1
|
Luo Q, Li S, Kinouchi T, Wu N, Fu X, Ling C, Cai Q, Chiu MC, Resh VH. Existing levels of biodiversity and river location may determine changes from small hydropower developments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120697. [PMID: 38565031 DOI: 10.1016/j.jenvman.2024.120697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/18/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Global ecosystems are facing anthropogenic threats that affect their ecological functions and biodiversity. However, we still lack an understanding of how biodiversity can mediate the responses of ecosystems or communities to human disturbance across spatial gradients. Here, we examined how existing, spatial patterns of biodiversity influence the ecological effects of small hydropower plants (SHPs) on macroinvertebrates in river ecosystems. This study found that levels of biodiversity (e.g., number of species) can influence the degrees of its alterations by SHPs occurring along elevational gradients. The results of the study reveal that the construction of SHPs has various effects on biodiversity. For example, low-altitude areas with low biodiversity (species richness less than 12) showed a small increase in biodiversity compared to high-altitude areas (species richness more than 12) under SHP disturbances. The increases in the effective habitat area of the river segment could be a driver of the enhanced biodiversity in response to SHP effects. Changes in the numerically dominant species contributed to the overall level of community variation from disturbances. Location-specific strategies may mitigate the effects of SHPs and perhaps other disturbances.
Collapse
Affiliation(s)
- Qingyi Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Shuyin Li
- Yangtze River Basin Ecological Environment Monitoring and Scientific Research Center, Yangtze River Basin Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Wuhan, 430010, China; Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Tsuyoshi Kinouchi
- Department of Transdisciplinary Science and Engineering, Tokyo Institute of Technology, Tokyo, 152-8550, Japan.
| | - Naicheng Wu
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo, 315211, China.
| | - Xiaocheng Fu
- Shanghai Nuclear Engineering Research & Design Institute Co., LTD., Shanghai, 200233, China.
| | - Chang Ling
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100084, China.
| | - Qinghua Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China.
| | - Ming-Chih Chiu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430061, China.
| | - Vincent H Resh
- Department of Environmental Science, Policy & Management, University of California Berkeley, Berkeley, 94720, USA.
| |
Collapse
|
2
|
Ma F, Yan Y, Svenning JC, Quan Q, Peng J, Zhang R, Wang J, Tian D, Zhou Q, Niu S. Opposing effects of warming on the stability of above- and belowground productivity in facing an extreme drought event. Ecology 2024; 105:e4193. [PMID: 37882140 DOI: 10.1002/ecy.4193] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/05/2023] [Accepted: 09/18/2023] [Indexed: 10/27/2023]
Abstract
Climate warming, often accompanied by extreme drought events, could have profound effects on both plant community structure and ecosystem functioning. However, how warming interacts with extreme drought to affect community- and ecosystem-level stability remains a largely open question. Using data from a manipulative experiment with three warming treatments in an alpine meadow that experienced one extreme drought event, we investigated how warming modulates resistance and recovery of community structural and ecosystem functional stability in facing with extreme drought. We found warming decreased resistance and recovery of aboveground net primary productivity (ANPP) and structural resistance but increased resistance and recovery of belowground net primary productivity (BNPP), overall net primary productivity (NPP), and structural recovery. The findings highlight the importance of jointly considering above- and belowground processes when evaluating ecosystem stability under global warming and extreme climate events. The stability of dominant species, rather than species richness and species asynchrony, was identified as a key predictor of ecosystem functional resistance and recovery, except for BNPP recovery. In addition, structural resistance of common species contributed strongly to the resistance changes in BNPP and NPP. Importantly, community structural resistance and recovery dominated the resistance and recovery of BNPP and NPP, but not for ANPP, suggesting the different mechanisms underlie the maintenance of stability of above- versus belowground productivity. This study is among the first to explain that warming modulates ecosystem stability in the face of extreme drought and lay stress on the need to investigate ecological stability at the community level for a more mechanistic understanding of ecosystem stability in response to climate extremes.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Yingjie Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinlong Peng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ruiyang Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Jinsong Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- Department of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Kass JM, Yoshimura M, Ogasawara M, Suwabe M, Hita Garcia F, Fischer G, Dudley KL, Donohue I, Economo EP. Breakdown in seasonal dynamics of subtropical ant communities with land-cover change. Proc Biol Sci 2023; 290:20231185. [PMID: 37817591 PMCID: PMC10565368 DOI: 10.1098/rspb.2023.1185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Concerns about widespread human-induced declines in insect populations are mounting, yet little is known about how land-use change modifies both the trends and variability of insect communities, particularly in understudied regions. Here, we examine how the seasonal activity patterns of ants-key drivers of terrestrial ecosystem functioning-vary with anthropogenic land-cover change on a subtropical island landscape, and whether differences in temperature or species composition can explain observed patterns. Using trap captures sampled biweekly over 2 years from a biodiversity monitoring network covering Okinawa Island, Japan, we processed 1.2 million individuals and reconstructed activity patterns within and across habitat types. Forest communities exhibited greater temporal variability of activity than those in more developed areas. Using time-series decomposition to deconstruct this pattern, we found that sites with greater human development exhibited ant communities with diminished seasonality, reduced synchrony and higher stochasticity compared with sites with greater forest cover. Our results cannot be explained by variation in regional or site temperature patterns, or by differences in species richness or composition among sites. Our study raises the possibility that disruptions to natural seasonal patterns of functionally key insect communities may comprise an important and underappreciated consequence of global environmental change that must be better understood across Earth's biomes.
Collapse
Affiliation(s)
- Jamie M. Kass
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
- Macroecology Laboratory, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Masashi Yoshimura
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Masako Ogasawara
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Mayuko Suwabe
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Francisco Hita Garcia
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Georg Fischer
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Kenneth L. Dudley
- Environmental Science and Informatics Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Ian Donohue
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Republic of Ireland
| | - Evan P. Economo
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
4
|
Leale A, Auxier B, Smid EJ, Schoustra S. Influence of metabolic guilds on a temporal scale in an experimental fermented food derived microbial community. FEMS Microbiol Ecol 2023; 99:fiad112. [PMID: 37771082 PMCID: PMC10550249 DOI: 10.1093/femsec/fiad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/06/2023] [Accepted: 09/27/2023] [Indexed: 09/30/2023] Open
Abstract
The influence of community diversity, which can be measured at the level of metabolic guilds, on community function is a central question in ecology. Particularly, the long-term temporal dynamic between a community's function and its diversity remains unclear. We investigated the influence of metabolic guild diversity on associated community function by propagating natural microbial communities from a traditionally fermented milk beverage diluted to various levels. Specifically, we assessed the influence of less abundant microbial types, such as yeast, on community functionality and bacterial community compositions over repeated propagation cycles amounting to ∼100 generations. The starting richness of metabolic guilds had a repeatable effect on bacterial community compositions, metabolic profiles, and acidity. The influence of a single metabolic guild, yeast in our study, played a dramatic role on function, but interestingly not on long-term species sorting trajectories of the remaining bacterial community. Our results together suggest an unexpected niche division between yeast and bacterial communities and evidence ecological selection on the microbial communities in our system.
Collapse
Affiliation(s)
- Alanna Leale
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Ben Auxier
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
| | - Sijmen Schoustra
- Laboratory of Genetics, Wageningen University and Research, 6700 HB Wageningen, The Netherlands
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka 10101, Zambia
| |
Collapse
|
5
|
Daleo P, Alberti J, Chaneton EJ, Iribarne O, Tognetti PM, Bakker JD, Borer ET, Bruschetti M, MacDougall AS, Pascual J, Sankaran M, Seabloom EW, Wang S, Bagchi S, Brudvig LA, Catford JA, Dickman CR, Dickson TL, Donohue I, Eisenhauer N, Gruner DS, Haider S, Jentsch A, Knops JMH, Lekberg Y, McCulley RL, Moore JL, Mortensen B, Ohlert T, Pärtel M, Peri PL, Power SA, Risch AC, Rocca C, Smith NG, Stevens C, Tamme R, Veen GFC, Wilfahrt PA, Hautier Y. Environmental heterogeneity modulates the effect of plant diversity on the spatial variability of grassland biomass. Nat Commun 2023; 14:1809. [PMID: 37002217 PMCID: PMC10066197 DOI: 10.1038/s41467-023-37395-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Plant productivity varies due to environmental heterogeneity, and theory suggests that plant diversity can reduce this variation. While there is strong evidence of diversity effects on temporal variability of productivity, whether this mechanism extends to variability across space remains elusive. Here we determine the relationship between plant diversity and spatial variability of productivity in 83 grasslands, and quantify the effect of experimentally increased spatial heterogeneity in environmental conditions on this relationship. We found that communities with higher plant species richness (alpha and gamma diversity) have lower spatial variability of productivity as reduced abundance of some species can be compensated for by increased abundance of other species. In contrast, high species dissimilarity among local communities (beta diversity) is positively associated with spatial variability of productivity, suggesting that changes in species composition can scale up to affect productivity. Experimentally increased spatial environmental heterogeneity weakens the effect of plant alpha and gamma diversity, and reveals that beta diversity can simultaneously decrease and increase spatial variability of productivity. Our findings unveil the generality of the diversity-stability theory across space, and suggest that reduced local diversity and biotic homogenization can affect the spatial reliability of key ecosystem functions.
Collapse
Affiliation(s)
- Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina.
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Enrique J Chaneton
- IFEVA-Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Av San Martín 4453 C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar Iribarne
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Pedro M Tognetti
- IFEVA-Facultad de Agronomía, Universidad de Buenos Aires-CONICET, Av San Martín 4453 C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Martín Bruschetti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G2W1, Canada
| | - Jesús Pascual
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Mahesh Sankaran
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, 560065, India
- School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Eric W Seabloom
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, 48824, USA
| | - Jane A Catford
- Department of Geography, King's College London, 30 Aldwych, London, WC2B 4BG, UK
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chris R Dickman
- Desert Ecology Research Group, School of Life & Environmental Sciences, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Timothy L Dickson
- University of Nebraska at Omaha, Department of Biology, Omaha, NE, USA
| | - Ian Donohue
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Sylvia Haider
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- Institute of Ecology, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Anke Jentsch
- Disturbance Ecology, BayCEER, University of Bayreuth, 95447, Bayreuth, Germany
| | - Johannes M H Knops
- Department of Health & Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu, China
| | - Ylva Lekberg
- MPG Ranch and University of Montana, W.A. Franke College of Forestry and Conservation, Missoula, MT, 59812, USA
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Joslin L Moore
- School of Ecosystem and Forest Sciences, University of Melbourne, Parkville, VIC, 3010, Australia
- Arthur Rylah Institute for Environmental Research, 123 Brown Street, Heidelberg, VIC, 3084, Australia
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Brent Mortensen
- Department of Biology, Benedictine College, Atchison, KS, USA
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Meelis Pärtel
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA)- Universidad Nacional de la Patagonia Austral (UNPA) -CONICET. Río Gallegos, Santa Cruz, Argentina
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Community Ecology, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Camila Rocca
- Instituto de Investigaciones Marinas y Costeras (IIMyC), UNMDP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Riin Tamme
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, PO Box 50, 6700, AB, Wageningen, The Netherlands
| | - Peter A Wilfahrt
- Department of Ecology, Evolution & Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| |
Collapse
|
6
|
Paniw M, García-Callejas D, Lloret F, Bassar RD, Travis J, Godoy O. Pathways to global-change effects on biodiversity: new opportunities for dynamically forecasting demography and species interactions. Proc Biol Sci 2023; 290:20221494. [PMID: 36809806 PMCID: PMC9943645 DOI: 10.1098/rspb.2022.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023] Open
Abstract
In structured populations, persistence under environmental change may be particularly threatened when abiotic factors simultaneously negatively affect survival and reproduction of several life cycle stages, as opposed to a single stage. Such effects can then be exacerbated when species interactions generate reciprocal feedbacks between the demographic rates of the different species. Despite the importance of such demographic feedbacks, forecasts that account for them are limited as individual-based data on interacting species are perceived to be essential for such mechanistic forecasting-but are rarely available. Here, we first review the current shortcomings in assessing demographic feedbacks in population and community dynamics. We then present an overview of advances in statistical tools that provide an opportunity to leverage population-level data on abundances of multiple species to infer stage-specific demography. Lastly, we showcase a state-of-the-art Bayesian method to infer and project stage-specific survival and reproduction for several interacting species in a Mediterranean shrub community. This case study shows that climate change threatens populations most strongly by changing the interaction effects of conspecific and heterospecific neighbours on both juvenile and adult survival. Thus, the repurposing of multi-species abundance data for mechanistic forecasting can substantially improve our understanding of emerging threats on biodiversity.
Collapse
Affiliation(s)
- Maria Paniw
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD-CSIC), Seville, 41001 Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - David García-Callejas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, 41001 Spain
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| | - Francisco Lloret
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès 08193, Spain
- Department Animal Biology, Plant Biology and Ecology, Universitat Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ronald D. Bassar
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Oscar Godoy
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| |
Collapse
|
7
|
Castro SA, Rojas P, Vila I, Jaksic FM. Covariation of taxonomic and functional facets of β-diversity in Chilean freshwater fish assemblages: Implications for current and future processes of biotic homogenization. PLoS One 2023; 18:e0281483. [PMID: 36757920 PMCID: PMC9910725 DOI: 10.1371/journal.pone.0281483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
The biodiversity of assemblages that experience the introduction and extinction of species may lead to responses in two important facets: The taxonomic and functional diversity. The way in which these facets are associated may reveal important implications and consequences for the conservation of those assemblages. Considering the critical situation of freshwater fishes in continental Chile (30° - 56° S), we analyzed how the taxonomic (TDβ) and functional (FDβ) facets of β-diversity, and their components of turnover and nestedness, are associated. We evaluated changes in β-diversity (ΔTDβ and ΔFDβ), turnover (ΔTDtur and ΔFDtur), and nestedness (ΔTDnes and ΔFDnes) in 20 fish assemblages from their historical (pre-European) to current composition. We also simulated future trends of these changes, assuming that native species with conservation issues would become extinct. Our results show that the fish assemblages studied are in a process of loss of β-diversity, both in taxonomic and functional facets (ΔTDβ = -3.9%; ΔFDβ = -30.4%); also, that these facets are positively correlated in the assemblages studied (r = 0.617; P < 0.05). Both components showed by loss in nestedness (ΔTDnes = -36.9%; ΔFDnes = -60.9%) but gain in turnover (ΔTDtur = 9.2%; ΔFDtur = 12.3%). The functional β-diversity decreased more than the taxonomic (ΔFDβ > ΔTDβ), which was caused chiefly by six exotic species of Salmonidae, whose geographical spread was wider and that at the same time shared several morpho-functional traits. Our forecasts, assuming an intensification in the extinction of Endangered and Vulnerable native species, indicate that the process of homogenization will continue, though at a lower rate. Our study shows that the freshwater ichthyofauna of continental Chile is undergoing biotic homogenization, and that this process involves the facets of taxonomic and functional β-diversity, which are show high correlation between historical and current compositions. Both facets show that process is influenced by nestedness, and while turnover contributes to differentiation (both taxonomic and functional), its importance is overshadowed by nestedness.
Collapse
Affiliation(s)
- Sergio A. Castro
- Laboratorio de Ecología y Biodiversidad, Universidad de Santiago de Chile, Santiago, Chile
- * E-mail:
| | - Pablo Rojas
- Laboratorio de Ecología y Biodiversidad, Universidad de Santiago de Chile, Santiago, Chile
- Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
| | - Irma Vila
- Departamento de Ciencias Ecológicas, Universidad de Chile, Santiago, Chile
| | - Fabian M. Jaksic
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Hodapp D, Armonies W, Dannheim J, Downing JA, Filstrup CT, Hillebrand H. Individual species and site dynamics are the main drivers of spatial scaling of stability in aquatic communities. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.864534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IntroductionAny measure of ecological stability scales with the spatial and temporal extent of the data on which it is based. The magnitude of stabilization effects at increasing spatial scale is determined by the degree of synchrony between local and regional species populations.MethodsWe applied two recently developed approaches to quantify these stabilizing effects to time series records from three aquatic monitoring data sets differing in environmental context and organism type.Results and DiscussionWe found that the amount and general patterns of stabilization with increasing spatial scale only varied slightly across the investigated species groups and systems. In all three data sets, the relative contribution of stabilizing effects via asynchronous dynamics across space was higher than compensatory dynamics due to differences in biomass fluctuations across species and populations. When relating the stabilizing effects of individual species and sites to species and site-specific characteristics as well as community composition and aspects of spatial biomass distribution patterns, however, we found that the effects of single species and sites showed large differences and were highly context dependent, i.e., dominant species can but did not necessarily have highly stabilizing or destabilizing effects on overall community biomass. The sign and magnitude of individual contributions depended on community structure and the spatial distribution of biomass and species in space. Our study therefore provides new insights into the mechanistic understanding of ecological stability patterns across scales in natural species communities.
Collapse
|
9
|
Wang Y, Yang Y, Li A, Wang L. Stability of multi-layer ecosystems. J R Soc Interface 2023; 20:20220752. [PMCID: PMC9943886 DOI: 10.1098/rsif.2022.0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Community structure is reported to play a critical role in ecosystem stability, which indicates the ability of a system to return to equilibrium after perturbations. However, current studies rely on the assumption that the community consists of only a single-layer structure. In practice, multi-layer structures are common in ecosystems, e.g. the distributions of both microorganisms in strata and fish in the ocean usually stratify into multi-layer structures. Here we use multi-layer networks to model species interactions within each layer and between different layers, and study the stability of multi-layer ecosystems under different interaction types. We show that competitive interactions within each layer have a more substantial stabilizing effect in multi-layer ecosystems relative to their impact in single-layer ecosystems. Surprisingly, between different layers, we find that competition between species destabilizes the ecosystem. We further provide a theoretical analysis of the stability of multi-layer ecosystems and confirm the robustness of our findings for different connectances between layers, numbers of species in each layer, and numbers of layers. Our work provides a general framework for investigating the stability of multi-layer ecosystems and uncovers the double-sided role of competitive interactions in the stability of multi-layer ecosystems.
Collapse
Affiliation(s)
- Ye Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yuguang Yang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China,Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, People’s Republic of China
| | - Long Wang
- Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, People’s Republic of China,Center for Multi-Agent Research, Institute for Artificial Intelligence, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
10
|
Polazzo F, Hermann M, Crettaz-Minaglia M, Rico A. Impacts of extreme climatic events on trophic network complexity and multidimensional stability. Ecology 2023; 104:e3951. [PMID: 36484732 PMCID: PMC10078413 DOI: 10.1002/ecy.3951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
Untangling the relationship between network complexity and ecological stability under climate change is an arduous challenge for theoretical and empirical ecology. Even more so, when considering extreme climatic events. Here, we studied the effects of extreme climatic events (heatwaves) on the complexity of realistic freshwater ecosystems using topological and quantitative trophic network metrics. Next, we linked changes in network complexity with the investigation of four stability components (temporal stability, resistance, resilience, and recovery) of community's functional, compositional, and energy flux stability. We found reduction in topological network complexity to be correlated with reduction of functional and compositional resistance. However, temperature-driven increase in link-weighted network complexity increased functional and energy flux recovery and resilience, but at the cost of increased compositional instability. Overall, we propose an overarching approach to elucidate the effects of climate change on multidimensional stability through the lens of network complexity, providing helpful insights for preserving ecosystems stability under climate change.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Markus Hermann
- Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands
| | - Melina Crettaz-Minaglia
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Madrid, Spain.,Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Temporal Dynamics of Rare and Abundant Soil Bacterial Taxa from Different Fertilization Regimes Under Various Environmental Disturbances. mSystems 2022; 7:e0055922. [PMID: 36121168 PMCID: PMC9600180 DOI: 10.1128/msystems.00559-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Global climate change has emerged as a critical environmental problem. Different types of climate extremes drive soil microbial communities to alternative states, leading to a series of consequences for soil microbial ecosystems and related functions. An effective method is urgently needed for buffering microbial communities to tackle environmental disturbances. Here, we conducted a series of mesocosm experiments in which the organic (NOF) and chemical fertilizer (NCF) long-term-amended soil microbiotas were subjected to environmental disturbances that included drought, flooding, freeze-thaw cycles, and heat. We subsequently tracked the temporal dynamics of rare and abundant bacterial taxa in NOF and NCF treatment soils to assess the efficiencies of organic amendments in recovery of soil microbiome. Our results revealed that freeze-thaw cycles and drought treatments showed weaker effects on bacterial communities than flooding and heat. The turnover between rare and abundant taxa occurred in postdisturbance succession of flooding and heat treatments, indicating that new equilibria were tightly related to the rare taxa in both NCF and NOF treatment soils. The Bayesian fits of modeling for the microbiome recovery process revealed that the stability of abundant taxa in NOF was higher than that in NCF soil. In particular, the NOF treatment soil reduced the divergence from the initial bacterial community after weak perturbations occurred. Together, we demonstrated that long-term organic input is an effective strategy to enhance the thresholds for transition to alternative states via enhancing the stability of abundant bacterial species. These findings provide a basis for the sustainable development of agricultural ecosystems in response to changing climates. IMPORTANCE Different climate extremes are expected to be a major threat to crop production, and the soil microbiome has been known to play a crucial role in agricultural ecosystems. In recent years, we have known that organic amendments are an effective method for optimizing the composition and functioning of the soil microbial community and maintaining the health of the soil ecosystem. However, the effects of organic fertilization on buffering bacterial communities against environmental disturbances and the underlying mechanisms are still unclear. We conducted a series of mesocosm experiments and showed that organic fertilizers had additional capacities in promoting the soil microbiome to withstand climate change effects. Our study provides both mechanistic insights as well as a direct guide for the sustainable development of agricultural ecosystems in response to climate change.
Collapse
|
12
|
Sun Y, Tao C, Deng X, Liu H, Shen Z, Liu Y, Li R, Shen Q, Geisen S. Organic fertilization enhances the resistance and resilience of soil microbial communities under extreme drought. J Adv Res 2022; 47:1-12. [PMID: 35907631 PMCID: PMC10173193 DOI: 10.1016/j.jare.2022.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The soil bacterial microbiome plays a crucial role in ecosystem functioning. The composition and functioning of the microbiome are tightly controlled by the physicochemical surrounding. Therefore, the microbiome is responsive to management, such as fertilization, and to climate change, such as extreme drought. It remains a challenge to retain microbiome functioning under drought. OBJECTIVES This work aims to reveal if fertilization with organic fertilizer, can enhance resistance and resilience of bacterial communities and their function in extreme drought and subsequent rewetting compared with conventional fertilizers. METHODS In soil mesocosms, we induced a long-term drought for 80 days with subsequent rewetting for 170 days to follow bacterial community dynamics in organic (NOF) and chemical (NCF) fertilization regimes. RESULTS Our results showed that bacterial diversity was higher with NOF than with NCF during drought. In particular, the ecological resilience and recovery of bacterial communities under NOF were higher than in NCF. We found these bacterial community features to enhance pathogen-inhibiting functions in NOF compared to NCF during late recovery. The other soil ecology functional analyses revealed that bacterial biomass recovered in the early stage after rewetting, while soil respiration increased continuously following prolonged time after rewetting. CONCLUSION Together, our study indicates that organic fertilization can enhance the stability of the soil microbiome and ensures that specific bacterial-driven ecosystem functions recover after rewetting. This may provide the basis for more sustainable agricultural practices to counterbalance negative climate change-induced effects on soil functioning.
Collapse
Affiliation(s)
- Yifei Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yaxuan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA Wageningen, The Netherlands; Netherlands Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Sanz-Lazaro C, Casado-Coy N, Navarro-Ortín A, Terradas-Fernández M. Anthropogenic pressures enhance the deleterious effects of extreme storms on rocky shore communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152917. [PMID: 34998754 DOI: 10.1016/j.scitotenv.2022.152917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Climate change is not only changing the mean values of environmental parameters that modulate ecosystems, but also the regime of disturbances. Among them, extreme events have a key role in structuring biological communities. Ecosystems are frequently suffering multiple anthropogenic pressures which can cause effects that are not additive. Thus, the effects of extreme events need to be studied in combination with other pressures to adequately evaluate their consequences. We performed a manipulative approach in two rocky shores in the Mediterranean with contrasting levels of anthropogenic pressure (mainly eutrophication) simulating storms with different disturbance regimes in the intertidal and subtidal zones. In the short-term, an extreme storm had a greater impact on the species assemblage than other disturbance regimes, being especially notable in the area suffering from a high anthropogenic pressure. In this area, the species assemblages that suffered from an extreme storm took a longer time to recover than the ones affected by other disturbance regimes and were generally more affected after the disturbance. The intertidal zone, having more variable environmental conditions than the subtidal zone, was more resistant and able to recover from extreme storms. Our results suggest that the effects of extreme events on biological communities could be strengthened when co-occurring with anthropogenic pressures, especially ecosystems adapted to less variable environmental conditions. Thus, limiting other anthropogenic pressures that ecosystems are suffering is crucial to maintain the natural resistance and recovery capacity of ecosystems towards extreme events such as storms.
Collapse
Affiliation(s)
- Carlos Sanz-Lazaro
- Departamento de Ecología, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain; Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain.
| | - Nuria Casado-Coy
- Multidisciplinary Institute for Environmental Studies (MIES), Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Aitor Navarro-Ortín
- Departamento de Ecología, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain
| | - Marc Terradas-Fernández
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, P.O. Box 99, E-03080 Alicante, Spain
| |
Collapse
|
14
|
Chen Q, Wang S, Seabloom EW, MacDougall AS, Borer ET, Bakker JD, Donohue I, Knops JMH, Morgan JW, Carroll O, Crawley M, Bugalho MN, Power SA, Eskelinen A, Virtanen R, Risch AC, Schütz M, Stevens C, Caldeira MC, Bagchi S, Alberti J, Hautier Y. Nutrients and herbivores impact grassland stability across spatial scales through different pathways. GLOBAL CHANGE BIOLOGY 2022; 28:2678-2688. [PMID: 35038782 DOI: 10.1111/gcb.16086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong liverpool University, Suzhou, China
| | - John W Morgan
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Carroll
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mick Crawley
- Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
15
|
Ross SRPJ, García Molinos J, Okuda A, Johnstone J, Atsumi K, Futamura R, Williams MA, Matsuoka Y, Uchida J, Kumikawa S, Sugiyama H, Kishida O, Donohue I. Predators mitigate the destabilising effects of heatwaves on multitrophic stream communities. GLOBAL CHANGE BIOLOGY 2022; 28:403-416. [PMID: 34689388 DOI: 10.1111/gcb.15956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Amidst the global extinction crisis, climate change will expose ecosystems to more frequent and intense extreme climatic events, such as heatwaves. Yet, whether predator species loss-a prevailing characteristic of the extinction crisis-will exacerbate the ecological consequences of extreme climatic events remains largely unknown. Here, we show that the loss of predator species can interact with heatwaves to moderate the compositional stability of ecosystems. We exposed multitrophic stream communities, with and without a dominant predator species, to realistic current and future heatwaves and found that heatwaves destabilised algal communities by homogenising them in space. However, this happened only when the predator was absent. Additional heatwave impacts on multiple aspects of stream communities, including changes to the structure of algal and macroinvertebrate communities, as well as total algal biomass and its temporal variability, were not apparent during heatwaves and emerged only after the heatwaves had passed. Taken together, our results suggest that the ecological consequences of heatwaves can amplify over time as their impacts propagate through biological interaction networks, but the presence of predators can help to buffer such impacts. These findings underscore the importance of conserving trophic structure, and highlight the potential for species extinctions to amplify the effects of climate change and extreme events.
Collapse
Affiliation(s)
- Samuel R P-J Ross
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jorge García Molinos
- Arctic Research Center, Hokkaido University, Sapporo, Japan
- Global Station for Arctic Research, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Atsushi Okuda
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Jackson Johnstone
- Graduate School of Environmental Science, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Keisuke Atsumi
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryo Futamura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
- Graduate School of Environmental Science, Hokkaido University, Takaoka, Hokkaido, Japan
| | - Maureen A Williams
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
- Biology Department, McDaniel College, Westminster, Maryland, USA
| | - Yuichi Matsuoka
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Jiro Uchida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Shoji Kumikawa
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Hiroshi Sugiyama
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido, Japan
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
16
|
Amstutz A, Firth LB, Spicer JI, Hanley ME. Facing up to climate change: Community composition varies with aspect and surface temperature in the rocky intertidal. MARINE ENVIRONMENTAL RESEARCH 2021; 172:105482. [PMID: 34656855 DOI: 10.1016/j.marenvres.2021.105482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Marine rocky intertidal organisms are amongst those most affected by climate change with regional distributional changes observed for many species. Although often ascribed to increased sea surface temperatures, precise assessment of the local habitat conditions underpinning observed and predicted changes in community assembly is lacking. Here we examine how aspect (i.e. north-south orientation) affects intertidal community composition and how rock surface temperatures and stress responses of two dominant grazer species (Patella spp.) elucidate emergent differences. We quantified year-round temperature variation and surveyed intertidal community composition on paired natural rock gullies with Equator- (EF) and Pole-facing (PF) surfaces. We also investigated variation in limpet (Patella spp.) reproductive phenology and osmotic stress. Average annual temperatures were 0.8 °C (1.6 °C at low tide) higher, with six-fold more frequent extremes (i.e. > 30 °C) on EF than PF surfaces. Intertidal community composition varied with aspect across trophic levels with greater overall species richness, abundance of primary producers and grazers on PF-surfaces, and greater barnacle abundance on EF-surfaces. Although species richness of organisms from different biogeographical origins ('Boreal' or 'Lusitanian') did not vary, the Lusitanian limpet Patella depressa exhibited earlier reproductive development on EF-surfaces and both limpet species exhibited greater thermal stress on EF-surfaces. We argue that our study system provides a good model for understanding how temperature variation at local scales can affect community composition, as well as ecophysiological and ecological responses to climate change and so better inform and predict regional range shifts over coming decades.
Collapse
Affiliation(s)
- A Amstutz
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - L B Firth
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - J I Spicer
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
17
|
Capdevila P, Noviello N, McRae L, Freeman R, Clements CF. Global patterns of resilience decline in vertebrate populations. Ecol Lett 2021; 25:240-251. [PMID: 34784650 DOI: 10.1111/ele.13927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Maintaining the resilience of natural populations, their ability to resist and recover from disturbance, is crucial to prevent biodiversity loss. However, the lack of appropriate data and quantitative tools has hampered our understanding of the factors determining resilience on a global scale. Here, we quantified the temporal trends of two key components of resilience-resistance and recovery-in >2000 population time-series of >1000 vertebrate species globally. We show that the number of threats to which a population is exposed is the main driver of resilience decline in vertebrate populations. Such declines are driven by a non-uniform loss of different components of resilience (i.e. resistance and recovery). Increased anthropogenic threats accelerating resilience loss through a decline in the recovery ability-but not resistance-of vertebrate populations. These findings suggest we may be underestimating the impacts of global change, highlighting the need to account for the multiple components of resilience in global biodiversity assessments.
Collapse
Affiliation(s)
- Pol Capdevila
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Nicola Noviello
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Louise McRae
- Institute of Zoology, Zoological Society of London, London, UK
| | - Robin Freeman
- Institute of Zoology, Zoological Society of London, London, UK
| | | |
Collapse
|
18
|
Lamy T, Wisnoski NI, Andrade R, Castorani MCN, Compagnoni A, Lany N, Marazzi L, Record S, Swan CM, Tonkin JD, Voelker N, Wang S, Zarnetske PL, Sokol ER. The dual nature of metacommunity variability. OIKOS 2021. [DOI: 10.1111/oik.08517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Lamy
- Marine Science Inst., Univ. of California Santa Barbara CA USA
- MARBEC, Univ. of Montpellier, CNRS, Ifremer, IRD Sète France
| | - Nathan I. Wisnoski
- Dept of Biology, Indiana Univ. Bloomington IN USA
- WyGISC, Univ. of Wyoming Laramie WY USA
| | - Riley Andrade
- Dept of Wildlife Ecology and Conservation, Univ. of Florida Gainesville FL USA
- Dept of Natural Resources and Environmental Sciences, Univ. of Illinois at Urbana – Champaign Urbana IL USA
| | | | - Aldo Compagnoni
- Martin Luther Univ. Halle‐Wittenberg Halle (Saale) Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Nina Lany
- Dept of Forestry, Michigan State Univ. East Lansing MI USA
- Ecology, Evolution and Behavior Program, Michigan State Univ. East Lansing MI USA
| | - Luca Marazzi
- Inst. of Environment, Florida International Univ. Miami FL USA
| | - Sydne Record
- Dept of Biology, Bryn Mawr College Bryn Mawr PA USA
| | - Christopher M. Swan
- Dept of Geography and Environmental Systems, Univ. of Maryland, Baltimore County Baltimore MD USA
| | - Jonathan D. Tonkin
- Dept of Integrative Biology, Oregon State Univ. OR USA
- School of Biological Sciences, Univ. of Canterbury Christchurch New Zealand
| | - Nicole Voelker
- Dept of Geography and Environmental Systems, Univ. of Maryland, Baltimore County Baltimore MD USA
| | - Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Inst. of Ecology, College of Urban and Environmental Sciences, Peking Univ. Beijing China
| | - Phoebe L. Zarnetske
- Ecology, Evolution and Behavior Program, Michigan State Univ. East Lansing MI USA
- Dept of Integrative Biology, Michigan State Univ. East Lansing MI USA
| | - Eric R. Sokol
- Inst. of Arctic and Alpine Research (INSTAAR), Univ. of Colorado Boulder Boulder CO USA
- Battelle, National Ecological Observatory Network (NEON) Boulder CO USA
| |
Collapse
|
19
|
Ross SRPJ, Arnoldi JF, Loreau M, White CD, Stout JC, Jackson AL, Donohue I. Universal scaling of robustness of ecosystem services to species loss. Nat Commun 2021; 12:5167. [PMID: 34453056 PMCID: PMC8397752 DOI: 10.1038/s41467-021-25507-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Abstract
Ensuring reliable supply of services from nature is key to the sustainable development and well-being of human societies. Varied and frequently complex relationships between biodiversity and ecosystem services have, however, frustrated our capacity to quantify and predict the vulnerability of those services to species extinctions. Here, we use a qualitative Boolean modelling framework to identify universal drivers of the robustness of ecosystem service supply to species loss. These drivers comprise simple features of the networks that link species to the functions they perform that, in turn, underpin a service. Together, they define what we call network fragility. Using data from >250 real ecological networks representing services such as pollination and seed-dispersal, we demonstrate that network fragility predicts remarkably well the robustness of empirical ecosystem services. We then show how to quantify contributions of individual species to ecosystem service robustness, enabling quantification of how vulnerability scales from species to services. Our findings provide general insights into the way species, functional traits, and the links between them together determine the vulnerability of ecosystem service supply to biodiversity loss.
Collapse
Affiliation(s)
- Samuel R P-J Ross
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jean-François Arnoldi
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
- Theoretical and Experimental Ecological Station, CNRS, Moulis, France
| | - Michel Loreau
- Theoretical and Experimental Ecological Station, CNRS, Moulis, France
| | - Cian D White
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jane C Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Andrew L Jackson
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
20
|
Yang F, Liu B, Zhu Y, Wyckhuys KAG, van der Werf W, Lu Y. Species diversity and food web structure jointly shape natural biological control in agricultural landscapes. Commun Biol 2021; 4:979. [PMID: 34408250 PMCID: PMC8373963 DOI: 10.1038/s42003-021-02509-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/01/2021] [Indexed: 01/01/2023] Open
Abstract
Land-use change and agricultural intensification concurrently impact natural enemy (e.g., parasitoid) communities and their associated ecosystem services (ESs), i.e., biological pest control. However, the extent to which (on-farm) parasitoid diversity and food webs mediate landscape-level influences on biological control remains poorly understood. Here, drawing upon a 3-year study of quantitative parasitoid-hyperparasitoid trophic networks from 25 different agro-landscapes, we assess the cascading effects of landscape composition, species diversity and trophic network structure on ecosystem functionality (i.e., parasitism, hyperparasitism). Path analysis further reveals cascaded effects leading to biological control of a resident crop pest, i.e., Aphis gossypii. Functionality is dictated by (hyper)parasitoid diversity, with its effects modulated by food web generality and vulnerability. Non-crop habitat cover directly benefits biological control, whereas secondary crop cover indirectly lowers hyperparasitism. Our work underscores a need to simultaneously account for on-farm biodiversity and trophic interactions when investigating ESs within dynamic agro-landscapes.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yulin Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kris A G Wyckhuys
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- University of Queensland, Brisbane, Queensland, Australia
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
| | - Yanhui Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
21
|
Eagle LJB, Milner AM, Klaar MJ, Carrivick JL, Wilkes M, Brown LE. Extreme flood disturbance effects on multiple dimensions of river invertebrate community stability. J Anim Ecol 2021; 90:2135-2146. [PMID: 34363703 DOI: 10.1111/1365-2656.13576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 11/30/2022]
Abstract
Multidimensional analysis of community stability has recently emerged as an overarching approach to evaluating ecosystem response to disturbance. However, the approach has previously been applied only in experimental and modelling studies. We applied this concept to an 18-year time series (2000-2017) of macroinvertebrate community dynamics from a southeast Alaskan river to further develop and test the approach in relation to the effects of two extreme flood events occurring in 2005 (event 1) and 2014 (event 2). Five components of stability were calculated for pairs of pre- or post-event years. Individual components were tested for differences between pre- and post-event time periods. Stability components' pairwise correlations were assessed and ellipsoids of stability were developed for each time period and compared to a null model derived from the permuted dataset. Only one stability component demonstrated a significant difference between time periods. In contrast, 80% of moderate and significant correlations between stability components were degraded post-disturbance and significant changes to the form of stability ellipsoids were observed. Ellipsoids of stability for all periods after the initial disturbance (2005) were not different to the null model. Our results illustrate that the dimensionality of stability approach can be applied to natural ecosystem time-series data. The major increase in dimensionality of stability observed following disturbance potentially indicates significant shifts in the processes which drive stability following disturbance. This evidence improves our understanding of community response beyond what is possible through analysis of individual stability components.
Collapse
Affiliation(s)
| | - Alexander M Milner
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK.,Institute of Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Megan J Klaar
- School of Geography and water@leeds, University of Leeds, Leeds, UK
| | | | - Martin Wilkes
- Centre for Agroecology, Water and Resilience, Coventry University, Coventry, UK
| | - Lee E Brown
- School of Geography and water@leeds, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Polazzo F, Rico A. Effects of multiple stressors on the dimensionality of ecological stability. Ecol Lett 2021; 24:1594-1606. [PMID: 33979468 PMCID: PMC8359956 DOI: 10.1111/ele.13770] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/09/2021] [Indexed: 12/16/2022]
Abstract
Ecological stability is a multidimensional construct. Investigating multiple stability dimensions is key to understand how ecosystems respond to disturbance. Here, we evaluated the single and combined effects of common agricultural stressors (insecticide, herbicide and nutrients) on four dimensions of stability (resistance, resilience, recovery and invariability) and on the overall dimensionality of stability (DS) using the results of a freshwater mesocosm experiment. Functional recovery and resilience to pesticides were enhanced in nutrient-enriched systems, whereas compositional recovery was generally not achieved. Pesticides did not affect compositional DS, whereas functional DS was significantly increased by the insecticide only in non-enriched systems. Stressor interactions acted non-additively on single stability dimensions as well as on functional DS. Moreover we demonstrate that pesticides can modify the correlation between functional and compositional aspects of stability. Our study shows that different disturbance types, and their interactions, require specific management actions to promote ecosystem stability.
Collapse
Affiliation(s)
- Francesco Polazzo
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláMadridSpain
| | - Andreu Rico
- IMDEA Water InstituteScience and Technology Campus of the University of AlcaláMadridSpain
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaPaternaValenciaSpain
| |
Collapse
|
23
|
Valdivia N, López DN, Fica‐Rojas E, Catalán AM, Aguilera MA, Araya M, Betancourtt C, Burgos‐Andrade K, Carvajal‐Baldeon T, Escares V, Gartenstein S, Grossmann M, Gutiérrez B, Kotta J, Morales‐Torres DF, Riedemann‐Saldivia B, Rodríguez SM, Velasco‐Charpentier C, Villalobos VI, Broitman BR. Stability of rocky intertidal communities, in response to species removal, varies across spatial scales. OIKOS 2021. [DOI: 10.1111/oik.08267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Nelson Valdivia
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Santiago Chile
| | - Daniela N. López
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Univ. Católica de Chile Santiago Chile
| | - Eliseo Fica‐Rojas
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Alexis M. Catalán
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Moisés A. Aguilera
- Depto de Ciencias, Facultad de Artes Liberales, Univ. Adolfo Ibáñez, Diagonal Las Torres Santiago Chile
| | - Marjorie Araya
- Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL) Santiago Chile
| | - Claudia Betancourtt
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Katherine Burgos‐Andrade
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Thais Carvajal‐Baldeon
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Valentina Escares
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Simon Gartenstein
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
- Programa de Doctorado en Biología Marina, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Mariana Grossmann
- Inst. de Ciencias Ambientales y Evolutivas, Univ. Austral de Chile Valdivia Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Facultad de Ciencias, Univ. Austral de Chile Valdivia Chile
| | - Bárbara Gutiérrez
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Jonne Kotta
- Estonian Marine Inst., Univ. of Tartu Tallinn Estonia
| | - Diego F. Morales‐Torres
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Bárbara Riedemann‐Saldivia
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Sara M. Rodríguez
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | | | - Vicente I. Villalobos
- Inst. de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Univ. Austral de Chile, Campus Isla Teja Valdivia Chile
| | - Bernardo R. Broitman
- Depto de Ciencias, Facultad de Artes Liberales, Univ. Adolfo Ibáñez Viña del Mar Chile
- Instituto Milenio en Socio‐Ecologia Costera (SECOS) & Núcleo Milenio UPWELL
| |
Collapse
|