1
|
Kim S, Flores RA, Moon SY, Lee SY, Altanzul B, Baek J, Choi EB, Lim H, Jang EY, Lee YK, Ouh IO, Kim WH. Design and Preliminary Immunogenicity Evaluation of Nipah Virus Glycoprotein G Epitope-Based Peptide Vaccine in Mice. Vaccines (Basel) 2025; 13:428. [PMID: 40333318 PMCID: PMC12031491 DOI: 10.3390/vaccines13040428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
Background: The emergence of several paramyxoviruses, including Nipah virus (NiV), makes continued efforts in vaccine development as part of pandemic preparedness efforts necessary. Although NiV is a zoonotic pathogen with high case fatality, there is still no licensed vaccine. Methods: Herein, NiV attachment glycoprotein G (NiV-G), which is crucial to host cell receptor binding, was used to develop Nipah epitope-based peptide vaccines. A total of 39 B- and T-cell epitopes of NiV-G were shortlisted for peptide synthesis and evaluation using in silico analysis. Results: The in vitro antigenicity evaluation of the peptide candidates showed eight synthesized peptides (G7, stalk-domain epitopes) with relatively high binding to NiV-G antibody-positive serum (A450nm: 1.39-3.78). Moreover, nine-mer (9-mer) peptides were found to be less reactive than their longer peptide counterparts (15-30 aa, G7-1, and G7-4), but 9-mer activity was enhanced with cyclization (NPLPFREYK, A450nm: 2.66) and C-terminal amidation modification (NPLPFREYK-NH2, A450nm: 1.39). Subsequently, in vivo validation in immunized mice revealed the immunogenicity potential of the G7-1 peptide vaccine (30 aa, NENVNEKCKFTLPPLKIHECNISCPNPLPF) to elicit a strong antigen-specific antibody response against their homologous peptide antigen (I.V., A450nm: 1.48 ± 0.78; I.M., A450nm: 1.66 ± 0.66). However, antibody binding to recombinant NiV-G protein remained low, suggesting limited recognition to the native antigen. Conclusions: This study focused on the preliminary screening and validation of peptide vaccines using single formulations with minimal modifications in the peptide candidates. Our findings collectively show the immunogenic potential of the NiV-G stalk-based epitope peptide vaccine as a novel therapeutic for NiV and underscores the need for strategic design, delivery, and formulation optimization to enhance its protective efficacy and translational application.
Collapse
Affiliation(s)
- Seungyeon Kim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Rochelle A. Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; (R.A.F.); (S.Y.L.); (B.A.)
| | - Seo Young Moon
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Seung Yun Lee
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; (R.A.F.); (S.Y.L.); (B.A.)
| | - Bujinlkham Altanzul
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; (R.A.F.); (S.Y.L.); (B.A.)
| | - Jiwon Baek
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Eun Bee Choi
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Heeji Lim
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Eun Young Jang
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Yoo-kyoung Lee
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - In-Ohk Ouh
- Division of Vaccine Development Coordination, Center for Vaccine Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Osong, Cheongju 28159, Chungcheongbuk-do, Republic of Korea; (S.K.); (S.Y.M.); (J.B.); (E.B.C.); (H.L.); (E.Y.J.); (Y.-k.L.)
| | - Woo H. Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Gyeongsangnam-do, Republic of Korea; (R.A.F.); (S.Y.L.); (B.A.)
| |
Collapse
|
2
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2025; 38:e0012823. [PMID: 39714175 PMCID: PMC11905374 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R. Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K. Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R. Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F. Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Yang S, Li H, Liu F. Commentary: Inactivated rabies virus vectored MERS-Coronavirus vaccine induces protective immunity in mice, camels, and alpacas. Front Immunol 2025; 16:1549481. [PMID: 40103811 PMCID: PMC11913706 DOI: 10.3389/fimmu.2025.1549481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/17/2025] [Indexed: 03/20/2025] Open
Affiliation(s)
- Shengnan Yang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control & Prevention, Qingdao, China
| | - Hanqi Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
4
|
Wang L, Lu D, Yang M, Chai S, Du H, Jiang H. Nipah virus: epidemiology, pathogenesis, treatment, and prevention. Front Med 2024; 18:969-987. [PMID: 39417975 DOI: 10.1007/s11684-024-1078-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 10/19/2024]
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus that has recently emerged as a crucial public health issue. It can elicit severe encephalitis and respiratory diseases in animals and humans, leading to fatal outcomes, exhibiting a wide range of host species tropism, and directly transmitting from animals to humans or through an intermediate host. Human-to-human transmission associated with recurrent NiV outbreaks is a potential global health threat. Currently, the lack of effective therapeutics or licensed vaccines for NiV necessitates the primary utilization of supportive care. In this review, we summarize current knowledge of the various aspects of the NiV, including therapeutics, vaccines, and its biological characteristics, epidemiology, pathogenesis, and clinical features. The objective is to provide valuable information from scientific and clinical research and facilitate the formulation of strategies for preventing and controlling the NiV.
Collapse
Affiliation(s)
- Limei Wang
- Department of Microbiology and Pathogenic Biology, School of Basic Medicine, Air Force Medical University, Xi'an, 710032, China
| | - Denghui Lu
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Maosen Yang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Shiqi Chai
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Du
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - Hong Jiang
- Center for Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
5
|
Chakraborty C, Saha S, Bhattacharya M. Recent Advances in Immunological Landscape and Immunotherapeutic Agent of Nipah Virus Infection. Cell Biochem Biophys 2024; 82:3053-3069. [PMID: 39052192 DOI: 10.1007/s12013-024-01424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Over the last two decades, the Nipah virus (NiV) emerged as a highly lethal zoonotic pathogen to humans. Outbreaks occurred occasionally in South and Southeast Asia. Therefore, a safe and effective vaccine against the virus is needed to fight against the deadly virus. Understanding the immunological landscape during this lethal virus infection is necessary in this direction. However, we found scattered information on the immunological landscape of the virus's reservoir, as well as hosts such as humans and livestock. The review provides a recent understanding of the immunological landscape of the virus's reservoir, human hosts, monoclonal antibodies, and vaccines for NiV infection. To describe the immunological landscape, we divided our review article into some points. Firstly, we illustrated bats' immune response as a reservoir during the NiV infection. Secondly, we illustrated an overview of the molecular mechanisms underlying the immune response to the NiV infection, various immune cells, humans' innate immune response, adaptive immunity, and the landscape of cytokines and chemokines. We also discussed INF escape, NET evasion, the T cell landscape, and the B cell landscape during virus infection. Thirdly, we also demonstrated the potential monoclonal antibody therapeutics, and vaccines. Finally, neutralizing antibodies (nAbs) of NiV and potentially other therapeutic strategies were discussed. The review will help researchers for better understanding the immunological landscape, mAbs, and vaccines, enabling them to develop their next-generation versions.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| |
Collapse
|
6
|
Li Y, Zhou H, Li Q, Duan X, Liu F. Rabies virus as vector for development of vaccine: pros and cons. Front Vet Sci 2024; 11:1475431. [PMID: 39386254 PMCID: PMC11461460 DOI: 10.3389/fvets.2024.1475431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Houcheng Zhou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qian Li
- Laizhou Zhenzhu Station for Animal Husbandry and Veterinary Medicine, Yantai, China
| | - Xiaoxiao Duan
- Qingdao Center for Animal Disease Control and Prevention, Qingdao, China
| | - Fuxiao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
7
|
Yin C, Yao YF, Yang P, Liu H, Gao G, Peng Y, Chen M, Lu M, Zhang X, Guo W, Zhang Z, Hu X, Yuan Z, Shan C. A highly effective ferritin-based divalent nanoparticle vaccine shields Syrian hamsters against lethal Nipah virus. Front Immunol 2024; 15:1387811. [PMID: 38911870 PMCID: PMC11191641 DOI: 10.3389/fimmu.2024.1387811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
The Nipah virus (NiV), a highly deadly bat-borne paramyxovirus, poses a substantial threat due to recurrent outbreaks in specific regions, causing severe respiratory and neurological diseases with high morbidity. Two distinct strains, NiV-Malaysia (NiV-M) and NiV-Bangladesh (NiV-B), contribute to outbreaks in different geographical areas. Currently, there are no commercially licensed vaccines or drugs available for prevention or treatment. In response to this urgent need for protection against NiV and related henipaviruses infections, we developed a novel homotypic virus-like nanoparticle (VLP) vaccine co-displaying NiV attachment glycoproteins (G) from both strains, utilizing the self-assembling properties of ferritin protein. In comparison to the NiV G subunit vaccine, our nanoparticle vaccine elicited significantly higher levels of neutralizing antibodies and provided complete protection against a lethal challenge with NiV infection in Syrian hamsters. Remarkably, the nanoparticle vaccine stimulated the production of antibodies that exhibited superior cross-reactivity to homologous or heterologous henipavirus. These findings underscore the potential utility of ferritin-based nanoparticle vaccines in providing both broad-spectrum and long-term protection against NiV and emerging zoonotic henipaviruses challenges.
Collapse
Affiliation(s)
- Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Feng Yao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hang Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ge Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Miaoyu Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zihan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
8
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
9
|
Lu M, Yao Y, Liu H, Zhang X, Li X, Liu Y, Peng Y, Chen T, Sun Y, Gao G, Chen M, Zhao J, Zhang X, Yin C, Guo W, Yang P, Hu X, Rao J, Li E, Wong G, Yuan Z, Chiu S, Shan C, Lan J. Vaccines based on the fusion protein consensus sequence protect Syrian hamsters from Nipah virus infection. JCI Insight 2023; 8:e175461. [PMID: 37917215 PMCID: PMC10795836 DOI: 10.1172/jci.insight.175461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023] Open
Abstract
Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen. Numerous NiV strains have been identified, including 2 representative strains from Malaysia (NiV-M) and Bangladesh (NiV-B), which differ significantly from each other. In this study, an F protein sequence with the potential to prevent different NiV strain infections was designed by bioinformatics analysis after an in-depth study of NiV sequences in GenBank. Then, a chimpanzee adenoviral vector vaccine and a DNA vaccine were developed. High levels of immune responses were detected after AdC68-F, pVAX1-F, and a prime-boost strategy (pVAX1-F/AdC68-F) in mice. After high titers of humoral responses were induced, the hamsters were challenged by the lethal NiV-M and NiV-B strains separately. The vaccinated hamsters did not show any clinical signs and survived 21 days after infection with either strain of NiV, and no virus was detected in different tissues. These results indicate that the vaccines provided complete protection against representative strains of NiV infection and have the potential to be developed as a broad-spectrum vaccine for human use.
Collapse
Affiliation(s)
- Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xuejie Li
- University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Tong Chen
- University of the Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, China
| | - Yun Sun
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, China
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - XiaoYu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, China
| | - Zhiming Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Medina-Magües ES, Lopera-Madrid J, Lo MK, Spiropoulou CF, Montgomery JM, Medina-Magües LG, Salas-Quinchucua C, Jiménez-Mora AP, Osorio JE. Immunogenicity of poxvirus-based vaccines against Nipah virus. Sci Rep 2023; 13:11384. [PMID: 37452062 PMCID: PMC10349127 DOI: 10.1038/s41598-023-38010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023] Open
Abstract
Nipah virus (NiV), an emerging zoonotic pathogen in Southeast Asia, is transmitted from Pteropus species of fruit bats to a wide range of species, including humans, pigs, horses, dogs, and cats. NiV has killed millions of animals and caused highly fatal human outbreaks since no vaccine is commercially available. This study characterized the immunogenicity and safety of poxvirus-based Nipah vaccines that can be used in humans and species responsible for NiV transmission. Mice were vaccinated with modified vaccinia Ankara (MVA) and raccoon pox (RCN) viral vectors expressing the NiV fusion (F) and glycoprotein (G) proteins subcutaneously (SC) and intranasally (IN). Importantly, both vaccines did not induce significant weight loss or clinical signs of disease while generating high circulating neutralizing antibodies and lung-specific IgG and IgA responses. The MVA vaccine saw high phenotypic expression of effector and tissue resident memory CD8ɑ+ T cells in lungs and splenocytes along with the expression of central memory CD8ɑ+ T cells in lungs. The RCN vaccine generated effector memory (SC) and tissue resident (IN) CD8ɑ+ T cells in splenocytes and tissue resident (IN) CD8ɑ+ T cells in lung cells. These findings support MVA-FG and RCN-FG viral vectors as promising vaccine candidates to protect humans, domestic animals, and wildlife from fatal disease outcomes and to reduce the global threat of NiV.
Collapse
Affiliation(s)
- Emily S Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| | - Jaime Lopera-Madrid
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Michael K Lo
- Center for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Lex G Medina-Magües
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Cristhian Salas-Quinchucua
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Angela P Jiménez-Mora
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Jorge E Osorio
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
11
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
12
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
13
|
Wang H, Bi J, Feng N, Zhao Y, Wang T, Li Y, Yan F, Yang S, Xia X. Construction of Recombinant Rabies Virus Vectors Expressing H or F Protein of Peste des Petits Ruminants Virus. Vet Sci 2022; 9:vetsci9100555. [PMID: 36288168 PMCID: PMC9610701 DOI: 10.3390/vetsci9100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Simple Summary Peste des petits ruminants (PPR) is one of the most contagious and fatal diseases of small ruminants. In this study, two recombinant viruses rSRV9-H and rSRV9-F, which express the envelope glycoprotein H (hemagglutinin protein) or F (fusion protein) protein, respectively, were successfully generated with a rabies virus as vector. The constructed viruses had good proliferative activity and stability and provided potential bivalent inactivated vaccine candidate strains for the prevention of PPR and livestock rabies. Abstract Peste des petits ruminants (PPR) is one of the most contagious and fatal diseases of small ruminants in the world and is classified as a category A epidemic disease. It is the target of a global eradication campaign led by the Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO). The PPR live attenuated vaccine is currently the most widely used and approved vaccine, but the use of this vaccine interferes with the serological testing of the PPR elimination program, and there is a potential safety risk. Viral vector vaccines are one of the most promising methods to solve this dilemma. In this study, the full-length infectious clone plasmid of rabies virus (RABV), pD-SRV9-PM-LASV, was used as the backbone, and the envelope glycoprotein H (hemagglutinin protein) or F (fusion protein) gene of PPRV was inserted into the backbone plasmid to construct the infectious clones pD-SRV9-PM-PPRV-H and pD-SRV9-PM-PPRV-F, which express the PPRV H and PPRV F genes, respectively. The correct construction of these infectious clones was verified after sequencing and double digestion. The infectious clones were transfected with a helper plasmid into BSR/T7 cells, and recombinant viruses were successfully rescued by direct immunofluorescence, indirect immunofluorescence, Western blotting, and transmission electron microscopy and named rSRV9-H and rSRV9-F. The results of growth kinetics studies indicated that the inserted gene did not affect virus proliferation. Stability studies revealed that the inserted target gene was stably expressed in recombinant RABV for at least 15 generations. In this study, the recombinant viruses rSRV9-H and rSRV9-F were successfully rescued. The constructed viruses had good proliferative activity and stability and provided potential bivalent inactivated vaccine candidate strains for the prevention of PPR and livestock rabies.
Collapse
Affiliation(s)
- Haojie Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 130118, China
| | - Jinhao Bi
- College of Veterinary Medicine, Jilin Agriculture University, Changchun 453003, China
| | - Na Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Yongkun Zhao
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Yuetao Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 130118, China
- Correspondence: (Y.L.); (F.Y.)
| | - Feihu Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
- Correspondence: (Y.L.); (F.Y.)
| | - Songtao Yang
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| | - Xianzhu Xia
- Changchun Veterinary Research Institute, Chinese Academy of Agriculture Sciences, Changchun 130000, China
| |
Collapse
|
14
|
Inactivated rabies-vectored SARS-CoV-2 vaccine provides long-term immune response unaffected by vector immunity. NPJ Vaccines 2022; 7:110. [PMID: 36151100 PMCID: PMC9508099 DOI: 10.1038/s41541-022-00532-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The objective of this study is to further analyze recombinant rabies virus-vectored SARS-CoV-2 vaccine, CORAVAX, as an effective COVID-19 vaccine strategy. CORAVAX has proven immunogenic and protective against SARS-CoV-2 in animal models. Here, we have screened adjuvants for the highest quality antibody titers, negated the concern of pre-existing rabies-vector immunity, and established its potential as a long-term COVID-19 vaccine. We have tested toll-like receptor 4 (TLR4) agonists, inflammasome activators, and alum adjuvants in CORAVAX and found TLR4-activating MPLA-AddaVax to have the greatest potential. We followed the humoral immune response to CORAVAX in mice with pre-existing rabies virus immunity and saw no significant differences compared to naive mice. We then followed the immune response to CORAVAX over several months and 1-year post-immunization. Mice maintained high antigen-specific serum antibody titers as well as long-lived antibody-secreting cells in the spleen and bone marrow. We believe this rabies-vector strategy combats the problem of waning immunity of other COVID-19 vaccines. These results together support CORAVAX’s potential during the ongoing COVID-19 pandemic.
Collapse
|
15
|
The pathogenesis of Nipah virus: A review. Microb Pathog 2022; 170:105693. [DOI: 10.1016/j.micpath.2022.105693] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
|
16
|
Carpenter A, Waltenburg MA, Hall A, Kile J, Killerby M, Knust B, Negron M, Nichols M, Wallace RM, Behravesh CB, McQuiston JH, the Vaccine Preventable Zoonotic Disease Working Group. Vaccine Preventable Zoonotic Diseases: Challenges and Opportunities for Public Health Progress. Vaccines (Basel) 2022; 10:vaccines10070993. [PMID: 35891157 PMCID: PMC9319643 DOI: 10.3390/vaccines10070993] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 01/18/2023] Open
Abstract
Zoonotic diseases represent a heavy global burden, causing important economic losses, impacting animal health and production, and costing millions of human lives. The vaccination of animals and humans to prevent inter-species zoonotic disease transmission is an important intervention. However, efforts to develop and implement vaccine interventions to reduce zoonotic disease impacts are often limited to the veterinary and agricultural sectors and do not reflect the shared burden of disease. Multisectoral collaboration, including co-development opportunities for human and animal vaccines, expanding vaccine use to include animal reservoirs such as wildlife, and strategically using vaccines to interrupt complex transmission cycles is needed. Addressing zoonoses requires a multi-faceted One Health approach, wherein vaccinating people and animals plays a critical role.
Collapse
|
17
|
Liew YJM, Ibrahim PAS, Ong HM, Chong CN, Tan CT, Schee JP, Gómez Román R, Cherian NG, Wong WF, Chang LY. The Immunobiology of Nipah Virus. Microorganisms 2022; 10:microorganisms10061162. [PMID: 35744680 PMCID: PMC9228579 DOI: 10.3390/microorganisms10061162] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 12/23/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection.
Collapse
Affiliation(s)
- Yvonne Jing Mei Liew
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Deputy Vice Chancellor’s Office (Research & Innovation), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Puteri Ainaa S. Ibrahim
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Hui Ming Ong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chee Ning Chong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Chong Tin Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Jie Ping Schee
- Division of Neurology, Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (C.T.T.); (J.P.S.)
| | - Raúl Gómez Román
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Neil George Cherian
- Vaccine Research and Development, Coalition for Epidemic Preparedness Innovation (CEPI), Askekroken 11, 0277 Oslo, Norway; (R.G.R.); (N.G.C.)
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (Y.J.M.L.); (P.A.S.I.); (H.M.O.); (C.N.C.); (W.F.W.)
- Correspondence:
| |
Collapse
|
18
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
19
|
Gabra MD, Ghaith HS, Ebada MA. Nipah Virus: An Updated Review and Emerging Challenges. Infect Disord Drug Targets 2022; 22:e170122200296. [PMID: 35078400 DOI: 10.2174/1871526522666220117120859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Many hospitals are teetering on the edge of being overwhelmed, with many already there because of the COVID-19 pandemic. Moreover, a recent report has also warned about the Nipah virus (NiV). NiV is a pleomorphic enveloped virus that belongs to the Paramyxoviridae family (genus Henipavirus); it affects both the respiratory and central nervous systems, with a fatality rate ranging from 40% to 75%, as documented by the World Health Organization. The first reported NiV outbreak was in early 1999 in Malaysia among people who contacted infected pigs. NiV also affected Bangladesh and India, where the main infection route was the consumption of raw date palm sap contaminated by bats. The World Health Organization has listed NiV as one of the emerging pathogens that can lead to severe outbreaks at any moment in the future with limited medical preparations and only a few projects in pharmaceutical firms. There is no licensed treatment for human use against NiV until now, and the management is limited to supportive care and symptomatic treatment. In severe cases with neurologic and respiratory complications, intensive care is needed. This article reviews the published literature and highlights the latest updates about this emerging pathogen and the methods to avoid the spread of this disease during this critical period.
Collapse
Affiliation(s)
| | | | - Mahmoud Ahmed Ebada
- Faculty of Medicine, Zagazig University, Zagazig, El-Sharkia, Egypt
- Internal Medicine Resident, Ministry of Health and Population of Egypt, Cairo, Egypt
- Department of Internal Medicine and Endocrinology, National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| |
Collapse
|
20
|
Gómez Román R, Tornieporth N, Cherian NG, Shurtleff AC, L'Azou Jackson M, Yeskey D, Hacker A, Mungai E, Le TT. Medical countermeasures against henipaviruses: a review and public health perspective. THE LANCET. INFECTIOUS DISEASES 2021; 22:e13-e27. [PMID: 34735799 PMCID: PMC8694750 DOI: 10.1016/s1473-3099(21)00400-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
Henipaviruses, including Nipah virus, are regarded as pathogens of notable epidemic potential because of their high pathogenicity and the paucity of specific medical countermeasures to control infections in humans. We review the evidence of medical countermeasures against henipaviruses and project their cost in a post-COVID-19 era. Given the sporadic and unpredictable nature of henipavirus outbreaks, innovative strategies will be needed to circumvent the infeasibility of traditional phase 3 clinical trial regulatory pathways. Stronger partnerships with scientific institutions and regulatory authorities in low-income and middle-income countries can inform coordination of appropriate investments and development of strategies and normative guidelines for the deployment and equitable use of multiple medical countermeasures. Accessible measures should include global, regional, and endemic in-country stockpiles of reasonably priced small molecules, monoclonal antibodies, and vaccines as part of a combined collection of products that could help to control henipavirus outbreaks and prevent future pandemics.
Collapse
Affiliation(s)
- Raúl Gómez Román
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Nadia Tornieporth
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway; University of Applied Sciences & Arts, Hanover, Germany
| | | | - Amy C Shurtleff
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | - Debra Yeskey
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Adam Hacker
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Eric Mungai
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Tung Thanh Le
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway.
| |
Collapse
|
21
|
Kurup D, Fisher CR, Scher G, Yankowski C, Testa A, Keshwara R, Abreu-Mota T, Lambert R, Ferguson M, Rinaldi W, Ruiz L, Wirblich C, Schnell MJ. Tetravalent Rabies-Vectored Filovirus and Lassa Fever Vaccine Induces Long-term Immunity in Nonhuman Primates. J Infect Dis 2021; 224:995-1004. [PMID: 33421072 PMCID: PMC8448432 DOI: 10.1093/infdis/jiab014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The objective of this study is to evaluate the immunogenicity of adjuvanted monovalent rabies virus (RABV)-based vaccine candidates against Ebola virus (FILORAB1), Sudan virus (FILORAB2), Marburg virus (FILORAB3), Lassa virus (LASSARAB1), and combined trivalent vaccine candidate (FILORAB1-3) and tetravalent vaccine candidate (FILORAB1-3 and LASSARAB) in nonhuman primates. METHODS Twenty-four Macaca fascicularis were randomly assigned into 6 groups of 4 animals. Each group was vaccinated with either a single adjuvanted vaccine, the trivalent vaccine, or the tetravalent vaccine at days 0 and 28. We followed the humoral immune responses for 1 year by antigen-specific enzyme-linked immunosorbent assays and RABV neutralization assays. RESULTS High titers of filovirus and/or Lassa virus glycoprotein-specific immunoglobulin G were induced in the vaccinated animals. There were no significant differences between immune responses in animals vaccinated with single vaccines vs trivalent or tetravalent vaccines. In addition, all vaccine groups elicited strong rabies neutralizing antibody titers. The antigen-specific immune responses were detectable for 1 year in all groups. CONCLUSIONS In summary, this study shows the longevity of the immune responses up to 365 days for a pentavalent vaccine-against Ebola virus, Sudan virus, Marburg virus, Lassa virus, and RABV-using a safe and effective vaccine platform.
Collapse
Affiliation(s)
- Drishya Kurup
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christine R Fisher
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Gabrielle Scher
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Catherine Yankowski
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - AnnaMarie Testa
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rohan Keshwara
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tiago Abreu-Mota
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Rachael Lambert
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | - Christoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
22
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
23
|
Kurup D, Malherbe DC, Wirblich C, Lambert R, Ronk AJ, Zabihi Diba L, Bukreyev A, Schnell MJ. Inactivated rabies virus vectored SARS-CoV-2 vaccine prevents disease in a Syrian hamster model. PLoS Pathog 2021; 17:e1009383. [PMID: 33765062 PMCID: PMC8023494 DOI: 10.1371/journal.ppat.1009383] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/06/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emergent coronavirus that has caused a worldwide pandemic. Although human disease is often asymptomatic, some develop severe illnesses such as pneumonia, respiratory failure, and death. There is an urgent need for a vaccine to prevent its rapid spread as asymptomatic infections accounting for up to 40% of transmission events. Here we further evaluated an inactivated rabies vectored SARS-CoV-2 S1 vaccine CORAVAX in a Syrian hamster model. CORAVAX adjuvanted with MPLA-AddaVax, a TRL4 agonist, induced high levels of neutralizing antibodies and generated a strong Th1-biased immune response. Vaccinated hamsters were protected from weight loss and viral replication in the lungs and nasal turbinates three days after challenge with SARS-CoV-2. CORAVAX also prevented lung disease, as indicated by the significant reduction in lung pathology. This study highlights CORAVAX as a safe, immunogenic, and efficacious vaccine that warrants further assessment in human trials.
Collapse
Affiliation(s)
- Drishya Kurup
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Delphine C. Malherbe
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Christoph Wirblich
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Rachael Lambert
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Adam J. Ronk
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Leila Zabihi Diba
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Matthias J. Schnell
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
24
|
Hauser N, Gushiken AC, Narayanan S, Kottilil S, Chua JV. Evolution of Nipah Virus Infection: Past, Present, and Future Considerations. Trop Med Infect Dis 2021; 6:tropicalmed6010024. [PMID: 33672796 PMCID: PMC8005932 DOI: 10.3390/tropicalmed6010024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus of the Henipavirus genus first identified in Malaysia in 1998. Henipaviruses have bat reservoir hosts and have been isolated from fruit bats found across Oceania, Asia, and Africa. Bat-to-human transmission is thought to be the primary mode of human NiV infection, although multiple intermediate hosts are described. Human infections with NiV were originally described as a syndrome of fever and rapid neurological decline following contact with swine. More recent outbreaks describe a syndrome with prominent respiratory symptoms and human-to-human transmission. Nearly annual outbreaks have been described since 1998 with case fatality rates reaching greater than 90%. The ubiquitous nature of the reservoir host, increasing deforestation, multiple mode of transmission, high case fatality rate, and lack of effective therapy or vaccines make NiV’s pandemic potential increasingly significant. Here we review the epidemiology and microbiology of NiV as well as the therapeutic agents and vaccines in development.
Collapse
Affiliation(s)
- Naomi Hauser
- Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA 95817, USA;
| | - Alexis C. Gushiken
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shivakumar Narayanan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Shyam Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
| | - Joel V. Chua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (A.C.G.); (S.N.); (S.K.)
- Correspondence: ; Tel.: +1-410-706-5704
| |
Collapse
|
25
|
Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines (Basel) 2020; 8:E680. [PMID: 33202961 PMCID: PMC7712223 DOI: 10.3390/vaccines8040680] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Vaccination is arguably the most cost-effective preventative measure against infectious diseases. While vaccines have been successfully developed against certain viruses (e.g., yellow fever virus, polio virus, and human papilloma virus HPV), those against a number of other important public health threats, such as HIV-1, hepatitis C, and respiratory syncytial virus (RSV), have so far had very limited success. The global pandemic of COVID-19, caused by the SARS-CoV-2 virus, highlights the urgency of vaccine development against this and other constant threats of zoonotic infection. While some traditional methods of producing vaccines have proven to be successful, new concepts have emerged in recent years to produce more cost-effective and less time-consuming vaccines that rely on viral vectors to deliver the desired immunogens. This review discusses the advantages and disadvantages of different viral vaccine vectors and their general strategies and applications in both human and veterinary medicines. A careful review of these issues is necessary as they can provide important insights into how some of these viral vaccine vectors can induce robust and long-lasting immune responses in order to provide protective efficacy against a variety of infectious disease threats to humans and animals, including those with zoonotic potential to cause global pandemics.
Collapse
Affiliation(s)
- Sophia M. Vrba
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Natalie M. Kirk
- Comparative Molecular Biosciences Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Morgan E. Brisse
- Biochemistry, Molecular Biology and Biophysics Graduate Program, Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA;
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, University of Minnesota, Twin Cities, St. Paul, MN 55108, USA; (S.M.V.); (Y.L.)
| |
Collapse
|
26
|
Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Curr Opin Virol 2020; 44:169-182. [PMID: 33130500 PMCID: PMC8331071 DOI: 10.1016/j.coviro.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022]
Abstract
Appropriate choice of vaccine vector is crucial for effective vaccine development. Rhabdoviral vectors, such as rabies virus and vesicular stomatitis virus, have been used in a variety of vaccine strategies. These viruses have small, easily manipulated genomes that can stably express foreign glycoproteins due to a well-established reverse genetics system for virus recovery. Both viruses have well-described safety profiles and have been demonstrated to be effective vaccine vectors. This review will describe how these Rhabdoviruses can be manipulated for use as vectors, their various applications as vaccines or therapeutics, and the advantages and disadvantages of their use.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Front Immunol 2020; 11:842. [PMID: 32595632 PMCID: PMC7300195 DOI: 10.3389/fimmu.2020.00842] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Amy L. Chamberlain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sean T. Nugent
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
A Soluble Version of Nipah Virus Glycoprotein G Delivered by Vaccinia Virus MVA Activates Specific CD8 and CD4 T Cells in Mice. Viruses 2019; 12:v12010026. [PMID: 31878180 PMCID: PMC7019319 DOI: 10.3390/v12010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA–NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR−/−) mice after vaccination with the MVA–NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA–NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.
Collapse
|
29
|
Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Vet Microbiol 2019; 241:108549. [PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
Collapse
Affiliation(s)
- Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
30
|
Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Res 2019; 8. [PMID: 31656582 PMCID: PMC6798321 DOI: 10.12688/f1000research.19975.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged at the end of last century as a human pathogen capable of causing severe acute respiratory infection and encephalitis. Although NiV provokes serious diseases in numerous mammalian species, the infection seems to be asymptomatic in NiV natural hosts, the fruit bats, which provide a continuous virus source for further outbreaks. Consecutive human-to-human transmission has been frequently observed during outbreaks in Bangladesh and India. NiV was shown to interfere with the innate immune response and interferon type I signaling, restraining the anti-viral response and permitting viral spread. Studies of adaptive immunity in infected patients and animal models have suggested an unbalanced immune response during NiV infection. Here, we summarize some of the recent studies of NiV pathogenesis and NiV-induced modulation of both innate and adaptive immune responses, as well as the development of novel prophylactic and therapeutic approaches, necessary to control this highly lethal emerging infection.
Collapse
Affiliation(s)
- Rodolphe Pelissier
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| | - Mathieu Iampietro
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| | - Branka Horvat
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| |
Collapse
|
31
|
Ojha R, Pareek A, Pandey RK, Prusty D, Prajapati VK. Strategic Development of a Next-Generation Multi-Epitope Vaccine To Prevent Nipah Virus Zoonotic Infection. ACS OMEGA 2019; 4:13069-13079. [PMID: 31460434 PMCID: PMC6705194 DOI: 10.1021/acsomega.9b00944] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/26/2019] [Indexed: 05/23/2023]
Abstract
Nipah virus (NiV) is an emerging zoonotic pathogen, reported for the recent severe outbreaks of encephalitis and respiratory illness in humans and animals, respectively. Many antiviral drugs have been discovered to inhibit this pathogen, but none of them were that much efficient. To overcome the complications associated with this severe pathogenic virus, we have designed a multi-epitope subunit vaccine using computational immunology strategies. Identification of structural and nonstructural proteins of Nipah virus assisted in the vaccine designing. The selected proteins are known to be involved in the survival of the virus. The antigenic binders (B-cell, HTL, and CTL) from the selected proteins were prognosticated. These antigenic binders will be able to generate the humoral as well as cell-mediated immunity. All the epitopes were united with the help of suitable linkers and with an adjuvant at the N-terminal of the vaccine, for the enhancement of immunogenicity. The physiological characterization, along with antigenicity and allergenicity of the designed vaccine candidates, was estimated. The 3D structure prediction and its validation were performed. The validated vaccine model was then docked and simulated with the TLR-3 receptor to check the stability of the docked complex. This next-generation approach will provide a new vision for the development of a high immunogenic vaccine against the NiV.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Aditi Pareek
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Rajan K. Pandey
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Dhaneswar Prusty
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| | - Vijay K. Prajapati
- Department of Biochemistry,
School of Life Sciences, Central University
of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan 305817, India
| |
Collapse
|