AIR epigenetics, low ARID1A expression in TNBC contributed to AIR via the ARID1A/NPM1/PD-L1 axis, leading to poor outcome but sensitivity to ICI treatment.
Collapse
Affiliation(s)
- Xin‐Yu Chen
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Bin Li
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Ye Wang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Juan Jin
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Yu Yang
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center of Genetics and DevelopmentHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghaiP. R. China
| | - Lei‐Huan Huang
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center of Genetics and DevelopmentHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghaiP. R. China
| | - Meng‐Di Yang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Jian Zhang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Bi‐Yun Wang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhi‐Ming Shao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of Breast SurgeryFudan University Shanghai Cancer CenterShanghaiP. R. China
- Precision Cancer Medicine CenterFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Ting Ni
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center of Genetics and DevelopmentHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghaiP. R. China
| | - Sheng‐Lin Huang
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Xi‐Chun Hu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhong‐Hua Tao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| |
Collapse
|
49
|
Cheng B, Huang H. Expanding horizons in overcoming therapeutic resistance in castration-resistant prostate cancer: targeting the androgen receptor-regulated tumor immune microenvironment. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0256. [PMID: 37646236 PMCID: PMC10476470 DOI: 10.20892/j.issn.2095-3941.2023.0256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Affiliation(s)
- Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| |
Collapse
|
50
|
Li D, Xu W, Chang Y, Xiao Y, He Y, Ren S. Advances in landscape and related therapeutic targets of the prostate tumor microenvironment. Acta Biochim Biophys Sin (Shanghai) 2023. [PMID: 37294106 DOI: 10.3724/abbs.2023092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
The distinct tumor microenvironment (TME) of prostate cancer (PCa), which promotes tumor proliferation and progression, consists of various stromal cells, immune cells, and a dense extracellular matrix (ECM). The understanding of the prostate TME extends to tertiary lymphoid structures (TLSs) and metastasis niches to provide a more concise comprehension of tumor metastasis. These constituents collectively structure the hallmarks of the pro-tumor TME, including immunosuppressive, acidic, and hypoxic niches, neuronal innervation, and metabolic rewiring. In combination with the knowledge of the tumor microenvironment and the advancement of emerging therapeutic technologies, several therapeutic strategies have been developed, and some of them have been tested in clinical trials. This review elaborates on PCa TME components, summarizes various TME-targeted therapies, and provides insights into PCa carcinogenesis, progression, and therapeutic strategies.
Collapse
Affiliation(s)
- Duocai Li
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Weidong Xu
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Yifan Chang
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yutian Xiao
- Department of Urology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|