1
|
Ahmad GV, Nouri S, Mohammad Gholian A, Abdollahi E, Ghorbaninezhad F, Tahmasebi S, Eterafi M, Askari MR, Safarzadeh E. Breaking barriers: CAR-NK cell therapy breakthroughs in female-related cancers. Biomed Pharmacother 2025; 187:118071. [PMID: 40253831 DOI: 10.1016/j.biopha.2025.118071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Cancer stands as a leading cause of mortality globally. The main female-related malignancies are breast cancer, with 2.3 million new cases annually, and ovarian cancer, with 300,000 new cases per year worldwide. The current treatments like surgery, chemotherapy, and radiation therapy have presumably had deficiencies in sustaining long-term anti-tumor responses. Cellular immunotherapy, also referred to as adoptive cell therapy, has shown encouraging advances by employing genetically modified immune cells in fighting cancer by engineering chimeric antigen receptors (CARs) mainly on T cells and natural killer (NK) cells. Studies in NK cell therapies involve unmodified NK cells and CAR-NK cell therapies, targeting cancer cells while limiting the destruction of normal cells. CAR-NK cells represent the next generation of therapeutic immune cells that have been shown to eliminate malignancies through CAR-dependent and CAR-independent mechanisms. They also represent possible candidates for "off-the-shelf" therapies due to their advantages, including the ability to target cancer cells independently of the major histocompatibility complex, reduced risk of alloreactivity, and fewer severe toxicities compared to CAR-T cells. To date, there have been no comprehensive review studies examining the therapeutic potential of CAR-NK cell therapy specifically for female-related malignancies, such as breast and ovarian cancers. This review offers a thorough exploration of CAR-NK cell therapy in relation to these cancers and their responses to treatment.
Collapse
Affiliation(s)
- Ghorbani Vanan Ahmad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Samaneh Nouri
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Eileen Abdollahi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farid Ghorbaninezhad
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Safa Tahmasebi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Askari
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
Zhang JA, Imboden S, Lee D, Zampieri A, Shafaattalab S, Liang J, Bruno R, Torres J, Partin A, Daris ME, Riley TP, Kamb A. Onboard, tethered IL-12 boosts potency of the Tmod NOT gate and preserves selectivity. J Immunother Cancer 2025; 13:e010976. [PMID: 40404208 PMCID: PMC12096974 DOI: 10.1136/jitc-2024-010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 05/03/2025] [Indexed: 05/24/2025] Open
Abstract
BACKGROUND To reach their full potential in cancer therapy, immune cells engineered with synthetic constructs must achieve the challenging dual objectives of potency and selectivity to overcome the key obstacle: non-specific cytotoxicity. These problems are especially challenging for solid tumor therapy, where antigen tissue specificity, accessibility, and tumor microenvironment are problematic. Cells engineered with receptors that act as synthetic logic gates promise to address the issue of tumor specificity by targeting antigen profiles rather than single antigens. Nevertheless, there are limits to the potency benefit that can be achieved at the level of the antigen-targeting receptors. One approach to enhance potency beyond the acute sensitivity of receptor activation is to co-opt a major source of ancillary stimulation in the normal immune response, cytokine receptors. METHODS Enhancing CAR-T efficacy with engineered onboard cytokines, often referred to as "armoring", is one such approach to boost potency. However, such constructs run the risk of overriding tumor selectivity and eroding the therapeutic window. Here we design and test onboard cytokine constructs that enhance potency and preserve selectivity of a synthetic NOT logic gate construct called Tmod, potentially addressing some of the major challenges in oncology in a single synthetic design. RESULTS We focused especially on a module encoding membrane-tethered interleukin (IL)-12, a construct that significantly enhances Tmod antigen-dependent long-term proliferation and potency both in vitro and in vivo, without compromising the NOT gate selectivity. Notably, three substantially different in vivo models, including one that employs mouse surrogate antigens, were used to assess preclinical dose-dependent efficacy and safety. Together, these studies make a strong case for the robustness of the design. CONCLUSIONS We conclude that the mem-IL-12 module can be combined with multiple Tmod constructs to boost efficacy and persistence while preserving the on-tumor selectivity.
Collapse
Affiliation(s)
| | - Sara Imboden
- A2 Biotherapeutics Inc, Agoura Hills, California, USA
| | - Dongwoo Lee
- Medical Informatics, UCLA, Los Angeles, California, USA
| | | | | | - Jushen Liang
- A2 Biotherapeutics Inc, Agoura Hills, California, USA
| | - Richele Bruno
- A2 Biotherapeutics Inc, Agoura Hills, California, USA
| | - Jon Torres
- A2 Biotherapeutics Inc, Agoura Hills, California, USA
| | | | - Mark E Daris
- A2 Biotherapeutics Inc, Agoura Hills, California, USA
| | | | | |
Collapse
|
3
|
Zhang J, Jia Z, Pan H, Ma W, Liu Y, Tian X, Han Y, Wang Q, Zhou C, Zhang J. From induced pluripotent stem cell (iPSC) to universal immune cells: literature review of advances in a new generation of tumor therapies. Transl Cancer Res 2025; 14:2495-2507. [PMID: 40386273 PMCID: PMC12079212 DOI: 10.21037/tcr-24-1087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/19/2025] [Indexed: 05/15/2025]
Abstract
Background and Objective Tumor therapy is still a tough clinical challenge, and cancer immunotherapy has drawn increasing attention. T cells and natural killer (NK) cells play crucial roles in the immune response. Induced pluripotent stem cell (iPSC) technology opens up a new way to produce functionally improved universal iPSC-derived chimeric antigen receptor (CAR) T (CAR-iT) and iPSC-derived CAR-NK (CAR-iNK) cells. This study aims to comprehensively review the generation and clinical applications of iPSC-derived universal CAR-iT and CAR-iNK cells to explore their potential and future directions in cancer immunotherapy. Methods We searched EBSCO, PubMed, and Web of Science databases for relevant literature from 1975 to 2024 on the transformation of iPSCs into universal immune cells. Key Content and Findings iPSC technology enables the generation of enhanced CAR-iNK cells. Genetic modifications can boost the antitumor activity of iPSC-derived immune cells. CAR-iT cells have cytotoxicity issues. In contrast, CAR-iNK cells have advantages as they can be sourced from different origins and enhanced via genetic engineering. Conclusions This review outlines iPSC technology's application in oncology, iNK cells' properties, and the pros and cons of CAR cells in cancer treatment. It also focuses on the current clinical status and modification strategies of CAR-iT and CAR-iNK therapies, facilitating the development of future effective off-the-shelf blood cell therapies.
Collapse
Affiliation(s)
- Jing Zhang
- College of Pharmacy, Qilu Medical University, Zibo, China
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Zixuan Jia
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Huixin Pan
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Wen Ma
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Youhan Liu
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Xuewen Tian
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Yang Han
- College of Pharmacy, Qilu Medical University, Zibo, China
| | - Qinglu Wang
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Caixia Zhou
- Graduate School of Education, Shandong Sport University, Jinan, China
| | - Jing Zhang
- College of Pharmacy, Qilu Medical University, Zibo, China
| |
Collapse
|
4
|
Lee MJ, Cichocki F, Miller JS. Chimeric antigen receptor therapies: Development, design, and implementation. J Allergy Clin Immunol 2025:S0091-6749(25)00386-0. [PMID: 40220909 DOI: 10.1016/j.jaci.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/06/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Chimeric antigen receptor (CAR) T and natural killer (NK) cell therapies represent a promising strategy for the treatment of cancers and other chronic diseases. Engineered CAR constructs endow immune cells with the ability to target desired antigens with high specificity, allowing for directed responses to antigen-expressing cells. CAR T and NK cells have shown marked success in the treatment of hematologic malignancies, although there remains a large population of patients with disease that fails to respond to CAR therapies, and their efficacy in solid tumors is still limited. In this review, we provide a broad overview of the development, design, and implementation of CAR therapies from bench to bedside. We discuss the building blocks of CAR constructs and how these can be manipulated to optimize CAR functionality, review the possible sources of T and NK cells for CAR therapies, and examine the limitations of both CAR T and CAR NK cells. Finally, we discuss recent breakthroughs in the CAR field and consider how these advances may affect the success of CAR therapies in the years to come.
Collapse
Affiliation(s)
- Madeline J Lee
- Department of Medicine, University of Minnesota, Minneapolis, Minn
| | - Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, Minn
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
5
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
6
|
Jørgensen LV, Christensen EB, Barnkob MB, Barington T. The clinical landscape of CAR NK cells. Exp Hematol Oncol 2025; 14:46. [PMID: 40149002 PMCID: PMC11951618 DOI: 10.1186/s40164-025-00633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Chimeric antigen receptor (CAR) NK cell therapy has emerged as a promising alternative to CAR T cell therapy, offering significant advantages in terms of safety and versatility. Here we explore the current clinical landscape of CAR NK cells, and their application in hematologic malignancies and solid cancers, as well as their potential for treating autoimmune disorders. Our analysis draws from data collected from 120 clinical trials focused on CAR NK cells, and presents insights into the demographics and characteristics of these studies. We further outline the specific targets and diseases under investigation, along with the major cell sources, genetic modifications, combination strategies, preconditioning- and dosing regimens, and manufacturing strategies being utilized. Initial results from 16 of these clinical trials demonstrate promising efficacy of CAR NK cells, particularly in B cell malignancies, where response rates are comparable to those seen with CAR T cells but with lower rates of severe adverse effects, such as cytokine release syndrome (CRS), immune effector cell-associated neurotoxicity syndrome (ICANS), and graft-versus-host disease (GvHD). However, challenges remain in solid tumor applications, where only modest efficacy has been observed to date. Our analysis reveals that research is increasingly focused on enhancing CAR NK cell persistence, broadening their therapeutic targets, and refining manufacturing processes to improve accessibility and scalability. With recent advancements in NK cell engineering and their increased clinical applications, CAR NK cells are predicted to become an integral component of next-generation immunotherapies, not only for cancer but potentially for immune-mediated diseases as well.
Collapse
Affiliation(s)
- Lasse Vedel Jørgensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Emil Birch Christensen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Mike Bogetofte Barnkob
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense, Denmark.
| |
Collapse
|
7
|
Bastin DJ, Kilgour MK, Shorr R, Sabri E, Delluc A, Ardolino M, McComb S, Lee SH, Allan D, Ramsay T, Visram A. Efficacy of chimeric antigen receptor engineered natural killer cells in the treatment of hematologic malignancies: a systematic review and meta-analysis of preclinical studies. Cytotherapy 2025; 27:350-364. [PMID: 39692673 DOI: 10.1016/j.jcyt.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR) engineered NK cells (CAR-NK) are a novel approach to the immunotherapy of hematologic malignancies which seeks to overcome some of the challenges faced by CAR-T cells (CAR-T). With few published clinical studies, preclinical studies can identify strategies to accelerate clinical translation. We conducted a systematic review on the preclinical in vivo use of CAR-NK for the treatment of hematologic malignancies to assess these therapies in a holistic and unbiased manner. METHODS Our protocol was registered with PROSPERO (ID: CRD42023438375). We performed a search of OVID MEDLINE, OVID Embase, and Embase for animal studies employing human CAR-NK cells in the treatment of hematologic malignancies. Screening of studies for eligibility criteria was performed in duplicate. Our primary outcomes were survival and reduction in tumor volume. Data extraction from individual experiments was performed by one reviewer using DigitizeitTM software and verified by a second reviewer. Meta-analysis and subgroup analyses were performed using Comprehensive Meta-AnalysisTM software. Information for descriptive outcomes was extracted in duplicate by two independent reviewers. Risk of bias was assessed using the SYRCLE Risk of Bias Tool for Animal Studies. RESULTS A total of 34 papers met eligibility criteria. Overall, CD19 was the most common antigen targeted however there was substantial diversity in antigenic targets, source material for generating CAR-NK cells, and NK cell modifications. Mice treated with CAR-NK therapy survived significantly longer than untreated mice (median survival ratio of 1.18, 95% CI: 1.10-1.27, P < 0.001), and mice treated with nonengineered NK cells (median survival ratio 1.13, 95% CI: 1.03-1.23, P < 0.001). Similarly, treatment with CAR-NK significantly reduced the tumor burden when compared to untreated mice (ratio of mean tumor volume 0.23, 95% CI: 0.17-0.32, P < 0.001) or mice treated with nonengineered NK cells (ratio of mean tumor volume 0.37, 95% CI: 0.28-0.51, P < 0.001). Subgroup analysis showed that cotreatment with IL-15 reduced tumor volume but did not increase survival. In general, CAR-NK cell persistence was short but was increased by IL-15. CONCLUSIONS CAR-NK shows promise for the treatment of hematologic malignancies in preclinical models.
Collapse
Affiliation(s)
- Donald J Bastin
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Marisa K Kilgour
- Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Risa Shorr
- Learning Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Elham Sabri
- Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Aurélien Delluc
- Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Michele Ardolino
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada; Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; CI3, University of Ottawa, Ottawa, Ontario, Canada
| | - Scott McComb
- Human Health Therapeutics Research Center, National Research Council, Ottawa, Ontario, Canada
| | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Allan
- Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Tim Ramsay
- Methods Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Alissa Visram
- Department of Medicine (Hematology), The Ottawa Hospital, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Lei Q, Deng H, Sun S. Pluripotent stem cell-based immunotherapy: advances in translational research, cell differentiation, and gene modifications. LIFE MEDICINE 2025; 4:lnaf002. [PMID: 40110110 PMCID: PMC11916900 DOI: 10.1093/lifemedi/lnaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/16/2025] [Indexed: 03/22/2025]
Abstract
Cell-based immunotherapy, recognized as living drugs, is revolutionizing clinical treatment to advanced cancer and shaping the landscape of biomedical research for complex diseases. The differentiation of human pluripotent stem cells (PSCs) emerges as a novel platform with the potential to generate an unlimited supply of therapeutic immune cells, especially when coupled with gene modification techniques. PSC-based immunotherapy is expected to meet the vast clinical demand for living drugs. Here, we examine recent preclinical and clinical advances in PSC-based immunotherapy, focusing on PSC gene modification strategies and differentiation methods for producing therapeutic immune cells. We also discuss opportunities in this field and challenges in cell quality and safety and stresses the need for further research and transparency to unlock the full potential of PSC immunotherapies.
Collapse
Affiliation(s)
- Qi Lei
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Hongkui Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Shicheng Sun
- Changping Laboratory, Beijing 102206, China
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
9
|
Lindenbergh PL, van der Stegen SJ. Adoptive Cell Therapy from the Dish: Potentiating Induced Pluripotent Stem Cells. Transfus Med Hemother 2025; 52:27-41. [PMID: 39944411 PMCID: PMC11813279 DOI: 10.1159/000540473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 02/16/2025] Open
Abstract
Background The clinical success of autologous adoptive cell therapy (ACT) is substantial but wide application is challenged by the quality and quantity of the patient's immune cells and the need for personalized manufacturing processes. Induced pluripotent stem cells (iPSCs) can be differentiated into immune effectors and thus provide an alternative, allogeneic cell source for ACT. Here, we compare iPSC-derived immune effectors to their PBMC-derived counterparts and review iPSC-derived ACT products currently under preclinical and clinical development. Summary iPSC-derived T cells, NK cells, macrophages, and neutrophils largely mimic their PBMC-derived counterparts in terms of cell-surface marker expression and cytotoxic effector functions. iPSC-derived immune effectors can be engineered with chimeric antigen receptors and other activating receptors to redirect their cytotoxic potential specifically to tumor-associated antigens (TAAs). However, several differences between iPSC- and PBMC-derived immune effectors remain and have inspired additional engineering strategies to enhance the antitumor capacity of iPSC-derived immune effectors. Key Messages iPSCs can be engineered to facilitate the generation of immune effectors with homogenous specificity for TAAs and enhanced effector functions. TAA-specific and functionally enhanced iPSC-derived T and NK cells are currently undergoing clinical evaluation in phase 1 trials. Engineered iPSC-derived macrophages and neutrophils are in preclinical development.
Collapse
Affiliation(s)
- Pieter L. Lindenbergh
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Ghobadi A, Bachanova V, Patel K, Park JH, Flinn I, Riedell PA, Bachier C, Diefenbach CS, Wong C, Bickers C, Wong L, Patel D, Goodridge J, Denholt M, Valamehr B, Elstrom RL, Strati P. Induced pluripotent stem-cell-derived CD19-directed chimeric antigen receptor natural killer cells in B-cell lymphoma: a phase 1, first-in-human trial. Lancet 2025; 405:127-136. [PMID: 39798981 PMCID: PMC11827677 DOI: 10.1016/s0140-6736(24)02462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND FT596 is an induced pluripotent stem-cell (iPSC)-derived chimeric antigen receptor (CAR) natural killer (NK) cell therapy with three antitumour modalities: a CD19 CAR; a high-affinity, non-cleavable CD16 Fc receptor; and interleukin-15-interleukin-15 receptor fusion. In this study, we aimed to determine the recommended phase 2 dose (RP2D) and evaluate the safety and tolerability of FT596 as monotherapy and in combination with rituximab. We also aimed to evaluate the antitumour activity and characterise the pharmacokinetics of FT596 as monotherapy and in combination with rituximab. METHODS In this phase 1, first-in-human trial, we evaluated FT596 in patients with relapsed or refractory B-cell lymphoma at nine sites in the USA. Patients who had received at least one previous systemic therapy and had no curative treatment options were eligible for inclusion. FT596 was administered after conditioning chemotherapy without rituximab (regimen A) or combined with rituximab (regimen B). The study consisted of a dose-escalation phase using a 3 + 3 design, with dose escalation commencing at 3 × 107 viable cells as a single dose on day 1 and done independently for individual regimens. A treatment cycle consisted of conditioning chemotherapy with cyclophosphamide (500 mg/m2) and fludarabine (30 mg/m2) intravenously on days -5 to -3, followed by FT596 administered at various doses and schedules, without (regimen A) or with (regimen B) a single dose of rituximab (375 mg/m2) intravenously on day -4. Supportive care was determined by the treating investigator. Patients were observed for dose-limiting adverse events for 28 days. Patients who tolerated therapy and derived clinical benefit could receive subsequent cycles of study treatment, with modification of conditioning chemotherapy dose if clinically indicated. The dose-expansion phase evaluated additional patients at selected doses and dosing schedules that had been found to be tolerable. The primary endpoints of the study were the incidence and nature of dose-limiting toxicities within each dose-escalation cohort to determine the maximum tolerated dose or maximum assessed dose to establish the RP2D and the incidence, nature, and severity of adverse events, with severity determined according to National Cancer Institute Common Toxicity Criteria and Adverse Events version 5·0. The trial was registered with ClinicalTrials.gov, NCT04245722. FINDINGS Between March 19, 2020, and Jan 12, 2023, 86 patients with B-cell lymphoma received FT596 on regimen A (n=18) or regimen B (n=68). 22 (26%) of 86 patients were female and 72 (84%) of 86 patients were White. Patients had received a median of four previous lines of therapy (range 1-11) and 33 (38%) of 86 patients had received previous CAR T-cell therapy. The maximum tolerated dose was not reached. Cytokine release syndrome was reported in one (6%) of 18 patients (maximum grade 1) on regimen A and nine (13%) of 68 patients on regimen B (six with maximum grade 1 and three with grade 2). Neurotoxicity was not observed. INTERPRETATION FT596 was well tolerated as monotherapy or with rituximab and induced deep and durable responses in patients with indolent and aggressive lymphomas and the RP2D was preliminarily identified to be 1·8 × 109 cells for three doses per cycle. This study supports that cell therapy using iPSC-derived, gene-modified NK cells is a potent platform for cancer treatment and suggests that such a platform might address limitations of currently available immune cell therapies, including manufacturing time, heterogeneity, access, and cost. FUNDING Fate Therapeutics.
Collapse
Affiliation(s)
- Armin Ghobadi
- Washington University School of Medicine, Saint Louis, MO, USA.
| | | | | | - Jae H Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Flinn
- Tennessee Oncology/OneOncology, Nashville, TN, USA
| | - Peter A Riedell
- David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, USA
| | - Carlos Bachier
- Sarah Cannon Center for Blood Cancer, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | - Paolo Strati
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Kirkeby A, Main H, Carpenter M. Pluripotent stem-cell-derived therapies in clinical trial: A 2025 update. Cell Stem Cell 2025; 32:10-37. [PMID: 39753110 DOI: 10.1016/j.stem.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/28/2025]
Abstract
Since the first derivation of human pluripotent stem cells (hPSCs) 27 years ago, technologies to control their differentiation and manufacturing have advanced immensely, enabling increasing numbers of clinical trials with hPSC-derived products. Here, we revew the landscape of interventional hPSC trials worldwide, highlighting available data on clinical safety and efficacy. As of December 2024, we identify 116 clinical trials with regulatory approval, testing 83 hPSC products. The majority of trials are targeting eye, central nervous system, and cancer. To date, more than 1,200 patients have been dosed with hPSC products, accumulating to >1011 clinically administered cells, so far showing no generalizable safety concerns.
Collapse
Affiliation(s)
- Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW) and Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, 221 84 Lund, Sweden.
| | - Heather Main
- HOYA Consulting (ReGenMed Solutions), Stockholm, Sweden
| | | |
Collapse
|
12
|
Karamivandishi A, Hatami A, Eslami MM, Soleimani M, Izadi N. Chimeric antigen receptor natural killer cell therapy: A systematic review of preclinical studies for hematologic and solid malignancies. Hum Immunol 2025; 86:111207. [PMID: 39667204 DOI: 10.1016/j.humimm.2024.111207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Advancements in the field of CAR-T therapy have brought about a revolution in the treatment of numerous types of cancer in the past ten years. However, despite the remarkable success achieved thus far, certain barriers impede the widespread implementation of this therapy such as intricate manufacturing processes and treatment-associated toxicities. As an alternative, chimeric antigen receptor-engineered natural killer cell (CAR-NK) therapy presents a viable opportunity for a simpler and more cost-effective "off-the-shelf" treatment option, which is likely to result in fewer adverse reactions. A total of 71 studies were included in this review. Eligible studies were searched and reviewed from the databases of PubMed, Web of Science and Scopus. Based on data extracted from articles, we concluded that CAR-NK cell efficiency can vary considerably depending on factors such as tumor model, dosage, CAR generation and expansion method. Furthermore, investigating consequences of utilizing various constructs and generations of CAR-NK cells on their anti-tumor activity examined in this review.
Collapse
Affiliation(s)
- Arezoo Karamivandishi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Hatami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Masoud Eslami
- Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Hematology and Cell Therapy Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Neda Izadi
- Research Center for Social Determinants of Health,Research institute for metabolic and obesity disorders, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Duléry R, Piccinelli S, Beg MS, Jang JE, Romee R. Haploidentical hematopoietic cell transplantation as a platform for natural killer cell immunotherapy. Am J Hematol 2024; 99:2340-2350. [PMID: 39248561 DOI: 10.1002/ajh.27471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
An innovative approach is crucially needed to manage relapse after allogeneic hematopoietic cell transplantation (HCT) in patients with advanced hematological malignancies. This review explores key aspects of haploidentical HCT with post-transplant cyclophosphamide, highlighting the potential and suitability of this platform for natural killer (NK) cell immunotherapy. NK cells, known for their unique abilities to eliminate cancer cells, can also exhibit memory-like features and enhanced cytotoxicity when activated by cytokines. By discussing promising results from clinical trials, the review delves into the recent major advances: donor-derived NK cells can be expanded ex vivo in large numbers, cytokine activation may enhance NK cell persistence and efficacy in vivo, and post-HCT NK cell infusion can improve outcomes in high-risk and/or relapsed myeloid malignancies without increasing the risk of graft-versus-host disease, severe cytokine release syndrome, or neurotoxicity. Looking ahead, cytokine-activated NK cells can be synergized with immunomodulatory agents and/or genetically engineered to enhance their tumor-targeting specificity, cytotoxicity, and persistence while preventing exhaustion. The ongoing exploration of these strategies holds promising preliminary results and could be rapidly translated into clinical applications for the benefit of the patients.
Collapse
Affiliation(s)
- Rémy Duléry
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Piccinelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ji Eun Jang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Rizwan Romee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Mirvis E, Benjamin R. Are we there yet? CAR-T therapy in multiple myeloma. Br J Haematol 2024; 205:2175-2189. [PMID: 39558776 PMCID: PMC11637742 DOI: 10.1111/bjh.19896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024]
Abstract
The last few years have seen a revolution in cellular immunotherapies for multiple myeloma (MM) with novel antigen targets. The principle new target is B-cell maturation antigen (BCMA). Autologous chimeric antigen receptor T-cell (CAR-T) therapy directed against BCMA was first approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) in 2021, although approval by the National Institute for Health and Care Excellent (NICE) is awaited. Initial response rates in patients with heavily pretreated MM have been impressive, but patients are still relapsing. Furthermore, CAR-T manufacturing is expensive and time-consuming, and T-cell fitness is impaired by prior MM treatment. Numerous strategies to improve outcomes and delivery of cellular immunotherapy are under investigation, including next-generation CARs, allogeneic 'off-the-shelf' CARs and targeting of other MM antigens including G protein-coupled receptor, class C, group 5, member D (GPRC5D), Fc receptor homologue 5 (FcRH5), cluster of differentiation (CD)19, signalling lymphocyte activation molecule family member 7 (SLAMF7) and several others. In this exciting and rapidly evolving treatment landscape, this review evaluates the most recent clinical and preclinical data pertaining to these new cellular immunotherapies and explores strategies to overcome resistance pathways. On the protracted journey to a long-term cure, we outline the challenges that lie ahead and ask, 'Are we there yet?'
Collapse
Affiliation(s)
- Eitan Mirvis
- School of Cancer & Pharmaceutical Sciences, King's College LondonLondonUK
- Department of HaematologyKing's College Hospital NHS Foundation TrustLondonUK
| | - Reuben Benjamin
- School of Cancer & Pharmaceutical Sciences, King's College LondonLondonUK
- Department of HaematologyKing's College Hospital NHS Foundation TrustLondonUK
| |
Collapse
|
15
|
Qiao W, Dong P, Chen H, Zhang J. Advances in Induced Pluripotent Stem Cell-Derived Natural Killer Cell Therapy. Cells 2024; 13:1976. [PMID: 39682724 PMCID: PMC11640743 DOI: 10.3390/cells13231976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes of the innate immune system capable of killing virus-infected cells and/or cancer cells. The commonly used NK cells for therapeutic applications include primary NK cells and immortalized NK cell lines. However, primary NK cell therapy faces limitations due to its restricted proliferation capacity and challenges in stable storage. Meanwhile, the immortalized NK-92 cell line requires irradiation prior to infusion, which reduces its cytotoxic activity, providing a ready-made alternative and overcoming these bottlenecks. Recent improvements in differentiation protocols for iPSC-derived NK cells have facilitated the clinical production of iPSC-NK cells. Moreover, iPSC-NK cells can be genetically modified to enhance tumor targeting and improve the expansion and persistence of iPSC-NK cells, thereby achieving more robust antitumor efficacy. This paper focuses on the differentiation-protocols efforts of iPSC-derived NK cells and the latest progress in iPSC-NK cell therapy. Additionally, we discuss the current challenges faced by iPSC-NK cells and provide an outlook on future applications and developments.
Collapse
Affiliation(s)
- Wenhua Qiao
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Peng Dong
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Hui Chen
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
- Changzhou Xitaihu Institute for Frontier Technology of Cell Therapy, Changzhou 213000, China;
| |
Collapse
|
16
|
Qin Y, Cui Q, Sun G, Chao J, Wang C, Chen X, Ye P, Zhou T, Jeyachandran AV, Sun O, Liu W, Yao S, Palmer C, Liu X, Arumugaswami V, Chan WC, Wang X, Shi Y. Developing enhanced immunotherapy using NKG2A knockout human pluripotent stem cell-derived NK cells. Cell Rep 2024; 43:114867. [PMID: 39447568 DOI: 10.1016/j.celrep.2024.114867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/05/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Cancer immunotherapy is gaining increasing attention. However, immune checkpoints are exploited by cancer cells to evade anti-tumor immunotherapy. Here, we knocked out NKG2A, an immune checkpoint expressed on natural killer (NK) cells, in human pluripotent stem cells (hPSCs) and differentiated these hPSCs into NK (PSC-NK) cells. We show that NKG2A knockout (KO) enhances the anti-tumor and anti-viral capabilities of PSC-NK cells. NKG2A KO endows PSC-NK cells with higher cytotoxicity against HLA-E-expressing glioblastoma (GBM) cells, leukemia cells, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected cells in vitro. The NKG2A KO PSC-NK cells also exerted potent anti-tumor activity in vivo, leading to substantially suppressed tumor progression and prolonged survival of tumor-bearing mice in a xenograft GBM mouse model. These findings underscore the potential of PSC-NK cells with immune checkpoint KO as a promising cell-based immunotherapy. The unlimited supply and ease of genetic engineering of hPSCs makes genetically engineered PSC-NK an attractive option for easily accessible "off-the-shelf" cancer immunotherapy.
Collapse
Affiliation(s)
- Yue Qin
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Qi Cui
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Guihua Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Jianfei Chao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Cheng Wang
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Peng Ye
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Tao Zhou
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Arjit Vijey Jeyachandran
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olivia Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Wei Liu
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Shunyu Yao
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Chance Palmer
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xuxiang Liu
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Vaithilingaraja Arumugaswami
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Xiuli Wang
- Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA.
| |
Collapse
|
17
|
Bisht K, Merino A, Igarashi R, Gauthier L, Chiron M, Desjonqueres A, Smith E, Briercheck E, Romee R, Alici E, Vivier E, O'Dwyer M, van de Velde H. Natural killer cell biology and therapy in multiple myeloma: challenges and opportunities. Exp Hematol Oncol 2024; 13:114. [PMID: 39538354 PMCID: PMC11562869 DOI: 10.1186/s40164-024-00578-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Despite therapeutic advancements, multiple myeloma (MM) remains incurable. NK cells have emerged as a promising option for the treatment of MM. NK cells are heterogenous and typically classified based on the relative expression of their surface markers (e.g., CD56 and CD16a). These cells elicit an antitumor response in the presence of low mutational burden and without neoantigen presentation via germline-encoded activating and inhibitory receptors that identify the markers of transformation present on the MM cells. Higher NK cell activity is associated with improved survival and prognosis, whereas lower activity is associated with advanced clinical stage and disease progression in MM. Moreover, not all NK cell phenotypes contribute equally toward the anti-MM effect; higher proportions of certain NK cell phenotypes result in better outcomes. In MM, the proportion, phenotype, and function of NK cells are drastically varied between different disease stages; this is further influenced by the bone marrow microenvironment, proportion of activating and inhibitory receptors on NK cells, expression of homing receptors, and bone marrow hypoxia. Antimyeloma therapies, such as autologous stem cell transplant, immunomodulation, proteasome inhibition, and checkpoint inhibition, further modulate the NK cell landscape in the patients. Thus, NK cells can naturally work in tandem with anti-MM therapies and be strategically modulated for improved anti-MM effect. This review article describes immunotypic and phenotypic differences in NK cells along with the functional changes in homeostatic and malignant states and provides expert insights on strategies to harness the potential of NK cells for improving outcomes in MM.
Collapse
Affiliation(s)
- Kamlesh Bisht
- Research and Development, Sanofi, Cambridge, MA, 02141, USA.
| | - Aimee Merino
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis-Saint Paul, MN, USA
| | - Rob Igarashi
- Research and Development, Sanofi, Cambridge, MA, 02141, USA
| | - Laurent Gauthier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | | - Eric Smith
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Edward Briercheck
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Rizwan Romee
- Division of Hematologic Malignancies and Transplantation, Dana Farber Cancer Institute, Boston, MA, USA
| | - Evren Alici
- Department of Medicine, Karolinska Institutet (KI), Huddinge, Sweden
| | - Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, CNRS, INSERM, Marseille, France
- Marseille-Immunopôle, APHM, Hôpital de la Timone, Marseille, France
| | - Michael O'Dwyer
- Department of Haematology, University of Galway, Galway, Ireland
| | | |
Collapse
|
18
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
19
|
Rossi GR, Sun J, Lin CY, Wong JK, Alim L, Lam PY, Khosrotehrani K, Wolvetang E, Cheetham SW, Derrick EB, Amoako A, Lehner C, Brooks AJ, Beavis PA, Souza-Fonseca-Guimaraes F. A scalable, spin-free approach to generate enhanced induced pluripotent stem cell-derived natural killer cells for cancer immunotherapy. Immunol Cell Biol 2024; 102:924-934. [PMID: 39269338 DOI: 10.1111/imcb.12820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Natural killer (NK) cells play a vital role in innate immunity and show great promise in cancer immunotherapy. Traditional sources of NK cells, such as the peripheral blood, are limited by availability and donor variability. In addition, in vitro expansion can lead to functional exhaustion and gene editing challenges. This study aimed to harness induced pluripotent stem cell (iPSC) technology to provide a consistent and scalable source of NK cells, overcoming the limitations of traditional sources and enhancing the potential for cancer immunotherapy applications. We developed human placental-derived iPSC lines using reprogramming techniques. Subsequently, an optimized two-step differentiation protocol was introduced to generate high-purity NK cells. Initially, iPSCs were differentiated into hematopoietic-like stem cells using spin-free embryoid bodies (EBs). Subsequently, the EBs were transferred to ultra-low attachment plates to induce NK cell differentiation. iPSC-derived NK (iNK) cells expressed common NK cell markers (NKp46, NKp30, NKp44, CD16 and eomesodermin) at both RNA and protein levels. iNK cells demonstrated significant resilience to cryopreservation and exhibited enhanced cytotoxicity. The incorporation of a chimeric antigen receptor (CAR) construct further augmented their cytotoxic potential. This study exemplifies the feasibility of generating iNK cells with high purity and enhanced functional capabilities, their improved resilience to cryopreservation and the potential to have augmented cytotoxicity through CAR expression. Our findings offer a promising pathway for the development of potential cellular immunotherapies, highlighting the critical role of iPSC technology in overcoming challenges associated with traditional NK cell sources.
Collapse
Affiliation(s)
- Gustavo R Rossi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Jane Sun
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Cheng-Yu Lin
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Joshua Km Wong
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Louisa Alim
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Pui Yeng Lam
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Kiarash Khosrotehrani
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
| | - Seth W Cheetham
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD, Australia
- BASE Facility, University of Queensland, St Lucia, QLD, Australia
| | - Emily B Derrick
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Akwasi Amoako
- The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Christoph Lehner
- The Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Andrew J Brooks
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | | |
Collapse
|
20
|
Shi Y, Hao D, Qian H, Tao Z. Natural killer cell-based cancer immunotherapy: from basics to clinical trials. Exp Hematol Oncol 2024; 13:101. [PMID: 39415291 PMCID: PMC11484118 DOI: 10.1186/s40164-024-00561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/07/2024] [Indexed: 10/18/2024] Open
Abstract
Cellular immunotherapy exploits the capacity of the human immune system in self-protection and surveillance to achieve the anti-tumor effects. Natural killer (NK) cells are lymphocytes of innate immune system and they display a unique inherent ability to identify and eliminate tumor cells. In this review, we first introduce the basic characteristics of NK cells in the physiological and pathological milieus, followed by a discussion of their effector function and immunosuppression in the tumor microenvironment. Clinical strategies and reports regarding NK cellular therapy are analyzed in the context of tumor treatment, especially against solid tumors. Given the widely studied T-cell therapy in the recent years, particularly the chimeric antigen receptor (CAR) T-cell therapy, we compare the technical features of NK- and T-cell based tumor therapies at the clinical front. Finally, the technical challenges and potential solutions for both T and NK cell-based immunotherapies in treating tumor malignancies are delineated. By overviewing its clinical applications, we envision the NK-cell based immunotherapy as an up-and-comer in cancer therapeutics.
Collapse
Affiliation(s)
- Yinghong Shi
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Donglin Hao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
| | - Hui Qian
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| | - Zhimin Tao
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Wujin Hospital Affiliated With Jiangsu University, Changzhou, 213017, Jiangsu, China.
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
- Department of Emergency Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu, China.
| |
Collapse
|
21
|
Huyghe M, Desterke C, Imeri J, Belliard N, Chaker D, Oudrirhi N, Bezerra H, Turhan AG, Bennaceur-Griscelli A, Griscelli F. Comparative analysis of iPSC-derived NK cells from two differentiation strategies reveals distinct signatures and cytotoxic activities. Front Immunol 2024; 15:1463736. [PMID: 39445004 PMCID: PMC11496199 DOI: 10.3389/fimmu.2024.1463736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Purpose The ability to generate natural killer (NK) cells from induced pluripotent stem cells (iPSCs) has given rise to new possibilities for the large-scale production of homogeneous immunotherapeutic cellular products and opened new avenues towards the creation of "off-the-shelf" cancer immunotherapies. However, the differentiation of NK cells from iPSCs remains poorly understood, particularly regarding the ontogenic landscape of iPSC-derived NK (iNK) cells produced in vitro and the influence that the differentiation strategy employed may have on the iNK profile. Methods To investigate this question, we conducted a comparative analysis of two sets of iNK cells generated from the same iPSC line using two different protocols: (i) a short-term, clinically compatible feeder-free protocol corresponding to primitive hematopoiesis, and (ii) a lymphoid-based protocol representing the definitive hematopoietic step. Results and discussion Our work demonstrated that both protocols are capable of producing functional iNK cells. However, the two sets of resulting iNKs exhibited distinct phenotypes and transcriptomic profiles. The lymphoid-based differentiation approach generated iNKs with a more mature and activated profile, which demonstrated higher cytotoxicity against cancer cell lines compared to iNK cells produced under short-term feeder-free conditions suggesting that the differentiation strategy must be considered when designing iNK cell-based adoptive immunotherapies.
Collapse
Affiliation(s)
- Matthias Huyghe
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
| | - Christophe Desterke
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
| | - Jusuf Imeri
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
| | - Nathan Belliard
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
| | - Diana Chaker
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
- Unités Mixtes de Service (UMS 045)- CITHERA (Center for iPSC Cell Therapy), National Infrastructure INGESTEM, Corbeil-Essonnes, Evry, France
| | - Noufissa Oudrirhi
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
- Service d’Hématologie Biologique Unité d’Onco-Hématologie moléculaire et Cytogénétique Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Universitaire Paris Sud Paul-Brousse, Villejuif, France
| | - Hudson Bezerra
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
| | - Ali G. Turhan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
- Unités Mixtes de Service (UMS 045)- CITHERA (Center for iPSC Cell Therapy), National Infrastructure INGESTEM, Corbeil-Essonnes, Evry, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France
| | - Annelise Bennaceur-Griscelli
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
- Unités Mixtes de Service (UMS 045)- CITHERA (Center for iPSC Cell Therapy), National Infrastructure INGESTEM, Corbeil-Essonnes, Evry, France
- Service d’Hématologie Biologique Unité d’Onco-Hématologie moléculaire et Cytogénétique Assistance Publique - Hôpitaux de Paris (APHP), Hôpital Universitaire Paris Sud Paul-Brousse, Villejuif, France
- Université Paris-Saclay, Faculté de Médecine, Kremlin Bicêtre, France
| | - Frank Griscelli
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR-S-1310), Villejuif, France
- Unités Mixtes de Service (UMS 045)- CITHERA (Center for iPSC Cell Therapy), National Infrastructure INGESTEM, Corbeil-Essonnes, Evry, France
- Université Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
- Institut Gustave-Roussy, Département de Biologie et Pathologie Médicale, Villejuif, France
| |
Collapse
|
22
|
Andrea AE, Chiron A, Sarrabayrouse G, Bessoles S, Hacein-Bey-Abina S. A structural, genetic and clinical comparison of CAR-T cells and CAR-NK cells: companions or competitors? Front Immunol 2024; 15:1459818. [PMID: 39430751 PMCID: PMC11486669 DOI: 10.3389/fimmu.2024.1459818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
In recent years, following the groundbreaking achievements of chimeric antigen receptor (CAR) T cell therapy in hematological cancers, and advancements in cell engineering technologies, the exploration of other immune cells has garnered significant attention. CAR-Therapy extended beyond T cells to include CAR natural killer (NK) cells and CAR-macrophages, which are firmly established in the clinical trial landscape. Less conventional immune cells are also making their way into the scene, such as CAR mucosal-associated invariant T (MAIT) cells. This progress is advancing precision medicine and facilitating the development of ready-to-use biological treatments. However, in view of the unique features of natural killer cells, adoptive NK cell immunotherapy has emerged as a universal, allogenic, "off-the shelf" therapeutic strategy. CAR-NK cytotoxic cells present targeted tumor specificity but seem to be devoid of the side effects associated with CAR-T cells. CAR-NK cells appear to be potentially promising candidates for cancer immunotherapy. However, their application is hindered by significant challenges, particularly the limited persistence of CAR-NK cells in the body, which poses a hurdle to their sustained effectiveness in treating cancer. Based upon the foregoing, this review discusses the current status and applications of both CAR-T cells and CAR-NK cells in hematological cancers, and provides a comparative analysis of the structure, genetics, and clinical outcomes between these two types of genetically modified immune cells.
Collapse
Affiliation(s)
- Alain E. Andrea
- Department of Biology, Faculty of Arts and Sciences, Saint George University of Beirut, Beirut, Lebanon
| | - Andrada Chiron
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Guillaume Sarrabayrouse
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Stéphanie Bessoles
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
| | - Salima Hacein-Bey-Abina
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Unité des Technologies Chimiques et Biologiques pour la Santé (UTCBS), Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
23
|
Blanquart E, Ekren R, Rigaud B, Joubert MV, Baylot V, Daunes H, Cuisinier M, Villard M, Carrié N, Mazzotti C, Lucca LE, Perrot A, Corre J, Walzer T, Avet-Loiseau H, Axisa PP, Martinet L. NK cells with adhesion defects and reduced cytotoxic functions are associated with a poor prognosis in multiple myeloma. Blood 2024; 144:1271-1283. [PMID: 38875515 DOI: 10.1182/blood.2023023529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
ABSTRACT The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.
Collapse
Affiliation(s)
- Eve Blanquart
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Rüçhan Ekren
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Bineta Rigaud
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Marie-Véronique Joubert
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Virginie Baylot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Hélène Daunes
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Cuisinier
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Marine Villard
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Nadège Carrié
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Céline Mazzotti
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Liliana E Lucca
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Aurore Perrot
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Jill Corre
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| | - Hervé Avet-Loiseau
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
| | - Pierre-Paul Axisa
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Ludovic Martinet
- Cancer Research Center of Toulouse, INSERM, Centre National de la Recherche Scientifique, Université Toulouse III-Paul Sabatier, Toulouse, France
- Institut Universitaire du Cancer, Centre hospitalier universitaire de Toulouse, Toulouse, France
- Centre International de Recherche en Infectiologie, Université Lyon, Université Claude Bernard Lyon 1 INSERM U1111, Centre National de la Recherche Scientifique, UMR5308, École normale supérieure de Lyon, Université Jean Monnet de Saint-Etienne, Lyon, France
| |
Collapse
|
24
|
Paiva B, Martinez-Climent JA. Not so natural, not so killers. Blood 2024; 144:1238-1240. [PMID: 39298163 DOI: 10.1182/blood.2024025597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
|
25
|
Hammer Q, Perica K, Mbofung RM, van Ooijen H, Martin KE, Momayyezi P, Varady E, Pan Y, Jelcic M, Groff B, Abujarour R, Krokeide SZ, Lee T, Williams A, Goodridge JP, Valamehr B, Önfelt B, Sadelain M, Malmberg KJ. Genetic ablation of adhesion ligands mitigates rejection of allogeneic cellular immunotherapies. Cell Stem Cell 2024; 31:1376-1386.e8. [PMID: 38981470 DOI: 10.1016/j.stem.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Allogeneic cellular immunotherapies hold promise for broad clinical implementation but face limitations due to potential rejection of donor cells by the host immune system. Silencing of beta-2 microglobulin (B2M) expression is commonly employed to evade T cell-mediated rejection by the host, although the absence of B2M is expected to trigger missing-self responses by host natural killer (NK) cells. Here, we demonstrate that genetic deletion of the adhesion ligands CD54 and CD58 in B2M-deficient chimeric antigen receptor (CAR) T cells and multi-edited induced pluripotent stem cell (iPSC)-derived CAR NK cells reduces their susceptibility to rejection by host NK cells in vitro and in vivo. The absence of adhesion ligands limits rejection in a unidirectional manner in B2M-deficient and B2M-sufficient settings without affecting the antitumor functionality of the engineered donor cells. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection by host immune cells, facilitating the implementation of universal immunotherapy.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Karlo Perica
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hanna van Ooijen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Karen E Martin
- Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Yijia Pan
- Fate Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | - Silje Z Krokeide
- Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom Lee
- Fate Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | - Björn Önfelt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
26
|
Wang K, Wang L, Wang Y, Xiao L, Wei J, Hu Y, Wang D, Huang H. Reprogramming natural killer cells for cancer therapy. Mol Ther 2024; 32:2835-2855. [PMID: 38273655 PMCID: PMC11403237 DOI: 10.1016/j.ymthe.2024.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The last decade has seen rapid development in the field of cellular immunotherapy, particularly in regard to chimeric antigen receptor (CAR)-modified T cells. However, challenges, such as severe treatment-related toxicities and inconsistent quality of autologous products, have hindered the broader use of CAR-T cell therapy, highlighting the need to explore alternative immune cells for cancer targeting. In this regard, natural killer (NK) cells have been extensively studied in cellular immunotherapy and were found to exert cytotoxic effects without being restricted by human leukocyte antigen and have a lower risk of causing graft-versus-host disease; making them favorable for the development of readily available "off-the-shelf" products. Clinical trials utilizing unedited NK cells or reprogrammed NK cells have shown early signs of their effectiveness against tumors. However, limitations, including limited in vivo persistence and expansion potential, remained. To enhance the antitumor function of NK cells, advanced gene-editing technologies and combination approaches have been explored. In this review, we summarize current clinical trials of antitumor NK cell therapy, provide an overview of innovative strategies for reprogramming NK cells, which include improvements in persistence, cytotoxicity, trafficking and the ability to counteract the immunosuppressive tumor microenvironment, and also discuss some potential combination therapies.
Collapse
Affiliation(s)
- Kexin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Linqin Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yiyun Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Lu Xiao
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jieping Wei
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - Dongrui Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| | - He Huang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Hangzhou, Zhejiang Province, China; Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang Province, China; Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
27
|
Nguyen NTT, Müller R, Briukhovetska D, Weber J, Feucht J, Künkele A, Hudecek M, Kobold S. The Spectrum of CAR Cellular Effectors: Modes of Action in Anti-Tumor Immunity. Cancers (Basel) 2024; 16:2608. [PMID: 39061247 PMCID: PMC11274444 DOI: 10.3390/cancers16142608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor-T cells have spearheaded the field of adoptive cell therapy and have shown remarkable results in treating hematological neoplasia. Because of the different biology of solid tumors compared to hematological tumors, response rates of CAR-T cells could not be transferred to solid entities yet. CAR engineering has added co-stimulatory domains, transgenic cytokines and switch receptors to improve performance and persistence in a hostile tumor microenvironment, but because of the inherent cell type limitations of CAR-T cells, including HLA incompatibility, toxicities (cytokine release syndrome, neurotoxicity) and high costs due to the logistically challenging preparation process for autologous cells, the use of alternative immune cells is gaining traction. NK cells and γδ T cells that do not need HLA compatibility or macrophages and dendritic cells with additional properties such as phagocytosis or antigen presentation are increasingly seen as cellular vehicles with potential for application. As these cells possess distinct properties, clinicians and researchers need a thorough understanding of their peculiarities and commonalities. This review will compare these different cell types and their specific modes of action seen upon CAR activation.
Collapse
Affiliation(s)
- Ngoc Thien Thu Nguyen
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
| | - Rasmus Müller
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Daria Briukhovetska
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
| | - Justus Weber
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
| | - Judith Feucht
- Cluster of Excellence iFIT “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tuebingen, Germany;
- Department of Hematology and Oncology, University Children’s Hospital Tuebingen, University of Tübingen, 72076 Tuebingen, Germany
| | - Annette Künkele
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, 10117 Berlin, Germany
| | - Michael Hudecek
- Department of Medicine II, Chair in Cellular Immunotherapy, University Hospital Würzburg, 97080 Würzburg, Germany; (J.W.); (M.H.)
- Fraunhofer Institute for Cell Therapy and Immunology, Cellular Immunotherapy Branch Site Würzburg, 97080 Würzburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (N.T.T.N.); (R.M.); (D.B.)
- German Cancer Consortium (DKTK), Partner Site Munich, a Partnership between the DKFZ Heidelberg and the University Hospital of the LMU, 80336 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München—German Research Center for Environmental Health Neuherberg, 85764 Oberschleißheim, Germany
| |
Collapse
|
28
|
Coënon L, Rigal E, Courot H, Multrier C, Zemiti S, Lambour J, Pugnière M, de Toledo M, Bossis G, Cartron G, Robert B, Martineau P, Fauvel B, Presumey J, Villalba M. Generation of non-genetically modified, CAR-like, NK cells. J Immunother Cancer 2024; 12:e009070. [PMID: 39029925 PMCID: PMC11261687 DOI: 10.1136/jitc-2024-009070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Natural killer (NK) cell therapy is considered an attractive and safe strategy for anticancer therapy. Nevertheless, when autologous or allogenic NK cells are used alone, the clinical benefit has been disappointing. This is partially due to the lack of target specificity. Recently, CD19-specific chimeric antigen receptor (CAR)-NK cells have proven to be safe and potent in patients with B-cell tumors. However, the generation of CAR-NK cells is a complicated manufacturing process. We aim at developing a targeted NK cell therapy without the need for cellular genetic modifications. We took advantage of the natural expression of the IgG Fc receptor CD16a (FcγRIIIa) to induce strong antigen-specific effector functions through antibody-dependent cell-mediated cytotoxicity (ADCC). We have generated the new technology "Pin", which enables the arming of modified monoclonal antibodies (mAbs) onto the CD16a of ex vivo expanded NK (eNK) cells. Methods Ex vivo eNK were prepared from umbilical cord blood cells and expanded using interleukin (IL)-2/IL-15 and Epstein-Barr virus (EBV)-transformed B-lymphoblastoid feeder cells. mAbs were engineered with four substitutions called Pin mutations to increase their affinity to CD16a. eNK were incubated with anti-CD20 or anti-CD19 Pin-mAbs to generate "armed" eNK and were used to assess effector functions in vitro on cancer cell lines, lymphoma patient cells and in vivo. RESULTS CD16a/Pin-mAb interaction is stable for several days and Pin-mAb eNK inherit the mAb specificity and exclusively induce ADCC against targets expressing the cognate antigen. Hence, Pin-mAbs confer long-term selectivity to eNK, which allows specific elimination of the target cells in several in vivo mouse models. Finally, we showed that it is possible to arm eNK with at least two Pin-mAbs simultaneously, to increase efficacy against heterogenous cancer cell populations. CONCLUSIONS The Pin technology provides an off-the-shelf NK cell therapy platform to generate CAR-like NK cells, without genetic modifications, that easily target multiple tumor antigens.
Collapse
MESH Headings
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Humans
- Animals
- Mice
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Antigens, CD19/immunology
- Antibody-Dependent Cell Cytotoxicity
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Xenograft Model Antitumor Assays
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal/pharmacology
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, INSERM U1183, University of Montpellier, CHU Montpellier, Montpellier, France
| | | | | | - Caroline Multrier
- IRMB, INSERM U1183, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Sara Zemiti
- IRMB, INSERM U1183, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Jennifer Lambour
- IRMB, INSERM U1183, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Martine Pugnière
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | | | - Guillaume Cartron
- Department of Clinical Hematology, CHU Montpellier, Montpellier, France
| | - Bruno Robert
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | - Pierre Martineau
- IRCM, INSERM U1194, University of Montpellier, ICM, Montpellier, France
| | | | | | - Martin Villalba
- IRMB, INSERM U1183, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
29
|
Moles MW, Erdlei H, Menzel L, Massaro M, Fiori A, Bunse M, Schrimpf M, Gerlach K, Gudipati V, Reiser J, Mathavan K, Goodrich JP, Huppa JB, Krönke J, Valamehr B, Höpken UE, Rehm A. CXCR4 has a dual role in improving the efficacy of BCMA-redirected CAR-NK cells in multiple myeloma. Front Immunol 2024; 15:1383136. [PMID: 38979422 PMCID: PMC11228140 DOI: 10.3389/fimmu.2024.1383136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Multiple myeloma (MM) is a plasma cell disease with a preferential bone marrow (BM) tropism. Enforced expression of tissue-specific chemokine receptors has been shown to successfully guide adoptively-transferred CAR NK cells towards the malignant milieu in solid cancers, but also to BM-resident AML and MM. For redirection towards BM-associated chemokine CXCL12, we armored BCMA CAR-NK-92 as well as primary NK cells with ectopic expression of either wildtype CXCR4 or a gain-of-function mutant CXCR4R334X. Our data showed that BCMA CAR-NK-92 and -primary NK cells equipped with CXCR4 gained an improved ability to migrate towards CXCL12 in vitro. Beyond its classical role coordinating chemotaxis, CXCR4 has been shown to participate in T cell co-stimulation, which prompted us to examine the functionality of CXCR4-cotransduced BCMA-CAR NK cells. Ectopic CXCR4 expression enhanced the cytotoxic capacity of BCMA CAR-NK cells, as evidenced by the ability to eliminate BCMA-expressing target cell lines and primary MM cells in vitro and through accelerated cytolytic granule release. We show that CXCR4 co-modification prolonged BCMA CAR surface deposition, augmented ZAP-70 recruitment following CAR-engagement, and accelerated distal signal transduction kinetics. BCMA CAR sensitivity towards antigen was enhanced by virtue of an enhanced ZAP-70 recruitment to the immunological synapse, revealing an increased propensity of CARs to become triggered upon CXCR4 overexpression. Unexpectedly, co-stimulation via CXCR4 occurred in the absence of CXCL12 ligand-stimulation. Collectively, our findings imply that co-modification of CAR-NK cells with tissue-relevant chemokine receptors affect adoptive NK cell therapy beyond improved trafficking and retention within tumor sites.
Collapse
MESH Headings
- Multiple Myeloma/immunology
- Multiple Myeloma/therapy
- Humans
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/genetics
- B-Cell Maturation Antigen/immunology
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/genetics
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Chemokine CXCL12/metabolism
- Cell Line, Tumor
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Michael W Moles
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Henry Erdlei
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Lutz Menzel
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Marialucia Massaro
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Agnese Fiori
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Mario Bunse
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Moritz Schrimpf
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Kerstin Gerlach
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| | - Venugopal Gudipati
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - John Reiser
- Fate Therapeutics, San Diego, CA, United States
| | | | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Vienna, Austria
| | - Jan Krönke
- Department of Hematology, Oncology and Tumorimmunology, Charité-University Medicine Berlin, Berlin, Germany
| | | | - Uta E Höpken
- Microenvironmental Regulation in Autoimmunity and Cancer, Max Delbrück Center, Berlin, Germany
| | - Armin Rehm
- Translational Tumorimmunology, Max Delbrück Center, Berlin, Germany
| |
Collapse
|
30
|
Miller JS, Rhein J, Davis ZB, Cooley S, McKenna D, Anderson J, Escandón K, Wieking G, Reichel J, Thorkelson A, Jorstad S, Safrit JT, Soon-Shiong P, Beilman GJ, Chipman JG, Schacker TW. Safety and Virologic Impact of Haploidentical NK Cells Plus Interleukin 2 or N-803 in HIV Infection. J Infect Dis 2024; 229:1256-1265. [PMID: 38207119 PMCID: PMC11095546 DOI: 10.1093/infdis/jiad578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/03/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND Natural killer (NK) cells are dysfunctional in chronic human immunodeficiency virus (HIV) infection as they are not able to clear virus. We hypothesized that an infusion of NK cells, supported by interleukin 2 (IL-2) or IL-15, could decrease virus-producing cells in the lymphatic tissues. METHODS We conducted a phase 1 pilot study in 6 persons with HIV (PWH), where a single infusion of haploidentical related donor NK cells was given plus either IL-2 or N-803 (an IL-15 superagonist). RESULTS The approach was well tolerated with no unexpected adverse events. We did not pretreat recipients with cyclophosphamide or fludarabine to "make immunologic space," reasoning that PWH on stable antiretroviral treatment remain T-cell depleted in lymphatic tissues. We found donor cells remained detectable in blood for up to 8 days (similar to what is seen in cancer pretreatment with lymphodepleting chemotherapy) and in the lymph nodes and rectum up to 28 days. There was a moderate decrease in the frequency of viral RNA-positive cells in lymph nodes. CONCLUSIONS There was a moderate decrease in HIV-producing cells in lymph nodes. Further studies are warranted to determine the impact of healthy NK cells on HIV reservoirs and if restoring NK-cell function could be part of an HIV cure strategy. Clinical Trials Registration. NCT03346499 and NCT03899480.
Collapse
Affiliation(s)
- Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joshua Rhein
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Zachary B Davis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah Cooley
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - David McKenna
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jodi Anderson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kevin Escandón
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Garritt Wieking
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jarrett Reichel
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann Thorkelson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Siri Jorstad
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Gregory J Beilman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey G Chipman
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Timothy W Schacker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
31
|
Lv JT, Jiao YT, Han XL, Cao YJ, Lv XK, Du J, Hou J. Integrating p53-associated genes and infiltrating immune cell characterization as a prognostic biomarker in multiple myeloma. Heliyon 2024; 10:e30123. [PMID: 38699735 PMCID: PMC11063508 DOI: 10.1016/j.heliyon.2024.e30123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Background Tumor genetic anomalies and immune dysregulation are pivotal in the progression of multiple myeloma (MM). Accurate patient stratification is essential for effective MM management, yet current models fail to comprehensively incorporate both molecular and immune profiles. Methods We examined 776 samples from the MMRF CoMMpass database, employing univariate regression with LASSO and CIBERSORT algorithms to identify 15 p53-related genes and six immune cells with prognostic significance in MM. A p53-TIC (tumor-infiltrating immune cells) classifier was constructed by calculating scores using the bootstrap-multicox method, which was further validated externally (GSE136337) and through ten-fold internal cross-validation for its predictive reliability and robustness. Results The p53-TIC classifier demonstrated excellent performance in predicting the prognosis in MM. Specifically, patients in the p53low/TIChigh subgroup had the most favorable prognosis and the lowest tumor mutational burden (TMB). Conversely, those in the p53high/TIClow subgroup, with the least favorable prognosis and the highest TMB, were predicted to have the best anti-PD1 and anti-CTLA4 response rate (40 %), which can be explained by their higher expression of PD1 and CTLA4. The three-year area under the curve (AUC) was 0.80 in the total sample. Conclusions Our study highlights the potential of an integrated analysis of p53-associated genes and TIC in predicting prognosis and aiding clinical decision-making in MM patients. This finding underscores the significance of comprehending the intricate interplay between genetic abnormalities and immune dysfunction in MM. Further research into this area may lead to the development of more effective treatment strategies.
Collapse
Affiliation(s)
- Jun-Ting Lv
- Zhuhai Hospital of Integrated Traditional Chinese & Western Medicine, 519000, China
| | - Yu-Tian Jiao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xin-Le Han
- Department of Pathology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yang-Jia Cao
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, 710061, China
| | - Xu-Kun Lv
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Du
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Department of Hematology, Punan Hospital, Pudong New District, Shanghai, 200011, China
| | - Jian Hou
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| |
Collapse
|
32
|
Kong JC, Sa’ad MA, Vijayan HM, Ravichandran M, Balakrishnan V, Tham SK, Tye GJ. Chimeric antigen receptor-natural killer cell therapy: current advancements and strategies to overcome challenges. Front Immunol 2024; 15:1384039. [PMID: 38726000 PMCID: PMC11079817 DOI: 10.3389/fimmu.2024.1384039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is a novel immunotherapy targeting cancer cells via the generation of chimeric antigen receptors on NK cells which recognize specific cancer antigens. CAR-NK cell therapy is gaining attention nowadays owing to the ability of CAR-NK cells to release potent cytotoxicity against cancer cells without side effects such as cytokine release syndrome (CRS), neurotoxicity and graft-versus-host disease (GvHD). CAR-NK cells do not require antigen priming, thus enabling them to be used as "off-the-shelf" therapy. Nonetheless, CAR-NK cell therapy still possesses several challenges in eliminating cancer cells which reside in hypoxic and immunosuppressive tumor microenvironment. Therefore, this review is envisioned to explore the current advancements and limitations of CAR-NK cell therapy as well as discuss strategies to overcome the challenges faced by CAR-NK cell therapy. This review also aims to dissect the current status of clinical trials on CAR-NK cells and future recommendations for improving the effectiveness and safety of CAR-NK cell therapy.
Collapse
Affiliation(s)
- Jun Chang Kong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Mohammad Auwal Sa’ad
- Celestialab Sdn Bhd, Kuala Lumpur, Malaysia
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
| | | | - Manickam Ravichandran
- Department of Biotechnology, Faculty of Applied Sciences, AIMST University, Bedong, Kedah, Malaysia
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Venugopal Balakrishnan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Seng Kong Tham
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Minden, Penang, Malaysia
| |
Collapse
|
33
|
Page A, Chuvin N, Valladeau-Guilemond J, Depil S. Development of NK cell-based cancer immunotherapies through receptor engineering. Cell Mol Immunol 2024; 21:315-331. [PMID: 38443448 PMCID: PMC10978891 DOI: 10.1038/s41423-024-01145-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/09/2024] [Indexed: 03/07/2024] Open
Abstract
Natural killer (NK) cell-based immunotherapies are attracting increasing interest in the field of cancer treatment. Early clinical trials have shown promising outcomes, alongside satisfactory product efficacy and safety. Recent developments have greatly increased the therapeutic potential of NK cells by endowing them with enhanced recognition and cytotoxic capacities. This review focuses on surface receptor engineering in NK cell therapy and discusses its impact, challenges, and future directions.Most approaches are based on engineering with chimeric antigen receptors to allow NK cells to target specific tumor antigens independent of human leukocyte antigen restriction. This approach has increased the precision and potency of NK-mediated recognition and elimination of cancer cells. In addition, engineering NK cells with T-cell receptors also mediates the recognition of intracellular epitopes, which broadens the range of target peptides. Indirect tumor peptide recognition by NK cells has also been improved by optimizing immunoglobulin constant fragment receptor expression and signaling. Indeed, engineered NK cells have an improved ability to recognize and destroy target cells coated with specific antibodies, thereby increasing their antibody-dependent cellular cytotoxicity. The ability of NK cell receptor engineering to promote the expansion, persistence, and infiltration of transferred cells in the tumor microenvironment has also been explored. Receptor-based strategies for sustained NK cell functionality within the tumor environment have also been discussed, and these strategies providing perspectives to counteract tumor-induced immunosuppression.Overall, receptor engineering has led to significant advances in NK cell-based cancer immunotherapies. As technical challenges are addressed, these innovative treatments will likely reshape cancer immunotherapy.
Collapse
Affiliation(s)
- Audrey Page
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
| | | | - Jenny Valladeau-Guilemond
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM U1052 CNRS 5286, Centre Léon Bérard, Lyon, France.
- ErVimmune, Lyon, France.
- Centre Léon Bérard, Lyon, France.
- Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
34
|
Christiansen JR, Kirkeby A. Clinical translation of pluripotent stem cell-based therapies: successes and challenges. Development 2024; 151:dev202067. [PMID: 38564308 PMCID: PMC11057818 DOI: 10.1242/dev.202067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The translational stem cell research field has progressed immensely in the past decade. Development and refinement of differentiation protocols now allows the generation of a range of cell types, such as pancreatic β-cells and dopaminergic neurons, from human pluripotent stem cells (hPSCs) in an efficient and good manufacturing practice-compliant fashion. This has led to the initiation of several clinical trials using hPSC-derived cells to replace lost or dysfunctional cells, demonstrating evidence of both safety and efficacy. Here, we highlight successes from some of the hPSC-based trials reporting early signs of efficacy and discuss common challenges in clinical translation of cell therapies.
Collapse
Affiliation(s)
- Josefine Rågård Christiansen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
- Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
35
|
Vivier E, Rebuffet L, Narni-Mancinelli E, Cornen S, Igarashi RY, Fantin VR. Natural killer cell therapies. Nature 2024; 626:727-736. [PMID: 38383621 DOI: 10.1038/s41586-023-06945-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 02/23/2024]
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system. A key feature of NK cells is their ability to recognize a wide range of cells in distress, particularly tumour cells and cells infected with viruses. They combine both direct effector functions against their cellular targets and participate in the generation, shaping and maintenance of a multicellular immune response. As our understanding has deepened, several therapeutic strategies focused on NK cells have been conceived and are currently in various stages of development, from preclinical investigations to clinical trials. Here we explore in detail the complexity of NK cell biology in humans and highlight the role of these cells in cancer immunity. We also analyse the harnessing of NK cell immunity through immune checkpoint inhibitors, NK cell engagers, and infusions of preactivated or genetically modified, autologous or allogeneic NK cell products.
Collapse
Affiliation(s)
- Eric Vivier
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France.
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France.
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France.
- Paris-Saclay Cancer Cluster, Le Kremlin-Bicêtre, France.
| | - Lucas Rebuffet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Emilie Narni-Mancinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Stéphanie Cornen
- Innate Pharma Research Laboratories, Innate Pharma, Marseille, France
| | | | | |
Collapse
|
36
|
Nersesian S, Arseneau RJ, Mejia JP, Lee SN, Westhaver LP, Griffiths NW, Grantham SR, Meunier L, Communal L, Mukherjee A, Mes-Masson AM, Arnason T, Nelson BH, Boudreau JE. Improved overall survival in patients with high-grade serous ovarian cancer is associated with CD16a+ immunologic neighborhoods containing NK cells, T cells and macrophages. Front Immunol 2024; 14:1307873. [PMID: 38318505 PMCID: PMC10838965 DOI: 10.3389/fimmu.2023.1307873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Background For patients with high grade serous carcinoma of the ovary (HGSC), survival rates have remained static for the last half century. Despite the presence of tumor mutations and infiltration of immune cells, existing immunotherapies have achieved little success against HGSC. These observations highlight a gap in the understanding of how the immune system functions and interacts within HGSC tumors. Methods We analyzed duplicate core samples from 939 patients with HGSC to understand patterns of immune cell infiltration, localization, and associations with clinical features. We used high-parameter immunohistochemical/Opal multiplex, digital pathology, computational biology, and multivariate analysis to identify immune cell subsets and their associations with HGSC tumors. Results We defined six patterns of cellular infiltration by spatially restricted unsupervised clustering of cell subsets. Each pattern was represented to some extent in most patient samples, but their specific distributions differed. Overall (OS) and progression-free survival (PFS) corresponded with higher infiltration of CD16a+ cells, and their co-localization with macrophages, T cells, NK cells, in one of six cellular neighborhoods that we defined with our spatial assessment. Conclusions Immune cell neighborhoods containing CD16a+ cells are associated with improved OS and PFS for patients with HGSC. Patterns of immunologic neighborhoods differentiate patient outcomes, and could inform future, more precise approaches to treatment.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Riley J. Arseneau
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jorge P. Mejia
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | | | | | - Liliane Meunier
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | - Laudine Communal
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
| | | | - Anne-Marie Mes-Masson
- Centre de recherche du Centre hospitalier de l’Université de Montréal and Institut du cancer de Montréal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thomas Arnason
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology & Laboratory Medicine, QEII Health Sciences Centre, Nova Scotia Health (Central Zone), Halifax, NS, Canada
| | - Brad H. Nelson
- Deeley Research Centre, British Columbia Cancer Research Institute, Victoria, BC, Canada
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
37
|
Snyder KM, Dixon KJ, Davis Z, Hosking M, Hart G, Khaw M, Matson A, Bjordahl R, Hancock B, Shirinbak S, Miller JS, Valamehr B, Wu J, Walcheck B. iPSC-derived natural killer cells expressing the FcγR fusion CD64/16A can be armed with antibodies for multitumor antigen targeting. J Immunother Cancer 2023; 11:e007280. [PMID: 38056893 PMCID: PMC10711901 DOI: 10.1136/jitc-2023-007280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Antibody therapies can direct natural killer (NK) cells to tumor cells, tumor-associated cells, and suppressive immune cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This antigen-specific effector function of human NK cells is mediated by the IgG Fc receptor CD16A (FcγRIIIA). Preclinical and clinical studies indicate that increasing the binding affinity and avidity of CD16A for antibodies improves the therapeutic potential of ADCC. CD64 (FcγRI), expressed by myeloid cells but not NK cells, is the only high affinity IgG Fc receptor and is uniquely capable of stably binding to free monomeric IgG as a physiological function. We have reported on the generation of the FcγR fusion CD64/16A, consisting of the extracellular region of CD64 and the transmembrane and cytoplasmic regions from CD16A, retaining its signaling and cellular activity. Here, we generated induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as a potential adoptive NK cell therapy for increased ADCC potency. METHODS iPSCs were engineered to express CD64/16A as well as an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein and differentiated into iNK cells. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells and examined. NK cells, ovarian tumor cell lines, and therapeutic monoclonal antibodies were used to assess ADCC in vitro, performed by a DELFIA EuTDA assay or in real-time by IncuCyte assays, and in vivo. For the latter, we developed a xenograft mouse model with high circulating levels of human IgG for more physiological relevance. RESULTS We demonstrate that (1) iNK-CD64/16A cells after expansion or thaw from cryopreservation can be coupled to therapeutic antibodies, creating armed iNK cells; (2) antibody-armed iNK-CD64/16A cells can be redirected by added antibodies to target new tumor antigens, highlighting additional potential of these cells; (3) cytokine-autonomous activity by iNK-CD64/16A cells engineered to express IL-15RF; and that (4) antibody-armed iNK-CD64/16A cells thawed from cryopreservation are capable of sustained and robust ADCC in vitro and in vivo, as determined by using a modified tumor xenograft model with high levels of competing human IgG. CONCLUSIONS iNK cells expressing CD64/16A provide an off-the-shelf multiantigen targeting platform to address tumor heterogeneity and mitigate antigen escape.
Collapse
Affiliation(s)
- Kristin M Snyder
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kate J Dixon
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Zachary Davis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Geoffrey Hart
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa Khaw
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Anders Matson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | | | | | | | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - Bruce Walcheck
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
38
|
Guo X, Sun M, Yang P, Meng X, Liu R. Role of mast cells activation in the tumor immune microenvironment and immunotherapy of cancers. Eur J Pharmacol 2023; 960:176103. [PMID: 37852570 DOI: 10.1016/j.ejphar.2023.176103] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
The mast cell is an important cellular component that plays a crucial role in the crosstalk between innate and adaptive immune responses within the tumor microenvironment (TME). Recently, numerous studies have indicated that mast cells related to tumors play a dual role in regulating cancers, with conflicting results seemingly determined by the degranulation medium. As such, mast cells are an ignored but very promising potential target for cancer immunotherapy based on their immunomodulatory function. In this review, we present a comprehensive overview of the roles and mechanisms of mast cells in diverse cancer types. Firstly, we evaluated the infiltration density and location of mast cells on tumor progression. Secondly, mast cells are activated by the TME and subsequently release a range of inflammatory mediators, cytokines, chemokines, and lipid products that modulate their pro-or anti-tumor functions. Thirdly, activated mast cells engage in intercellular communication with other immune or stromal cells to modulate the immune status or promote tumor development. Finally, we deliberated on the clinical significance of targeting mast cells as a therapeutic approach to restrict tumor initiation and progression. Overall, our review aims to provide insights for future research on the role of mast cells in tumors and their potential as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Xinxin Guo
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China; Xiangnan University, Chenzhou, China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Peiyan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xingchen Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
39
|
Fetzko SL, Timothy LD, Parihar R. NK Cell Therapeutics for Hematologic Malignancies: from Potential to Fruition. Curr Hematol Malig Rep 2023; 18:264-272. [PMID: 37751103 DOI: 10.1007/s11899-023-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
PURPOSE OF REVIEW The current review focuses on the preclinical development and clinical advances of natural killer (NK) cell therapeutics for hematologic malignancies and offers perspective on the unmet challenges that will direct future discovery in the field. RECENT FINDINGS Approaches to improve or re-direct NK cell anti-tumor functions against hematologic malignancies have included transgenic expression of chimeric antigen receptors (CARs), administration of NK cell engagers including BiKEs and TriKEs that enhance antibody-dependent cellular cytotoxicity (ADCC) by co-engaging NK cell CD16 and antigens on tumors, incorporation of a non-cleavable CD16 that results in enhanced ADCC, use of induced memory-like NK cells alone or in combination with CARs, and blockade of NK immune checkpoints to enhance NK cytotoxicity. Recently reported and ongoing clinical trials support the feasibility and safety of these approaches. NK cell-based therapeutic strategies hold great promise as cost-effective, off-the-shelf cell therapies for patients with relapsed and refractory hematologic diseases.
Collapse
Affiliation(s)
- Stephanie L Fetzko
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Leander D Timothy
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Robin Parihar
- Department of Pediatrics, Division of Hematology-Oncology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
40
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
41
|
Vu SH, Pham HH, Pham TTP, Le TT, Vo MC, Jung SH, Lee JJ, Nguyen XH. Adoptive NK Cell Therapy - a Beacon of Hope in Multiple Myeloma Treatment. Front Oncol 2023; 13:1275076. [PMID: 38023191 PMCID: PMC10656693 DOI: 10.3389/fonc.2023.1275076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Major advances in the treatment of multiple myeloma (MM) have been achieved by effective new agents such as proteasome inhibitors, immunomodulatory drugs, or monoclonal antibodies. Despite significant progress, MM remains still incurable and, recently, cellular immunotherapy has emerged as a promising treatment for relapsed/refractory MM. The emergence of chimeric antigen receptor (CAR) technology has transformed immunotherapy by enhancing the antitumor functions of T cells and natural killer (NK) cells, leading to effective control of hematologic malignancies. Recent advancements in gene delivery to NK cells have paved the way for the clinical application of CAR-NK cell therapy. CAR-NK cell therapy strategies have demonstrated safety, tolerability, and substantial efficacy in treating B cell malignancies in various clinical settings. However, their effectiveness in eliminating MM remains to be established. This review explores multiple approaches to enhance NK cell cytotoxicity, persistence, expansion, and manufacturing processes, and highlights the challenges and opportunities associated with CAR-NK cell therapy against MM. By shedding light on these aspects, this review aims to provide valuable insights into the potential of CAR-NK cell therapy as a promising approach for improving the treatment outcomes of MM patients.
Collapse
Affiliation(s)
- Son Hai Vu
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Ha Hong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thao Thi Phuong Pham
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Thanh Thien Le
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Xuan-Hung Nguyen
- Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, Vietnam
- College of Health Sciences, VinUniversity, Hanoi, Vietnam
| |
Collapse
|
42
|
Li Y, Rezvani K, Rafei H. Next-generation chimeric antigen receptors for T- and natural killer-cell therapies against cancer. Immunol Rev 2023; 320:217-235. [PMID: 37548050 PMCID: PMC10841677 DOI: 10.1111/imr.13255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Adoptive cellular therapy using chimeric antigen receptor (CAR) T cells has led to a paradigm shift in the treatment of various hematologic malignancies. However, the broad application of this approach for myeloid malignancies and solid cancers has been limited by the paucity and heterogeneity of target antigen expression, and lack of bona fide tumor-specific antigens that can be targeted without cross-reactivity against normal tissues. This may lead to unwanted on-target off-tumor toxicities that could undermine the desired antitumor effect. Recent advances in synthetic biology and genetic engineering have enabled reprogramming of immune effector cells to enhance their selectivity toward tumors, thus mitigating on-target off-tumor adverse effects. In this review, we outline the current strategies being explored to improve CAR selectivity toward tumor cells with a focus on natural killer (NK) cells, and the progress made in translating these strategies to the clinic.
Collapse
Affiliation(s)
- Ye Li
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hind Rafei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Lin X, Sun Y, Dong X, Liu Z, Sugimura R, Xie G. IPSC-derived CAR-NK cells for cancer immunotherapy. Biomed Pharmacother 2023; 165:115123. [PMID: 37406511 DOI: 10.1016/j.biopha.2023.115123] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Adoptive cell therapies (ACT) based on chimeric antigen receptor (CAR)-modified immune cells have made great progress with six CAR-T cell products approved by the U.S. FDA for hematological malignancies. Compared with CAR-T cells, CAR-NK cells have attracted increasing attention owing to their multiple killing mechanisms, higher safety profile, and broad sources. Induced pluripotent stem cell (iPSC)-derived NK (iPSC-NK) cells possess a mature phenotype and potent cytolytic activity, and can provide a homogeneous population of CAR-NK cells that can be expanded to clinical scale. Thus, iPSC-derived CAR-NK (CAR-iNK) cells could be used as a standardized and "off-the-shelf" product for cancer immunotherapy. In this review, we summarize the current status of the manufacturing techniques, genetic modification strategies, preclinical and clinical evidence of CAR-iNK cells, and discuss the challenges and future prospects of CAR-iNK cell therapy as a novel cellular immunotherapy in cancer.
Collapse
Affiliation(s)
- Xiaotong Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yao Sun
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xin Dong
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zishen Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| | - Guozhu Xie
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
44
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
45
|
Goulding J, Yeh WI, Hancock B, Blum R, Xu T, Yang BH, Chang CW, Groff B, Avramis E, Pribadi M, Pan Y, Chu HY, Sikaroodi S, Fong L, Brookhouser N, Dailey T, Meza M, Denholtz M, Diaz E, Martin J, Szabo P, Cooley S, Ferrari de Andrade L, Lee TT, Bjordahl R, Wucherpfennig KW, Valamehr B. A chimeric antigen receptor uniquely recognizing MICA/B stress proteins provides an effective approach to target solid tumors. MED 2023; 4:457-477.e8. [PMID: 37172578 PMCID: PMC10524375 DOI: 10.1016/j.medj.2023.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING Funded by Fate Therapeutics and NIH (R01CA238039).
Collapse
Affiliation(s)
| | - Wen-I Yeh
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Robert Blum
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Tianhao Xu
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Bi-Huei Yang
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Brian Groff
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Earl Avramis
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Yijia Pan
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Hui-Yi Chu
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Lauren Fong
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | | | - Miguel Meza
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Evelyn Diaz
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Judy Martin
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Peter Szabo
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | - Sarah Cooley
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Tom T Lee
- Fate Therapeutics Inc., San Diego, CA 92131, USA
| | | | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Neurology, Brigham & Women's Hospital, Boston, MA 02115, USA; Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Kilgour MK, Bastin DJ, Lee SH, Ardolino M, McComb S, Visram A. Advancements in CAR-NK therapy: lessons to be learned from CAR-T therapy. Front Immunol 2023; 14:1166038. [PMID: 37205115 PMCID: PMC10187144 DOI: 10.3389/fimmu.2023.1166038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Advancements in chimeric antigen receptor engineered T-cell (CAR-T) therapy have revolutionized treatment for several cancer types over the past decade. Despite this success, obstacles including the high price tag, manufacturing complexity, and treatment-associated toxicities have limited the broad application of this therapy. Chimeric antigen receptor engineered natural killer cell (CAR-NK) therapy offers a potential opportunity for a simpler and more affordable "off-the-shelf" treatment, likely with fewer toxicities. Unlike CAR-T, CAR-NK therapies are still in early development, with few clinical trials yet reported. Given the challenges experienced through the development of CAR-T therapies, this review explores what lessons we can apply to build better CAR-NK therapies. In particular, we explore the importance of optimizing the immunochemical properties of the CAR construct, understanding factors leading to cell product persistence, enhancing trafficking of transferred cells to the tumor, ensuring the metabolic fitness of the transferred product, and strategies to avoid tumor escape through antigen loss. We also review trogocytosis, an important emerging challenge that likely equally applies to CAR-T and CAR-NK cells. Finally, we discuss how these limitations are already being addressed in CAR-NK therapies, and what future directions may be possible.
Collapse
Affiliation(s)
- Marisa K. Kilgour
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Michele Ardolino
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Scott McComb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Center for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, Canada
| | - Alissa Visram
- Department of Medicine, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
47
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
48
|
Hang S, Wang N, Sugimura R. T, NK, then macrophages: Recent advances and challenges in adaptive immunotherapy from human pluripotent stem cells. Differentiation 2023; 130:51-57. [PMID: 36682340 DOI: 10.1016/j.diff.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Adaptive cellular immunotherapy, especially chimeric antigen receptor-T (CAR-T) cell therapy, has advanced the treatment of hematological malignancy. However, major limitations still remain in the source of cells comes from the patients themselves. The use of human pluripotent stem cells to differentiate into immune cells, such as T cells, NK cells, and macrophages, then arm with chimeric antigen receptor (CAR) to enhance tumor killing has gained major attention. It is expected to solve the low number of immune cells recovery from patients, long waiting periods, and ethical issues(reprogramming somatic cells to produce induced pluripotent stem cells (iPS cells) avoids the ethical issues unique to embryonic stem cells (Lo and Parham, 2009). However, there are still major challenges to be further solved. This review summarizes the progress, challenges, and future direction in human pluripotent stem cell-based immunotherapy.
Collapse
Affiliation(s)
- Su Hang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nan Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong; Centre for Translational Stem Cell Biology, Hong Kong.
| |
Collapse
|