1
|
Zhang Q, He S, Ji Z, Zhang X, Yuan B, Liu R, Yang Y, Ding Y. Integrated bioinformatic analysis identifies GADD45B as an immune-related prognostic biomarker in skin cutaneous melanoma. Hereditas 2025; 162:74. [PMID: 40350499 PMCID: PMC12067689 DOI: 10.1186/s41065-025-00437-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
Skin cutaneous melanoma (SKCM) arises from melanocytes and is an aggressive form of skin cancer. If left untreated, most melanomas will metastasize, posing a major health risk. GADD45B, a member of the GADD45 family, is known to be involved in DNA damage repair; however, its specific role in SKCM remains largely unclear. In this study, we comprehensively investigated the function of GADD45B in SKCM. By integrating 26 SKCM-related datasets from The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), cBioPortal for Cancer Genomics (cBioPortal), Gene Expression Omnibus (GEO), and other databases, we conducted functional enrichment, immune infiltration, and single-cell analyses using R. Additionally, transcriptome sequencing of 30 human SKCM cell lines, phenotype characterization of 29 SKCM lines in vitro, and macrophage polarization analysis were performed. We found that GADD45B expression was significantly downregulated in SKCM patients compared to normal controls (p < 0.001), and higher GADD45B levels correlated with better prognosis (p < 0.05). GADD45B also showed high diagnostic accuracy, with an area under the curve (AUC) of 0.986. GO and KEGG analyses revealed a strong association between GADD45B and immune-related pathways. Gene Set Variation Analysis (GSVA) and single-cell sequencing suggested that GADD45B may serve as a novel immune checkpoint, predominantly expressed in macrophages and promoting M1 polarization. In vitro, overexpression of GADD45B significantly inhibited SKCM cell proliferation, potentially via suppression of the PI3K/Akt signaling pathway, and also reduced chemotherapy resistance. Furthermore, in vivo experiments using a xenograft mouse model demonstrated that GADD45B overexpression significantly suppressed tumor growth. Mice injected with GADD45B-overexpressing tumor cells exhibited smaller tumor volumes from day 15 onwards compared to controls, with markedly reduced tumor volume and weight at the endpoint. These results underscore the potential of GADD45B as an effective tumor suppressor in SKCM. In conclusion, our findings highlight GADD45B as a key regulator in SKCM progression, capable of restraining tumor cell proliferation and enhancing apoptosis. GADD45B holds promise as a novel diagnostic and prognostic biomarker and a potential target for SKCM immunotherapy.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Song He
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
- Department of Thoracic Surgery, Institute of Thoracic Oncology, Frontiers Science Center for Disease-Molecular Network, West China Hospital of Sichuan University, Chengdu, 610097, P.R. China
| | - Zhonghao Ji
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, 046000, P.R. China
| | - Xiwen Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Ruirui Liu
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China
| | - Yimin Yang
- Department of Intensive Care Unit, First Hospital of Jilin University, Changchun, Jilin, 130021, P.R. China.
| | - Yu Ding
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, P.R. China.
| |
Collapse
|
2
|
Li X, Fan D, Li Y, Yuan J, Sun W, Zhu Q, Qi L, Wu X, Cai J, Gong T, Zhao N, Su J, Liu Z, Chen H. NKX2-5/LHX1 and UHRF1 Establishing a Positive Feedback Regulatory Circuitry Drives Esophageal Squamous Cell Carcinoma through Epigenetic Dysregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2413508. [PMID: 40307990 DOI: 10.1002/advs.202413508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/06/2025] [Indexed: 05/02/2025]
Abstract
DNA methylation regulators play critical roles in modulating oncogenic driver genes in cancers. However, the precise mechanisms through which these DNA methylation regulators influence oncogenesis and clinical therapy have yet to be fully elucidated. This study reveals that hypermethylation of under-methylated regions (UMRs) within gene bodies is involved in the activation of oncogenic homeobox genes, particularly NKX2-5 and LHX1, in esophageal squamous cell carcinoma (ESCC). Mechanistically, NKX2-5 and LHX1 synergistically bind to the promoter region of UHRF1, thereby augmenting its transcription. In turn, UHRF1 orchestrates the recruitment of DNMT1/DNMT3A, alongside NKX2-5 and LHX1, to the UMRs of these genes, thereby increasing DNA methylation levels and their expression. This intricate interplay forms a positive transcriptional feedback loop between NKX2-5/LHX1 and UHRF1, thus promoting the overexpression of all three genes and ultimately facilitating tumor growth. Notably, concurrent inhibition of UHRF1 and DNMTs impedes tumor growth by suppressing NKX2-5 and LHX1 expression. Overall, this study identifies a positive feedback regulatory circuitry underlying the UMR hypermethylation-mediated activation of oncogenic drivers in ESCC and proposes a promising therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Xukun Li
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academic of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
| | - Dandan Fan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325101, P. R. China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jian Yuan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325101, P. R. China
| | - Wanyuan Sun
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Qinghao Zhu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325101, P. R. China
| | - Ling Qi
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Xueling Wu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jiahui Cai
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Tongyang Gong
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Ning Zhao
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325101, P. R. China
| | - Zhihua Liu
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| | - Hongyan Chen
- The State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, P. R. China
| |
Collapse
|
3
|
Zhang P, Zhang H, Shahzad M, Kolachi HA, Li Y, Sheng H, Zhang X, Wan P, Zhao X. Supplementation of Forskolin and Linoleic Acid During IVC Improved the Developmental and Vitrification Efficiency of Bovine Embryos. Int J Mol Sci 2025; 26:4151. [PMID: 40362390 PMCID: PMC12071939 DOI: 10.3390/ijms26094151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
The success of assisted reproductive technology is contingent upon the growth potential of embryos post-vitrification process. When compared to in vivo embryos, it has been found that the high intracellular lipid accumulation inside the in vitro-derived embryos results in poor survival during vitrification. Based on this finding, the present study assessed the impact of incorporating forskolin and linoleic acid (FL) entering in vitro culture (IVC) on the embryos' cryo-survival, lipid content, and viability throughout vitrification. Lipid metabolomics and single-cell RNA sequencing (scRNA-seq) techniques were used to determine the underlying mechanism that the therapies were mimicking. It was observed that out of 726 identified lipids, 26 were expressed differentially between the control and FL groups, with 12 lipids upregulated and 14 lipids downregulated. These lipids were classified as Triacylglycerol (TG), Diacylglycerol (DG), Phosphatidylcholine (PC), and so on. A total of 1079 DEGs were detected between the FL and control groups, consisting of 644 upregulated genes and 435 downregulated genes. These DEGs were significantly enhanced in the arachidonic acid metabolism, lipolysis, fatty acid metabolism, cAMP signaling pathway, and other critical developmental pathways. Based on the observation, it was concluded that forskolin and linoleic acid decreased the droplet content of embryos by modulating lipid metabolism, thus enhancing the vitrified bovine embryos' cryo-survival.
Collapse
Affiliation(s)
- Peipei Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| | - Hubdar Ali Kolachi
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| | - Yupeng Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Hui Sheng
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Xiaosheng Zhang
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China; (Y.L.); (H.S.)
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China; (H.Z.); (M.S.); (H.A.K.)
| |
Collapse
|
4
|
Kufrin V, Seiler A, Brilloff S, Rothfuß H, Küchler S, Schäfer S, Rahimian E, Baumgarten J, Ding L, Buchholz F, Ball CR, Bornhäuser M, Glimm H, Bill M, Wurm AA. The histone modifier KAT2A presents a selective target in a subset of well-differentiated microsatellite-stable colorectal cancers. Cell Death Differ 2025:10.1038/s41418-025-01479-7. [PMID: 40140561 DOI: 10.1038/s41418-025-01479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Lysine acetyltransferase 2 A (KAT2A) plays a pivotal role in epigenetic gene regulation across various types of cancer. In colorectal cancer (CRC), increased KAT2A expression is associated with a more aggressive phenotype. Our study aims to elucidate the molecular underpinnings of KAT2A dependency in CRC and assess the consequences of KAT2A depletion. We conducted a comprehensive analysis by integrating CRISPR-Cas9 screening data with genomics, transcriptomics, and global acetylation patterns in CRC cell lines to pinpoint molecular markers indicative of KAT2A dependency. Additionally, we characterized the phenotypic effect of a CRISPR-interference-mediated KAT2A knockdown in CRC cell lines and patient-derived 3D spheroid cultures. Moreover, we assessed the effect of KAT2A depletion within a patient-derived xenograft mouse model in vivo. Our findings reveal that KAT2A dependency is closely associated with microsatellite stability, lower mutational burden, and increased molecular differentiation signatures in CRC, independent of the KAT2A expression levels. KAT2A-dependent CRC cells display higher gene expression levels and enriched H3K27ac marks at gene loci linked to enterocytic differentiation. Furthermore, loss of KAT2A leads to decreased cell growth and viability in vitro and in vivo, downregulation of proliferation- and stem cell-associated genes, and induction of differentiation markers. Altogether, our data show that a specific subset of CRCs with a more differentiated phenotype relies on KAT2A. For these CRC cases, KAT2A might represent a promising novel therapeutic target.
Collapse
Affiliation(s)
- Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Annika Seiler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Helen Rothfuß
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sandra Küchler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Jonas Baumgarten
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- TUD Dresden University of Technology, Faculty of Biology, Dresden, Germany
| | - Martin Bornhäuser
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Dresden, Germany
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC) Dresden, a partnership between DKFZ, Faculty of Medicine of the TUD Dresden University of Technology, University Hospital Carl Gustav Carus Dresden, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
- German Cancer Consortium (DKTK), Dresden, Germany.
| |
Collapse
|
5
|
Patte C, Pommier RM, Ferrari A, Fei-Lei Chung F, Ouzounova M, Moullé P, Richaud M, Khoueiry R, Hervieu M, Breusa S, Allio M, Rama N, Gérard L, Hervieu V, Poncet G, Fenouil T, Cahais V, Sertier AS, Boland A, Bacq-Daian D, Ducarouge B, Marie JC, Deleuze JF, Viari A, Scoazec JY, Roche C, Mehlen P, Walter T, Gibert B. Comprehensive molecular portrait reveals genetic diversity and distinct molecular subtypes of small intestinal neuroendocrine tumors. Nat Commun 2025; 16:2197. [PMID: 40038310 PMCID: PMC11880452 DOI: 10.1038/s41467-025-57305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/18/2025] [Indexed: 03/06/2025] Open
Abstract
Small intestinal neuroendocrine tumors (siNETs) are rare bowel tumors arising from malignant enteroendocrine cells, which normally regulate digestion throughout the intestine. Though infrequent, their incidence is rising through better diagnosis, fostering research into their origin and treatment. To date, siNETs are considered to be a single entity and are clinically treated as such. Here, by performing a multi-omics analysis of siNETs, we unveil four distinct molecular groups with strong clinical relevance and provide a resource to study their origin and clinical features. Transcriptomic, genetic and DNA methylation profiles identify two groups linked to distinct enteroendocrine differentiation patterns, another with a strong immune phenotype, and the last with mesenchymal properties. This latter subtype displays the worst prognosis and resistance to treatments in line with infiltration of cancer-associated fibroblasts. These data provide insights into the origin and diversity of these rare diseases, in the hope of improving clinical research into their management.
Collapse
Affiliation(s)
- Céline Patte
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Roxane M Pommier
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Anthony Ferrari
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Maria Ouzounova
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Pauline Moullé
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Mathieu Richaud
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Rita Khoueiry
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Maëva Hervieu
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Silvia Breusa
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Marion Allio
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Nicolas Rama
- Apoptosis, Cancer and Development (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Laura Gérard
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Gastroentérologie et d'Oncologie Digestive, Lyon, cedex 03, France
| | - Valérie Hervieu
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
- Hospices Civils de Lyon, Institut de Pathologie Multi-sites, Groupement Hospitalier Est, Bron, France
| | - Gilles Poncet
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Chirurgie Digestive, Lyon, France
| | - Tanguy Fenouil
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
- Hospices Civils de Lyon, Institut de Pathologie Multi-sites, Groupement Hospitalier Est, Bron, France
| | - Vincent Cahais
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Anne-Sophie Sertier
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
- Apoptosis, Cancer and Development (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Delphine Bacq-Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | | | - Julien C Marie
- TGF-beta and Immune Response (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Equipe labellisée Ligue nationale contre le cancer, Cancer Research Center of Lyon, Lyon, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry, France
| | - Alain Viari
- Plateforme Bioinformatique Gilles Thomas, Synergie Lyon Cancer, Centre Léon Bérard, Lyon, France
| | - Jean-Yves Scoazec
- Department of Medical Biology and Pathology, Gustave Roussy, Villejuif, France
| | - Colette Roche
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France
| | - Thomas Walter
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France.
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Gastroentérologie et d'Oncologie Digestive, Lyon, cedex 03, France.
| | - Benjamin Gibert
- Gastroenterology and technologies for health (Université Claude Bernard Lyon 1, INSERM U1052, CNRS UMR5286, Centre Léon Bérard), Cancer Research Center of Lyon, Lyon, France.
| |
Collapse
|
6
|
Rose EC, Simon JM, Gomez-Martinez I, Magness ST, Odle J, Blikslager AT, Ziegler AL. Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine. Am J Physiol Gastrointest Liver Physiol 2025; 328:G182-G196. [PMID: 39853303 DOI: 10.1152/ajpgi.00194.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
Intestinal ischemic injury damages the epithelial barrier and predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age dependency in intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier compared with older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs, which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs underwent single-cell transcriptomics and the predicted upstream regulator, colony stimulating factor-1 (CSF-1), was interrogated in our model. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation by colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and colony-stimulating factor-1 receptor (CSF1R) co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued neonates. Furthermore, the CSF-1 blockade reduced restitution in vitro, and CSF-1 improved barrier function in injured neonatal pigs in preliminary ex vivo experiments. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model.NEW & NOTEWORTHY These studies validate an approach to identify and predict upstream regulation of restituting epithelium in a unique pig intestinal ischemic injury model. Identification of potential molecular mediators of restitution, such as CSF-1, will inform the development of targeted therapeutic interventions for the medical management of patients with ischemia-mediated intestinal injury.
Collapse
Affiliation(s)
- Elizabeth C Rose
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Jeremy M Simon
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ismael Gomez-Martinez
- Bioinformatics and Analytics Research Collaborative, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Scott T Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jack Odle
- Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, North Carolina, United States
| | - Anthony T Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| | - Amanda L Ziegler
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
7
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
8
|
Huang RJ, Wichmann IA, Su A, Sathe A, Shum MV, Grimes SM, Meka R, Almeda A, Bai X, Shen J, Nguyen Q, Luo I, Han SS, Amieva MR, Hwang JH, Ji HP. A spatial transcriptomic signature of 26 genes resolved at single-cell resolution characterizes high-risk gastric cancer precursors. NPJ Precis Oncol 2025; 9:52. [PMID: 40000871 PMCID: PMC11861308 DOI: 10.1038/s41698-025-00816-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Gastric cancer precursors demonstrate highly-variable rates of progression toward neoplasia. Certain high-risk precursors, such as gastric intestinal metaplasia with advanced histologic features, may be at up to 30-fold increased risk for progression compared to lower-risk intestinal metaplasia. The biological differences between high- and low-risk lesions have been incompletely explored. In this study, we use several clinical cohorts to characterize the microenvironment of advanced gastric cancer precursors relative to low-risk lesions using bulk, spatial, and single-cell gene expression assays. We identified a 26-gene panel which is associated with advanced lesions, localizes to metaplastic glands on histopathology, and is expressed in aberrant mature and immature intestinal cells not normally present in the healthy stomach. This gene expression signature suggests an important role of the immature intestinal lineages in promoting carcinogenesis in the metaplastic microenvironment. These findings may help to inform future biomarker development and strategies of gastric cancer prevention.
Collapse
Affiliation(s)
- Robert J Huang
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ignacio A Wichmann
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
- Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Andrew Su
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Miranda V Shum
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Rithika Meka
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ingrid Luo
- Quantitative Sciences Unit, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Summer S Han
- Quantitative Sciences Unit, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
- Department of Neurosurgery, Stanford School of Medicine, Stanford, CA, 94305, USA
- Stanford Cancer Institute, Stanford, CA, 94305, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA.
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Molla Desta G, Birhanu AG. Advancements in single-cell RNA sequencing and spatial transcriptomics: transforming biomedical research. Acta Biochim Pol 2025; 72:13922. [PMID: 39980637 PMCID: PMC11835515 DOI: 10.3389/abp.2025.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
In recent years, significant advancements in biochemistry, materials science, engineering, and computer-aided testing have driven the development of high-throughput tools for profiling genetic information. Single-cell RNA sequencing (scRNA-seq) technologies have established themselves as key tools for dissecting genetic sequences at the level of single cells. These technologies reveal cellular diversity and allow for the exploration of cell states and transformations with exceptional resolution. Unlike bulk sequencing, which provides population-averaged data, scRNA-seq can detect cell subtypes or gene expression variations that would otherwise be overlooked. However, a key limitation of scRNA-seq is its inability to preserve spatial information about the RNA transcriptome, as the process requires tissue dissociation and cell isolation. Spatial transcriptomics is a pivotal advancement in medical biotechnology, facilitating the identification of molecules such as RNA in their original spatial context within tissue sections at the single-cell level. This capability offers a substantial advantage over traditional single-cell sequencing techniques. Spatial transcriptomics offers valuable insights into a wide range of biomedical fields, including neurology, embryology, cancer research, immunology, and histology. This review highlights single-cell sequencing approaches, recent technological developments, associated challenges, various techniques for expression data analysis, and their applications in disciplines such as cancer research, microbiology, neuroscience, reproductive biology, and immunology. It highlights the critical role of single-cell sequencing tools in characterizing the dynamic nature of individual cells.
Collapse
Affiliation(s)
- Getnet Molla Desta
- College of Veterinary Medicine, Jigjiga University, Jigjiga, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
10
|
Zhang T, Zhang X, Wu Z, Ren J, Zhao Z, Zhang H, Wang G, Wang T. VGAE-CCI: variational graph autoencoder-based construction of 3D spatial cell-cell communication network. Brief Bioinform 2024; 26:bbae619. [PMID: 39581873 PMCID: PMC11586124 DOI: 10.1093/bib/bbae619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/04/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024] Open
Abstract
Cell-cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation, and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing (ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell-cell communication. However, ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell-cell communication. Furthermore, other methods for analyzing cell-cell communication mainly focus on individual tissue sections, neglecting cell-cell communication across multiple tissue layers, and fail to comprehensively elucidate cell-cell communication networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework based on the Variational Graph Autoencoder, capable of identifying cell-cell communication across multiple tissue layers. Additionally, this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell-cell communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell-cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in predicting cell-cell communication.
Collapse
Affiliation(s)
- Tianjiao Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Xiang Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhenao Wu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Jixiang Ren
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhongqian Zhao
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Zhang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
- Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
| | - Tao Wang
- School of Computer Science, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
11
|
Zeng Y, Ma Q, Chen J, Kong X, Chen Z, Liu H, Liu L, Qian Y, Wang X, Lu S. Single-cell sequencing: Current applications in various tuberculosis specimen types. Cell Prolif 2024; 57:e13698. [PMID: 38956399 PMCID: PMC11533074 DOI: 10.1111/cpr.13698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
Tuberculosis (TB) is a chronic disease caused by Mycobacterium tuberculosis (M.tb) and responsible for millions of deaths worldwide each year. It has a complex pathogenesis that primarily affects the lungs but can also impact systemic organs. In recent years, single-cell sequencing technology has been utilized to characterize the composition and proportion of immune cell subpopulations associated with the pathogenesis of TB disease since it has a high resolution that surpasses conventional techniques. This paper reviews the current use of single-cell sequencing technologies in TB research and their application in analysing specimens from various sources of TB, primarily peripheral blood and lung specimens. The focus is on how these technologies can reveal dynamic changes in immune cell subpopulations, genes and proteins during disease progression after M.tb infection. Based on the current findings, single-cell sequencing has significant potential clinical value in the field of TB research. Next, we will focus on the real-world applications of the potential targets identified through single-cell sequencing for diagnostics, therapeutics and the development of effective vaccines.
Collapse
Affiliation(s)
- Yuqin Zeng
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Quan Ma
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Jinyun Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xingxing Kong
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Zhanpeng Chen
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Huazhen Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Lanlan Liu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Yan Qian
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Xiaomin Wang
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| | - Shuihua Lu
- National Clinical Research Center for Infectious DiseaseShenzhen Third People's HospitalShenzhenGuangdong ProvinceChina
| |
Collapse
|
12
|
Hartl K, Bayram Ş, Wetzel A, Harnack C, Lin M, Fischer AS, Liu L, Beccaceci G, Mastrobuoni G, Geisberger S, Forbes M, Monteiro BJE, Macino M, Flores RE, Engelmann C, Mollenkopf HJ, Schupp M, Tacke F, Sanders AD, Kempa S, Berger H, Sigal M. p53 terminates the regenerative fetal-like state after colitis-associated injury. SCIENCE ADVANCES 2024; 10:eadp8783. [PMID: 39453996 PMCID: PMC11506124 DOI: 10.1126/sciadv.adp8783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cells that lack p53 signaling frequently occur in ulcerative colitis (UC) and are considered early drivers in UC-associated colorectal cancer (CRC). Epithelial injury during colitis is associated with transient stem cell reprogramming from the adult, homeostatic to a "fetal-like" regenerative state. Here, we use murine and organoid-based models to study the role of Trp53 during epithelial reprogramming. We find that p53 signaling is silent and dispensable during homeostasis but strongly up-regulated in the epithelium upon DSS-induced colitis. While in WT cells this causes termination of the regenerative state, crypts that lack Trp53 remain locked in the highly proliferative, regenerative state long-term. The regenerative state in WT cells requires high Wnt signaling to maintain elevated levels of glycolysis. Instead, Trp53 deficiency enables Wnt-independent glycolysis due to overexpression of rate-limiting enzyme PKM2. Our study reveals the context-dependent relevance of p53 signaling specifically in the injury-induced regenerative state, explaining the high abundance of clones lacking p53 signaling in UC and UC-associated CRC.
Collapse
Affiliation(s)
- Kimberly Hartl
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Şafak Bayram
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexandra Wetzel
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Harnack
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manqiang Lin
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anne-Sophie Fischer
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lichao Liu
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Giulia Beccaceci
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sabrina Geisberger
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Forbes
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Benedict J. E. Monteiro
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Macino
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Roberto E. Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ashley D. Sanders
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hilmar Berger
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
13
|
Gao B, Hu G, Sun B, Li W, Yang H. BNIP3+ fibroblasts associated with hypoxia and inflammation predict prognosis and immunotherapy response in pancreatic ductal adenocarcinoma. J Transl Med 2024; 22:937. [PMID: 39402590 PMCID: PMC11476087 DOI: 10.1186/s12967-024-05674-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant tumors that lacks effective treatment options. Cancer-associated fibroblasts (CAFs), an important component of the tumor microenvironment, associated with tumor progression, prognosis, and treatment response. This work aimed to explore the novel CAFs-associated target to improve treatment strategies in PDAC. METHODS The PDAC single-cell sequencing data (CRA001160, n = 35) were downloaded and integrated based on GSA databases to classify fibroblasts into fine subtypes. Functional enrichment analysis and coexpression regulatory network analysis were used to identify the functional phenotypes and biological properties of the different fibroblast subtypes. Fibroblast differentiation trajectories were constructed using pseudochronological analysis to identify initial and terminally differentiated subtypes of fibroblasts. The changes in the proportions of different fibroblast subtypes before and after PDAC immunotherapy were compared in responsive and nonresponding patients, and the relationships between fibroblast subtypes and PDAC immunotherapy responsiveness were determined based on GSA and GEO database. Using molecular biology methods to confirm the effects of BNIP3 on hypoxia and inflammation in CAFs. CAFs were co cultured with pancreatic cancer cells to detect their effects on migration and invasion of pancreatic cancer. RESULTS Single-cell data analysis divided fibroblasts into six subtypes. The differentiation trajectory suggested that BNIP3+ Fibro subtype exhibited terminal differentiation, and the expression of genes related to hypoxia and the inflammatory response increased gradually with differentiation time. The specific overexpressed genes in the BNIP3+ Fibro subtype were significantly associated with overall and disease progression-free survival in the patients with PDAC. Interestingly, the greater the proportion of the BNIP3+ Fibro subtype was, the worse the response of PDAC patients to immunotherapy, and the CRTL treatment regimen effectively reduced the proportion of the BNIP3+ Fibro subtype. After knocking out BNIP3, the hypoxia markers and inflammatory factors of CAFs were inhibited. Co-culture of CAFs with pancreatic cancer cells can increase the migration and invasion of pancreatic cancer, but this could be reversed by knocking out BNIP3. CONCLUSIONS This study revealed the BNIP3+ Fibro subtype associated with hypoxia and inflammatory responses, which was closely related to the poor prognosis of patients with PDAC, and identified signature genes that predict the immunotherapy response in PDAC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Guohua Hu
- Department of Hernia and Abdominal Wall, Peking University People's Hospital, Beijing, China
| | - Boshi Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenqiang Li
- Department of General Surgery, Jinshan Hospital of Fudan University, Shanghai, China
| | - Hao Yang
- Department of Oncology Surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
14
|
Zhang Q, Zhang J, Chang G, Zhao K, Yao Y, Liu L, Du Z, Wang Y, Guo X, Zhao Z, Zeng W, Gao S. Decoding molecular features of bovine oocyte fate during antral follicle growth via single-cell multi-omics analysis†. Biol Reprod 2024; 111:815-833. [PMID: 39058647 DOI: 10.1093/biolre/ioae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024] Open
Abstract
Antral follicle size is a useful predictive marker of the competency of enclosed oocytes for yielding an embryo following in vitro maturation and fertilization. However, the molecular mechanisms underpinning oocyte developmental potential during bovine antral follicle growth are still unclear. Here, we used a modified single-cell multi-omics approach to analyze the transcriptome, DNA methylome, and chromatin accessibility in parallel for oocytes and cumulus cells collected from bovine antral follicles of different sizes. Transcriptome profiling identified three types of oocytes (small, medium, and large) that underwent different developmental trajectories, with large oocytes exhibiting the largest average follicle size and characteristics resembling metaphase-II oocytes. Differential expression analysis and real-time polymerase chain reaction assay showed that most replication-dependent histone genes were highly expressed in large oocytes. The joint analysis of multi-omics data revealed that the transcription of 20 differentially expressed genes in large oocytes was associated with both DNA methylation and chromatin accessibility. In addition, oocyte-cumulus interaction analysis showed that inflammation, DNA damage, and p53 signaling pathways were active in small oocytes, which had the smallest average follicle sizes. We further confirmed that p53 pathway inhibition in the in vitro maturation experiments using oocytes obtained from small antral follicles could improve the quality of oocytes and increased the blastocyte rate after in vitro fertilization and culture. Our work provides new insights into the intricate orchestration of bovine oocyte fate determination during antral folliculogenesis, which is instrumental for optimizing in vitro maturation techniques to optimize oocyte quality.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingyao Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Kun Zhao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Yao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihuan Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanping Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Zhi M, Gao D, Yao Y, Zhao Z, Wang Y, He P, Feng Z, Zhang J, Huang Z, Gu W, Zhao J, Zhang H, Wang S, Li X, Zhang Q, Zhao Z, Chen X, Zhang X, Qin L, Liu J, Liu C, Cao S, Gao S, Yu W, Ma Z, Han J. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines. Cell Mol Life Sci 2024; 81:427. [PMID: 39377807 PMCID: PMC11461730 DOI: 10.1007/s00018-024-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The establishment of epiblast-derived pluripotent stem cells (PSCs) from cattle, which are important domestic animals that provide humans with milk and meat while also serving as bioreactors for producing valuable proteins, poses a challenge due to the unclear molecular signaling required for embryonic epiblast development and maintenance of PSC self-renewal. Here, we selected six key stages of bovine embryo development (E5, E6, E7, E10, E12, and E14) to track changes in pluripotency and the dependence on signaling pathways via modified single-cell transcription sequencing technology. The remarkable similarity of the gene expression patterns between cattle and pigs during embryonic lineage development contributed to the successful establishment of bovine epiblast stem cells (bEpiSCs) using 3i/LAF (WNTi, GSK3βi, SRCi, LIF, Activin A, and FGF2) culture system. The generated bEpiSCs exhibited consistent expression patterns of formative epiblast pluripotency genes and maintained clonal morphology, normal karyotypes, and proliferative capacity for more than 112 passages. Moreover, these cells exhibited high-efficiency teratoma formation as well as the ability to differentiate into various cell lineages. The potential of bEpiSCs for myogenic differentiation, primordial germ cell like cells (PGCLCs) induction, and as donor cells for cell nuclear transfer was also assessed, indicating their promise in advancing cell-cultured meat production, gene editing, and animal breeding.
Collapse
Affiliation(s)
- Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengfeng Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zimo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Pengcheng He
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Feng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wenyuan Gu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunxin Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Li
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lun Qin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chengjun Liu
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China.
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
16
|
Liu J, Qiu S, Fu X, Zhou B, Zu R, Lv Z, Li Y, Yang L, Zhou Z. Transcriptomic Landscape of Colorectal Mucinous Adenocarcinoma has Similarity with Intestinal Goblet Cell Differentiation. Curr Genomics 2024; 26:95-117. [PMID: 40433446 PMCID: PMC12105302 DOI: 10.2174/0113892029312303240821080358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 05/29/2025] Open
Abstract
Introduction Colorectal mucinous adenocarcinoma (MC) differs from adenocarcinoma (AD) in clinical features and molecular characteristics. The current treatment of colorectal MC is not precise enough, and the molecular characteristics remain unclear. The study aims to explore the difference between colorectal MC and AD on the transcriptome level for the possibility of treating colorectal MC precisely. Methods The data of colorectal cancer (CRC) patients from The Cancer Genome Atlas (TCGA) database was assessed, and then differential analysis and weighted gene co-expression network analysis (WGCNA) were performed to identify the differential hub RNAs between colorectal MC and AD. Differential hub lncRNAs and hub RNA of significant modules were validated by quantitative real-time PCR (qRT-PCR) among different colon cancer cell lines. Results In total, 1680 differential expressed RNAs (DERs) were found by comparing colorectal MC (52, 13.3%) with AD (340, 86.7%). Through the WGCNA, a mucin-associated RNA module was identified, while some others might be associated with unique immune progress. Finally, 6 differential hub RNAs in the mucin-associated RNA module (CTD-2589M5.4, RP11-234B24.2, RP11-25K19.1 and COLCA1) were validated by qRT-PCR and showed higher expression levels in mucin-producing colorectal cell lines (Ls174T and HT-29). Conclusion This study suggests that clinical treatments for colorectal MC should be differentiated from AD. Further exploration of enterocyte (goblet cell) differentiation with tumor genesis and the distinct immune progression of MC may help to identify key therapeutic targets for colorectal MC. Further research on the application of immunotherapy to colorectal MC is needed.
Collapse
Affiliation(s)
- Jianbo Liu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Digestive Surgery of Sichuan University, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Siyuan Qiu
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xiaorui Fu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Zhou
- Institute of Digestive Surgery of Sichuan University, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ruijuan Zu
- Institute of Digestive Surgery of Sichuan University, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaoying Lv
- Institute of Digestive Surgery of Sichuan University, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yuan Li
- Institute of Digestive Surgery of Sichuan University, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lie Yang
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zongguang Zhou
- Division of Gastrointestinal Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Institute of Digestive Surgery of Sichuan University, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
17
|
Zeng T, Spence JP, Mostafavi H, Pritchard JK. Bayesian estimation of gene constraint from an evolutionary model with gene features. Nat Genet 2024; 56:1632-1643. [PMID: 38977852 DOI: 10.1038/s41588-024-01820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Measures of selective constraint on genes have been used for many applications, including clinical interpretation of rare coding variants, disease gene discovery and studies of genome evolution. However, widely used metrics are severely underpowered at detecting constraints for the shortest ~25% of genes, potentially causing important pathogenic mutations to be overlooked. Here we developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, shet. Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease and other phenotypes, especially for short genes. Our estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve the estimation of many gene-level properties, such as rare variant burden or gene expression differences.
Collapse
Affiliation(s)
- Tony Zeng
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | | | - Hakhamanesh Mostafavi
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Population Health, New York University, New York, NY, USA
| | - Jonathan K Pritchard
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
18
|
Rose EC, Simon JM, Gomez-Martinez I, Magness ST, Odle J, Blikslager AT, Ziegler AL. Single-cell transcriptomics predict novel potential regulators of acute epithelial restitution in the ischemia-injured intestine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601271. [PMID: 38979337 PMCID: PMC11230382 DOI: 10.1101/2024.06.28.601271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Intestinal ischemic injury damages the epithelial barrier predisposes patients to life-threatening sepsis unless that barrier is rapidly restored. There is an age-dependency of intestinal recovery in that neonates are the most susceptible to succumb to disease of the intestinal barrier versus older patients. We have developed a pig model that demonstrates age-dependent failure of intestinal barrier restitution in neonatal pigs which can be rescued by the direct application of juvenile pig mucosal tissue, but the mechanisms of rescue remain undefined. We hypothesized that by identifying a subpopulation of restituting enterocytes by their expression of cell migration transcriptional pathways, we can then predict novel upstream regulators of age-dependent restitution response programs. Superficial mucosal epithelial cells from recovering ischemic jejunum of juvenile pigs were processed for single cell RNA sequencing analysis, and predicted upstream regulators were assessed in a porcine intestinal epithelial cell line (IPEC-J2) and banked tissues. A subcluster of absorptive enterocytes expressed several cell migration pathways key to restitution. Differentially expressed genes in this subcluster predicted their upstream regulation included colony stimulating factor-1 (CSF-1). We validated age-dependent induction of CSF-1 by ischemia and documented that CSF-1 and CSF1R co-localized in ischemic juvenile, but not neonatal, wound-adjacent epithelial cells and in the restituted epithelium of juveniles and rescued (but not control) neonates. Further, the CSF1R inhibitor BLZ945 reduced restitution in scratch wounded IPEC-J2 cells. These studies validate an approach to inform potential novel therapeutic targets, such as CSF-1, to improve outcomes in neonates with intestinal injury in a unique pig model. NEW & NOTEWORTHY These studies validate an approach to identify and predict upstream regulation of restituting epithelium in a unique pig intestinal ischemic injury model. Identification of potential molecular mediators of restitution, such as CSF-1, will inform the development of targeted therapeutic interventions for medical management of patients with ischemia-mediated intestinal injury.
Collapse
|
19
|
Fan Y, Li L, Sun S. Powerful and accurate detection of temporal gene expression patterns from multi-sample multi-stage single-cell transcriptomics data with TDEseq. Genome Biol 2024; 25:96. [PMID: 38622747 PMCID: PMC11020788 DOI: 10.1186/s13059-024-03237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/03/2024] [Indexed: 04/17/2024] Open
Abstract
We present a non-parametric statistical method called TDEseq that takes full advantage of smoothing splines basis functions to account for the dependence of multiple time points in scRNA-seq studies, and uses hierarchical structure linear additive mixed models to model the correlated cells within an individual. As a result, TDEseq demonstrates powerful performance in identifying four potential temporal expression patterns within a specific cell type. Extensive simulation studies and the analysis of four published scRNA-seq datasets show that TDEseq can produce well-calibrated p-values and up to 20% power gain over the existing methods for detecting temporal gene expression patterns.
Collapse
Affiliation(s)
- Yue Fan
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region; NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Lei Li
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region; NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shiquan Sun
- Center for Single-Cell Omics and Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
- Collaborative Innovation Center of Endemic Diseases and Health Promotion in Silk Road Region; NHC Key Laboratory of Environment and Endemic Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, People's Republic of China.
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
20
|
Zeng T, Spence JP, Mostafavi H, Pritchard JK. Bayesian estimation of gene constraint from an evolutionary model with gene features. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541520. [PMID: 37292653 PMCID: PMC10245655 DOI: 10.1101/2023.05.19.541520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Measures of selective constraint on genes have been used for many applications including clinical interpretation of rare coding variants, disease gene discovery, and studies of genome evolution. However, widely-used metrics are severely underpowered at detecting constraint for the shortest ∼25% of genes, potentially causing important pathogenic mutations to be overlooked. We developed a framework combining a population genetics model with machine learning on gene features to enable accurate inference of an interpretable constraint metric, shet. Our estimates outperform existing metrics for prioritizing genes important for cell essentiality, human disease, and other phenotypes, especially for short genes. Our new estimates of selective constraint should have wide utility for characterizing genes relevant to human disease. Finally, our inference framework, GeneBayes, provides a flexible platform that can improve estimation of many gene-level properties, such as rare variant burden or gene expression differences.
Collapse
Affiliation(s)
- Tony Zeng
- Department of Genetics, Stanford University, Stanford CA
| | | | | | - Jonathan K. Pritchard
- Department of Genetics, Stanford University, Stanford CA
- Department of Biology, Stanford University, Stanford CA
| |
Collapse
|
21
|
Du X, Xu X, Liu Y, Wang Z, Qiu H, Zhao A, Lu L. Cell Heterogeneity Analysis Revealed the Key Role of Fibroblasts in the Magnum Regression of Ducks. Animals (Basel) 2024; 14:1072. [PMID: 38612311 PMCID: PMC11011120 DOI: 10.3390/ani14071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Duck egg production, like that of laying hens, follows a typical low-peak-low cycle, reflecting the dynamics of the reproductive system. Post-peak, some ducks undergo a cessation of egg laying, indicative of a regression process in the oviduct. Notably, the magnum, being the longest segment of the oviduct, plays a crucial role in protein secretion. Despite its significance, few studies have investigated the molecular mechanisms underlying oviduct regression in ducks that have ceased laying eggs. In this study, we conducted single-cell transcriptome sequencing on the magnum tissue of Shaoxing ducks at 467 days of age, utilizing the 10× Genomics platform. This approach allowed us to generate a detailed magnum transcriptome map of both egg-laying and ceased-laying ducks. We collected transcriptome data from 13,708 individual cells, which were then subjected to computational analysis, resulting in the identification of 27 distinct cell clusters. Marker genes were subsequently employed to categorize these clusters into specific cell types. Our analysis revealed notable heterogeneity in magnum cells between the egg-laying and ceased-laying ducks, primarily characterized by variations in cells involved in protein secretion and extracellular matrix (ECM)-producing fibroblasts. Specifically, cells engaged in protein secretion were predominantly observed in the egg-laying ducks, indicative of their role in functional albumen deposition within the magnum, a phenomenon not observed in the ceased-laying ducks. Moreover, the proportion of THY1+ cells within the ECM-producing fibroblasts was found to be significantly higher in the egg-laying ducks (59%) compared to the ceased-laying ducks (24%). Similarly, TIMP4+ fibroblasts constituted a greater proportion of the ECM-producing fibroblasts in the egg-laying ducks (83%) compared to the ceased-laying ducks (58%). These findings suggest a potential correlation between the expression of THY1 and TIMP4 in ECM-producing fibroblasts and oviduct activity during functional reproduction. Our study provides valuable single-cell insights that warrant further investigation into the biological implications of fibroblast subsets in the degeneration of the reproductive tract. Moreover, these insights hold promise for enhancing the production efficiency of laying ducks.
Collapse
Affiliation(s)
- Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Xiaoqin Xu
- Institute of Ecology, China West Normal University, Nanchong 637002, China
| | - Yali Liu
- Zhejiang Provincial Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Hangzhou 310020, China
| | - Zhijun Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Hao Qiu
- Independent Researcher, Hangzhou 310021, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
22
|
Zhang P, Zhang H, Li C, Yang B, Feng X, Cao J, Du W, Shahzad M, Khan A, Sun SC, Zhao X. Effects of Regulating Hippo and Wnt on the Development and Fate Differentiation of Bovine Embryo. Int J Mol Sci 2024; 25:3912. [PMID: 38612721 PMCID: PMC11011455 DOI: 10.3390/ijms25073912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The improvement of in vitro embryo development is a gateway to enhance the output of assisted reproductive technologies. The Wnt and Hippo signaling pathways are crucial for the early development of bovine embryos. This study investigated the development of bovine embryos under the influence of a Hippo signaling agonist (LPA) and a Wnt signaling inhibitor (DKK1). In this current study, embryos produced in vitro were cultured in media supplemented with LPA and DKK1. We comprehensively analyzed the impact of LPA and DKK1 on various developmental parameters of the bovine embryo, such as blastocyst formation, differential cell counts, YAP fluorescence intensity and apoptosis rate. Furthermore, single-cell RNA sequencing (scRNA-seq) was employed to elucidate the in vitro embryonic development. Our results revealed that LPA and DKK1 improved the blastocyst developmental potential, total cells, trophectoderm (TE) cells and YAP fluorescence intensity and decreased the apoptosis rate of bovine embryos. A total of 1203 genes exhibited differential expression between the control and LPA/DKK1-treated (LD) groups, with 577 genes upregulated and 626 genes downregulated. KEGG pathway analysis revealed significant enrichment of differentially expressed genes (DEGs) associated with TGF-beta signaling, Wnt signaling, apoptosis, Hippo signaling and other critical developmental pathways. Our study shows the role of LPA and DKK1 in embryonic differentiation and embryo establishment of pregnancy. These findings should be helpful for further unraveling the precise contributions of the Hippo and Wnt pathways in bovine trophoblast formation, thus advancing our comprehension of early bovine embryo development.
Collapse
Affiliation(s)
- Peipei Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hang Zhang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Chongyang Li
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Baigao Yang
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Xiaoyi Feng
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Jianhua Cao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Weihua Du
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Muhammad Shahzad
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agriculture Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xueming Zhao
- Institute of Animal Sciences (IAS), Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan Western Road, Haidian District, Beijing 100193, China
| |
Collapse
|
23
|
Ogasawara N, Kano Y, Yoneyama Y, Kobayashi S, Watanabe S, Kirino S, Velez-Bravo FD, Hong Y, Ostapiuk A, Lutsik P, Onishi I, Yamauchi S, Hiraguri Y, Ito G, Kinugasa Y, Ohashi K, Watanabe M, Okamoto R, Tejpar S, Yui S. Discovery of non-genomic drivers of YAP signaling modulating the cell plasticity in CRC tumor lines. iScience 2024; 27:109247. [PMID: 38439969 PMCID: PMC10910304 DOI: 10.1016/j.isci.2024.109247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/06/2024] Open
Abstract
In normal intestines, a fetal/regenerative/revival cell state can be induced upon inflammation. This plasticity in cell fate is also one of the current topics in human colorectal cancer (CRC). To dissect the underlying mechanisms, we generated human CRC organoids with naturally selected genetic mutation profiles and exposed them to two different conditions by modulating the extracellular matrix (ECM). Among tested mutation profiles, a fetal/regenerative/revival state was induced following YAP activation via a collagen type I-enriched microenvironment. Mechanistically, YAP transcription was promoted by activating AP-1 and TEAD-dependent transcription and suppressing intestinal lineage-determining transcription via mechanotransduction. The phenotypic conversion was also involved in chemoresistance, which could be potentially resolved by targeting the underlying YAP regulatory elements, a potential target of CRC treatment.
Collapse
Affiliation(s)
- Nobuhiko Ogasawara
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakurako Kobayashi
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Satoshi Watanabe
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sakura Kirino
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | - Yourae Hong
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Pavlo Lutsik
- Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Iichiroh Onishi
- Department of Diagnostic Pathology, Tokyo Medical and Dental University Hospital, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shinichi Yamauchi
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yui Hiraguri
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Go Ito
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yusuke Kinugasa
- Department of Gastrointestinal Surgery, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kenichi Ohashi
- Department of Human Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mamoru Watanabe
- Advanced Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Ryuichi Okamoto
- Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Sabine Tejpar
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shiro Yui
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
24
|
Malla SB, Byrne RM, Lafarge MW, Corry SM, Fisher NC, Tsantoulis PK, Mills ML, Ridgway RA, Lannagan TRM, Najumudeen AK, Gilroy KL, Amirkhah R, Maguire SL, Mulholland EJ, Belnoue-Davis HL, Grassi E, Viviani M, Rogan E, Redmond KL, Sakhnevych S, McCooey AJ, Bull C, Hoey E, Sinevici N, Hall H, Ahmaderaghi B, Domingo E, Blake A, Richman SD, Isella C, Miller C, Bertotti A, Trusolino L, Loughrey MB, Kerr EM, Tejpar S, Maughan TS, Lawler M, Campbell AD, Leedham SJ, Koelzer VH, Sansom OJ, Dunne PD. Pathway level subtyping identifies a slow-cycling biological phenotype associated with poor clinical outcomes in colorectal cancer. Nat Genet 2024; 56:458-472. [PMID: 38351382 PMCID: PMC10937375 DOI: 10.1038/s41588-024-01654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/03/2024] [Indexed: 02/29/2024]
Abstract
Molecular stratification using gene-level transcriptional data has identified subtypes with distinctive genotypic and phenotypic traits, as exemplified by the consensus molecular subtypes (CMS) in colorectal cancer (CRC). Here, rather than gene-level data, we make use of gene ontology and biological activation state information for initial molecular class discovery. In doing so, we defined three pathway-derived subtypes (PDS) in CRC: PDS1 tumors, which are canonical/LGR5+ stem-rich, highly proliferative and display good prognosis; PDS2 tumors, which are regenerative/ANXA1+ stem-rich, with elevated stromal and immune tumor microenvironmental lineages; and PDS3 tumors, which represent a previously overlooked slow-cycling subset of tumors within CMS2 with reduced stem populations and increased differentiated lineages, particularly enterocytes and enteroendocrine cells, yet display the worst prognosis in locally advanced disease. These PDS3 phenotypic traits are evident across numerous bulk and single-cell datasets, and demark a series of subtle biological states that are currently under-represented in pre-clinical models and are not identified using existing subtyping classifiers.
Collapse
Affiliation(s)
- Sudhir B Malla
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Ryan M Byrne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Maxime W Lafarge
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Shania M Corry
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Natalie C Fisher
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | | | | | | | | | - Raheleh Amirkhah
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sarah L Maguire
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Elena Grassi
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Marco Viviani
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Emily Rogan
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Keara L Redmond
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Svetlana Sakhnevych
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Aoife J McCooey
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Courtney Bull
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Emily Hoey
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Nicoleta Sinevici
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Holly Hall
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Baharak Ahmaderaghi
- School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, UK
| | - Enric Domingo
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Andrew Blake
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Susan D Richman
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Claudio Isella
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Crispin Miller
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Torino, Italy
- Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Maurice B Loughrey
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Department of Cellular Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Emma M Kerr
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Sabine Tejpar
- Department of Oncology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Timothy S Maughan
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark Lawler
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | | | | | - Viktor H Koelzer
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Owen J Sansom
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Philip D Dunne
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
- Cancer Research UK Scotland Institute, Glasgow, UK.
| |
Collapse
|
25
|
Pravallika G, Rajasekaran R. Stage II oesophageal carcinoma: peril in disguise associated with cellular reprogramming and oncogenesis regulated by pseudogenes. BMC Genomics 2024; 25:135. [PMID: 38308202 PMCID: PMC10835973 DOI: 10.1186/s12864-024-10023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION Pseudogenes have been implicated for their role in regulating cellular differentiation and organismal development. However, their role in promoting cancer-associated differentiation has not been well-studied. This study explores the tumour landscape of oesophageal carcinoma to identify pseudogenes that may regulate events of differentiation to promote oncogenic transformation. MATERIALS AND METHOD De-regulated differentiation-associated pseudogenes were identified using DeSeq2 followed by 'InteractiVenn' analysis to identify their expression pattern. Gene expression dependent and independent enrichment analyses were performed with GSEA and ShinyGO, respectively, followed by quantification of cellular reprogramming, extent of differentiation and pleiotropy using three unique metrics. Stage-specific gene regulatory networks using Bayesian Network Splitting Average were generated, followed by network topology analysis. MEME, STREME and Tomtom were employed to identify transcription factors and miRNAs that play a regulatory role downstream of pseudogenes to initiate cellular reprogramming and further promote oncogenic transformation. The patient samples were stratified based on the expression pattern of pseudogenes, followed by GSEA, mutation analysis and survival analysis using GSEA, MAF and 'survminer', respectively. RESULTS Pseudogenes display a unique stage-wise expression pattern that characterizes stage II (SII) ESCA with a high rate of cellular reprogramming, degree of differentiation and pleiotropy. Gene regulatory network and associated topology indicate high robustness, thus validating high pleiotropy observed for SII. Pseudogene-regulated expression of SOX2, FEV, PRRX1 and TFAP2A in SII may modulate cellular reprogramming and promote oncogenesis. Additionally, patient stratification-based mutational analysis in SII signifies APOBEC3A (A3A) as a potential hallmark of homeostatic mutational events of reprogrammed cells which in addition to de-regulated APOBEC3G leads to distinct events of hypermutations. Further enrichment analysis for both cohorts revealed the critical role of combinatorial expression of pseudogenes in cellular reprogramming. Finally, survival analysis reveals distinct genes that promote poor prognosis in SII ESCA and patient-stratified cohorts, thus providing valuable prognostic bio-markers along with markers of differentiation and oncogenesis for distinct landscapes of pseudogene expression. CONCLUSION Pseudogenes associated with the events of differentiation potentially aid in the initiation of cellular reprogramming to facilitate oncogenic transformation, especially during SII ESCA. Despite a better overall survival of SII, patient stratification reveals combinatorial de-regulation of pseudogenes as a notable marker for a high degree of cellular differentiation with a unique mutational landscape.
Collapse
Affiliation(s)
- Govada Pravallika
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Ramalingam Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
26
|
Miskelly MG, Lindqvist A, Piccinin E, Hamilton A, Cowan E, Nergård BJ, Del Giudice R, Ngara M, Cataldo LR, Kryvokhyzha D, Volkov P, Engelking L, Artner I, Lagerstedt JO, Eliasson L, Ahlqvist E, Moschetta A, Hedenbro J, Wierup N. RNA sequencing unravels novel L cell constituents and mechanisms of GLP-1 secretion in human gastric bypass-operated intestine. Diabetologia 2024; 67:356-370. [PMID: 38032369 PMCID: PMC10789678 DOI: 10.1007/s00125-023-06046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
AIMS/HYPOTHESIS Roux-en-Y gastric bypass surgery (RYGB) frequently results in remission of type 2 diabetes as well as exaggerated secretion of glucagon-like peptide-1 (GLP-1). Here, we assessed RYGB-induced transcriptomic alterations in the small intestine and investigated how they were related to the regulation of GLP-1 production and secretion in vitro and in vivo. METHODS Human jejunal samples taken perisurgically and 1 year post RYGB (n=13) were analysed by RNA-seq. Guided by bioinformatics analysis we targeted four genes involved in cholesterol biosynthesis, which we confirmed to be expressed in human L cells, for potential involvement in GLP-1 regulation using siRNAs in GLUTag and STC-1 cells. Gene expression analyses, GLP-1 secretion measurements, intracellular calcium imaging and RNA-seq were performed in vitro. OGTTs were performed in C57BL/6j and iScd1-/- mice and immunohistochemistry and gene expression analyses were performed ex vivo. RESULTS Gene Ontology (GO) analysis identified cholesterol biosynthesis as being most affected by RYGB. Silencing or chemical inhibition of stearoyl-CoA desaturase 1 (SCD1), a key enzyme in the synthesis of monounsaturated fatty acids, was found to reduce Gcg expression and secretion of GLP-1 by GLUTag and STC-1 cells. Scd1 knockdown also reduced intracellular Ca2+ signalling and membrane depolarisation. Furthermore, Scd1 mRNA expression was found to be regulated by NEFAs but not glucose. RNA-seq of SCD1 inhibitor-treated GLUTag cells identified altered expression of genes implicated in ATP generation and glycolysis. Finally, gene expression and immunohistochemical analysis of the jejunum of the intestine-specific Scd1 knockout mouse model, iScd1-/-, revealed a twofold higher L cell density and a twofold increase in Gcg mRNA expression. CONCLUSIONS/INTERPRETATION RYGB caused robust alterations in the jejunal transcriptome, with genes involved in cholesterol biosynthesis being most affected. Our data highlight SCD as an RYGB-regulated L cell constituent that regulates the production and secretion of GLP-1.
Collapse
Affiliation(s)
- Michael G Miskelly
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Andreas Lindqvist
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elena Piccinin
- Department of Translational Biomedicine and Neuroscience, University of Bari 'Aldo Moro', Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Alexander Hamilton
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Elaine Cowan
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | | | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Mtakai Ngara
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luis R Cataldo
- Molecular Metabolism, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dmytro Kryvokhyzha
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Petr Volkov
- Bioinformatics Unit, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Luke Engelking
- Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isabella Artner
- Endocrine Cell Differentiation and Function, Stem Cell Centre, Lund University, Malmö, Sweden
| | - Jens O Lagerstedt
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy
- INBB National Institute for Biostructure and Biosystems, Rome, Italy
| | - Jan Hedenbro
- Department of Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Nils Wierup
- Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden.
| |
Collapse
|
27
|
Zhou R, Li L, Zhang Y, Liu Z, Wu J, Zeng D, Sun H, Liao W. Integrative analysis of co-expression pattern of solute carrier transporters reveals molecular subtypes associated with tumor microenvironment hallmarks and clinical outcomes in colon cancer. Heliyon 2024; 10:e22775. [PMID: 38163210 PMCID: PMC10754711 DOI: 10.1016/j.heliyon.2023.e22775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/03/2024] Open
Abstract
Recent findings have suggested that solute carrier (SLC) transporters play an important role in tumor development and progression, and alterations in the expression of individual SLC genes are critical for fulfilling the heightened metabolic requirements of cancerous cells. However, the global influence of the co-expression pattern of SLC transporters on the clinical stratification and characteristics of the tumor microenvironment (TME) remains unexplored. In this study, we identified five SLC gene subtypes based on transcriptome co-expression patterns of 187 SLC transporters by consensus clustering analysis. These subtypes, which were characterized by distinct TME and biological characteristics, were successfully employed for prognostic and chemotherapy response prediction in colon cancer patients, as well as demonstrated associations with immunotherapy benefits. Then, we generated an SLC score model comprising 113 genes to quantify SLC gene co-expression patterns and validated it as an independent prognostic factor and drug response predictor in several independent colon cancer cohorts. Patients with a high SLC score possessed distinct characteristics of copy number variation, genomic mutations, DNA methylation, and indicated an SLC-S2 subtype, which was characterized by strong stromal cell infiltration, stromal pathway activation, poor prognosis, and low predicted fluorouracil and immunotherapeutic responses. Furthermore, the analysis of the Cancer Therapeutics Response Portal database revealed that inhibitors targeting PI3K catalytic subunits could serve as promising chemosensitizing agents for individuals exhibiting high SLC scores. In conclusion, the co-expression patterns of SLC transporters aided the disease classification, and the SLC score proved to be a reliable tool for distinguishing SLC gene subtypes and guiding precise treatment in patients with colon cancer.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yue Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhihong Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Huiying Sun
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, PR China
| |
Collapse
|
28
|
Chen S, Wang K, Wang J, Chen X, Tao M, Shan D, Hua X, Hu S, Song J. Profiling cardiomyocytes at single cell resolution reveals COX7B could be a potential target for attenuating heart failure in cardiac hypertrophy. J Mol Cell Cardiol 2024; 186:45-56. [PMID: 37979444 DOI: 10.1016/j.yjmcc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 11/02/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Cardiac hypertrophy can develop to end-stage heart failure (HF), which inevitably leading to heart transplantation or death. Preserving cardiac function in cardiomyocytes (CMs) is essential for improving prognosis in hypertrophic cardiomyopathy (HCM) patients. Therefore, understanding transcriptomic heterogeneity of CMs in HCM would be indispensable to aid potential therapeutic targets investigation. We isolated primary CM from HCM patients who had extended septal myectomy, and obtained transcriptomes in 338 human primary CM with single-cell tagged reverse transcription (STRT-seq) approach. Our results revealed that CMs could be categorized into three subsets in nonfailing HCM heart: high energy synthesis cluster, high cellular metabolism cluster and intermediate cluster. The expression of electron transport chain (ETC) was up-regulated in larger-sized CMs from high energy synthesis cluster. Of note, we found the expression of Cytochrome c oxidase subunit 7B (COX7B), a subunit of Complex IV in ETC had trends of positively correlation with CMs size. Further, by assessing COX7B expression in HCM patients, we speculated that COX7B was compensatory up-regulated at early-stage but down-regulated in failing HCM heart. To test the hypothesis that COX7B might participate both in hypertrophy and HF progression, we used adeno associated virus 9 (AAV9) to mediate the expression of Cox7b in pressure overload-induced mice. Mice in vivo data supported that knockdown of Cox7b would accelerate HF and Cox7b overexpression could restore partial cardiac function in hypertrophy. Our result highlights targeting COX7B and preserving energy synthesis in hypertrophic CMs could be a promising translational direction for HF therapeutic strategy.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kui Wang
- School of Statistics and Data Science, LPMC and KLMDASR, Nankai University, Tianjin, China
| | - Jingyu Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menghao Tao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dan Shan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiumeng Hua
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
Sheikh IA, Bianchi-Smak J, Laubitz D, Schiro G, Midura-Kiela MT, Besselsen DG, Vedantam G, Jarmakiewicz S, Filip R, Ghishan FK, Gao N, Kiela PR. Transplant of microbiota from Crohn's disease patients to germ-free mice results in colitis. Gut Microbes 2024; 16:2333483. [PMID: 38532703 PMCID: PMC10978031 DOI: 10.1080/19490976.2024.2333483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
Although the role of the intestinal microbiota in the pathogenesis of inflammatory bowel disease (IBD) is beyond debate, attempts to verify the causative role of IBD-associated dysbiosis have been limited to reports of promoting the disease in genetically susceptible mice or in chemically induced colitis. We aimed to further test the host response to fecal microbiome transplantation (FMT) from Crohn's disease patients on mucosal homeostasis in ex-germ-free (xGF) mice. We characterized and transferred fecal microbiota from healthy patients and patients with defined Crohn's ileocolitis (CD_L3) to germ-free mice and analyzed the resulting microbial and mucosal homeostasis by 16S profiling, shotgun metagenomics, histology, immunofluorescence (IF) and RNAseq analysis. We observed a markedly reduced engraftment of CD_L3 microbiome compared to healthy control microbiota. FMT from CD_L3 patients did not lead to ileitis but resulted in colitis with features consistent with CD: a discontinued pattern of colitis, more proximal colonic localization, enlarged isolated lymphoid follicles and/or tertiary lymphoid organ neogenesis, and a transcriptomic pattern consistent with epithelial reprograming and promotion of the Paneth cell-like signature in the proximal colon and immune dysregulation characteristic of CD. The observed inflammatory response was associated with persistently increased abundance of Ruminococcus gnavus, Erysipelatoclostridium ramosum, Faecalimonas umbilicate, Blautia hominis, Clostridium butyricum, and C. paraputrificum and unexpected growth of toxigenic C. difficile, which was below the detection level in the community used for inoculation. Our study provides the first evidence that the transfer of a dysbiotic community from CD patients can lead to spontaneous inflammatory changes in the colon of xGF mice and identifies a signature microbial community capable of promoting colonization of pathogenic and conditionally pathogenic bacteria.
Collapse
Affiliation(s)
- Irshad Ali Sheikh
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | | | - Daniel Laubitz
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Gabriele Schiro
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Monica T. Midura-Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - David G. Besselsen
- Pediatrics, University Animal Care, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, USA
| | - Sara Jarmakiewicz
- Institute of Health Sciences, Medical College of Rzeszow, Rzeszow University, Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital, Rzeszow, Poland
| | - Fayez K. Ghishan
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Pawel R. Kiela
- Daniel Cracchiolo Institute for Pediatric Autoimmune Disease Research, Steele Children’s Research Center, Department of Pediatrics, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
30
|
Schumacher MA. The emerging roles of deep crypt secretory cells in colonic physiology. Am J Physiol Gastrointest Liver Physiol 2023; 325:G493-G500. [PMID: 37697924 PMCID: PMC10887841 DOI: 10.1152/ajpgi.00093.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/13/2023]
Abstract
Deep crypt secretory (DCS) cells are a population of epithelial cells located at the colonic crypt base that share some similarities to Paneth and goblet cells. They were initially defined as c-Kit expressing cells, though subsequent work showed that they are more specifically marked by Reg4 in the murine colon. The best-understood function of DCS cells at present is supporting the stem cell niche by generating Notch and EGF ligands. However, as these cells also express immunoregulatory (e.g., Ccl6) and host defense (e.g., Retnlb) genes, it is likely they have additional functions in maintaining colonic health outside of maintenance of the stem niche. Recent advances in single-cell transcriptomic profiling hint at additional epithelial and immune roles that may exist for these cells and have aided in elucidating their developmental lineage. This review highlights the emerging evidence supporting a crucial role for DCS cells in intestinal physiology, the current understanding of how these cells are regulated, and their potential role(s) in colonic disease.
Collapse
Affiliation(s)
- Michael A Schumacher
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California, United States
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California, United States
| |
Collapse
|
31
|
Yang W, Wang P, Luo M, Cai Y, Xu C, Xue G, Jin X, Cheng R, Que J, Pang F, Yang Y, Nie H, Jiang Q, Liu Z, Xu Z. DeepCCI: a deep learning framework for identifying cell-cell interactions from single-cell RNA sequencing data. Bioinformatics 2023; 39:btad596. [PMID: 37740953 PMCID: PMC10558043 DOI: 10.1093/bioinformatics/btad596] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/29/2023] [Accepted: 09/22/2023] [Indexed: 09/25/2023] Open
Abstract
MOTIVATION Cell-cell interactions (CCIs) play critical roles in many biological processes such as cellular differentiation, tissue homeostasis, and immune response. With the rapid development of high throughput single-cell RNA sequencing (scRNA-seq) technologies, it is of high importance to identify CCIs from the ever-increasing scRNA-seq data. However, limited by the algorithmic constraints, current computational methods based on statistical strategies ignore some key latent information contained in scRNA-seq data with high sparsity and heterogeneity. RESULTS Here, we developed a deep learning framework named DeepCCI to identify meaningful CCIs from scRNA-seq data. Applications of DeepCCI to a wide range of publicly available datasets from diverse technologies and platforms demonstrate its ability to predict significant CCIs accurately and effectively. Powered by the flexible and easy-to-use software, DeepCCI can provide the one-stop solution to discover meaningful intercellular interactions and build CCI networks from scRNA-seq data. AVAILABILITY AND IMPLEMENTATION The source code of DeepCCI is available online at https://github.com/JiangBioLab/DeepCCI.
Collapse
Affiliation(s)
- Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Jinhao Que
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Fenglan Pang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Yuexin Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Zhigang Liu
- Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| |
Collapse
|
32
|
Qi Y, He J, Zhang Y, Ge Q, Wang Q, Chen L, Xu J, Wang L, Chen X, Jia D, Lin Y, Xu C, Zhang Y, Hou T, Si J, Chen S, Wang L. Heat-inactivated Bifidobacterium adolescentis ameliorates colon senescence through Paneth-like-cell-mediated stem cell activation. Nat Commun 2023; 14:6121. [PMID: 37777508 PMCID: PMC10542354 DOI: 10.1038/s41467-023-41827-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2023] [Indexed: 10/02/2023] Open
Abstract
Declined numbers and weakened functions of intestinal stem cells (ISCs) impair the integrity of the intestinal epithelium during aging. However, the impact of intestinal microbiota on ISCs in this process is unclear. Here, using premature aging mice (telomerase RNA component knockout, Terc-/-), natural aging mice, and in vitro colonoid models, we explore how heat-inactivated Bifidobacterium adolescentis (B. adolescentis) affects colon senescence. We find that B. adolescentis could mitigate colonic senescence-related changes by enhancing intestinal integrity and stimulating the regeneration of Lgr5+ ISCs via Wnt/β-catenin signaling. Furthermore, we uncover the involvement of Paneth-like cells (PLCs) within the colonic stem-cell-supporting niche in the B. adolescentis-induced ISC regeneration. In addition, we identify soluble polysaccharides (SPS) as potential effective components of B. adolescentis. Overall, our findings reveal the role of heat-inactivated B. adolescentis in maintaining the ISCs regeneration and intestinal barrier, and propose a microbiota target for ameliorating colon senescence.
Collapse
Affiliation(s)
- Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yawen Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwei Ge
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiwen Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Luyi Chen
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dingjiacheng Jia
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chaochao Xu
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Zhang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Liangjing Wang
- Institute of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
33
|
Huang RJ, Wichmann IA, Su A, Sathe A, Shum MV, Grimes SM, Meka R, Almeda A, Bai X, Shen J, Nguyen Q, Amieva MR, Hwang JH, Ji HP. A spatially mapped gene expression signature for intestinal stem-like cells identifies high-risk precursors of gastric cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558462. [PMID: 37786704 PMCID: PMC10541579 DOI: 10.1101/2023.09.20.558462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Objective Gastric intestinal metaplasia (GIM) is a precancerous lesion that increases gastric cancer (GC) risk. The Operative Link on GIM (OLGIM) is a combined clinical-histopathologic system to risk-stratify patients with GIM. The identification of molecular biomarkers that are indicators for advanced OLGIM lesions may improve cancer prevention efforts. Methods This study was based on clinical and genomic data from four cohorts: 1) GAPS, a GIM cohort with detailed OLGIM severity scoring (N=303 samples); 2) the Cancer Genome Atlas (N=198); 3) a collation of in-house and publicly available scRNA-seq data (N=40), and 4) a spatial validation cohort (N=5) consisting of annotated histology slides of patients with either GC or advanced GIM. We used a multi-omics pipeline to identify, validate and sequentially parse a highly-refined signature of 26 genes which characterize high-risk GIM. Results Using standard RNA-seq, we analyzed two separate, non-overlapping discovery (N=88) and validation (N=215) sets of GIM. In the discovery phase, we identified 105 upregulated genes specific for high-risk GIM (defined as OLGIM III-IV), of which 100 genes were independently confirmed in the validation set. Spatial transcriptomic profiling revealed 36 of these 100 genes to be expressed in metaplastic foci in GIM. Comparison with bulk GC sequencing data revealed 26 of these genes to be expressed in intestinal-type GC. Single-cell profiling resolved the 26-gene signature to both mature intestinal lineages (goblet cells, enterocytes) and immature intestinal lineages (stem-like cells). A subset of these genes was further validated using single-molecule multiplex fluorescence in situ hybridization. We found certain genes (TFF3 and ANPEP) to mark differentiated intestinal lineages, whereas others (OLFM4 and CPS1) localized to immature cells in the isthmic/crypt region of metaplastic glands, consistent with the findings from scRNAseq analysis. Conclusions using an integrated multi-omics approach, we identified a novel 26-gene expression signature for high-OLGIM precursors at increased risk for GC. We found this signature localizes to aberrant intestinal stem-like cells within the metaplastic microenvironment. These findings hold important translational significance for future prevention and early detection efforts.
Collapse
Affiliation(s)
- Robert J. Huang
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ignacio A. Wichmann
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
- Division of Obstetrics and Gynecology, Department of Obstetrics, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - Andrew Su
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Miranda V. Shum
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Susan M. Grimes
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Rithika Meka
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Alison Almeda
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Quan Nguyen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Manuel R. Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Hanlee P. Ji
- Division of Oncology, Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
34
|
Alvina FB, Chen TCY, Lim HYG, Barker N. Gastric epithelial stem cells in development, homeostasis and regeneration. Development 2023; 150:dev201494. [PMID: 37746871 DOI: 10.1242/dev.201494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The stem/progenitor cell pool is indispensable for the development, homeostasis and regeneration of the gastric epithelium, owing to its defining ability to self-renew whilst supplying the various functional epithelial lineages needed to digest food efficiently. A detailed understanding of the intricacies and complexities surrounding the behaviours and roles of these stem cells offers insights, not only into the physiology of gastric epithelial development and maintenance, but also into the pathological consequences following aberrations in stem cell regulation. Here, we provide an insightful synthesis of the existing knowledge on gastric epithelial stem cell biology, including the in vitro and in vivo experimental techniques that have advanced such studies. We highlight the contributions of stem/progenitor cells towards patterning the developing stomach, specification of the differentiated cell lineages and maintenance of the mature epithelium during homeostasis and following injury. Finally, we discuss gaps in our understanding and identify key research areas for future work.
Collapse
Affiliation(s)
- Fidelia B Alvina
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Tanysha Chi-Ying Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117593, Republic of Singapore
| |
Collapse
|
35
|
Li YT, Tan XY, Ma LX, Li HH, Zhang SH, Zeng CM, Huang LN, Xiong JX, Fu L. Targeting LGSN restores sensitivity to chemotherapy in gastric cancer stem cells by triggering pyroptosis. Cell Death Dis 2023; 14:545. [PMID: 37612301 PMCID: PMC10447538 DOI: 10.1038/s41419-023-06081-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Gastric cancer (GC) is notoriously resistant to current therapies due to tumor heterogeneity. Cancer stem cells (CSCs) possess infinite self-renewal potential and contribute to the inherent heterogeneity of GC. Despite its crucial role in chemoresistance, the mechanism of stemness maintenance of gastric cancer stem cells (GCSCs) remains largely unknown. Here, we present evidence that lengsin, lens protein with glutamine synthetase domain (LGSN), a vital cell fate determinant, is overexpressed in GCSCs and is highly correlated with malignant progression and poor survival in GC patients. Ectopic overexpression of LGSN in GCSC-derived differentiated cells facilitated their dedifferentiation and treatment resistance by interacting with vimentin and inducing an epithelial-to-mesenchymal transition. Notably, genetic interference of LGSN effectively suppressed tumor formation by inhibiting GCSC stemness maintenance and provoking gasdermin-D-mediated pyroptosis through vimentin degradation/NLRP3 signaling. Depletion of LGSN combined with the chemo-drugs 5-fluorouracil and oxaliplatin could offer a unique and promising approach to synergistically rendering this deadly cancer eradicable in vivo. Our data place focus on the role of LGSN in GCSC regeneration and emphasize the critical importance of pyroptosis in battling GCSC.
Collapse
Affiliation(s)
- Yu-Ting Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Xiang-Yu Tan
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Li-Xiang Ma
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Hua-Hui Li
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
- Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University Medical School, Shenzhen, Guangdong, 518055, China
| | - Shu-Hong Zhang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Chui-Mian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Liu-Na Huang
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Ji-Xian Xiong
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Li Fu
- Guangdong Province Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
36
|
Chao S, Zhang F, Yan H, Wang L, Zhang L, Wang Z, Xue R, Wang L, Wu Z, Jiang B, Shi G, Xue Y, Du J, Bu P. Targeting intratumor heterogeneity suppresses colorectal cancer chemoresistance and metastasis. EMBO Rep 2023; 24:e56416. [PMID: 37338390 PMCID: PMC10398666 DOI: 10.15252/embr.202256416] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Intratumor heterogeneity (ITH) is a barrier to effective therapy. However, it is largely unknown how ITH is established at the onset of tumor progression, such as in colorectal cancer (CRC). Here, we integrate single-cell RNA-seq and functional validation to show that asymmetric division of CRC stem-like cells (CCSC) is critical for early ITH establishment. We find that CCSC-derived xenografts contain seven cell subtypes, including CCSCs, that dynamically change during CRC xenograft progression. Furthermore, three of the subtypes are generated by asymmetric division of CCSCs. They are functionally distinct and appear at the early stage of xenografts. In particular, we identify a chemoresistant and an invasive subtype, and investigate the regulators that control their generation. Finally, we show that targeting the regulators influences cell subtype composition and CRC progression. Our findings demonstrate that asymmetric division of CCSCs contributes to the early establishment of ITH. Targeting asymmetric division may alter ITH and benefit CRC therapy.
Collapse
Affiliation(s)
- Shanshan Chao
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Fei Zhang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Huiwen Yan
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, School of MedicineDuke UniversityDurhamNCUSA
| | - Liwen Zhang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Zhi Wang
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Ruixin Xue
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Lei Wang
- Laboratory Animal Research Center, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Zhenzhen Wu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Bing Jiang
- Nanozyme Medical Center, School of Basic Medical SciencesZhengzhou UniversityZhengzhouChina
| | - Guizhi Shi
- Laboratory Animal Research Center, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- Aviation General Hospital of BeijingMedical University and Beijing Institute of Translational Medicine, University of Chinese Academy of SciencesBeijingChina
| | - Yuanchao Xue
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Junfeng Du
- Department of General Surgery, The 7 Medical CenterChinese PLA General HospitalBeijingChina
- The 2 School of Clinical MedicineSouthern Medical UniversityGuangdongChina
- Medical Department of General Surgery, The 1 Medical CenterChinese PLA General HospitalBeijingChina
| | - Pengcheng Bu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of BiophysicsChinese Academy of SciencesBeijingChina
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- Center for Excellence in BiomacromoleculesChinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
Mattiolo P, Gkountakos A, Centonze G, Bevere M, Piccoli P, Ammendola S, Pedrazzani C, Landoni L, Cingarlini S, Milella M, Milione M, Luchini C, Scarpa A, Simbolo M. Transcriptome analysis of primary sporadic neuroendocrine tumours of the intestine identified three different molecular subgroups. Pathol Res Pract 2023; 248:154674. [PMID: 37454491 DOI: 10.1016/j.prp.2023.154674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Intestinal neuroendocrine tumours (I-NETs) represent a non-negligible entity among intestinal neoplasms, with metastatic spreading usually present at the time of diagnosis. In this context, effective molecular actionable targets are still lacking. Through transcriptome analysis, we aim at refining the molecular taxonomy of I-NETs, also providing insights towards the identification of new therapeutic vulnerabilities. MATERIALS AND METHODS A retrospective series of 38 primary sporadic, surgically-resected I-NETs were assessed for transcriptome profiling of 20,815 genes. RESULTS Transcriptome analysis detected 643 highly expressed genes. Unsupervised hierarchical clustering, differential expression analysis and gene set enriched analysis identified three different tumour clusters (CL): CL-A, CL-B, CL-C. CL-A showed the overexpression of ARGFX, BIRC8, NANOS2, and SSTR4 genes. Its most characterizing signatures were those related to cell-junctions, and activation of mTOR and WNT pathway. CL-A was also enriched in T CD8 + lymphocytes. CL-B showed the overexpression of PCSK1, QPCT, ST18, and TPH1 genes. Its most characterizing signatures were those related to adipogenesis, neuroendocrine metabolism, and splice site machinery-related processes. CL-B was also enriched in T CD4 + lymphocytes. CL-C showed the overexpression of ALB, ANG, ARG1, and HP genes. Its most characterizing signatures were complement/coagulation and xenobiotic metabolism. CL-C was also enriched in M1/2 macrophages. These CL-based differences may have therapeutic implications in refining the management of I-NET patients. At last, we described a specific gene-set for differentiating I-NET from pancreatic NET. DISCUSSION Our data represent an additional step for refining the molecular taxonomy of I-NET, identifying novel transcriptome subgroups with different biology and therapeutic opportunities.
Collapse
Affiliation(s)
- Paola Mattiolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Anastasios Gkountakos
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Giovanni Centonze
- Pathology Unit 1, Pathology and Laboratory Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Michele Bevere
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Paola Piccoli
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Serena Ammendola
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| | - Corrado Pedrazzani
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology, and Pediatrics, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Landoni
- General and Pancreatic Surgery Department, Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Sara Cingarlini
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Milella
- Department of Medicine, Section of Medical Oncology, University and Hospital Trust of Verona, Verona, Italy
| | - Massimo Milione
- Pathology Unit 1, Pathology and Laboratory Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy; ARC-Net Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Michele Simbolo
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy.
| |
Collapse
|
38
|
Xia J, Liu M, Zhu C, Liu S, Ai L, Ma D, Zhu P, Wang L, Liu F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res 2023; 33:448-463. [PMID: 37016019 PMCID: PMC10235423 DOI: 10.1038/s41422-023-00797-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are considered as a heterogeneous population, but precisely when, where and how HSPC heterogeneity arises remain largely unclear. Here, using a combination of single-cell multi-omics, lineage tracing and functional assays, we show that embryonic HSPCs originate from heterogeneous hemogenic endothelial cells (HECs) during zebrafish embryogenesis. Integrated single-cell transcriptome and chromatin accessibility analysis demonstrates transcriptional heterogeneity and regulatory programs that prime lymphoid/myeloid fates at the HEC level. Importantly, spi2+ HECs give rise to lymphoid/myeloid-primed HSPCs (L/M-HSPCs) and display a stress-responsive function under acute inflammation. Moreover, we uncover that Spi2 is required for the formation of L/M-HSPCs through tightly controlling the endothelial-to-hematopoietic transition program. Finally, single-cell transcriptional comparison of zebrafish and human HECs and human induced pluripotent stem cell-based hematopoietic differentiation results support the evolutionary conservation of L/M-HECs and a conserved role of SPI1 (spi2 homolog in mammals) in humans. These results unveil the lineage origin, biological function and molecular determinant of HSPC heterogeneity and lay the foundation for new strategies for induction of transplantable lineage-primed HSPCs in vitro.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
39
|
Zhao W, Jia Y, Sun G, Yang H, Liu L, Qu X, Ding J, Yu H, Xu B, Zhao S, Xing L, Chai J. Single-cell analysis of gastric signet ring cell carcinoma reveals cytological and immune microenvironment features. Nat Commun 2023; 14:2985. [PMID: 37225691 DOI: 10.1038/s41467-023-38426-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRC) is a special subtype of gastric cancer (GC) associated with poor prognosis, but an in-depth and systematic study of GSRC is lacking. Here, we perform single-cell RNA sequencing to assess GC samples. We identify signet ring cell carcinoma (SRCC) cells. Microseminoprotein-beta (MSMB) can be used as a marker gene to guide the identification of moderately/poorly differentiated adenocarcinoma and signet ring cell carcinoma (SRCC). The upregulated differentially expressed genes in SRCC cells are mainly enriched in abnormally activated cancer-related signalling pathways and immune response signalling pathways. SRCC cells are also significantly enriched in mitogen-activated protein kinase and oestrogen signalling pathways, which can interact and promote each other in a positive feedback loop. SRCC cells are shown to have lower cell adhesion and higher immune evasion capabilities as well as an immunosuppressive microenvironment, which may be closely associated with the relatively poor prognosis of GSRC. In summary, GSRC exhibits unique cytological characteristics and a unique immune microenvironment, which may be advantageous for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Weizhu Zhao
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Guangyu Sun
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Haiying Yang
- Department of Cardiology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Luguang Liu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianlin Qu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jie Chai
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
40
|
Ogi DA, Jin S. Transcriptome-Powered Pluripotent Stem Cell Differentiation for Regenerative Medicine. Cells 2023; 12:1442. [PMID: 37408278 DOI: 10.3390/cells12101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 07/07/2023] Open
Abstract
Pluripotent stem cells are endless sources for in vitro engineering human tissues for regenerative medicine. Extensive studies have demonstrated that transcription factors are the key to stem cell lineage commitment and differentiation efficacy. As the transcription factor profile varies depending on the cell type, global transcriptome analysis through RNA sequencing (RNAseq) has been a powerful tool for measuring and characterizing the success of stem cell differentiation. RNAseq has been utilized to comprehend how gene expression changes as cells differentiate and provide a guide to inducing cellular differentiation based on promoting the expression of specific genes. It has also been utilized to determine the specific cell type. This review highlights RNAseq techniques, tools for RNAseq data interpretation, RNAseq data analytic methods and their utilities, and transcriptomics-enabled human stem cell differentiation. In addition, the review outlines the potential benefits of the transcriptomics-aided discovery of intrinsic factors influencing stem cell lineage commitment, transcriptomics applied to disease physiology studies using patients' induced pluripotent stem cell (iPSC)-derived cells for regenerative medicine, and the future outlook on the technology and its implementation.
Collapse
Affiliation(s)
- Derek A Ogi
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Sha Jin
- Department of Biomedical Engineering, Thomas J. Watson College of Engineering and Applied Sciences, State University of New York at Binghamton, Binghamton, NY 13902, USA
- Center of Biomanufacturing for Regenerative Medicine, State University of New York at Binghamton, Binghamton, NY 13902, USA
| |
Collapse
|
41
|
Shih CC, Liao WC, Ke HY, Kuo CW, Tsao CM, Tsai WC, Chiu YL, Huang HC, Wu CC. Antimicrobial peptide cathelicidin LL-37 preserves intestinal barrier and organ function in rats with heat stroke. Biomed Pharmacother 2023; 161:114565. [PMID: 36958193 DOI: 10.1016/j.biopha.2023.114565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Global warming increases the incidence of heat stroke (HS) and HS causes the reduction of visceral blood flow during hyperthermia, leading to intestinal barrier disruption, microbial translocation, systemic inflammation and multiple organ failure. Cathelicidin LL-37 exhibits antimicrobial activities, helps innate immunity within the gut to maintain intestinal homeostasis, and augments intestinal wound healing and barrier function. Thus, we evaluated the effects and possible mechanisms of cathelicidin LL-37 on HS. Wistar rats were placed in a heating-chamber of 42 ̊C to induce HS. Changes in rectal temperature, hemodynamic parameters, and survival rate were measured during the experimental period. Blood samples and ilea were collected to analyze the effects of LL-37 on systemic inflammation, multiple organ dysfunction, and intestinal injury. Furthermore, LS174T and HT-29 cells were used to assess the underlying mechanisms. Our data showed cathelicidin LL-37 ameliorated the damage of intestinal cells induced by HS. Intestinal injury, systemic inflammation, and nitrosative stress (high nitric oxide level) caused by continuous hyperthermia were attenuated in HS rats treated with cathelicidin LL-37, and hence, improved multiple organ dysfunction, coagulopathy, and survival rate. These beneficial effects of cathelicidin LL-37 were attributed to the protection of intestinal goblet cells (by increasing transepithelial resistance, mucin-2 and Nrf2 expression) and the improvement of intestinal barrier function (less cyclooxygenase-2 expression and FITC-dextran translocation). Interestingly, high cathelicidin expression in the ileal samples of inflammatory bowel disease patients was associated with better clinical outcome. These results suggest that cathelicidin LL-37 could prevent heat stress-induced intestinal damage and heat-related illnesses.
Collapse
Affiliation(s)
- Chih-Chin Shih
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Wei-Chieh Liao
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hung-Yen Ke
- Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chia-Wen Kuo
- Department of Nephrology, Taichung Armed Forces General Hospital, Taichung, Taiwan, ROC
| | - Cheng-Ming Tsao
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming Chiao-Tung University, Taipei, Taiwan, ROC
| | - Wen-Chiuan Tsai
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsieh-Chou Huang
- Department of Anesthesiology, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
| | - Chin-Chen Wu
- Department and Graduate Institute of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
42
|
Xu Y, Zhang T, Zhou Q, Hu M, Qi Y, Xue Y, Nie Y, Wang L, Bao Z, Shi W. A single-cell transcriptome atlas profiles early organogenesis in human embryos. Nat Cell Biol 2023; 25:604-615. [PMID: 36928764 DOI: 10.1038/s41556-023-01108-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/16/2023] [Indexed: 03/18/2023]
Abstract
The early window of human embryogenesis is largely a black box for developmental biologists. Here we probed the cellular diversity of 4-6 week human embryos when essentially all organs are just laid out. On the basis of over 180,000 single-cell transcriptomes, we generated a comprehensive atlas of 313 clusters in 18 developmental systems, which were annotated with a collection of ontology and markers from 157 publications. Together with spatial transcriptome on embryonic sections, we characterized the molecule and spatial architecture of previously unappreciated cell types. Combined with data from other vertebrates, the rich information shed light on spatial patterning of axes, systemic temporal regulation of developmental progression and potential human-specific regulation. Our study provides a compendium of early progenitor cells of human organs, which can serve as the root of lineage analysis in organogenesis.
Collapse
Affiliation(s)
- Yichi Xu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Tengjiao Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qin Zhou
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Mengzhu Hu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yao Qi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yifang Xue
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Yuxiao Nie
- School of Pharmacy, Fudan University, Shanghai, China
| | - Lihui Wang
- Traditional Chinese Medicine Hospital of Kunshan, Suzhou, China
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
43
|
Hu FJ, Li YJ, Zhang L, Ji DB, Liu XZ, Chen YJ, Wang L, Wu AW. Single-cell profiling reveals differences between human classical adenocarcinoma and mucinous adenocarcinoma. Commun Biol 2023; 6:85. [PMID: 36690709 PMCID: PMC9870908 DOI: 10.1038/s42003-023-04441-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Colorectal cancer is a highly heterogeneous disease. Most colorectal cancers are classical adenocarcinoma, and mucinous adenocarcinoma is a unique histological subtype that is known to respond poorly to chemoradiotherapy. The difference in prognosis between mucinous adenocarcinoma and classical adenocarcinoma is controversial. Here, to gain insight into the differences between classical adenocarcinoma and mucinous adenocarcinoma, we analyse 7 surgical tumour samples from 4 classical adenocarcinoma and 3 mucinous adenocarcinoma patients by single-cell RNA sequencing. Our results indicate that mucinous adenocarcinoma cancer cells have goblet cell-like properties, and express high levels of goblet cell markers (REG4, SPINK4, FCGBP and MUC2) compared to classical adenocarcinoma cancer cells. TFF3 is essential for the transcriptional regulation of these molecules, and may cooperate with RPS4X to eventually lead to the mucinous adenocarcinoma mucus phenotype. The observed molecular characteristics may be critical in the specific biological behavior of mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Fang-Jie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, 100020, China
| | - Ying-Jie Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Li Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Deng-Bo Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Xin-Zhi Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Yong-Jiu Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Lin Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China.
| | - Ai-Wen Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China.
| |
Collapse
|
44
|
Liu X, Ni G, Zhang P, Li H, Li J, Cavallazzi Sebold B, Wu X, Chen G, Yuan S, Wang T. Single-nucleus RNA sequencing and deep tissue proteomics reveal distinct tumour microenvironment in stage-I and II cervical cancer. J Exp Clin Cancer Res 2023; 42:28. [PMID: 36683048 PMCID: PMC9869594 DOI: 10.1186/s13046-023-02598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is the 3rd most common cancer in women and the 4th leading cause of deaths in gynaecological malignancies, yet the exact progression of CC is inconclusive, mainly due to the high complexity of the changing tumour microenvironment (TME) at different stages of tumorigenesis. Importantly, a detailed comparative single-nucleus transcriptomic analysis of tumour microenvironment (TME) of CC patients at different stages is lacking. METHODS In this study, a total of 42,928 and 29,200 nuclei isolated from the tumour tissues of stage-I and II CC patients and subjected to single-nucleus RNA sequencing (snRNA-seq) analysis. The cell heterogeneity and functions were comparatively investigated using bioinformatic tools. In addition, label-free quantitative mass spectrometry based proteomic analysis was carried out. The proteome profiles of stage-I and II CC patients were compared, and an integrative analysis with the snRNA-seq was performed. RESULTS Compared with the stage-I CC (CCI) patients, the immune response relevant signalling pathways were largely suppressed in various immune cells of the stage-II CC (CCII) patients, yet the signalling associated with cell and tissue development was enriched, as well as metabolism for energy production suggested by the upregulation of genes associated with mitochondria. This was consistent with the quantitative proteomic analysis that showed the dominance of proteins promoting cell growth and intercellular matrix development in the TME of CCII group. The interferon-α and γ responses appeared the most activated pathways in many cell populations of the CCI patients. Several collagens, such as COL12A1, COL5A1, COL4A1 and COL4A2, were found significantly upregulated in the CCII group, suggesting their roles in diagnosing CC progression. A novel transcript AC244205.1 was detected as the most upregulated gene in CCII patients, and its possible mechanistic role in CC may be investigated further. CONCLUSIONS Our study provides important resources for decoding the progression of CC and set the foundation for developing novel approaches for diagnosing CC and tackling the immunosuppressive TME.
Collapse
Affiliation(s)
- Xiaosong Liu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/School of Clinical Medicineof, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | | | - Xiaolian Wu
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Songhua Yuan
- Department of Gynaecology, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
45
|
Chen S, Shao F, Zeng J, Guo S, Wang L, Sun H, Lei JH, Lyu X, Gao S, Chen Q, Miao K, Xu X, Deng CX. Cullin-5 deficiency orchestrates the tumor microenvironment to promote mammary tumor development through CREB1-CCL2 signaling. SCIENCE ADVANCES 2023; 9:eabq1395. [PMID: 36662868 PMCID: PMC9858512 DOI: 10.1126/sciadv.abq1395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer-associated gene 1 (Brca1) deficiency induces the onset of breast cancer formation, accompanied with extensive genetic alterations. Here, we used both the sleeping beauty transposon mutagenesis system and CRISPR-Cas9-mediated genome-wide screening in mice to identify potential genetic alterations that act synergistically with Brca1 deficiency to promote tumorignesis. Both approaches identified Cullin-5 as a tumor suppressor, whose mutation enabled Brca1-deficient cell survival and accelerated tumorigenesis by orchestrating tumor microenvironment. Cullin-5 suppresses cell growth through ubiquitylating and degrading adenosine 3',5'-monophosphate-responsive element binding protein 1 (CREB1), especially under protein damage condition. Meanwhile, Cullin-5 deficiency activated CREB1-CCL2 signaling and resulted in the accumulation of monocytes and polymorphonuclear myeloid-derived suppressor cells, reduction of T cells that benefit tumor progression in both Brca1-deficient cells and wild-type cells. Blocking CREB1 activity either through gene knockout or specific inhibitor treatment suppressed changes in the tumor microenvironment caused by Cullin-5 deficiency and blocked tumor progression.
Collapse
Affiliation(s)
- Si Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Jianming Zeng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sen Guo
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Lijian Wang
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Josh Haipeng Lei
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Xueying Lyu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiang Chen
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Xiaoling Xu
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, China
- MOE Frontiers Science Center for Precision Oncogene, University of Macau, Macau SAR, China
| |
Collapse
|
46
|
Choe K, Pak U, Pang Y, Hao W, Yang X. Advances and Challenges in Spatial Transcriptomics for Developmental Biology. Biomolecules 2023; 13:biom13010156. [PMID: 36671541 PMCID: PMC9855858 DOI: 10.3390/biom13010156] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
Development from single cells to multicellular tissues and organs involves more than just the exact replication of cells, which is known as differentiation. The primary focus of research into the mechanism of differentiation has been differences in gene expression profiles between individual cells. However, it has predominantly been conducted at low throughput and bulk levels, challenging the efforts to understand molecular mechanisms of differentiation during the developmental process in animals and humans. During the last decades, rapid methodological advancements in genomics facilitated the ability to study developmental processes at a genome-wide level and finer resolution. Particularly, sequencing transcriptomes at single-cell resolution, enabled by single-cell RNA-sequencing (scRNA-seq), was a breath-taking innovation, allowing scientists to gain a better understanding of differentiation and cell lineage during the developmental process. However, single-cell isolation during scRNA-seq results in the loss of the spatial information of individual cells and consequently limits our understanding of the specific functions of the cells performed by different spatial regions of tissues or organs. This greatly encourages the emergence of the spatial transcriptomic discipline and tools. Here, we summarize the recent application of scRNA-seq and spatial transcriptomic tools for developmental biology. We also discuss the limitations of current spatial transcriptomic tools and approaches, as well as possible solutions and future prospects.
Collapse
Affiliation(s)
- Kyongho Choe
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Unil Pak
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yu Pang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Wanjun Hao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xiuqin Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-451-55191738
| |
Collapse
|
47
|
Pagliuca S, Gurnari C, Hercus C, Hergalant S, Nadarajah N, Wahida A, Terkawi L, Mori M, Zhou W, Visconte V, Spellman S, Gadalla SM, Zhu C, Zhu P, Haferlach T, Maciejewski JP. Molecular landscape of immune pressure and escape in aplastic anemia. Leukemia 2023; 37:202-211. [PMID: 36253429 PMCID: PMC10089624 DOI: 10.1038/s41375-022-01723-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
Idiopathic aplastic anemia (IAA) pathophysiology is dominated by autoreactivity of human leukocyte antigen (HLA)-restricted T-cells against antigens presented by hematopoietic stem and progenitor cells (HSPCs). Expansion of PIGA and HLA class I mutant HSPCs have been linked to immune evasion from T-cell mediated pressures. We hypothesized that in analogy with antitumor immunity, the pathophysiological cascade of immune escape in IAA is initiated by immunoediting pressures and culminates with mechanisms of clonal evolution characterized by hits in immune recognition and response genes. To that end, we studied the genetic and transcriptomic make-up of the antigen presentation complexes in a large cohort of patients with IAA and paroxysmal nocturnal hemoglobinuria (PNH) by using single-cell RNA, high throughput DNA sequencing and single nucleotide polymorphism (SNP)-array platforms. At disease onset, HSPCs displayed activation of selected HLA class I and II-restricted mechanisms, without extensive inhibition of immune checkpoint apparatus. Using a newly implemented bioinformatic framework we found that not only class I but also class II genes were often impaired by acquisition of genetic aberrations. We also demonstrated the presence of novel somatic alterations in immune genes possibly contributing to the evasion from the autoimmune T-cells. In contrast, these hits were absent in myeloid neoplasia. These aberrations were not mutually exclusive with PNH and did not correlate with the accumulation of myeloid-driver hits. Our findings shed light on the mechanisms of immune activation and escape in IAA and define alternative modes of clonal hematopoiesis.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, CHRU Nancy, Vandœuvre-lès-Nancy, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Colin Hercus
- Novocraft Technologies Sdn Bhd, Kuala Lumpur, Malaysia
| | - Sébastien Hergalant
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500, Vandœuvre-lès-Nancy, France
| | | | - Adam Wahida
- Munich Leukemia Laboratory, MLL, Munich, Germany
| | - Laila Terkawi
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Frederick, MD, USA
| | - Valeria Visconte
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen Spellman
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD, USA
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, No. 288 Nanjing Rd, Tianjin, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, No. 288 Nanjing Rd, Tianjin, China
| | | | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
48
|
McNeill EP, Gupta VS, Sequeira DJ, Shroyer NF, Speer AL. Evaluation of Murine Host Sex as a Biological Variable in Transplanted Human Intestinal Organoid Development. Dig Dis Sci 2022; 67:5511-5521. [PMID: 35334015 PMCID: PMC10251489 DOI: 10.1007/s10620-022-07442-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Human intestinal organoids (HIOs), when transplanted into immunocompromised mice (tHIOs), demonstrate significant growth and maturation. While both male and female mice are reported to be viable hosts for these experiments, a direct comparison of sex-related differences in tHIO structure and development has not been performed. AIMS We sought to identify host sex-related differences in tHIO engraftment, morphology, and epithelial and mesenchymal development. METHODS HIOs were generated in vitro and transplanted beneath the kidney capsule of NSG male and female mice. tHIOs were harvested at 8-9 weeks. Anthropometric measurements were captured. tHIOs were divided in half and histology or RT-qPCR performed. Morphology was evaluated and epithelial architecture graded on a scale of 1 (absence of crypts/villi) to 4 (elongated crypt-villus axis). RT-qPCR and immunofluorescence microscopy were performed for epithelial and mesenchymal differentiation markers. RESULTS Host survival and tHIO engraftment were equivalent in male and female hosts. tHIO weight and length were also equivalent between groups. The number of lumens per tHIOs from male and female hosts was similar, but the mean lumen circumference was larger for tHIOs from male hosts. tHIOs from male hosts were more likely to demonstrate higher grades of epithelial development. However, both groups showed similar differentiation into secretory and absorptive epithelial lineages. Markers for intestinal identity, mesenchymal development, and brush border enzymes were also expressed similarly between groups. CONCLUSIONS While male host sex was associated with larger tHIO lumen size and mucosal maturation, tHIOs from both groups had similar engraftment, growth, and epithelial and mesenchymal cytodifferentiation.
Collapse
Affiliation(s)
- Eoin P McNeill
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA
| | - Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA
| | - David J Sequeira
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA
| | - Noah F Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, 6450 E Cullen St, BCMN-N1301, Houston, TX, 77030, USA
| | - Allison L Speer
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin Street, Suite 5.258, Houston, TX, 77030, USA.
| |
Collapse
|
49
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 269] [Impact Index Per Article: 89.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
50
|
Kobayashi S, Ogasawara N, Watanabe S, Yoneyama Y, Kirino S, Hiraguri Y, Inoue M, Nagata S, Okamoto-Uchida Y, Kofuji S, Shimizu H, Ito G, Mizutani T, Yamauchi S, Kinugasa Y, Kano Y, Nemoto Y, Watanabe M, Tsuchiya K, Nishina H, Okamoto R, Yui S. Collagen type I-mediated mechanotransduction controls epithelial cell fate conversion during intestinal inflammation. Inflamm Regen 2022; 42:49. [PMID: 36443773 PMCID: PMC9703763 DOI: 10.1186/s41232-022-00237-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The emerging concepts of fetal-like reprogramming following tissue injury have been well recognized as an important cue for resolving regenerative mechanisms of intestinal epithelium during inflammation. We previously revealed that the remodeling of mesenchyme with collagen fibril induces YAP/TAZ-dependent fate conversion of intestinal/colonic epithelial cells covering the wound bed towards fetal-like progenitors. To fully elucidate the mechanisms underlying the link between extracellular matrix (ECM) remodeling of mesenchyme and fetal-like reprogramming of epithelial cells, it is critical to understand how collagen type I influence the phenotype of epithelial cells. In this study, we utilize collagen sphere, which is the epithelial organoids cultured in purified collagen type I, to understand the mechanisms of the inflammatory associated reprogramming. Resolving the entire landscape of regulatory networks of the collagen sphere is useful to dissect the reprogrammed signature of the intestinal epithelium. METHODS We performed microarray, RNA-seq, and ATAC-seq analyses of the murine collagen sphere in comparison with Matrigel organoid and fetal enterosphere (FEnS). We subsequently cultured human colon epithelium in collagen type I and performed RNA-seq analysis. The enriched genes were validated by gene expression comparison between published gene sets and immunofluorescence in pathological specimens of ulcerative colitis (UC). RESULTS The murine collagen sphere was confirmed to have inflammatory and regenerative signatures from RNA-seq analysis. ATAC-seq analysis confirmed that the YAP/TAZ-TEAD axis plays a central role in the induction of the distinctive signature. Among them, TAZ has implied its relevant role in the process of reprogramming and the ATAC-based motif analysis demonstrated not only Tead proteins, but also Fra1 and Runx2, which are highly enriched in the collagen sphere. Additionally, the human collagen sphere also showed a highly significant enrichment of both inflammatory and fetal-like signatures. Immunofluorescence staining confirmed that the representative genes in the human collagen sphere were highly expressed in the inflammatory region of ulcerative colitis. CONCLUSIONS Collagen type I showed a significant influence in the acquisition of the reprogrammed inflammatory signature in both mice and humans. Dissection of the cell fate conversion and its mechanisms shown in this study can enhance our understanding of how the epithelial signature of inflammation is influenced by the ECM niche.
Collapse
Affiliation(s)
- Sakurako Kobayashi
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Nobuhiko Ogasawara
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Satoshi Watanabe
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yosuke Yoneyama
- grid.265073.50000 0001 1014 9130Institute of Research, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Sakura Kirino
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yui Hiraguri
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Masami Inoue
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Sayaka Nagata
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yoshimi Okamoto-Uchida
- grid.265073.50000 0001 1014 9130Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Satoshi Kofuji
- grid.265073.50000 0001 1014 9130Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Hiromichi Shimizu
- grid.265073.50000 0001 1014 9130Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Go Ito
- grid.265073.50000 0001 1014 9130Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Tomohiro Mizutani
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Shinichi Yamauchi
- grid.265073.50000 0001 1014 9130Department of Gastrointestinal Surgery, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yusuke Kinugasa
- grid.265073.50000 0001 1014 9130Department of Gastrointestinal Surgery, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yoshihito Kano
- grid.265073.50000 0001 1014 9130Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Yasuhiro Nemoto
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Mamoru Watanabe
- grid.265073.50000 0001 1014 9130Advanced Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Kiichiro Tsuchiya
- grid.20515.330000 0001 2369 4728Department of Gastroenterology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Hiroshi Nishina
- grid.265073.50000 0001 1014 9130Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Ryuichi Okamoto
- grid.265073.50000 0001 1014 9130Department of Gastroenterology and Hepatology, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| | - Shiro Yui
- grid.265073.50000 0001 1014 9130Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510 Japan
| |
Collapse
|