1
|
Zhang M, Huang S, Luo L, Yu K. Environmental acclimatization of the relatively high latitude scleractinian coral Pavona decussata: integrative perspectives on seasonal subaerial exposure and temperature fluctuations. BMC Genomics 2025; 26:483. [PMID: 40369410 PMCID: PMC12080138 DOI: 10.1186/s12864-025-11660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/30/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND Coral reefs are being increasingly threatened due to global climate change. However, some coral species have shown strong tolerance despite living in marginal environments. The species Pavona decussata from Weizhou Island in the South China Sea experiences subaerial exposure in summer and winter due to extreme low tides, and their environmental acclimatization to this aerial exposure remains unexplored. RESULTS Here we aimed to explore the molecular mechanism of P. decussata under season or subaerial exposure background through physiological and multi-omics integrative analyses. Specifically, corals with a history of seasonal air exposure underwent comprehensive changes in energy metabolism and defense mechanisms compared to permanently submerged corals. In summer, corals experiencing subaerial exposure enhanced antioxidant defense by increasing the activities of the enzymes T-SOD and CAT, and the coral-associated bacterial community shifted toward the class Alphaproteobacteria that may have provided corals with resistance to environmental stresses. Moreover, the decrease in the transcript levels of the TCA cycle and the increase in metabolite content of ornithine suggested an alteration in energy metabolic pathways. Corals with an air-exposed background may have enhanced energy reserves in winter, as indicated by a higher content of Chl a and a rebound in coral-associated bacterial community toward the class Gammaproteobacteria. Furthermore, accumulation of the metabolite leukotriene D4 and activation of the TGF-beta signaling pathway suggested higher anti-inflammatory requirements and positive regulation by innate immunity. CONCLUSIONS This study provides insights into the acclimatization of P. decussata to seasonal environmental fluctuations and demonstrates that relatively high-latitude corals possess the plasticity and acclimatory capacity to adapt to marginal environments.
Collapse
Affiliation(s)
- Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Shan Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Li Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, PR China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, PR China.
| |
Collapse
|
2
|
Voolstra CR, Schlotheuber M, Camp EF, Nitschke MR, Szereday S, Bejarano S. Spatially restricted coral bleaching as an ecological manifestation of within-colony heterogeneity. Commun Biol 2025; 8:740. [PMID: 40360784 PMCID: PMC12075583 DOI: 10.1038/s42003-025-08150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Coral bleaching is a widespread stress response of reef-building corals to elevated sea temperatures, resulting in the loss of symbiotic algae and often leading to coral death and reef degradation. Although coral bleaching occurs globally, not all reefs, species, colonies, or polyps bleach equally. Understanding intra-colony bleaching heterogeneity is crucial to anticipate the extent of coral loss at 2°C warming and harness variability to inform restorative interventions. Partially bleached coral colonies are commonly documented yet rarely tracked to determine whether they reflect ecologically distinct heterogeneity (e.g., in thermal tolerance) or eventually bleach completely. Focusing on bleaching that appears restricted to certain areas within a coral colony, we examine its putative basis in the spatial variability of the holobiont. A coral's three-dimensional structure creates mosaics of microenvironments. Adaptations to these microenvironments are underpinned by intra-colony differences in Symbiodiniaceae association, microbiome assemblage, and nutritional status, giving rise to microhabitats. Genetic mosaicism and epigenetic changes further contribue to intra-colony phenotypic heterogeneity. We pinpoint methodologies to align spatially restricted bleaching to different forms of coral surface heterogeneity, examine the common assumption that coral fragments represent entire colonies, and illuminate implications for coral biology and restoration.
Collapse
Affiliation(s)
| | | | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sebastian Szereday
- Coralku Solutions, Non-Profit Organization for Coral Reef Research and Restoration, Kuala Lumpur, Malaysia
| | - Sonia Bejarano
- Reef Systems Research Group, Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany.
| |
Collapse
|
3
|
Sikorskaya TV, Ginanova TT, Ermolenko EV, Boroda AV. Lipidomic and physiological changes in the coral Acropora aspera during bleaching and recovery. Sci Rep 2025; 15:5870. [PMID: 39966672 PMCID: PMC11836136 DOI: 10.1038/s41598-025-90484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
Heat stress and other factors cause the loss of endosymbiotic dinoflagellates by corals, and is known as coral bleaching. Coral reef bleaching is a global environmental problem. To better understand corals' responses and adaptability to stressful conditions, we applied a lipidomic approach in combination with cytometry and microscopy to study the coral bleaching of Acropora aspera under heat stress (32 °C) and subsequent recovery. For eight days of bleaching, the coral lost 50% of its symbiont population and 100% after a week of recovery. It took 126 days to fully recover the symbiont population, content of chlorophyll a and reserve lipids. There were degradations in symbionts' thylakoids and disruption of thylakoid lipid homeostasis. Variations in the content of phosphatidylinositols involved in apoptosis and autophagy and changes in the molecular profile of glycosylceramides that may be involved in the sphingosine rheostat were observed. However, upon A. aspera bleaching, the loss of symbionts was compensated by increased mucociliary nutrition. An increase in the content of hydroxylated ceramideaminoethylphosphonates for membrane stabilization and a decrease in ether phosphatidylethanolamines for providing protection from oxidative stress may have been used as adaptation mechanisms by the coral host. Thus, the coral undergoes physiological and biochemical changes during heat stress that are aimed at mitigating the adverse destructive effects, which may be key to successful recovery.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation.
| | - Taliya T Ginanova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation
| | - Ekaterina V Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation
| | - Andrey V Boroda
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, ul. Palchevskogo 17, Vladivostok, 690041, Russian Federation
| |
Collapse
|
4
|
Pourdanandeh M, Séchet V, Carpentier L, Réveillon D, Hervé F, Hubert C, Hess P, Selander E. Effects of copepod chemical cues on intra- and extracellular toxins in two species of Dinophysis. HARMFUL ALGAE 2025; 142:102793. [PMID: 39947851 DOI: 10.1016/j.hal.2024.102793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 05/09/2025]
Abstract
Copepods may contribute to harmful algal bloom formation by selectively rejecting harmful cells. Additionally, copepods and the chemical cues they exude, copepodamides, have been shown to induce increased toxin production in paralytic and amnesic toxin producing microalgae. However, it is unknown if diarrhetic shellfish toxin (DST) producers such as Dinophysis respond to copepods or copepodamides in a similar fashion. Here we expose laboratory cultures of Dinophysis sacculus and D. acuminata to direct grazing by Acartia sp. copepods or copepodamides and measure their toxins after three days. Total Dinophysis-produced toxins (DPTs), okadaic acid, pectenotoxin-2, and C9-diol ester of okadaic acid, increased by 8 - 45 % in D. sacculus but was significantly different from controls only in the highest (10 nM) copepodamide treatment whereas toxin content was not affected in D. acuminata. Growth rate was low across all groups and explained up to 91 % of the variation in toxin content. DPTs were redistributed from internal compartments to the extracellular medium in the highest copepodamide treatments (5 - 10 nM), which were two to three times higher than controls and indicates an active release or passive leakage of toxins. Untargeted analysis of endometabolomes indicated significant changes in metabolite profiles for both species in response to the highest copepodamide treatments, independent of known toxins. However, it is not clear whether these are stress responses or caused by more complex mechanisms. The relatively small grazer-induced effect in Dinophysis observed here, compared to several species of Alexandrium and Pseudo-nitzschia reported previously, suggests that DPT production in Dinophysis is likely not induced by copepods, except perhaps in patches with high copepod densities. Thus, DPTs may, represent either a constitutive chemical defence for Dinophysis, or serve an altogether different purpose.
Collapse
Affiliation(s)
- Milad Pourdanandeh
- Department of Marine Sciences, University of Gothenburg, Medicinaregatan 7b, SE41390, Gothenburg, Sweden.
| | | | | | | | | | | | | | - Erik Selander
- Functional ecology section - Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Tortorelli G, Rosset SL, Sullivan CES, Woo S, Johnston EC, Walker NS, Hancock JR, Caruso C, Varela AC, Hughes K, Martin C, Quinn RA, Drury C. Heat-induced stress modulates cell surface glycans and membrane lipids of coral symbionts. THE ISME JOURNAL 2025; 19:wraf073. [PMID: 40247696 PMCID: PMC12077390 DOI: 10.1093/ismejo/wraf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/31/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
The susceptibility of corals to environmental stress is determined by complex interactions between host genetic variation and the Symbiodiniaceae family community. We exposed genotypes of Montipora capitata hosting primarily Cladocopium or Durusdinium symbionts to ambient conditions and an 8-day heat stress. Symbionts' cell surface glycan composition differed between genera and was significantly affected by temperature and oxidative stress. The metabolic profile of coral holobionts was primarily shaped by symbionts identity, but was also strongly responsive to oxidative stress. At peak temperature stress, betaine lipids in Cladocopium were remodeled to more closely resemble the abundance and saturation state of Durusdinium symbionts, which paralleled a larger metabolic shift in Cladocopium. Exploring how Symbiodiniaceae members regulate stress and host-symbiont affinity helps identify the traits contributing to coral resilience under climate change.
Collapse
Affiliation(s)
- Giada Tortorelli
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Sabrina L Rosset
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, United States
| | - Clarisse E S Sullivan
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Sarah Woo
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Erika C Johnston
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Nia Symone Walker
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Joshua R Hancock
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Carlo Caruso
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Alyssa C Varela
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Kira Hughes
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, United States
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, United States
| | - Crawford Drury
- Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, United States
| |
Collapse
|
6
|
Deutsch JM, Demko AM, Jaiyesimi OA, Foster G, Kindler A, Pitts KA, Vekich T, Williams GJ, Walker BK, Paul VJ, Garg N. Metabolomic profiles of stony coral species from the Dry Tortugas National Park display inter- and intraspecies variation. mSystems 2024; 9:e0085624. [PMID: 39560405 DOI: 10.1128/msystems.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Coral reefs are experiencing unprecedented loss in coral cover due to increased incidence of disease and bleaching events. Thus, understanding mechanisms of disease susceptibility and resilience, which vary by species, is important. In this regard, untargeted metabolomics serves as an important hypothesis-building tool enabling the delineation of molecular factors underlying disease susceptibility or resilience. In this study, we characterize metabolomes of four species of visually healthy stony corals, including Meandrina meandrites, Orbicella faveolata, Colpophyllia natans, and Montastraea cavernosa, collected at least a year before stony coral tissue loss disease reached the Dry Tortugas, Florida, and demonstrate that both symbiont and host-derived biochemical pathways vary by species. Metabolomes of Meandrina meandrites displayed minimal intraspecies variability and the highest biological activity against coral pathogens when compared to other species in this study. The application of advanced metabolite annotation methods enabled the delineation of several pathways underlying interspecies variability. Specifically, endosymbiont-derived vitamin E family compounds, betaine lipids, and host-derived acylcarnitines were among the top predictors of interspecies variability. Since several metabolite features that contributed to inter- and intraspecies variation are synthesized by the endosymbiotic Symbiodiniaceae, which could be a major source of these compounds in corals, our data will guide further investigations into these Symbiodiniaceae-derived pathways. IMPORTANCE Previous research profiling gene expression, proteins, and metabolites produced during thermal stress have reported the importance of endosymbiont-derived pathways in coral bleaching resistance. However, our understanding of interspecies variation in these pathways among healthy corals and their role in diseases is limited. We surveyed the metabolomes of four species of healthy corals with differing susceptibilities to the devastating stony coral tissue loss disease and applied advanced annotation approaches in untargeted metabolomics to determine the interspecies variation in host and endosymbiont-derived pathways. Using this approach, we propose the survey of immune markers such as vitamin E family compounds, acylcarnitines, and other metabolites to infer their role in resilience to coral diseases. As time-resolved multi-omics datasets are generated for disease-impacted corals, our approach and findings will be valuable in providing insight into the mechanisms of disease resistance.
Collapse
Affiliation(s)
- Jessica M Deutsch
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Alyssa M Demko
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Olakunle A Jaiyesimi
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gabriel Foster
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Adelaide Kindler
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kelly A Pitts
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Tessa Vekich
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Anglesey, United Kingdom
| | - Brian K Walker
- GIS and Spatial Ecology Laboratory, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Engineered Biosystems Building, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Gamba AG, Oakley CA, Ashley IA, Grossman AR, Weis VM, Suggett DJ, Davy SK. Oxylipin Receptors and Their Role in Inter-Partner Signalling in a Model Cnidarian-Dinoflagellate Symbiosis. Environ Microbiol 2024; 26:e70015. [PMID: 39702992 DOI: 10.1111/1462-2920.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
Oxylipin signalling is central in biology, mediating processes such as cellular homeostasis, inflammation and molecular signalling. It may also facilitate inter-partner communication in the cnidarian-dinoflagellate symbiosis, though this aspect remains understudied. In this study, four oxylipin receptors were characterised using immunohistochemistry and immunoblotting in the sea anemone Exaiptasia diaphana ('Aiptasia'): Prostaglandin E2 receptor 2 (EP2) and 4 (EP4), Transient Receptor Potential cation channel A1 (TRPA1) and Glutamate Receptor Ionotropic, Kainate 2 (GRIK2). Receptor abundance and localisation were compared between aposymbiotic anemones and symbiotic anemones hosting either native Breviolum minutum or non-native Durusdinium trenchii. All receptors were localised to the putative symbiosome of freshly isolated symbionts, suggesting a role in host-symbiont crosstalk. EP2, EP4 and TRPA1 abundance decreased in the gastrodermis of anemones hosting B. minutum, indicating potential downregulation of pathways mediated by these receptors. In contrast, GRIK2 abundance increased in anemones hosting D. trenchii in both the epidermis and gastrodermis; GRIK2 acts as a chemosensor of potential pathogens in other systems and could play a similar role here given D. trenchii's reputation as a sub-optimal partner for Aiptasia. This study contributes to the understanding of oxylipin signalling in the cnidarian-dinoflagellate symbiosis and supports further exploration of host-symbiont molecular signalling.
Collapse
Affiliation(s)
- Andrea G Gamba
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Immy A Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R Grossman
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Virginia M Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - David J Suggett
- KAUST Reefscape Restoration Initiative (KRRI) and Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Romanou A, Hegerl GC, Seneviratne SI, Abis B, Bastos A, Conversi A, Landolfi A, Kim H, Lerner PE, Mekus J, Otto-Bliesner BL, Pausata FSR, Pinto I, Suarez-Guiterrez L. Extreme Events Contributing to Tipping Elements and Tipping Points. SURVEYS IN GEOPHYSICS 2024; 46:375-420. [PMID: 40417379 PMCID: PMC12095381 DOI: 10.1007/s10712-024-09863-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/03/2024] [Indexed: 05/27/2025]
Abstract
This review article provides a synthesis and perspective on how weather and climate extreme events can play a role in influencing tipping elements and triggering tipping points in the Earth System. An example of a potential critical global tipping point, induced by climate extremes in an increasingly warmer climate, is Amazon rainforest dieback that could be driven by regional increases in droughts and exacerbated by fires, in addition to deforestation. A tipping element associated with the boreal forest might also be vulnerable to heat, drought and fire. An oceanic example is the potential collapse of the Atlantic meridional overturning circulation due to extreme variability in freshwater inputs, while marine heatwaves and high acidity extremes can lead to coral reef collapse. Extreme heat events may furthermore play an important role in ice sheet, glacier and permafrost stability. Regional severe extreme events could also lead to tipping in ecosystems, as well as in human systems, in response to climate drivers. However, substantial scientific uncertainty remains on mechanistic links between extreme events and tipping points. Earth observations are of high relevance to evaluate and constrain those links between extreme events and tipping elements, by determining conditions leading to delayed recovery with a potential for tipping in the atmosphere, on land, in vegetation, and in the ocean. In the subsurface ocean, there is a lack of consistent, synoptic and high frequency observations of changes in both ocean physics and biogeochemistry. This review article shows the importance of considering the interface between extreme events and tipping points, two topics usually addressed in isolation, and the need for continued monitoring to observe early warning signs and to evaluate Earth system response to extreme events as well as improving model skill in simulating extremes, compound extremes and tipping elements.
Collapse
Affiliation(s)
- A. Romanou
- NASA Goddard Institute for Space Studies, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 USA
| | - G. C. Hegerl
- School of GeoSciences, University of Edinburgh, Edinburgh, EH8 9XP UK
| | - S. I. Seneviratne
- Institute for Atmospheric and Climate Science, ETH Zurich, 8006 Zurich, Switzerland
| | - B. Abis
- Starion Group, 00044 Frascati, Italy
| | - A. Bastos
- Institute for Earth System Science and Remote Sensing, Leipzig University, 04013 Leipzig, Germany
- Max Planck Institute for Biogeochemistry, 07745 Jena, Germany
| | - A. Conversi
- National Research Council of Italy, CNR ‐ ISMAR ‐ Lerici, Forte Santa Teresa, Loc. Pozzuolo, 19032 Lerici, SP Italy
| | - A. Landolfi
- National Research Council of Italy, CNR ‑ ISMAR ‑ Rome, 00133 Rome, Italy
| | - H. Kim
- Moon Soul Graduate School of Future Strategy, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 Republic of Korea
| | | | - J. Mekus
- NASA Goddard Institute for Space Studies, and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10025 USA
- Autonomic Integra, New York, NY 10025 USA
| | - B. L. Otto-Bliesner
- Climate and Global Dynamics Laboratory, NSF National Center for Atmospheric Research, Boulder, CO 80307-3000 USA
| | - F. S. R. Pausata
- Department of Earth and Atmospheric Sciences, Centre ESCER (Etude Et Simulation du Climat À L’Echelle Regionale) and GEOTOP (Research Center on the Dynamics of the Earth System), University of Quebec in Montréal, Montréal (Québec), H3C 3P8 Canada
| | - I. Pinto
- Royal Netherlands Meteorological Institute (KNMI), NL-3731 GA De Bilt, The Netherlands
| | - L. Suarez-Guiterrez
- Institute for Atmospheric and Climate Science, ETH Zurich, 8006 Zurich, Switzerland
- Institut Pierre-Simon Laplace, CNRS, 75252 Paris Cedex 05, France
| |
Collapse
|
9
|
Arini GS, Mencucini LGS, de Felício R, Feitosa LGP, Rezende-Teixeira P, de Oliveira Tsuji HMY, Pilon AC, Pinho DR, Costa Lotufo LV, Lopes NP, Trivella DBB, da Silva RR. A complementary approach for detecting biological signals through a semi-automated feature selection tool. Front Chem 2024; 12:1477492. [PMID: 39525959 PMCID: PMC11543558 DOI: 10.3389/fchem.2024.1477492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Untargeted metabolomics is often used in studies that aim to trace the metabolic profile in a broad context, with the data-dependent acquisition (DDA) mode being the most commonly used method. However, this approach has the limitation that not all detected ions are fragmented in the data acquisition process, in addition to the lack of specificity regarding the process of fragmentation of biological signals. The present work aims to extend the detection of biological signals and contribute to overcoming the fragmentation limits of the DDA mode with a dynamic procedure that combines experimental and in silico approaches. Methods Metabolomic analysis was performed on three different species of actinomycetes using liquid chromatography coupled with mass spectrometry. The data obtained were preprocessed by the MZmine software and processed by the custom package RegFilter. Results and Discussion RegFilter allowed the coverage of the entire chromatographic run and the selection of precursor ions for fragmentation that were previously missed in DDA mode. Most of the ions selected by the tool could be annotated through three levels of annotation, presenting biologically relevant candidates. In addition, the tool offers the possibility of creating local spectral libraries curated according to the user's interests. Thus, the adoption of a dynamic analysis flow using RegFilter allowed for detection optimization and curation of potential biological signals, previously absent in the DDA mode, being a good complementary approach to the current mode of data acquisition. In addition, this workflow enables the creation and search of in-house tailored custom libraries.
Collapse
Affiliation(s)
- Gabriel Santos Arini
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Cellular and Molecular Biology of Ribeirão Preto, Cellular and Molecular Biology Program, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Luiz Gabriel Souza Mencucini
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael de Felício
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Luís Guilherme Pereira Feitosa
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Marine Pharmacology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Henrique Marcel Yudi de Oliveira Tsuji
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alan Cesar Pilon
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Paulista State University, São Paulo, Brazil
| | - Danielle Rocha Pinho
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Letícia Veras Costa Lotufo
- Department of Pharmacology, Marine Pharmacology Laboratory, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Norberto Peporine Lopes
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Ricardo Roberto da Silva
- Department of Biomolecular Sciences, Computational Chemical Biology Laboratory, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- NPPNS, Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Cellular and Molecular Biology of Ribeirão Preto, Cellular and Molecular Biology Program, School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Garcia B, Becker CC, Weber L, Swarr GJ, Kido Soule MC, Apprill A, Kujawinski EB. Benzoyl Chloride Derivatization Advances the Quantification of Dissolved Polar Metabolites on Coral Reefs. J Proteome Res 2024; 23:2041-2053. [PMID: 38782401 PMCID: PMC11166142 DOI: 10.1021/acs.jproteome.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown. Processes involving small, polar molecules, which form the majority components of labile dissolved organic carbon, are often poorly captured using traditional techniques. We employed chemical derivatization with mass spectrometry-based targeted exometabolomics to quantify polar dissolved phase metabolites on five coral reefs in the U.S. Virgin Islands. We quantified 45 polar exometabolites, demonstrated their spatial variability, and contextualized these findings in terms of geographic and benthic cover differences. By comparing our results to previously published coral reef exometabolomes, we show the novel quantification of 23 metabolites, including central carbon metabolism compounds (e.g., glutamate) and novel metabolites such as homoserine betaine. We highlight the immense potential of chemical derivatization-based exometabolomics for quantifying labile chemical cues on coral reefs and measuring molecular level responses to environmental stressors. Overall, improving our understanding of the composition and dynamics of reef exometabolites is vital for effective ecosystem monitoring and management strategies.
Collapse
Affiliation(s)
- Brianna
M. Garcia
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | | | - Laura Weber
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Gretchen J. Swarr
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Melissa C. Kido Soule
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Amy Apprill
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| | - Elizabeth B. Kujawinski
- Department of Marine Chemistry
and Geochemistry, Woods Hole Oceanographic
Institution, Woods
Hole, Massachusetts 02543, United States
| |
Collapse
|
12
|
Huang S, Luo L, Wen B, Liu X, Yu K, Zhang M. Metabolic signatures of two scleractinian corals from the northern South China sea in response to extreme high temperature events. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106490. [PMID: 38636276 DOI: 10.1016/j.marenvres.2024.106490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Coral bleaching events are becoming increasingly common worldwide, causing widespread coral mortality. However, not all colonies within the same coral taxa show sensitivity to bleaching events, and the current understanding of the metabolic mechanisms underlying thermal bleaching in corals remains limited. We used untargeted metabolomics to analyze the biochemical processes involved in the survival of two bleaching phenotypes of the common corals Pavona decussata and Acropora pruinosa, during a severe bleaching event in the northern South China Sea in 2020. During thermal bleaching, P. decussata and A. pruinosa significantly accumulated energy products such as succinate and EPA, antioxidants and inflammatory markers, and reduced energy storage substances like glutamate and thymidine. KEGG analysis revealed enrichment of energy production pathways such as ABC transporters, nucleotide metabolism and lipid metabolism, suggesting the occurrence of oxidative stress and energy metabolism disorders in bleached corals. Notably, heat stress exerted distinct effects on metabolic pathways in the two coral species, e.g., P. decussata activating carbohydrate metabolism pathways like glycolysis and the TCA cycle, along with amino acid metabolism pathways, whereas A. pruinosa significantly altered the content of multiple small peptides affected amino acid metabolism. Furthermore, the osmoregulatory potential of corals correlates with their ability to survive in heat-stress environments in the wild. This study provides valuable insights into the metabolic mechanisms linked to thermal tolerance in reef-building corals, contributes to the understanding of corals' adaptive potential to heat stress induced by global warming and lays the foundation for developing targeted conservation strategies in the future.
Collapse
Affiliation(s)
- Shan Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Li Luo
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Beihua Wen
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xurui Liu
- School of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
13
|
Strand EL, Wong KH, Farraj A, Gray S, McMenamin A, Putnam HM. Coral species-specific loss and physiological legacy effects are elicited by an extended marine heatwave. J Exp Biol 2024; 227:jeb246812. [PMID: 38774956 DOI: 10.1242/jeb.246812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Marine heatwaves are increasing in frequency and intensity, with potentially catastrophic consequences for marine ecosystems such as coral reefs. An extended heatwave and recovery time-series that incorporates multiple stressors and is environmentally realistic can provide enhanced predictive capacity for performance under climate change conditions. We exposed common reef-building corals in Hawai'i, Montipora capitata and Pocillopora acuta, to a 2-month period of high temperature and high PCO2 conditions or ambient conditions in a factorial design, followed by 2 months of ambient conditions. High temperature, rather than high PCO2, drove multivariate physiology shifts through time in both species, including decreases in respiration rates and endosymbiont densities. Pocillopora acuta exhibited more significantly negatively altered physiology, and substantially higher bleaching and mortality than M. capitata. The sensitivity of P. acuta appears to be driven by higher baseline rates of photosynthesis paired with lower host antioxidant capacity, creating an increased sensitivity to oxidative stress. Thermal tolerance of M. capitata may be partly due to harboring a mixture of Cladocopium and Durusdinium spp., whereas P. acuta was dominated by other distinct Cladocopium spp. Only M. capitata survived the experiment, but physiological state in heatwave-exposed M. capitata remained significantly diverged at the end of recovery relative to individuals that experienced ambient conditions. In future climate scenarios, particularly marine heatwaves, our results indicate a species-specific loss of corals that is driven by baseline host and symbiont physiological differences as well as Symbiodiniaceae community compositions, with the surviving species experiencing physiological legacies that are likely to influence future stress responses.
Collapse
Affiliation(s)
- Emma L Strand
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Gloucester Marine Genomics Institute, Gloucester, MA 01930, USA
| | - Kevin H Wong
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Marine Biology and Ecology, University of Miami Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, USA
| | - Alexa Farraj
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Sierra Gray
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biology, University of Victoria, Victoria, BC, Canada, V8P 5C2
| | - Ana McMenamin
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Hollie M Putnam
- Department of Biology, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
14
|
Johnston EC, Caruso C, Mujica E, Walker NS, Drury C. Complex parental effects impact variation in larval thermal tolerance in a vertically transmitting coral. Heredity (Edinb) 2024; 132:275-283. [PMID: 38538721 PMCID: PMC11167003 DOI: 10.1038/s41437-024-00681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 06/13/2024] Open
Abstract
Coral populations must be able to adapt to changing environmental conditions for coral reefs to persist under climate change. The adaptive potential of these organisms is difficult to forecast due to complex interactions between the host animal, dinoflagellate symbionts and the environment. Here we created 26 larval families from six Montipora capitata colonies from a single reef, showing significant, heritable variation in thermal tolerance. Our results indicate that 9.1% of larvae are expected to exhibit four times the thermal tolerance of the general population. Differences in larval thermotolerance were driven mainly by maternal contributions, but we found no evidence that these effects were driven by symbiont identity despite vertical transmission from the dam. We also document no evidence of reproductive incompatibility attributable to symbiont identity. These data demonstrate significant genetic variation within this population which provides the raw material upon which natural selection can act.
Collapse
Affiliation(s)
- Erika C Johnston
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Elena Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Nia S Walker
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
15
|
Xu M, Cai Z, Cheng K, Chen G, Zhou J. Mitigation of Vibrio coralliilyticus-induced coral bleaching through bacterial dysbiosis prevention by Ruegeria profundi. Appl Environ Microbiol 2024; 90:e0227423. [PMID: 38470181 PMCID: PMC11022554 DOI: 10.1128/aem.02274-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
Vibrio species are prevalent in ocean ecosystems, particularly Vibrio coralliilyticus, and pose a threat to corals and other marine organisms under global warming conditions. While microbiota manipulation is considered for coral disease management, understanding the role of commensal bacteria in stress resilience remains limited. Here, a single bacterial species (Ruegeria profundi) rather than a consortium of native was used to combat pathogenic V. coralliilyticus and protect corals from bleaching. R. profundi showed therapeutic activity in vivo, preventing a significant reduction in bacterial diversity in bleached corals. Notably, the structure of the bacterial community differed significantly among all the groups. In addition, compared with the bleached corals caused by V. coralliilyticus, the network analysis revealed that complex interactions and positive correlations in the bacterial community of the R. profundi protected non-bleached corals, indicating R. profundi's role in fostering synergistic associations. Many genera of bacteria significantly increased in abundance during V. coralliilyticus infection, including Vibrio, Alteromonas, Amphritea, and Nautella, contributing to the pathogenicity of the bacterial community. However, R. profundi effectively countered the proliferation of these genera, promoting potential probiotic Endozoicomonas and other taxa, while reducing the abundance of betaine lipids and the type VI section system of the bacterial community. These changes ultimately influenced the interactive relationships among symbionts and demonstrated that probiotic R. profundi intervention can modulate coral-associated bacterial community, alleviate pathogenic-induced dysbiosis, and preserve coral health. These findings elucidated the relationship between the behavior of the coral-associated bacterial community and the occurrence of pathological coral bleaching.IMPORTANCEChanges in the global climate and marine environment can influence coral host and pathogen repartition which refers to an increased likelihood of pathogen infection in hosts. The risk of Vibrio coralliilyticus-induced coral disease is significantly heightened, primarily due to its thermos-dependent expression of virulent and populations. This study investigates how coral-associated bacterial communities respond to bleaching induced by V. coralliilyticus. Our findings demonstrate that Ruegeria profundi exhibits clear evidence of defense against pathogenic bacterial infection, contributing to the maintenance of host health and symbiont homeostasis. This observation suggests that bacterial pathogens could cause dysbiosis in coral holobionts. Probiotic bacteria display an essential capability in restructuring and manipulating coral-associated bacterial communities. This restructuring effectively reduces bacterial community virulence and enhances the pathogenic resistance of holobionts. The study provides valuable insights into the correlation between the health status of corals and how coral-associated bacterial communities may respond to both pathogens and probiotics.
Collapse
Affiliation(s)
- Meiting Xu
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Keke Cheng
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Guofu Chen
- School of Environment, Harbin Institute of Technology, Harbin, China
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| |
Collapse
|
16
|
Williams A. Multiomics data integration, limitations, and prospects to reveal the metabolic activity of the coral holobiont. FEMS Microbiol Ecol 2024; 100:fiae058. [PMID: 38653719 PMCID: PMC11067971 DOI: 10.1093/femsec/fiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/25/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Since their radiation in the Middle Triassic period ∼240 million years ago, stony corals have survived past climate fluctuations and five mass extinctions. Their long-term survival underscores the inherent resilience of corals, particularly when considering the nutrient-poor marine environments in which they have thrived. However, coral bleaching has emerged as a global threat to coral survival, requiring rapid advancements in coral research to understand holobiont stress responses and allow for interventions before extensive bleaching occurs. This review encompasses the potential, as well as the limits, of multiomics data applications when applied to the coral holobiont. Synopses for how different omics tools have been applied to date and their current restrictions are discussed, in addition to ways these restrictions may be overcome, such as recruiting new technology to studies, utilizing novel bioinformatics approaches, and generally integrating omics data. Lastly, this review presents considerations for the design of holobiont multiomics studies to support lab-to-field advancements of coral stress marker monitoring systems. Although much of the bleaching mechanism has eluded investigation to date, multiomic studies have already produced key findings regarding the holobiont's stress response, and have the potential to advance the field further.
Collapse
Affiliation(s)
- Amanda Williams
- Microbial Biology Graduate Program, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
- Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Drive, New Brunswick, NJ 08901, United States
| |
Collapse
|
17
|
Sasaki S, Mori T, Enomoto H, Nakamura S, Yokota H, Yamashita H, Goto-Inoue N. Assessing Molecular Localization of Symbiont Microalgae in Coral Branches Through Mass Spectrometry Imaging. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:223-229. [PMID: 38345665 DOI: 10.1007/s10126-024-10294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/31/2024] [Indexed: 04/25/2024]
Abstract
Reef-building corals are a fundamental pillar of coral reef ecosystems in tropical and subtropical shallow environments. Corals harbor symbiotic dinoflagellates belonging to the family Symbiodiniaceae, commonly known as zooxanthellae. Extensive research has been conducted on this symbiotic relationship, yet the fundamental information about the distribution and localization of Symbiodiniaceae cells in corals is still limited. This information is crucial to understanding the mechanism underlying the metabolite exchange between corals and their algal symbionts, as well as the metabolic flow within holobionts. To examine the distribution of Symbiodiniaceae cells within corals, in this study, we used fluorescence imaging and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MS-Imaging) on branches of the Acropora tenuis coral. We successfully prepared frozen sections of the coral for molecular imaging without fixing or decalcifying the coral branches. By combining the results of MS-Imaging with that of the fluorescence imaging, we determined that the algal Symbiodiniaceae symbionts were not only localized in the tentacle and surface region of the coral branches but also inhabited the in inner parts. Therefore, the molecular imaging technique used in this study could be valuable to further investigate the molecular dynamics between corals and their symbionts.
Collapse
Affiliation(s)
- Shudai Sasaki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan
| | - Hirofumi Enomoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya-Shi, Tochigi, 320-8551, Japan
| | - Sakiko Nakamura
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Hideo Yokota
- Image Processing Research Team, RIKEN Center for Advanced Photonics, Wako, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukai-Ohta, Ishigaki, Okinawa, 907-0451, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, , Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
18
|
Sparagon WJ, Arts MGI, Quinlan ZA, Wegley Kelly L, Koester I, Comstock J, Bullington JA, Carlson CA, Dorrestein PC, Aluwihare LI, Haas AF, Nelson CE. Coral thermal stress and bleaching enrich and restructure reef microbial communities via altered organic matter exudation. Commun Biol 2024; 7:160. [PMID: 38351328 PMCID: PMC10864316 DOI: 10.1038/s42003-023-05730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/16/2023] [Indexed: 02/16/2024] Open
Abstract
Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.
Collapse
Affiliation(s)
- Wesley J Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Milou G I Arts
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
| | - Zachary A Quinlan
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
- San Diego State University, San Diego, USA
| | - Irina Koester
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Jacqueline Comstock
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | - Jessica A Bullington
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Craig A Carlson
- Department of Ecology, Evolution and Marine Biology, The Marine Science Institute, University of California Santa Barbara, Santa Barbara, USA
| | | | - Lihini I Aluwihare
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, USA
| | - Andreas F Haas
- Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Texel, The Netherlands
- San Diego State University, San Diego, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
19
|
Greene A, Moriarty T, Leggatt W, Ainsworth TD, Donahue MJ, Raymundo L. Spatial extent of dysbiosis in the branching coral Pocillopora damicornis during an acute disease outbreak. Sci Rep 2023; 13:16522. [PMID: 37783737 PMCID: PMC10545779 DOI: 10.1038/s41598-023-43490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023] Open
Abstract
Globally, coral reefs face increasing disease prevalence and large-scale outbreak events. These outbreaks offer insights into microbial and functional patterns of coral disease, including early indicators of disease that may be present in visually-healthy tissues. Outbreak events also allow investigation of how reef-building corals, typically colonial organisms, respond to disease. We studied Pocillopora damicornis during an acute tissue loss disease outbreak on Guam to determine whether dysbiosis was present in visually-healthy tissues ahead of advancing disease lesions. These data reveal that coral fragments with visual evidence of disease are expectedly dysbiotic with high microbial and metabolomic variability. However, visually-healthy tissues from the same colonies lacked dysbiosis, suggesting disease containment near the affected area. These results challenge the idea of using broad dysbiosis as a pre-visual disease indicator and prompt reevaluation of disease assessment in colonial organisms such as reef-building corals.
Collapse
Affiliation(s)
- Austin Greene
- University of Hawai'i at Mānoa, Honolulu, USA.
- Hawai'i Institute of Marine Biology, Kāne'Ohe, HI, USA.
- Woods Hole Oceanographic Institution, Woods Hole, USA.
| | | | | | | | - Megan J Donahue
- University of Hawai'i at Mānoa, Honolulu, USA
- Hawai'i Institute of Marine Biology, Kāne'Ohe, HI, USA
| | | |
Collapse
|
20
|
Roach TNF, Matsuda SB, Martin C, Huckeba G, Huckeba J, Kahkejian V, Santoro EP, van der Geer A, Drury C, Quinn RA. Single-polyp metabolomics reveals biochemical structuring of the coral holobiont at multiple scales. Commun Biol 2023; 6:984. [PMID: 37752236 PMCID: PMC10522574 DOI: 10.1038/s42003-023-05342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
All biology happens in space, and spatial structuring plays an important role in mediating biological processes at all scales from cells to ecosystems. However, the metabolomic structuring of the coral holobiont has yet to be fully explored. Here, we present a method to detect high-quality metabolomic data from individual coral polyps and apply this method to study the patterning of biochemicals across multiple spatial (~1 mm - ~100 m) and organizational scales (polyp to population). The data show a strong signature for individual coral colonies, a weaker signature of branches within colonies, and variation at the polyp level related to the polyps' location along a branch. Mapping metabolites to either the coral or algal components of the holobiont reveals that polyp-level variation along the length of a branch was largely driven by molecules associated with the cnidarian host as opposed to the algal symbiont, predominantly putative sulfur-containing metabolites. This work yields insights on the spatial structuring of biochemicals in the coral holobiont, which is critical for design, analysis, and interpretation of studies on coral reef biochemistry.
Collapse
Affiliation(s)
- Ty N F Roach
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.
| | - Shayle B Matsuda
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, USA
| | - Christian Martin
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Gintare Huckeba
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Joel Huckeba
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Valerie Kahkejian
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Erika P Santoro
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
21
|
Mannochio-Russo H, Swift SOI, Nakayama KK, Wall CB, Gentry EC, Panitchpakdi M, Caraballo-Rodriguez AM, Aron AT, Petras D, Dorrestein K, Dorrestein TK, Williams TM, Nalley EM, Altman-Kurosaki NT, Martinelli M, Kuwabara JY, Darcy JL, Bolzani VS, Wegley Kelly L, Mora C, Yew JY, Amend AS, McFall-Ngai M, Hynson NA, Dorrestein PC, Nelson CE. Microbiomes and metabolomes of dominant coral reef primary producers illustrate a potential role for immunolipids in marine symbioses. Commun Biol 2023; 6:896. [PMID: 37653089 PMCID: PMC10471604 DOI: 10.1038/s42003-023-05230-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
The dominant benthic primary producers in coral reef ecosystems are complex holobionts with diverse microbiomes and metabolomes. In this study, we characterize the tissue metabolomes and microbiomes of corals, macroalgae, and crustose coralline algae via an intensive, replicated synoptic survey of a single coral reef system (Waimea Bay, O'ahu, Hawaii) and use these results to define associations between microbial taxa and metabolites specific to different hosts. Our results quantify and constrain the degree of host specificity of tissue metabolomes and microbiomes at both phylum and genus level. Both microbiome and metabolomes were distinct between calcifiers (corals and CCA) and erect macroalgae. Moreover, our multi-omics investigations highlight common lipid-based immune response pathways across host organisms. In addition, we observed strong covariation among several specific microbial taxa and metabolite classes, suggesting new metabolic roles of symbiosis to further explore.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, 14800-060, Brazil.
| | - Sean O I Swift
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Christopher B Wall
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
- Ecology Behavior and Evolution Section, Department of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Morgan Panitchpakdi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrés M Caraballo-Rodriguez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Allegra T Aron
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Daniel Petras
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Kathleen Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Taylor M Williams
- Marine Option Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Eileen M Nalley
- Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Noam T Altman-Kurosaki
- School of Biological Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA
| | | | - Jeff Y Kuwabara
- Marine Option Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - John L Darcy
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Vanderlan S Bolzani
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University, Araraquara, SP, 14800-060, Brazil
| | - Linda Wegley Kelly
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, CA, USA
| | - Camilo Mora
- Geography, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Joanne Y Yew
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Anthony S Amend
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
22
|
Chan WY, Rudd D, van Oppen MJ. Spatial metabolomics for symbiotic marine invertebrates. Life Sci Alliance 2023; 6:e202301900. [PMID: 37202120 PMCID: PMC10200813 DOI: 10.26508/lsa.202301900] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Microbial symbionts frequently localize within specific body structures or cell types of their multicellular hosts. This spatiotemporal niche is critical to host health, nutrient exchange, and fitness. Measuring host-microbe metabolite exchange has conventionally relied on tissue homogenates, eliminating dimensionality and dampening analytical sensitivity. We have developed a mass spectrometry imaging workflow for a soft- and hard-bodied cnidarian animal capable of revealing the host and symbiont metabolome in situ, without the need for a priori isotopic labelling or skeleton decalcification. The mass spectrometry imaging method provides critical functional insights that cannot be gleaned from bulk tissue analyses or other presently available spatial methods. We show that cnidarian hosts may regulate microalgal symbiont acquisition and rejection through specific ceramides distributed throughout the tissue lining the gastrovascular cavity. The distribution pattern of betaine lipids showed that once resident, symbionts primarily reside in light-exposed tentacles to generate photosynthate. Spatial patterns of these metabolites also revealed that symbiont identity can drive host metabolism.
Collapse
Affiliation(s)
- Wing Yan Chan
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - David Rudd
- Monash Institute of Pharmaceutical Sciences, Parkville, Australia
- Melbourne Centre for Nanofabrication, Clayton, Australia
| | - Madeleine Jh van Oppen
- School of BioSciences, University of Melbourne, Parkville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| |
Collapse
|
23
|
Sakai R, Goto-Inoue N, Yamashita H, Aimoto N, Kitai Y, Maruyama T. Smart utilization of betaine lipids in the giant clam Tridacna crocea. iScience 2023; 26:107250. [PMID: 37485344 PMCID: PMC10362313 DOI: 10.1016/j.isci.2023.107250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
The giant clam Tridacna crocea thrives in poorly nourished coral reef water by forming a holobiont with zooxanthellae and utilizing photosynthetic products of the symbiont. However, detailed metabolic crosstalk between clams and symbionts is elusive. Here, we discovered that the nonphosphorous microalgal betaine lipid DGCC (diacylglycerylcarboxy-hydroxymethylcholine) and its deacylated derivative GCC are present in all tissues and organs, including algae-free sperm and eggs, and are metabolized. Colocalization of DGCC and PC (phosphatidylcholine) evidenced by MS imaging suggested that DGCC functions as a PC substitute. The high content of GCC in digestive diverticula (DD) suggests that the algal DGCC was digested in DD for further utilization. Lipidomics analysis showing the organ-specific distribution pattern of DGCC species suggests active utilization of DGCC as membrane lipids in the clam. Thus, the utilization of zooxanthellal DGCC in animal cells is a unique evolutionary outcome in phosphorous-deficient coral reef waters.
Collapse
Affiliation(s)
- Ryuichi Sakai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, 148 Fukai-Ohta, Ishigaki, Okinawa 907-0451, Japan
| | - Naoya Aimoto
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Yuto Kitai
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tadashi Maruyama
- School of Marine Biosciences, Kitasato University, 1-15-1, Kitazato, Minami, Sagamihara, Kanagawa 252-0374, Japan
| |
Collapse
|
24
|
Sikorskaya TV. Coral Lipidome: Molecular Species of Phospholipids, Glycolipids, Betaine Lipids, and Sphingophosphonolipids. Mar Drugs 2023; 21:335. [PMID: 37367660 DOI: 10.3390/md21060335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Coral reefs are the most biodiversity-rich ecosystems in the world's oceans. Coral establishes complex interactions with various microorganisms that constitute an important part of the coral holobiont. The best-known coral endosymbionts are Symbiodiniaceae dinoflagellates. Each member of the coral microbiome contributes to its total lipidome, which integrates many molecular species. The present study summarizes available information on the molecular species of the plasma membrane lipids of the coral host and its dinoflagellates (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylinositol (PI), ceramideaminoethylphosphonate, and diacylglyceryl-3-O-carboxyhydroxymethylcholine), and the thylakoid membrane lipids of dinoflagellates (phosphatidylglycerol (PG) and glycolipids). Alkyl chains of PC and PE molecular species differ between tropical and cold-water coral species, and features of their acyl chains depend on the coral's taxonomic position. PS and PI structural features are associated with the presence of an exoskeleton in the corals. The dinoflagellate thermosensitivity affects the profiles of PG and glycolipid molecular species, which can be modified by the coral host. Coral microbiome members, such as bacteria and fungi, can also be the source of the alkyl and acyl chains of coral membrane lipids. The lipidomics approach, providing broader and more detailed information about coral lipid composition, opens up new opportunities in the study of biochemistry and ecology of corals.
Collapse
Affiliation(s)
- Tatyana V Sikorskaya
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia
| |
Collapse
|
25
|
Lachs L, Humanes A, Pygas DR, Bythell JC, Mumby PJ, Ferrari R, Figueira WF, Beauchamp E, East HK, Edwards AJ, Golbuu Y, Martinez HM, Sommer B, van der Steeg E, Guest JR. No apparent trade-offs associated with heat tolerance in a reef-building coral. Commun Biol 2023; 6:400. [PMID: 37046074 PMCID: PMC10097654 DOI: 10.1038/s42003-023-04758-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
As marine species adapt to climate change, their heat tolerance will likely be under strong selection. Yet trade-offs between heat tolerance and other life history traits could compromise natural adaptation or assisted evolution. This is particularly important for ecosystem engineers, such as reef-building corals, which support biodiversity yet are vulnerable to heatwave-induced mass bleaching and mortality. Here, we exposed 70 colonies of the reef-building coral Acropora digitifera to a long-term marine heatwave emulation experiment. We tested for trade-offs between heat tolerance and three traits measured from the colonies in situ - colony growth, fecundity, and symbiont community composition. Despite observing remarkable within-population variability in heat tolerance, all colonies were dominated by Cladocopium C40 symbionts. We found no evidence for trade-offs between heat tolerance and fecundity or growth. Contrary to expectations, positive associations emerged with growth, such that faster-growing colonies tended to bleach and die at higher levels of heat stress. Collectively, our results suggest that these corals exist on an energetic continuum where some high-performing individuals excel across multiple traits. Within populations, trade-offs between heat tolerance and growth or fecundity may not be major barriers to natural adaptation or the success of assisted evolution interventions.
Collapse
Affiliation(s)
- Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel R Pygas
- Australian Institute of Marine Sciences, Townsville, QLD, 4810, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD, 4072, Australia
- Palau International Coral Reef Center, Koror, 96940, Palau
| | - Renata Ferrari
- Australian Institute of Marine Sciences, Townsville, QLD, 4810, Australia
| | - Will F Figueira
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Holly K East
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Yimnang Golbuu
- Palau International Coral Reef Center, Koror, 96940, Palau
| | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Brigitte Sommer
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
26
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
27
|
Zhou Z, Tang J, Cao X, Wu C, Cai W, Lin S. High Heterotrophic Plasticity of Massive Coral Porites pukoensis Contributes to Its Tolerance to Bioaccumulated Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3391-3401. [PMID: 36800204 DOI: 10.1021/acs.est.2c08188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Scleractinian corals have been observed to be capable of accumulating microplastics from reef environments; however, the tolerant mechanism is poorly known. Here, we examined the response of Porites pukoensis to microplastic pollution by analyzing algal symbiont density, energetic metabolism, and caspase3 activities (representing the apoptosis level) in the coral-Symbiodiniaceae association. The environments of three fringing reef regions along the south coast of Sanya City, Hainan Province of China, were polluted by microplastics (for example, microplastic concentrations in the seawater ranged from 3.3 to 46.6 particles L-1), resulting in microplastic accumulation in P. pukoensis (0.4-2.4 particles cm-2). The accumulation of microplastics was negatively correlated to algal symbiont density in the corals but not to caspase3 activities in the two symbiotic partners, demonstrating that P. pukoensis could tolerate accumulated microplastics despite the decrease of algal symbiont density. Furthermore, results from the carbon stable isotope and cellular energy allocation assay indicated that P. pukoensis obtained energy availability (mainly as lipid reserves) using the switch between heterotrophy and autotrophy to maintain energy balance and cope with accumulated microplastics. Collectively, P. pukoensis achieved tolerance to microplastic pollution by maintaining energy availability, which was largely attributed to its high heterotrophic plasticity.
Collapse
Affiliation(s)
- Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jia Tang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xiaocong Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chuanliang Wu
- Sanya Institute of Coral Reef Ecosystem, Sanya 572000, China
| | - Wenqi Cai
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
Travesso M, Missionário M, Cruz S, Calado R, Madeira D. Combined effect of marine heatwaves and light intensity on the cellular stress response and photophysiology of the leather coral Sarcophyton cf. glaucum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160460. [PMID: 36435249 DOI: 10.1016/j.scitotenv.2022.160460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/19/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Marine heatwaves (MHW) are threatening tropical coral reef ecosystems, leading to mass bleaching events worldwide. The combination of heat stress with high irradiance is known to shape the health and redox status of corals, but research is biased toward scleractinian corals, while much less is known on tropical symbiotic soft corals. Here, we evaluated the cellular stress response and the photophysiological performance of the soft coral Sarcophyton cf. glaucum, popularly termed as leather coral, under different global change scenarios. Corals were exposed to different light intensities (high light, low light, ∼662 and 253 μmol photons m-2 s-1) for 30 days (time-point 1) and a subsequent MHW simulation was carried out for 10 days (control 26 vs 32 °C) (time-point 2). Subsequently, corals were returned to control temperature and allowed to recover for 30 days (time-point 3). Photophysiological performance (maximum quantum yield of photosystem II (Fv/Fm), a measure of photosynthetic activity; dark-level fluorescence (F0), as a proxy of chlorophyll a content (Chl a); and zooxanthellae density) and stress biomarkers (total protein, antioxidants, lipid peroxidation, ubiquitin, and heat shock protein 70) were assessed in corals at these three time-points. Corals were especially sensitive to the combination of heat and high light stress, experiencing a decrease in their photosynthetic efficiency under these conditions. Heat stress resulted in bleaching via zooxanthellae loss while high light stress led to pigment (Chl a) loss. This species' antioxidant defenses, and protein degradation were particularly enhanced under heat stress. A recovery was clear for molecular parameters after 30 days of recovery, whereby photophysiological performance required more time to return to basal levels. We conclude that soft corals distributed along intertidal areas, where the light intensity is high, could be especially vulnerable to marine heatwave events, highlighting the need to direct conservation efforts toward these organisms.
Collapse
Affiliation(s)
- Margarida Travesso
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Madalena Missionário
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Ricardo Calado
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
| |
Collapse
|
29
|
Haydon TD, Matthews JL, Seymour JR, Raina JB, Seymour JE, Chartrand K, Camp EF, Suggett DJ. Metabolomic signatures of corals thriving across extreme reef habitats reveal strategies of heat stress tolerance. Proc Biol Sci 2023; 290:20221877. [PMID: 36750192 PMCID: PMC9904954 DOI: 10.1098/rspb.2022.1877] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023] Open
Abstract
Anthropogenic stressors continue to escalate worldwide, driving unprecedented declines in reef environmental conditions and coral health. One approach to better understand how corals can function in the future is to examine coral populations that thrive within present day naturally extreme habitats. We applied untargeted metabolomics (gas chromatography-mass spectrometry (GC-MS)) to contrast metabolite profiles of Pocillopora acuta colonies from hot, acidic and deoxygenated mangrove environments versus those from adjacent reefs. Under ambient temperatures, P. acuta predominantly associated with endosymbionts of the genera Cladocopium (reef) or Durusdinium (mangrove), exhibiting elevated metabolism in mangrove through energy-generating and biosynthesis pathways compared to reef populations. Under transient heat stress, P. acuta endosymbiont associations were unchanged. Reef corals bleached and exhibited extensive shifts in symbiont metabolic profiles (whereas host metabolite profiles were unchanged). By contrast, mangrove populations did not bleach and solely the host metabolite profiles were altered, including cellular responses in inter-partner signalling, antioxidant capacity and energy storage. Thus mangrove P. acuta populations resist periodically high-temperature exposure via association with thermally tolerant endosymbionts coupled with host metabolic plasticity. Our findings highlight specific metabolites that may be biomarkers of heat tolerance, providing novel insight into adaptive coral resilience to elevated temperatures.
Collapse
Affiliation(s)
- Trent D. Haydon
- Center for Genomics and Systems Biology, New York University Abu Dhabi, PO Box 129188, Abu Dhabi, UAE
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jennifer L. Matthews
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Justin R. Seymour
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jean-Baptiste Raina
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Jamie E. Seymour
- Division of Tropical Health and Medicine, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4811, Australia
| | - Kathryn Chartrand
- Centre for tropical Water and Aquatic Ecosystem Research, James Cook University, Cairns, QLD 4811, Australia
| | - Emma F. Camp
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - David J. Suggett
- Faculty of Science, Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
30
|
Sun F, Yang H, Zhang X, Shi Q. Metabolic and metatranscriptional characteristics of corals bleaching induced by the most severe marine heatwaves in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160019. [PMID: 36356778 DOI: 10.1016/j.scitotenv.2022.160019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Coral bleaching significantly affects the function and health of coral reef ecosystems; however, the mechanisms underlying metabolism and transcription in corals remain unclear. In this study, untargeted metabolomics and metatranscriptomic analyses were performed to analyze the differences between unbleached and bleached Pocillopora corals during the most severe marine heatwaves. Difference analysis showed that bleached corals had significant metabolomic characteristics compared with those in unbleached corals. These differences were significant (p < 0.05) according to partial least squares discriminant analysis (PLS-DA). Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the metabolites were significantly enriched in numerous pathways in bleached or unbleached corals, such as steroid hormone biosynthesis, biosynthesis of unsaturated fatty acids, and pyrimidine metabolism. Bleaching greatly affects coral reproduction as well as the tolerance of coral symbionts to heat stress. In metatranscriptomic analysis, we observed large gene expression differences between unbleached and bleached corals. Three Gene Ontology directed acyclic graphs (DAGs) were constructed to show the significantly differentially expressed genes (DEGs). Many biological and molecular processes were significantly enriched between bleached corals to unbleached corals, such as metabolic processes, lipid metabolic processes, oxidation-reduction processes, single-organism metabolic processes, and protein metabolic processes. Metabolome and metatranscriptome analyses showed that bleaching caused substantial physiological damage to corals. This study provides insight into the metabolic and transcriptional changes that occur in corals during bleaching.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
31
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
32
|
Pei J, Chen S, Yu K, Hu J, Wang Y, Zhang J, Qin Z, Zhang R, Kuo TH, Chung HH, Hsu CC. Metabolomics Characterization of Scleractinia Corals with Different Life-History Strategies: A Case Study about Pocillopora meandrina and Seriatopora hystrix in the South China Sea. Metabolites 2022; 12:metabo12111079. [PMID: 36355162 PMCID: PMC9693324 DOI: 10.3390/metabo12111079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Life-history strategies play a critical role in susceptibility to environmental stresses for Scleractinia coral. Metabolomics, which is capable of determining the metabolic responses of biological systems to genetic and environmental changes, is competent for the characterization of species’ biological traits. In this study, two coral species (Pocillopora meandrina and Seriatopora hystrix in the South China Sea) with different life-history strategies (“competitive” and “weedy”) were targeted, and untargeted mass spectrometry metabolomics combined with molecular networking was applied to characterize their differential metabolic pathways. The results show that lyso-platelet activating factors (lyso-PAFs), diacylglyceryl carboxyhydroxymethylcholine (DGCC), aromatic amino acids, and sulfhydryl compounds were more enriched in P. meandrina, whereas new phospholipids, dehydrated phosphoglycerol dihydroceramide (de-PG DHC), monoacylglycerol (MAG), fatty acids (FA) (C < 18), short peptides, and guanidine compounds were more enriched in S. hystrix. The metabolic pathways involved immune response, energy metabolism, cellular membrane structure regulation, oxidative stress system, secondary metabolite synthesis, etc. While the immune system (lysoPAF) and secondary metabolite synthesis (aromatic amino acids and sulfhydryl compounds) facilitates fast growth and resistance to environmental stressors of P. meandrina, the cell membrane structure (structural lipids), energy storage (storage lipids), oxidative stress system (short peptides), and secondary metabolite synthesis (guanidine compounds) are beneficial to the survival of S. hystrix in harsh conditions. This study contributes to the understanding of the potential molecular traits underlying life-history strategies of different coral species.
Collapse
Affiliation(s)
- Jiying Pei
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Shiguo Chen
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence:
| | - Junjie Hu
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Yitong Wang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Jingjing Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Zhenjun Qin
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Ruijie Zhang
- Coral Reef Research Center of China, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530000, China
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
33
|
Pei JY, Yu WF, Zhang JJ, Kuo TH, Chung HH, Hu JJ, Hsu CC, Yu KF. Mass spectrometry-based metabolomic signatures of coral bleaching under thermal stress. Anal Bioanal Chem 2022; 414:7635-7646. [PMID: 36059041 DOI: 10.1007/s00216-022-04294-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
Coral bleaching caused by climate change has resulted in large-scale coral reef decline worldwide. However, the knowledge of physiological response mechanisms of scleractinian corals under high-temperature stress is still challenging. Here, untargeted mass spectrometry-based metabolomics combining with Global Natural Product Social Molecular Networking (GNPS) was utilized to investigate the physiological response of the coral species Pavona decussata under thermal stress. A wide variety of metabolites (including lipids, fatty acids, amino acids, peptides, osmolytes) were identified as the potential biomarkers and subjected to metabolic pathway enrichment analysis. We discovered that, in the thermal-stressed P. decussata coral holobiont, (1) numerous metabolites in classes of lipids and amino acids significantly decreased, indicating an enhanced lipid hydrolysis and aminolysis that contributed to up-regulation in gluconeogenesis to meet energy demand for basic survival; (2) pantothenate and panthenol, two essential intermediates in tricarboxylic acid (TCA) cycle, were up-regulated, implying enhanced efficiency in energy production; (3) small peptides (e.g., Glu-Leu and Glu-Glu-Glu-Glu) and lyso-platelet-activating factor (lysoPAF) possibly implicated a strengthened coral immune response; (4) the down-regulation of betaine and trimethylamine N-oxide (TMAO), known as osmolyte compounds for maintaining holobiont homeostasis, might be the result of disruption of coral holobiont.
Collapse
Affiliation(s)
- Ji-Ying Pei
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Wen-Feng Yu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Jing-Jing Zhang
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Jun-Jie Hu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ke-Fu Yu
- Coral Reef Research Center of China, Guangxi Laboratory On the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, 519080, People's Republic of China.
| |
Collapse
|
34
|
Humanes A, Lachs L, Beauchamp EA, Bythell JC, Edwards AJ, Golbuu Y, Martinez HM, Palmowski P, Treumann A, van der Steeg E, van Hooidonk R, Guest JR. Within-population variability in coral heat tolerance indicates climate adaptation potential. Proc Biol Sci 2022; 289:20220872. [PMID: 36043280 PMCID: PMC9428547 DOI: 10.1098/rspb.2022.0872] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Coral reefs are facing unprecedented mass bleaching and mortality events due to marine heatwaves and climate change. To avoid extirpation, corals must adapt. Individual variation in heat tolerance and its heritability underpin the potential for coral adaptation. However, the magnitude of heat tolerance variability within coral populations is largely unresolved. We address this knowledge gap by exposing corals from a single reef to an experimental marine heatwave. We found that double the heat stress dosage was required to induce bleaching in the most-tolerant 10%, compared to the least-tolerant 10% of the population. By the end of the heat stress exposure, all of the least-tolerant corals were dead, whereas the most-tolerant remained alive. To contextualize the scale of this result over the coming century, we show that under an ambitious future emissions scenario, such differences in coral heat tolerance thresholds equate to up to 17 years delay until the onset of annual bleaching and mortality conditions. However, this delay is limited to only 10 years under a high emissions scenario. Our results show substantial variability in coral heat tolerance which suggests scope for natural or assisted evolution to limit the impacts of climate change in the short-term. For coral reefs to persist through the coming century, coral adaptation must keep pace with ocean warming, and ambitious emissions reductions must be realized.
Collapse
Affiliation(s)
- Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth A Beauchamp
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Helios M Martinez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paweł Palmowski
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Achim Treumann
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Eveline van der Steeg
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ruben van Hooidonk
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA.,Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL 33149, USA
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Adaptive Responses of the Sea Anemone Heteractis crispa to the Interaction of Acidification and Global Warming. Animals (Basel) 2022; 12:ani12172259. [PMID: 36077978 PMCID: PMC9454579 DOI: 10.3390/ani12172259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Ocean acidification and warming are two of the most important threats to the existence of marine organisms and are predicted to co-occur in oceans. The present work evaluated the effects of acidification (AC: 24 ± 0.1 °C and 900 μatm CO2), warming (WC: 30 ± 0.1 °C and 450 μatm CO2), and their combination (CC: 30 ± 0.1 °C and 900 μatm CO2) on the sea anemone, Heteractis crispa, from the aspects of photosynthetic apparatus (maximum quantum yield of photosystem II (PS II), chlorophyll level, and Symbiodiniaceae density) and sterol metabolism (cholesterol content and total sterol content). In a 15-day experiment, acidification alone had no apparent effect on the photosynthetic apparatus, but did affect sterol levels. Upregulation of their chlorophyll level is an important strategy for symbionts to adapt to high partial pressure of CO2 (pCO2). However, after warming stress, the benefits of high pCO2 had little effect on stress tolerance in H. crispa. Indeed, thermal stress was the dominant driver of the deteriorating health of H. crispa. Cholesterol and total sterol contents were significantly affected by all three stress conditions, although there was no significant change in the AC group on day 3. Thus, cholesterol or sterol levels could be used as important indicators to evaluate the impact of climate change on cnidarians. Our findings suggest that H. crispa might be relatively insensitive to the impact of ocean acidification, whereas increased temperature in the future ocean might impair viability of H. crispa.
Collapse
|
36
|
Drury C, Dilworth J, Majerová E, Caruso C, Greer JB. Expression plasticity regulates intraspecific variation in the acclimatization potential of a reef-building coral. Nat Commun 2022; 13:4790. [PMID: 35970904 PMCID: PMC9378650 DOI: 10.1038/s41467-022-32452-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/01/2022] [Indexed: 11/09/2022] Open
Abstract
Phenotypic plasticity is an important ecological and evolutionary response for organisms experiencing environmental change, but the ubiquity of this capacity within coral species and across symbiont communities is unknown. We exposed ten genotypes of the reef-building coral Montipora capitata with divergent symbiont communities to four thermal pre-exposure profiles and quantified gene expression before stress testing 4 months later. Here we show two pre-exposure profiles significantly enhance thermal tolerance despite broadly different expression patterns and substantial variation in acclimatization potential based on coral genotype. There was no relationship between a genotype's basal thermal sensitivity and ability to acquire heat tolerance, including in corals harboring naturally tolerant symbionts, which illustrates the potential for additive improvements in coral response to climate change. These results represent durable improvements from short-term stress hardening of reef-building corals and substantial cryptic complexity in the capacity for plasticity.
Collapse
Affiliation(s)
| | - Jenna Dilworth
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
- University of Southern California, Los Angeles, CA, USA
| | - Eva Majerová
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Carlo Caruso
- Hawai'i Institute of Marine Biology, Kāne'ohe, HI, USA
| | - Justin B Greer
- U.S. Geological Survey, Western Fisheries Research Center, Seattle, WA, USA
| |
Collapse
|
37
|
Affiliation(s)
- Rustam Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| |
Collapse
|
38
|
van Woesik R, Shlesinger T, Grottoli AG, Toonen RJ, Vega Thurber R, Warner ME, Marie Hulver A, Chapron L, McLachlan RH, Albright R, Crandall E, DeCarlo TM, Donovan MK, Eirin‐Lopez J, Harrison HB, Heron SF, Huang D, Humanes A, Krueger T, Madin JS, Manzello D, McManus LC, Matz M, Muller EM, Rodriguez‐Lanetty M, Vega‐Rodriguez M, Voolstra CR, Zaneveld J. Coral-bleaching responses to climate change across biological scales. GLOBAL CHANGE BIOLOGY 2022; 28:4229-4250. [PMID: 35475552 PMCID: PMC9545801 DOI: 10.1111/gcb.16192] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 05/26/2023]
Abstract
The global impacts of climate change are evident in every marine ecosystem. On coral reefs, mass coral bleaching and mortality have emerged as ubiquitous responses to ocean warming, yet one of the greatest challenges of this epiphenomenon is linking information across scientific disciplines and spatial and temporal scales. Here we review some of the seminal and recent coral-bleaching discoveries from an ecological, physiological, and molecular perspective. We also evaluate which data and processes can improve predictive models and provide a conceptual framework that integrates measurements across biological scales. Taking an integrative approach across biological and spatial scales, using for example hierarchical models to estimate major coral-reef processes, will not only rapidly advance coral-reef science but will also provide necessary information to guide decision-making and conservation efforts. To conserve reefs, we encourage implementing mesoscale sanctuaries (thousands of km2 ) that transcend national boundaries. Such networks of protected reefs will provide reef connectivity, through larval dispersal that transverse thermal environments, and genotypic repositories that may become essential units of selection for environmentally diverse locations. Together, multinational networks may be the best chance corals have to persist through climate change, while humanity struggles to reduce emissions of greenhouse gases to net zero.
Collapse
Affiliation(s)
- Robert van Woesik
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | - Tom Shlesinger
- Institute for Global EcologyFlorida Institute of TechnologyMelbourneFloridaUSA
| | | | - Rob J. Toonen
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | | | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Ann Marie Hulver
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Leila Chapron
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
| | - Rowan H. McLachlan
- School of Earth SciencesThe Ohio State UniversityColumbusOhioUSA
- Department of MicrobiologyOregon State UniversityCorvallisOregonUSA
| | | | - Eric Crandall
- Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | | | - Mary K. Donovan
- Center for Global Discovery and Conservation Science and School of Geographical Sciences and Urban PlanningArizona State UniversityTempeArizonaUSA
| | - Jose Eirin‐Lopez
- Institute of EnvironmentFlorida International UniversityMiamiFloridaUSA
| | - Hugo B. Harrison
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Physics and Marine Geophysical LaboratoryJames Cook UniversityTownsvilleQueenslandAustralia
| | - Danwei Huang
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Adriana Humanes
- School of Natural and Environmental SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Thomas Krueger
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Joshua S. Madin
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Derek Manzello
- Center for Satellite Applications and ResearchSatellite Oceanography & Climate DivisionNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Lisa C. McManus
- Hawai'i Institute of Marine Biology, KāneʻoheUniversity of Hawaiʻi at MānoaHonoluluHawaiiUSA
| | - Mikhail Matz
- Department of Integrative BiologyUniversity of Texas at AustinAustinTexasUSA
| | | | | | | | | | - Jesse Zaneveld
- Division of Biological SciencesUniversity of WashingtonBothellWashingtonUSA
| |
Collapse
|
39
|
Drury C, Bean NK, Harris CI, Hancock JR, Huckeba J, H CM, Roach TNF, Quinn RA, Gates RD. Intrapopulation adaptive variance supports thermal tolerance in a reef-building coral. Commun Biol 2022; 5:486. [PMID: 35589814 PMCID: PMC9120509 DOI: 10.1038/s42003-022-03428-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Coral holobionts are multi-species assemblages, which adds significant complexity to genotype-phenotype connections underlying ecologically important traits like coral bleaching. Small scale heterogeneity in bleaching is ubiquitous in the absence of strong environmental gradients, which provides adaptive variance needed for the long-term persistence of coral reefs. We used RAD-seq, qPCR and LC-MS/MS metabolomics to characterize host genomic variation, symbiont community and biochemical correlates in two bleaching phenotypes of the vertically transmitting coral Montipora capitata. Phenotype was driven by symbiosis state and host genetic variance. We documented 5 gene ontologies that were significantly associated with both the binary bleaching phenotype and symbiont composition, representing functions that confer a phenotype via host-symbiont interactions. We bred these corals and show that symbiont communities were broadly conserved in bulk-crosses, resulting in significantly higher survivorship under temperature stress in juveniles, but not larvae, from tolerant parents. Using a select and re-sequence approach, we document numerous gene ontologies selected by heat stress, some of which (cell signaling, antioxidant activity, pH regulation) have unique selection dynamics in larvae from thermally tolerant parents. These data show that vertically transmitting corals may have an adaptive advantage under climate change if host and symbiont variance interact to influence bleaching phenotype.
Collapse
Affiliation(s)
- Crawford Drury
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA.
| | - Nina K Bean
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Casey I Harris
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Joshua R Hancock
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Joel Huckeba
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
- University of Amsterdam, Amsterdam, Netherlands
| | - Christian Martin H
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ty N F Roach
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| | - Robert A Quinn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Ruth D Gates
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI, USA
| |
Collapse
|
40
|
Cowen LJ, Putnam HM. Bioinformatics of Corals: Investigating Heterogeneous Omics Data from Coral Holobionts for Insight into Reef Health and Resilience. Annu Rev Biomed Data Sci 2022; 5:205-231. [PMID: 35537462 DOI: 10.1146/annurev-biodatasci-122120-030732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Coral reefs are home to over two million species and provide habitat for roughly 25% of all marine animals, but they are being severely threatened by pollution and climate change. A large amount of genomic, transcriptomic, and other omics data is becoming increasingly available from different species of reef-building corals, the unicellular dinoflagellates, and the coral microbiome (bacteria, archaea, viruses, fungi, etc.). Such new data present an opportunity for bioinformatics researchers and computational biologists to contribute to a timely, compelling, and urgent investigation of critical factors that influence reef health and resilience. Expected final online publication date for the Annual Review of Biomedical Data Science, Volume 5 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lenore J Cowen
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, USA;
| |
Collapse
|
41
|
Dimos B, Emery M, Beavers K, MacKnight N, Brandt M, Demuth J, Mydlarz L. Adaptive Variation in Homolog Number Within Transcript Families Promotes Expression Divergence in Reef-Building Coral. Mol Ecol 2022; 31:2594-2610. [PMID: 35229964 DOI: 10.1111/mec.16414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
Gene expression, especially in multi-species experiments, is used to gain insight into the genetic basis of how organisms adapt and respond to changing environments. However, evolutionary processes which can influence gene expression patterns between species such as the presence of paralogs which arise from gene duplication events are rarely accounted for. Paralogous transcripts can alter the transcriptional output of a gene and thus exclusion of these transcripts can obscure important biological differences between species. To address this issue, we investigated how differences in transcript family size is associated with divergent gene expression patterns in five species of Caribbean reef-building corals. We demonstrate that transcript families that are rapidly evolving in terms of size have increased levels of expression divergence. Additionally, these rapidly evolving transcript families are enriched for multiple biological processes, with genes involved in the coral innate immune system demonstrating pronounced variation in homolog number between species. Overall, this investigation demonstrates the importance of incorporating paralogous transcripts when comparing gene expression across species by influencing both transcriptional output and the number of transcripts within biological processes. As this investigation was based on transcriptome assemblies, additional insights into the relationship between gene duplications and expression patterns will likely emergence once more genome assemblies are available for study.
Collapse
Affiliation(s)
- Bradford Dimos
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Madison Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Kelsey Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Nicholas MacKnight
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Marilyn Brandt
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands, 00802, USA
| | - Jeffery Demuth
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Laura Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| |
Collapse
|
42
|
Machine-Learning-Based Proteomic Predictive Modeling with Thermally-Challenged Caribbean Reef Corals. DIVERSITY 2022. [DOI: 10.3390/d14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coral health is currently diagnosed retroactively; colonies are deemed “stressed” upon succumbing to bleaching or disease. Ideally, health inferences would instead be made on a pre-death timescale that would enable, for instance, environmental mitigation that could promote coral resilience. To this end, diverse Caribbean coral (Orbicella faveolata) genotypes of varying resilience to high temperatures along the Florida Reef Tract were exposed herein to elevated temperatures in the laboratory, and a proteomic analysis was taken with a subset of 20 samples via iTRAQ labeling followed by nano-liquid chromatography + mass spectrometry; 46 host coral and 40 Symbiodiniaceae dinoflagellate proteins passed all stringent quality control criteria, and the partial proteomes of biopsies of (1) healthy controls, (2) sub-lethally stressed samples, and (3) actively bleaching corals differed significantly from one another. The proteomic data were then used to train predictive models of coral colony bleaching susceptibility, and both generalized regression and machine-learning-based neural networks were capable of accurately forecasting the bleaching susceptibility of coral samples based on their protein signatures. Successful future testing of the predictive power of these models in situ could establish the capacity to proactively monitor coral health.
Collapse
|
43
|
Harris MB, Lesani M, Liu Z, McCall LI. Molecular networking in infectious disease models. Methods Enzymol 2022; 663:341-375. [PMID: 35168796 PMCID: PMC10040239 DOI: 10.1016/bs.mie.2021.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Small molecule metabolites are the product of many enzymatic reactions. Metabolomics thus opens a window into enzyme activity and function, integrating effects at the post-translational, proteome, transcriptome and genome level. In addition, small molecules can themselves regulate enzyme activity, expression and function both via substrate availability mechanisms and through allosteric regulation. Metabolites are therefore at the nexus of infectious diseases, regulating nutrient availability to the pathogen, immune responses, tropism, and host disease tolerance and resilience. Analysis of metabolomics data is however complex, particularly in terms of metabolite annotation. An emerging valuable approach to extend metabolite annotations beyond existing compound libraries and to identify infection-induced chemical changes is molecular networking. In this chapter, we discuss the applications of molecular networking in the context of infectious diseases specifically, with a focus on considerations relevant to these biological systems.
Collapse
Affiliation(s)
- Morgan B Harris
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Mahbobeh Lesani
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States; Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
44
|
Liang J, Luo W, Yu K, Xu Y, Chen J, Deng C, Ge R, Su H, Huang W, Wang G. Multi-Omics Revealing the Response Patterns of Symbiotic Microorganisms and Host Metabolism in Scleractinian Coral Pavona minuta to Temperature Stresses. Metabolites 2021; 12:metabo12010018. [PMID: 35050140 PMCID: PMC8780272 DOI: 10.3390/metabo12010018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Global climate change has resulted in large-scale coral reef decline worldwide, for which the ocean warming has paid more attention. Coral is a typical mutually beneficial symbiotic organism with diverse symbiotic microorganisms, which maintain the stability of physiological functions. This study compared the responses of symbiotic microorganisms and host metabolism in a common coral species, Pavona minuta, under indoor simulated thermal and cold temperatures. The results showed that abnormal temperature stresses had unfavorable impact on the phenotypes of corals, resulting in bleaching and color change. The compositions of symbiotic bacteria and dinoflagellate communities only presented tiny changes under temperature stresses. However, some rare symbiotic members have been showed to be significantly influenced by water temperatures. Finally, by using ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS) method, we found that different temperature stresses had very different impacts on the metabolism of coral holobiont. The thermal and cold stresses induced the decrease of anti-oxidation metabolites, several monogalactosyldiacylglycerols (MGDGs), and the increase of lipotoxic metabolite, 10-oxo-nonadecanoic acid, in the coral holobiont, respectively. Our study indicated the response patterns of symbiotic microorganisms and host metabolism in coral to the thermal and cold stresses, providing theoretical data for the adaptation and evolution of coral to a different climate in the future.
Collapse
Affiliation(s)
- Jiayuan Liang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Wenwen Luo
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Kefu Yu
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519080, China
- Correspondence: ; Tel./Fax: +86-771-3231358
| | - Yongqian Xu
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Jinni Chen
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Chuanqi Deng
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Ruiqi Ge
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Hongfei Su
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Wen Huang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| | - Guanghua Wang
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, China; (J.L.); (H.S.); (W.H.); (G.W.)
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China
- School of Marine Sciences, Guangxi University, Nanning 530004, China; (W.L.); (Y.X.); (J.C.); (C.D.); (R.G.)
| |
Collapse
|
45
|
Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol 2021; 19:e3001322. [PMID: 34411089 PMCID: PMC8376202 DOI: 10.1371/journal.pbio.3001322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions. This Essay argues that in order to truly understand how marine hosts benefit from the immense diversity of microbes, we need to expand towards long-term, multi-disciplinary research focussing on few areas of the world’s ocean that we refer to as “natural experiments,” where processes can be studied at scales that far exceed those captured in laboratory experiments.
Collapse
|
46
|
Henry JA, Khattri RB, Guingab-Cagmat J, Merritt ME, Garrett TJ, Patterson JT, Lohr KE. Intraspecific variation in polar and nonpolar metabolite profiles of a threatened Caribbean coral. Metabolomics 2021; 17:60. [PMID: 34143280 DOI: 10.1007/s11306-021-01808-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/29/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Research aimed at understanding intraspecific variation among corals could substantially increase understanding of coral biology and improve outcomes of active restoration efforts. Metabolomics is useful for identifying physiological drivers leading to variation among genotypes and has the capacity to improve our selection of candidate corals that express phenotypes beneficial to restoration. OBJECTIVES Our study aims to compare metabolomic profiles among known, unique genotypes of the threatened coral Acropora cervicornis. In doing so, we seek information related to the physiological characteristics driving variation among genotypes, which could aid in identifying genets with desirable traits for restoration. METHODS We applied proton nuclear magnetic resonance (1H-NMR) and liquid chromatography-mass spectrometry (LC-MS) to identify and compare metabolomic profiles for seven unique genotypes of A. cervicornis that previously exhibited phenotypic variation in a common garden coral nursery. RESULTS Significant variation in polar and nonpolar metabolite profiles was found among A. cervicornis genotypes. Despite difficulties identifying all significant metabolites driving separation among genotypes, our data support previous findings and further suggest metabolomic profiles differ among various genotypes of the threatened species A. cervicornis. CONCLUSION The implementation of metabolomic analyses allowed identification of several key metabolites driving separation among genotypes and expanded our understanding of the A. cervicornis metabolome. Although our research is specific to A. cervicornis, these findings have broad relevance for coral biology and active restoration. Furthermore, this study provides specific information on the understudied A. cervicornis metabolome and further confirmation that differences in metabolome structure could drive phenotypic variation among genotypes.
Collapse
Affiliation(s)
- Joseph A Henry
- Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, University of Florida/IFAS, 7922 NW 71st Street, Gainesville, FL, 32653, USA.
| | - Ram B Khattri
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Joshua T Patterson
- Program in Fisheries and Aquatic Sciences, School of Forest, Fisheries, and Geomatics Sciences, University of Florida/IFAS, 7922 NW 71st Street, Gainesville, FL, 32653, USA
- The Florida Aquarium, Center for Conservation, 529 Estuary Shore Ln, Apollo Beach, FL, 33572-2205, USA
| | - Kathryn E Lohr
- Office of National Marine Sanctuaries, National Oceanic and Atmospheric Administration, Silver Spring, MD, USA
| |
Collapse
|
47
|
Innis T, Allen-Waller L, Brown KT, Sparagon W, Carlson C, Kruse E, Huffmyer AS, Nelson CE, Putnam HM, Barott KL. Marine heatwaves depress metabolic activity and impair cellular acid-base homeostasis in reef-building corals regardless of bleaching susceptibility. GLOBAL CHANGE BIOLOGY 2021; 27:2728-2743. [PMID: 33784420 DOI: 10.1111/gcb.15622] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching-resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular-level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching-resistant and bleaching-susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching-susceptible corals had lower intracellular pH than bleaching-resistant corals at the peak of bleaching for both symbiont-hosting and symbiont-free cells, indicating greater disruption of acid-base homeostasis in bleaching-susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid-base regulation was significantly impaired at the cellular level even in bleaching-resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid-base regulation may further exacerbate the physiological effects of climate change.
Collapse
Affiliation(s)
- Teegan Innis
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kristen T Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- ARC Centre of Excellence for Coral Reef Studies and School of Biological Sciences, University of Queensland, St. Lucia, Qld, Australia
| | - Wesley Sparagon
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Elisa Kruse
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ariana S Huffmyer
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Craig E Nelson
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Katie L Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
48
|
Abstract
Climate-driven reef decline has prompted the development of next-generation coral conservation strategies, many of which hinge on the movement of adaptive variation across genetic and environmental gradients. This process is limited by our understanding of how genetic and genotypic drivers of coral bleaching will manifest in different environmental conditions. We reciprocally transplanted 10 genotypes of Acropora cervicornis across eight sites along a 60 km span of the Florida Reef Tract and documented significant genotype × environment interactions in bleaching response during the severe 2015 bleaching event. Performance relative to site mean was significantly different between genotypes and can be mostly explained by ensemble models of correlations with genetic markers. The high explanatory power was driven by significant enrichment of loci associated DNA repair, cell signalling and apoptosis. No genotypes performed above (or below) bleaching average at all sites, so genomic predictors can provide practitioners with 'confidence intervals' about the chance of success in novel habitats. These data have important implications for assisted gene flow and managed relocation, and their integration with traditional active restoration.
Collapse
Affiliation(s)
- Crawford Drury
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| | - Diego Lirman
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL 33149, USA
| |
Collapse
|